
BLIND DECONVOLUTION USING A REGULARIZEDSTRUCTURED TOTAL LEAST NORM ALGORITHM �ARMIN PRUESSNERy AND DIANNE P. O'LEARYzAbstrat. Rosen, Park and Glik proposed the strutured total least norm (STLN) algorithmfor solving problems in whih both the matrix and the right-hand side ontain errors. We extendthis algorithm for ill-posed problems by adding regularization and use the resulting algorithm tosolve blind deonvolution problems as enountered in image deblurring when both the image and theblurring funtion have unertainty. The resulting regularized strutured total least norm (RSTLN)algorithm preserves any aÆne struture of the matrix and minimizes the disrete Lp-norm error,where p = 1; 2; or 1. We demonstrate the e�etiveness of these algorithms for blind deonvolution.Key words. least squares, total least squares, total least norm, strutured total least norm,minimization, regularization, ill-posed problem, 1�norm, 2�norm, 1�norm, overdetermined linearsystem, blind deonvolution, image deblurring, boundary onditions, onstrained total least squaresAMS subjet lassi�ations. 65F22, 65K10, 90C051. Introdution and Bakground. Most image reording devies fail to reordthe intensity of a given image sene exatly. Eah reorded image setion (or pixel)desribing the orresponding sene has errors in the form of either random noise, blur-ring, or both. Blurring ours when the reorded intensity of a given pixel is in e�etinuened by the intensity of neighboring setions. Beause of these imperfetions inreorded images, it is often neessary to apply deblurring tehniques to obtain learerimages.The problem of image deblurring is modeled as an integral equation of the �rstkind: Z
 a(s; t)x(t) dt = b(s)� �(s) = b(s)(1.1)where s; t 2 R2 are the spatial oordinates, 
 the domain or (nonzero) support ofthe image, x : R2 ! R the true image, a : R4 ! R the point spread funtion, and� : R2 ! R random noise. The funtion b(s) is the observed, blurred, noisy image,and b(s) is the noiseless blurred image.In partiular, if it is assumed that a(s; t) is spatially-invariant, that is, its e�etdepends only on the spatial distane between s and t, then the preeding equationrepresents a onvolution integral, where a(s; t) = a(s � t). In this ase, b(s) is theresult of onvolving a(s) and x(s).Sine reording devies make only a �nite number of measurements, the imagingmodel an be disretized and Equation (1.1) an be written as a matrix equation.The disretized model is: Ax = b+ �:(1.2)�Manusript date: September 25, 2001. This work was supported in part by the NationalSiene Foundation under grant CCR-97-32022 and by the OÆe of Naval Researh under grantN000140110181.yApplied Mathematis and Sienti� Computation Program, University of Maryland, CollegePark, MD 20742 (armin�math.umd.edu)zDepartment of Computer Siene and Institute for Advaned Computer Studies, University ofMaryland, College Park, MD 20742. (oleary�s.umd.edu).1



2 A. PRUESSNER and D. P. O'LEARYwhere the matrix A is the disretized ounterpart of a(s; t), and x and b are also thedisretized versions of the orresponding ontinuous funtions. If the blurring funtiona is assumed to be spatially-invariant, then the matrix A has a speial struture: for1-dimensional signals it is Toeplitz and for 2-dimensional signals blok Toeplitz withToeplitz bloks.If the ause of the blur and hene a is not known exatly, then our estimate of Ahas errors and the problem is known as blind deonvolution. In this ase the model in(1.2) should be replaed by (A+E)x = b+ r;(1.3)a problem of the total least norm variety. If the matrix A has no speial strutureand the error k[E j r℄kp is measured using the Frobenius norm, then the probleman be solved using the total least squares (TLS) method [5℄. For image proessingproblems, the matrix A has a speial struture, and it is desirable to enfore the samestruture on the error matrix E. Rosen, Park and Glik [22℄ developed the struturedtotal least norm (STLN) method to solve suh problems.While STLN is useful for many strutured linear problems, the blind deonvolu-tion problem as enountered for image deblurring is generally ill-posed [9℄. In parti-ular, the matrix A is often ill-onditioned, resulting in poor reovered images whenSTLN is applied.Regularization methods must be implemented in order to stabilize STLN and toobtain useful results. In this paper it is shown how to implement Tikhonov regu-larization [20, 24℄ to arrive at the regularized strutured total least norm (RSTLN)algorithm. While implementations of Tikhonov regularization for onstrained totalleast squares problems had been developed previously [15, 17℄, the �rst even beforethe work of Rosen et. al. on the simpler problem, they foused solely on the 2�normase. The ontributions herein are the extension for p = 1 and p =1 norms and theomparison of methods. In the p = 1 and p =1 ases, the main omputational tasklies in solving a linear program (LP).The paper is strutured as follows: in the next setion the STLN method is intro-dued and derived. In x3 the general RSTLN method is introdued and derivationsare presented for the p = 1; 2 and1 ases. Finally, in x4 we present numerial resultsand in x5 draw onlusions.2. Derivation of the STLN Method. In order to understand the RSTLNmethod, a brief derivation of STLN based on [22℄ is given. For a more thoroughderivation, the reader is referred to [22℄ and [12℄.2.1. Total Least Squares and Strutured Total Least Norm. The totalleast squares [5℄ formulation for solving problems as in Equation (1.3) is to �nd amatrix E and a vetor r suh that jj[E; r℄jjF(2.1)is minimized, where F denotes the Frobenius norm and r = b � (A + E)x is theresidual. If the matrix A has a speial struture whih the user wants to enfore onE, then the TLS formulation is not appliable. Instead, the STLN formulation provesuseful.As in [22℄ assume that the matrix A 2 Rm�n is parameterized by elements ofthe vetor � 2 Rq ; q < mn. Then the residual is a funtion of � and x. Hene, the



REGULARIZED STRUCTURED TOTAL LEAST NORM 3STLN formulation is to �nd vetors � and x suh that r(�; x)D� p(2.2)is minimized where p = 1; 2 or1 and D is a diagonal weighting matrix through whihthe size of � is measured.We assume that there is a relationship between E and x. In partiular, assumethere exists a matrix X parameterized by x suh thatX� = Ex:(2.3)For a detailed desription on onstrution of the matrix X , the user is referred to [22℄and [12℄, although the reader should note that if the matrix E is strutured then sois X .Now let �x and �E denote small hanges in x and E, respetively, thenX�� = (�E)x:(2.4)If we expand r(�; x) in a Taylor series about [�T xT ℄T and ignore seond order andhigher terms, we haver(�+��; x +�x) � b� (A+E)x�X��� (A+E)�x= r(�; x) �X��� (A+E)�x:(2.5)Hene, we have a linearization of (2.2):min��;�x� X A+ED 0 �� ���x �+� �rD� �p :(2.6)The general idea behind the STLN method is to start with some initial estimatesfor x and E, solve the minimization problem in Equation (2.6) for �� and �x, setx = x + �x and � = � + ��, and update the residual r and the matries E andX . The proedure is repeated iteratively until jj��jj and jj�xjj are below a spei�edtolerane, at whih point the algorithm has onverged to a solution. For a detaileddesription the reader is referred to [22℄.3. Derivation of RSTLN. In order to make STLN more robust in the preseneof noise (as is enountered in most image deblurring appliations), a form of regu-larization must be introdued. The method of Tikhonov [24℄ is implemented herein,whih prevents the solution x from getting too large. In partiular, Equation (2.2)an be modi�ed to arrive at the Regularized Strutured Total Least Norm (RSTLN)algorithm. The new problem formulation is to �nd vetors � and x so that r(�; x)D��x p(3.1)is minimized, where � is a positive salar known as the regularization parameter andp = 1; 2 or 1. Using the relation in Equation (2.5) and similar reasoning as for theSTLN method, the linearization of Equation (3.1) results in:min��;�x24 X A+ED 00 �I 35� ���x �+0� �rD��x 1Ap :(3.2)



4 A. PRUESSNER and D. P. O'LEARYRSTLN Algorithm1. Set E = 0m�n and � = 0q�1:2. Compute x by minx kAx� bkp (for p = 2 this is just least squares).3. Compute X from x and the residual r = b�Ax.4. For k = 1; 2; ::: until k�xk; k��k � � repeat Steps 4.1 { 4.34.1. Solvemin��;�x24 X A+ED 00 �I 35� ���x �+0� �r(�; x)D��x 1Ap.4.2. Set x = x+�x and � = �+��.4.3. Construt E from �, and X from x and omputer = b� (A+E)x.5. The reovered image is x and the reovered blurringmatrix (A+E). Table 3.1The general RSTLN algorithm (for arbitrary norm p) is listed in Table 3.1.3.1. RSTLN for p = 2. The minimization problem in the RSTLN formulationis equivalent to minimizing the funtion:�(�; x) = 12kr(�; x)k22 + 12kD�k22 + 12k�xk22:(3.3)The 2-norm ase has the property of di�erentiability so that Gauss-Newton theory isappliable. Using similar reasoning as in [22℄ for the STLN method, it follows thatStep 4.1 is a Gauss-Newton method whih approximates the Hessian of �(�; x) by thepositive de�nite matrix MTM , whereM = 24 X A+ED 00 �I 35 :(3.4)See also [3℄.The least squares normal equations an be solved using the onjugate gradientmethod, where the Toeplitz (or blok Toeplitz with Toeplitz blok) struture of M isexploited. In partiular, the FFT is used for eÆient omputation of matrix-vetorproduts.Another more eÆient approah for p = 2 may be to apply the tehniques of[14℄ for the non-regularized STLN to RSTLN. In partiular, an algorithm based onthe generalized Shur algorithm [16℄ for solving least squares problems is used whihexploits the struture of the STLS matrix:� X A+ED 0 � :(3.5)



REGULARIZED STRUCTURED TOTAL LEAST NORM 5Sine the RSTLN matrix M has a similar struture to this, the method in [14℄ shouldbe appliable. This may be the fous of future work.3.2. RSTLN for p = 1. For both the p = 1 and p = 1 ases Step 4.1 of theRSTLN algorithm is a linear program. To see this, an approah similar to [22℄ is used.Let us �rst onsider the derivation for p = 1. Suppose the original image invetor form is x 2 Rn�1, that � 2 Rq�1 and that the residual r 2 Rm�1. Thenthe optimal funtion value in Step 4.1 is ��, where �� is determined from the linearprogram min��;�x;�� ��subjet to ���em � X��+ (A+E)�x� r � ��em���eq � D�� +D� � ��eq���en � ��x + �x � ��en(3.6)where ek 2 Rk�1 is a vetor of ones.Using the matrix M we an write the LP in standard form:min��;�x;�� ��subjet to � M �em+n+q�M �em+n+q �0� ���x�� 1A � 0BBBBBB� r�D���x�rD��x
1CCCCCCA(3.7)

Depending on the method to solve the LP, it may be useful to onsider the dualformulation. Setting � = ��� it follows that the dual is:minyi�0 rT y1 � �TDy2 � �xT y3 � rT y4 + �TDy5 + �xT y6
subjet to � MT �MTeTm+n+q eTm+n+q �0BBBBBB� y1y2y3y4y5y6

1CCCCCCA � 0BBBBBBB� 000...01
1CCCCCCCA(3.8)

where y1; y3 2 Rm�1, y2; y4 2 Rq�1, and y3; y6 2 Rn�1. The system in Equation(3.8) an be solved using any standard simplex or interior point method.The reader should note that sine the matrix M has a speial struture (Toeplitzor blok Toeplitz with Toeplitz bloks), any pratial implementation of RSTLN forp = 1 or p =1 should exploit this property when solving the LP.3.3. RSTLN for p = 1. The derivation for the p = 1 ase is similar to thep = 1 ase. Again, let �� be the optimal funtion value in Step 4.1. In partiular,assuming x; �, and r are de�ned as previously, we have that �� is determined by



6 A. PRUESSNER and D. P. O'LEARYmin��;�x;�� �� = mXi=1 ��1i + qXi=1 ��2i + nXi=1 ��3isubjet to ���1 � X��+ (A+E)�x� r � ��1���2 � D��+D� � ��2���3 � ��x + �x � ��3(3.9)where ��1 2 Rm�1, ��2 2 Rq�1, and ��3 2 Rn�1. Using the matrix M we an write theLP as: min��;�x;�� �� = mXi=1 ��1i + qXi=1 ��2i + nXi=1 ��3isubjet to � M �Im+n+q�M �Im+n+q �0BBBB� ���x��1��2��3 1CCCCA � 0BBBBBB� r�D���x�rD��x
1CCCCCCA(3.10)

As for the p = 1 ase, the user may want to use the dual formulation. Setting� = ���, then our formulation beomesminyi�0 rT y1 � �TDy2 � �xT y3 � rT y4 + �TDy5 + �xT y6subjet to � MT �MTIm+n+q Im+n+q �0BBBBBB� y1y2y3y4y5y6
1CCCCCCA � 0BBBBBB� 0m�10q�10n�1emeqen

1CCCCCCA(3.11)where all yi are as de�ned previously for the 1-norm ase, and 0k�1 is a vetor ofzeros.3.4. Convergene of RSTLN for p = 1 or p =1. As for the STLN problem,the funtion minimized in Equation (3.1) is nononvex so that there is no guaranteethat the RSTLN algorithm onverges to a global minimum. For the p = 2 norm aseGauss-Newton theory is appliable: a suitable line searh method (see for example [3℄)an be used to guarantee onvergene to a loal minimizer from any starting point.For p = 1 and p = 1 Gauss-Newton theory is not diretly appliable sinedi�erentiability is lost. But the essential idea is the same as for the p = 2 norm.In partiular, the solutions ���T �xT �T to the LPs given in Equations (3.7) and(3.10) an be thought of as desent diretions to the funtion in Equation (3.1) forthe respetive p-norm. Again, in order to guarantee onvergene to a loal minimizerfrom any starting point, a line searh method an be implemented.4. Numerial Results. In this setion, experiments will be given whih showthat RSTLN deblurs images better than the STLN method. In partiular, examplesare shown omparing RSTLN and STLN for the p = 1; 2 and 1 norms. We alsoompare our results with other blind deonvolution algorithms.



REGULARIZED STRUCTURED TOTAL LEAST NORM 74.1. Experimental Design.4.1.1. Numerial Issues. All of our ode was written in MATLAB to takeadvantage of its image visualization apabilities.The hoie of regularization parameter is a well-studied problem (see, for exam-ple, [8℄). Ideally, the hoie balanes the need to stay lose to the original noise-ontaminated problem [10℄ without ausing its ill-onditioning to produe unaept-able noise in the solution. In our experiments, we were onerned with the bestsolution obtainable for any hoie of parameter. We set D = I and solved eah prob-lem for a wide range of values � > 0, hoosing the parameter resulting in the smallestvalue for the 2-norm of the image error.For the STLN and RSTLN algorithms, a linear problem needs to be solved at eahiteration; see Step 4.1 of Table 3.1. For the p = 2 norm, we used the onjugate gradientleast squares method to solve this problem. We set the CG termination onditionto a relative residual tolerane of 10�6 or 1000 iterations. This generally produessatisfatory auray to determine the desent diretion, but for larger images, themaximum number of iterations was sometimes taken.We stop the STLN or RSTLN iterations whenk�xk2 = kbk2 < tolkA��k2 = kAestk2 < tol;where b is the blurred image, Aest the blurring matrix parameterized by the initialPSF estimate, and A�� the blurring matrix parameterized by the urrent PSF error��.For the p = 1 and p = 1 ases we solved the linear program in Step 4.1 usingthe MATLAB funtion linprog.m with the largesale model employed. The funtionuses the LIPSOL [25℄ algorithm and is based on a primal-dual interior point method.Beause of limitations in the MATLAB interfae to LIPSOL, we were only able to setour stopping riteria to O(10�2) to O(10�3) ompared to toleranes of O(10�6) forthe STLN experiments in [22℄; a smaller tolerane aused LIPSOL to fail to onverge.Even with this diÆulty, RSTLN gives better results than STLN.Our urrent implementation is restrited to fairly small images beause of thelarge number of onstraints in the linear program. While the atual onstraint matrixM passed into linprog.m is sparse, its fatorization within the routine generally isnot. Hene, the LP solver as implemented in MATLAB is very memory intensive andurrently restrits our test ases to images no larger than 100� 100.We omputed the following values in order to ompare STLN and RSTLN:bpert = kbnoisy � btruek2 = kbtruek2Apert = kAnoisy �AtruekF = kAtruekFxerr = kxre � xtruek2 = kxtruek2Aerr = k(A+E)re � AtruekF = kAtruekFberr = kbre � btruek2 = kbtruek2where xre is the reovered image (in vetor form), (A+E)re represents the blurringmatrix parameterized by the reovered PSF, bre is the result obtained from onvolvingthe reovered image and PSF, and xtrue, Atrue, and btrue are the orret values, sothat Atruextrue = btrue: The values bpert and Apert represent the perturbed versionsof b and A, where bnoisy and Anoisy are the noisy versions of b and A with the additionof zero-mean Gaussian noise.



8 A. PRUESSNER and D. P. O'LEARY4.1.2. Comparison with Other Blind Deonvolution Methods. We om-pare RSTLN with two other blind deonvolution methods: blind Luy-Rihardson,and the APEX/SECB method of Carasso.The blind Luy-Rihardson algorithm is an extension of the well-knownoriginal Luy-Rihardson method [13, 21℄. The original iterative method was derivedfrom Bayes' Theorem and assumes that the blurred image, the original image, and thePSF are (possibly non-normalized) probability density funtions. The most ommonand eÆient implementation makes use of the FFT to ompute onvolutions. Thisimpliitly imposes periodi boundary onditions on the image.The blind version is similar to the original method; eah iteration alternately usesseveral iterations of the non-blind algorithm to estimate a new PSF and then a newimage. It is generally more e�etive for images having many pixels and for imageswith fewer sharp edges, sine onvolution tends to smooth edge boundaries [9℄.The algorithm an be used without FFTs, but it is omputationally muh slowerand may produe ringing if the image does not have �nite support. But beause themethod has a probabilisti basis, any implementation must onserve energy. Thus, anon-periodi (for example, zero boundary ondition) implementation is useful only forimages having support stritly inside the image boundaries. Convolutions involvingimages with non-�nite support do not onserve energy and result in data being lostoutside of the original image boundary; this leads to ringing in the resulting images.The stopping riterion for MATLAB's blind Luy-Rihardson funtion deonvblind.mis based solely on the input number of iterations. The user may speify this total num-ber of iterations or use the default value of 10. Our non-FFT implementation is similarto the non-blind MATLAB routine deonvluy.m, but lets the user speify the totalnumber of iterations and, for eah, the number of Luy-Rihardson inner iterations toupdate the image and PSF estimates. We estimate the optimal number of iterationsby reovering images using a wide variety of hoies and then hoosing the imageresulting in the smallest 2-norm error. For our omparison test ases, where our goalwas to show only general trends in the reovered images, we often used a default of10 iterations, modifying this number as needed.Carasso'sAPEX/SECB method [1℄ an be applied to the lass of PSFs a whoseFFT, denoted by â(�; �), is of the form:â(�; �) = e��(�2+�2)�(4.1)where � and � are the respetive frequeny oordinates. If the blurred image b = a
xis obtained by (periodi) onvolution, then in the Fourier domainb̂(�; �) = x̂(�; �) � â(�; �)= x̂(�; �) � e��(�2+�2)� :(4.2)The idea behind the PSF identi�ation method is to �t the funtion �j�j2� to thelogarithm of the Fourier transform of the blurred image and an estimate of the trueimage; see [1℄ for details. If the image or the PSF fails to meet neessary requirements,then suh a �t will not be possible.4.2. Test 1. Our �rst test onsists of a ross of size 21� 21. The true PSF is aGaussian blur with variane 2.5, trunated to a support of size 11� 11.The blurred image was obtained by onvolving the original image and PSF, as-suming that pixel values outside the image are zero (zero boundary onditions). The



REGULARIZED STRUCTURED TOTAL LEAST NORM 9Test Case 1 xerr Aerr berrp = 2 STLN 1:19 3:97e�2 1:1e�3p = 2 RSTLN 0:39 4:10e�2 1:1e�3p = 1 STLN 0:97 3:99e�2 1:4e�3p = 1 RSTLN 0:44 4:00e�2 1:1e�2p =1 STLN 0:50 4:02e�2 5:5e�1p =1 RSTLN 0:45 3:98e�2 4:9e�1Table 4.1RSTLN Errors for p = 1; 2 and 1. We list the errors in the image x, the matrix A and theresidual error berr for the unregularized STLN and the RSTLN methods for eah of the norms. Forthe p = 1 and p = 2 norms the RSTLN reovered image error xerr is muh smaller than for STLN.For p =1 the image error is near optimal and the error using RSTLN is only slightly smaller thanfor STLN.original and blurred images are shown in (A) and (B) of Figure 4.1. Random, zeromean 6-bit noise was added to the PSF to obtain the initial PSF estimate. Thisresulted in Apert = 3:99�10�2. Furthermore, 11-bit Gaussian noise was added to theblurred image, resulting in bpert = 1:10� 10�3.The errors resulting from the STLN and RSTLN methods for the di�erent p-norms are shown in Table 4.1. The orresponding images are shown in Figure 4.1, (C)through (H). From the error table we see that the use of RSTLN generally inreasesthe error Aerr in the blurring matrix and the residual error berr. For the 1- and2- norms, however, the error xerr in the image estimate is onsiderably lower, so thereonstruted image is improved. For the p =1 norm, the image obtained from STLNwas near optimal, and all RSTLN experiments for nonzero values of the regularizationparameter � resulted in higher image errors.In Figure 4.2 we present the results of the blind Luy-Rihardson method (denotedby LR). In (A) we show results obtained by LR in reonstruting images blurred withperiodi boundary onditions (6-bit noise added), using 20 outer iterations with 10Luy-Rihardson iterations in eah. The width of the ross is broadened due toblurring of the edges during the reonstrution.In Figure 4.2 (B) through (F), we present the result of various attempts to reon-strut the image with zero boundary onditions from Figure 4.1. In (B) we show theresult obtained by using 5 outer iterations with 10 Luy-Rihardson iterations eah,omputing onvolutions using zero padded images. It is lear that the image is dis-torted and ringing is observed throughout. The other images are reonstruted usingthe MATLAB-supplied implementation of blind Luy-Rihardson, whih we all M-LR. In (C) we show the M-LR result, beginning with the blur estimate as for RSTLN,and stopping after the MATLAB-default 10 iterations. We repeat this experiment in(D), but starting from a at PSF estimate (a matrix of ones of size 11 � 11). Inboth ases only poor reonstrutions are obtained. In (E) and (F) we show similarresults as in (C) and (D), exept that the image was tapered using edgetaper.m,whih seeks to transform a nonperiodi image into a more periodi one by reblurringthe edges of an image with a suitable PSF. The reader is referred to [23℄ for details.We performed 50 and 100 M-LR iterations, respetively. The reader should note thatthe algorithm is not able to reonstrut data near the image boundary, although theinterior is adequately reovered.The APEX/SECB method annot be applied to this image, beause it is too smallto yield enough data points.



10 A. PRUESSNER and D. P. O'LEARYTest Case 2 xerr Aerr berrp = 2 STLN 4:2895 4:03e�2 1:03e�2p = 2 RSTLN 0:5885 1:15e+0 9:20e�3Table 4.2RSTLN Errors for p = 2 for the large ross test ase. We list the errors in the image x, thematrix A and the residual error berr for the unregularized STLN and the RSTLN methods for p = 2.For the RSTLN (� = 2:5) reovered image error xerr is muh smaller than for STLN.Test 2. Our next test onsists of a somewhat broader ross image of size 41� 41with a nonzero ross width of 5. The image was blurred with an 11 � 11 Gaussian.Gaussian 8-bit noise was added to the blurred images, resulting in bpert = 1:05�10�2and 9:8� 10�3, respetively. The blur estimate was obtained by adding 6-bit noise tothe original blur, resulting in Apert = 3:91� 10�2.Again, we present results omparing the STLN, RSTLN, LR, and M-LR methods,as well as Carasso's APEX/SECB method. In Figure 4.3 we show the original andblurred images in (A) and (B). In (C) we show the STLN 2-norm solution (thatis, without any regularization) and in (D) the best RSTLN 2-norm solution withregularization (using � = 0:75). (The RSTLN p = 1 and p = 1 were not omputeddue to the expense of solving the linear programming problems.) The resulting STLNand RSTLN errors for the 2-norm are shown in Table 4.2.For APEX/SECB, the original image in (A) was blurred using periodi boundaryonditions as in Equation (4.2) using parameters � = 0:075 and � = 1. This resultedin a blurred image nearly idential to (B). Again, 8-bit noise was added to the blurredimage. In subplot (E) we show the results of using APEX/SECB for PSF identi�ationand subsequent deblurring of the periodi noisy blurred image. The APEX PSFidenti�ation proedure resulted in parameter estimates of �est = 0:0749 and �est =0:9756, whih are fairly lose to the true parameter values. Unfortunately, this methodwas unsuessful for images blurred with zero boundary onditions and noise added.In (F), we show the APEX optimization funtion for di�erent salar value imageestimates. The non-smooth family of urves orresponds to the optimization funtionfor di�erent salar estimates for the unknown image quantity log jf̂(�; 0)j if the naturallogarithm is applied to the right and left hand sides in Equation 4.2 and when a noisyzero boundary ondition blurred image is used. The urves do not have the properform and thus do not permit a urve �t of the form �j�j2� . For this ase no properPSF an be found.In Figure 4.4 we present results of the blind Luy-Rihardson algorithm. In (A)we see that the algorithm gives a good result for periodi blurs, but the reonstrutionfor a zero boundary ondition exhibits ringing and distortion. These results used 50outer iterations, eah using 10 Luy-Rihardson iterations. In (B) we give the resultfor the zero boundary ondition image using the zero boundary implementation. Wethen apply the M-LR algorithm to a noisy zero boundary blurred image. In (C) and(D) we show results using no tapering, 25 iterations, and using an initial guess ofeither the RSTLN blur estimate or a matrix of ones of size 11 � 11. Both resultsexhibit ringing due to improper boundary onditions. In (E) and (F) we show M-LRresults with tapering, using 10 outer iterations and initial blur estimates as in (C)and (D). The reonstrutions are not useful.4.3. Test 3. Our �nal omparison test onsists of an image obtained from theNASA Image Exhange (http://nix.nasa.gov). It shows the orona of the sun and



REGULARIZED STRUCTURED TOTAL LEAST NORM 11Test Case 3 xerr Aerr berrp = 2 STLN 20:01 2:47e�2 2:19e�2p = 2 RSTLN 0:9265 3:8483e+0 6:71e�1Table 4.3RSTLN Errors for p = 2 for the sun test ase. We list the errors in the image x, the matrix Aand the residual error berr for the unregularized STLN and the RSTLN methods for p = 2. For theRSTLN (� = 75) reovered image error xerr is muh smaller than for STLN.a large solar eruption. We trunated the image to size 99 � 99 and redued it togray-sale.Again, the image was blurred with a Gaussian PSF of size 11� 11 in two ways:one assuming zero values for pixels outside the image, and the other assuming aperiodi image. A 6-bit noisy version of the zero boundary ondition blurred imagewas obtained by adding zero mean Gaussian noise. This resulted in bpert = 2:20�10�2.For the periodi image no noise was added to the blurred image. The blur estimatewas obtained by adding 6-bit noise to the original blur (Apert = 2:46� 10�2).In Figure 4.5 (A) we show the original and in (B) the noisy blurred image usingzero boundary onditions. In (C) we show the STLN result using the 2-norm. Dueto the high noise level in both the blurred image and the blur estimate, no usefulresult was obtained. In (D) we show the best result using the RSTLN method witha regularization value of � = 75. We remark that in this ase the algorithm did notonverge to a tolerane of 10�2. Instead we stopped prematurely after 10 iterations.A larger number of iterations whih did ahieve the desired tolerane produed animage of lesser quality ontaminated by severe ringing.In Table 4.3 we omputed the resulting errors for the STLN and RSTLN methods.Although Aerr and berr are inreased for RSTLN with respet to STLN, learly theimage error is drastially redued using the RSTLN method.For the APEX/SECB method the image was blurred with a Gaussian blur usingperiodi boundary onditions and parameters � = 0:01 and � = 1 as in Equation(4.2). This resulted in a blurred image very similar to the one in (B). Noise (6-bit)was added to the blurred image. Using the APEX PSF identi�ation method, aurve �t to the optimization funtion was done, resulting in parameter estimates of�est = 0:0108 and �est = 1:028. These are fairly lose to the true PSF parameters. In(E) we show the APEX/SECB reovered image using the noisy blurred image withperiodi boundary onditions. In (F) we show the funtion to be �t using the noisyimage with zero boundary onditions. We plot the funtion using di�erent salarestimates for the original image omponent in Equation 4.2. None of the funtionshave the proper form and a suitable urve �t of the form �j�j2� is not possible. Forthis ase no useful PSF was found.In Figure 4.6 we show the results from the various Luy-Rihardson experiments.In subplot (A) we have the LR result using a periodi image using our own periodiLR implementation. We performed 10 iterations, eah with 10 Luy-Rihardson iter-ations. In (B) we show the result using the zero boundary implementation and a zeroboundary blurred image. We performed outer 15 iterations, eah with 10 iterations toestimate the new PSF and image. Severe ringing is present. In (C) and (D) we showthe non-tapered M-LR results using the RSTLN blur estimate, an 11� 11 matrix ofones for the blur estimate and a zero boundary blurred image. 25 outer iterationswere performed, with 10 iterations eah. For the result in (C) ringing is observednear the image boundary, whereas in (D) the image is severely distorted. Finally, in
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20Fig. 4.1. RSTLN - Cross (noise, Gaussian blur). Test 1, results of STLN and RSTLN methodsusing p = 1; 2; 1-norms. Random noise is present in the blurred image. The blur estimate is thetrue blur plus the addition of 6-bit noise so that Apert = 3:99�10�2. Random, zero mean Gaussian11-bit noise was added to the blurred image so that bpert = 1:10 � 10�3. (A) Original image- 21 � 21; (B) Noisy blurred image (zero BC); (C) STLN (1-norm) solution with tol = 10�2.Solution is near optimal: 13 iterations; (D) RSTLN (1-norm) reovered image with tol = 10�2,regularization parameter � = 0:001, 12 iterations. (E) STLN (2-norm) solution with tol = 10�3,22 iterations; (F) RSTLN (2-norm) reovered image with tol = 10�3, � = 0:05, 27 iterations; (G)STLN (1-norm) solution with tol = 10�2, 13 iterations; (H) RSTLN (1-norm) reovered image withtol = 10�2, � = 0:5, 50 iterations.
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20Fig. 4.2. Test 1, Luy-Rihardson results. (A) periodi LR implementation using a periodiblurred image, 20 LR iterations eah with 10 iterations; (B) zero boundary ondition LR imple-mentation using a zero BC blurred image, 5 LR iterations eah with 10 iterations; (C) M-LR resultwithout tapering and using the RSTLN initial PSF estimate, 10 iterations; (D) M-LR result withouttapering and using an 11� 11 matrix of ones for the initial PSF estimate, 10 iterations; (E) M-LRresult with tapering and using the RSTLN initial PSF estimate, 50 iterations; (F) M-LR result withtapering and using an 11� 11 matrix of ones for the initial PSF estimate, 100 iterations
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Fig. 4.3. Test 2, RSTLN and APEX/SECB results. The image was blurred using zero boundaryonditions. 8-bit noise was added to obtain the image in (B), resulting in bpert = 1:05� 10�2. Theblur estimate was obtained by adding 6-bit noise to the original blur, resulting in Apert = 3:91�10�2.(C) STLN 2-norm solution, tol = 10�3, 26 iterations; (D) Best RSTLN 2-norm solution, � = 0:75,tol = 10�3, 25 iterations; (E) APEX/SECB reovered image using a noisy periodi image. Theimage was blurred as in Equation (4.2) using parameters � = 0:075 and � = 1. The reovered PSFparameter estimates are �est = 0:0749 and �est = 09756 using a salar image omponent estimateof K = 2:2. (F) APEX optimization funtion for a zero BC noisy image. Sine the funtion doesnot have the proper form �j�j2�, no �t an be obtained. In this ase no PSF was found.
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Fig. 4.4. Test 2, Luy-Rihardson results. (A) Periodi LR implementation using a periodiblurred image, 50 LR iterations eah with 10 iterations; (B) zero boundary LR implementation usinga zero BC blurred image, 50 LR iterations eah with 10 iterations; (C) M-LR result without taperingand using the RSTLN blur estimate, 25 iterations; (D) M-LR result without tapering and using an11�11 matrix of ones for the PSF estimate, 25 iterations; (E) M-LR result with tapering and usingthe RSTLN blur estimate, 10 iterations; (F) M-LR result with tapering and using an 11�11 matrixof ones for the PSF estimate, 10 iterations
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Fig. 4.5. Test 3, RSTLN and APEX/SECB results. (A) Original image - 99 � 99; (B) Noisyblurred image (zero BC); (C) STLN (2-norm) solution with tol = 10�2, 2 iterations; (D) RSTLN(2-norm) reovered image with initial tol = 10�2 and regularization � = 75. The experiment wasstopped prematurely after 10 iterations. While larger number of iterations did ahieve the desiredtolerane, the results were distorted by ringing; (E) APEX/SECB reovered image. Image is blurredassuming a periodi image as in Equation 4.2 with parameters � = 0:01 and � = 1. (F) Plotof optimization funtion if the image is blurred using zero BC. The di�erent plots represents theoptimization funtion for di�erent salar estimates for the unknown quantity log jf̂(�; 0)j, wheref̂(�; �) denotes the normalized FFT of the original image f . Sine none of the urves possess theproper shape, no useful PSF an be found.
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90Fig. 4.6. Test 3, Luy-Rihardson results. (A) Periodi LR implementation using a periodiblurred image, 10 LR iterations eah with 10 iterations; (B) zero boundary LR implementation usinga zero BC blurred image, 15 LR iterations eah with 10 iterations; (C) M-LR result without taperingand using the RSTLN blur estimate, 25 iterations; (D) M-LR result without tapering and using an11�11 matrix of ones for the PSF estimate, 10 iterations; (E) M-LR result with tapering and usingthe RSTLN blur estimate, 25 iterations; (F) M-LR result with tapering and using an 11�11 matrixof ones for the PSF estimate, 10 iterations


