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Abstract

We describe a new application-layer multicast protocol that is specifically designed to scale to large groups.
Our scheme is based upon a hierarchical clustering of the application-layer multicast peers and can be used to
produce a number of different data delivery trees with specific properties. On average, group members using our
protocol maintain only a constant amount of state about other group members, and incur a constant amount of
control overhead. We present extensive simulations of both our protocol and the Narada protocol over Internet-
like topologies. Our results show that for groups of size 32 or more, we reduce control overhead by orders of
magnitude, and link stress by 25%, while retaining similar end-to-end latencies and failure recovery properties.

1 Introduction

IP multicast is not widely deployed over a decade after it was developed [8]. Since the barriers for network layer
deployment are not necessarily all technical, it is not clear when global IP multicast deployment will become a reality.
It is, however, clear that multicast itself is a useful network service for many applications, including media-streaming
and bulk reliable file transfer. A set of recent proposals [7, 9, 4, 11, 12] have proposed alternate architectures in
which all multicast functionality is implemented at the end-hosts, thus obviating the need to change the unicast IP
infrastructure. In all of these Application-Layer Multicast schemes, the set of end-hosts that are part of a logical
multicast group participate in a distributed protocol that is used to implement the multicasting functionality.

The basic 1dea of application-layer multicast is shown in Figure 1. Unlike native multicast where data packets
are replicated at routers inside the network, in application-layer multicastdata packets are replicated at end hosts.
Logically, the end-hosts form an overlay network, and the goal of application-layer multicast is to construct and
maintain an efficient overlay for data transmission. Since application-layer multicast protocols must send the identical
packets over the same link, they are less efficient than native multicast. Two intuitive measures of the “goodness”
of the overlay were defined in [7]: the stress and the stretch. The stress metric is defined per-link and counts the
number of identical packets sent by a protocol over each underlying link in the network. The stretch metric is defined
per-member and is the ratio of path-length from the source to a member versus the length of the unicast shortest
path. Consider an application-layer multicast protocol in which the data source unicasts the data to each receiver.
Clearly, this “multi-unicast” protocol minimizes stretch, but at a cost of O(N) stress at links near the source (N is
the number of group members) and a (O(N)control overhead at some single point. However, this protocol is robust
in the sense that any number of group member failures do not affect the other members in the group.

All the application-layer multicast protocols discussed in this paper, including ours, are purely end-to-end, i.e.
they are oblivious to the underlying network topology. It is, in fact, impossible to generate the least-stress application-
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Figure 1: Network-layer and application layer multicast. Square nodes are routers, and circular nodes are end-hosts.
The dotted lines represent peers on the overlay.

layer multicast tree without knowing the underlying topology. In general, application-layer multicast protocols can
be evaluated along three dimensions:

e Quality of the data delivery path. The quality of the tree is measured using topological metrics such as stress,
stretch, and node degrees.

e Robustness of the overlay. Since end-hosts are potentially less stable than routers, it is important for application-
layer multicast protocols to mitigate the effect of receiver failures. The robustness of application-layer multicast
protocols is measured by quantifying the extent of the disruption in data delivery when different members fail,
and the time it takes for the overlay to restore delivery to the other members. None of prior published work
evaluates the robustness of the overlay during the members failure, and we present the first comparison of this
aspect of the application-layer multicast protocols.

e Control overhead. Since application-layer multicast is inherently a cooperative venture, it is important to
design a protocol with low overhead such that the cost of participating in an application-layer multicast group
justifies the benefits.

1.1 Existing Approaches

A number of different application-layer multicast schemes have been proposed in recent literature. They can be
classified into two broad categories: tree-first approaches and mesh-first approaches. In the tree-first approach,
members directly construct an overlay tree topology for data delivery, and additional control links are monitored
and maintained to allow quick recovery from member failures. Yoid [9] and ALMI [12] are examples of the tree-
first approach. As the name suggests, in the mesh-first approach, members distributedly construct a mesh (on
overlay members in which multiple paths exist between pairs of members). Each member then paricipates in a
routing protocol on the mesh topology, and generates a source-specific tree to all other members. Narada [7], and
Gossamer [4] are examples of the mesh-first approach.

None of these end-to-end distributed approaches can produce a topology with bounded stretch or stress. It is
possible to do better if (and only if) the underlying topology is known. In [10], a centralized topology-aware tree-
building algorithm is described in which the stretch between any pair of end-points is bounded by a constant factor.
The tree degree of a member, can however, be unbounded. However, with a slight modification to this algorithm, it
is possible simultaneously guarantee a constant degree bound for the members, and a O(log N') bound for the stretch.

1.2 NICE Trees

Our application-layer multicast protocol was developed in context of the NICE project (NICE is a recursive



acronym for “NICE is the Internet Cooperative Environment”). NICE is a programming environment for co-
operatively implementing distributed applications over the Internet. The NICE environment uses an underlying
application-layer multicast protocol, which is the exclusive focus of this paper. In the rest of this paper, we refer to
the NICE application-layer multicast protocol as simply the NICE protocol. Our goals for NICE were to develop a
scalable distributed tree-building protocol which did not require any underlying topology information. Specifically,
we wanted to reduce the worst-case state and control overhead at any member to O(log N), maintain a constant
degree bound for the group members and approach the O(log N) stretch bound possible with the topology-aware
centralized algorithm.

Unlike previous approaches, NICE is neither an exclusively tree- or mesh-first approach. We create a hierarchically-
connected control topology which has higher connectivity than a tree. This control topology is equivalent to a mesh;
however, the data delivery path is implicitly defined in the way the mesh is structured and no additional route
computations are required. NICE is; therefore, a hybrid of the tree- and mesh-first approaches. Unlike the cen-
tralized topology-aware algorithm described in [10], it is not possible to bound pair-wise end-to-end stretch using a
distributed algorithm like NICE. However, on our simulated topologies, for topologies of size 128 and higher, all of
the pair-wise end-to-end paths were, in fact, bounded by the O(log N) stretch bound.

In our performance comparisons, we compare NICE using detailed simulations to the Narada protocol. Narada
is the only protocol that has previously been studied using both simulation [7] and implementation [6]. Narada is a
mesh-first protocol which creates source-specific trees and has an aggregate O(N?) control overhead.

A key contribution of our approach is the definition of a control structure with low aggregate overhead (O(N))
over which different data delivery trees can be built. On average, end hosts maintain state about a constant number
of other members, while a few members maintain state about O(log N) other members. A scalable application-
layer multicast protocol in which the overhead is independent of the tree size is likely to be useful for a number of
applications, most notably media-streaming applications with large receiver sets. Compared to unicast solutions'
now deployed in the Internet, an application-layer multicast solution such as Narada reduces the data overhead at
the source from O(N) to O(1). However, we also need to ensure that the control overheads at each end host and
the network routers, are low. In comparison, on average NICE reduces both data and control overhead to a constant
and can be used to support applications that requre large application-layer multicast groups. For groups of size 64
or more, our simulations show that compared to Narada, NICE imposes orders of magnitude less control overhead,
while producing trees with lower average stress and comparable stretch.

The rest of the paper is structured as follows: In Section 2, we present our general approach, explain how different
delivery trees are built over NICE, and provide a few theoretical bounds about the NICE protocol. In Section 3,
we present the packet-level details of the protocol. We evaulate the performance of NICE and present a detailed
comparison with Narada in Section 4. We elaborate on related work in Section b, and present conclusions in Section 6.

2 Solution Overview

The NICE protocol arranges the set of end hosts into a hierarchy; the basic operation of the protocol is to create and
maintain the hierarchy. The hierarchy defines a default data tree since any host can be reached from any other by
traversing up and down the levels in the hierarchy. The member hierarchy is also crucial for scalability, since most
members are in the bottom of the hierarchy and only maintain state about a constant number of other members.
The members at the very top of the hierarchy maintain (soft) state about O(log N) other members. Logically, each
member keeps detailed state about other members that are near in the hierarchy, and only has limited knowledge
about other members in the group. The hierarchical structure is also important for localizing the effect of member
failures.

In this paper, we use end-to-end path length as the distance metric between hosts. The NICE protocol can also be

1For example, see http://www.real.com
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Figure 2: Hierarchical arrangement of hosts in NICE. The layers are logical entities overlaid on the same underlying
physical network.

used with other metrics, e.g. latency or available bandwidth, but for the rest of this paper, we assume that distances
refer to path lengths. While constructing this hierarchy, members that are “close” with respect to the distance metric
are mapped to the same part of the hierarchy: this allows us to produce trees with low stretch. In the rest of this
section, we describe how the NICE hierarchy is defined, what invariants it must maintain, and describe how it is
used to establish scalable control and data paths.

2.1 A Hierarchical Arrangement of Group members

The NICE hierarchy is created by assigning members to different levels (or layers) as illustrated in Figure 2.
Layers are numbered sequentially with the lowest layer of the hierarchy being layer zero (denoted by Lgy). Hosts in
each layer are partitioned into a set of clusters. Each cluster is of size between k and 2k — 1, where k is a constant,
and consists of a set of hosts that are close to each other. Further, each cluster has a cluster leader. In our case, the
cluster leader is the (graph-theoretic) center of the cluster, i.e. given a set of hosts in a cluster, the cluster leader
has the minimum maximum distance to all other hosts in the cluster.

Hosts are mapped to layers using the following scheme: All hosts are part of the lowest layer, Ly. The clustering
protocol at Ly partitions these hosts into a set of clusters. The cluster leaders of all the clusters in layer L; join
layer L;y1. This is shown with an example in Figure 2, using £ = 3. The layer Lg clusters are [ABCD], [EFGH] and
[JKLM]Z. In this example, we assume that C', F' and M are the centers of their respective clusters of their Ly clusters,
and are chosen to be the leaders. They form layer Ly and are clustered to create the layer Ly cluster, [CFM]. F is
the center, and hence leader, of this cluster and belongs to layer Lo as well.

The NICE clusters and layers are created using a distributed algorithm described in the next section; it is
important to note that a separate instance of this clustering algorithm runs at each layer of the hierarchy. The
following properties hold for the distribution of hosts in the different layers:

e A host belongs to only a single cluster at any layer.

e If a host is present in some cluster in layer L;, it must occur in one cluster in each of the layers, Lo, ..., L;_1.
In fact, it is the cluster-leader in each of these lower layers.

o If a host is not present in layer, L;, it cannot be present in any layer L;, where j > 1.
e There are at most log, N layers, and the highest layer has only a single member.

We also define the term “super-cluster”: for any host, H, it is the cluster to which its cluster leader belongs to.
It follows that there is only one super-cluster defined for every host (except the host that belongs to the top-most

?We denote a cluster comprising of hosts X,Y, Z,... by [XY Z .. .].



Figure 3: Different choices for control and data delivery paths for a two-layer hierarchy. All A; hosts are members of
only Lg clusters. All B; hosts are members of both layers Ly and Li. The only C host is the leader of the L cluster
comprising of itself and all the B hosts.

Procedure : MulticastDataForward(h, p)
{h € layers Lo,...,L; in clusters Cy,...,C; }
for jin[0,...,1]
if (p¢Cj)
ForwardDataToSet( i —{h})
end if

end for

Figure 4: Data forwarding operation at a host, i, that itself received the data from host p.

layer, it does not have a super-cluster), and the super-cluster is in the layer immediately above the highest layer that
H belongs to. For example, in Figure 2, cluster [CF M] in Layer 1 is the super-cluster for nodes B, A, and D. In
NICE, each host maintains state about all the clusters 1t belongs to and about its super-cluster.

2.2 Control and Data Paths

The host hierarchy can be used to define different overlay structures for the control and data delivery paths. It is
useful to have a structure with higher connectivity for the control messages, since this will cause the protocol to
converge quicker.

In Figure 3, we illustrate two choices of control and data paths using clusters of size 4. Each set of four hosts
arranged in a 4-clique in Panel 0 are the clusters in layer L. Hosts By, By, Bs and Cj are the cluster leaders of these
four Ly clusters. and form the single cluster in layer L. Host (Y is the leader of this cluster in layer ;. The clique
corresponds to the highest possible connected structure for a cluster. In comparison, the least connected structure,
a tree, is shown in Panel 1. Each cluster is organized as a star around the cluster leader. Other configurations, such
as a ring or a balanced binary tree are also possible.

For our experiments, we chose the clique cluster configuration for the control path (Panel 0, Figure 3). This
allows us to have a richer connectivity on the control path and also provides an upper bound on our control cost.
Using this control path, in the worst case, each member peers with O(klog N) other members. The control path is
only used for periodic soft state refreshes and updates and does not generate high volumes of traffic. For the data
path, we chose the star connectivity within each cluster. This is the simplest data path in NICE, and is the worst
case topology to demonstate the effect of host failures. The algorithm for multicast data forwarding on the topology
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is as shown in Figure 4.

2.3 Analysis

Assume that each cluster in the hierarchy has exactly k& hosts. Then for the control topology, a host that belongs
only to layer Ly peers with & — 1 other hosts for exchange of control messages. In general, a host in layer L; peers
with £ — 1 other hosts in each of the layers Lg, ..., L;. Therefore, the cluster-leader of the highest layer cluster (Host
Cy in Figure 3), will peer with a total of (k—1) log N neighbors. Using amortized analysis, it follows that on average,
each host peers with only O(k) neighbors.

For the data path, each host in layer Ly peers with only one other host — its cluster-leader in the respective Lg
cluster. However, analogous to the control topology, a host that occurs in layer L;, and no other higher layer, peers
with k£ — 1 hosts in each layer Lg, ..., L;_1, and with one host in layer L; (its cluster-leader). Thus, while the average
host on the data path peers with < 2 other hosts on the data path (again via amortized analysis), in the worst
case a host would peer with O(klog N') other members. This is the case for the cluster-leader of the highest cluster.
While an O(klog N') upper-bound is acceptable for the control topology, for high data rates, hosts may be unable or
unwilling to forward data to O(klog N) other hosts. As we explain next, it is possible to reduce the per-host data
overhead to a constant.

2.4 Enhancing Data Paths

The basic data path in NICE routes data packets up and down the hierarchy like any hierarchical routing protocol.
We define an enhancement to this basic data path by allowing the cluster leaders to delegate data forwarding
responsibility to some of its cluster members in a deterministic manner. The basic data path transformation is
illustrated with an example in Figure 6. Host C is the leader of an Ly cluster, [C1, As, A4, A5, Ag] and a leader of
an Ly cluster, [C, B3, Ba,...]. In the basic data path, it is responsible for forwarding data to all the other members
in its two clusters. In the enhanced path, it uses delegation of data forwarding responsibility.

We define two different delegation schemes. They are:

Simple Delegation: Consider a host, H, that is part of all layers, Ly, ..., L;, and no higher layer. Clearly, it
is the cluster-leader in the layers Lo, ..., L;—; and not a leader in its L; cluster. Let S; denote the set of the other
cluster members in the layer L; cluster of H, where 0 < j < ¢. In the previously described data path, H peers with
all the hosts in U;S; and also the cluster-leader of I in L;. In the enhanced data path, H delegates the hosts in
Sj_1 to peer with the hosts in 5;. Since the cluster sizes are bounded between k and 2k — 1, each host in S;_; is
therefore required by H to peer with at most two hosts in S;. H still continues to peer with the hosts in S;. We
illustrate this by an example in Figure 5.

Using the above notation, for host, C4, the set Sy = {As, Aa, A5, Ag} and set Sy = {Bs, Ba,...}. There it
delegates its overlay data paths to the set S} members to the set Sy members, as the two overlay links: (A3, Bs) and



(As, Ba).

In the enhanced data path, each host that occurs only in Ly peers with af most 3 hosts, and all other hosts peers
with at most 2k + 2 other hosts.

Advanced Delegation: In the advanced delegation, the multicast data in the group logically flows through
horizontally across the layer Ly clusters. Each host, H that belongs to all layers Ly, ..., L; and no higher layer, we
define the sets S; as before (in Simple Delegation). H forwards data to all members in Sy as before. It also delegates
peering relationship between members in sets S; and S;_;. However, in this case, these hosts in sets S; and S;_;
further delegate these peering relationships down the hierarchy. Consequently, all the data paths on the hierarchy
are through peers in the lowest layer Lg.

We state the above more formally as follows: Consider a host, = that is the cluster-leader of a cluster C%, in
layer Li.(Note that x belongs to some cluster Cj, in each layer L; j < k.) We define L(2) = Cy and L;(z) =
Uyes ;s (e)Li(y). Thus for every peering relation of x, and y who are in layers L;,7 > 0 and Lj, j > 0 respectively
on the control path, we pick two hosts, one each in £;(z) and £;(y) to be peers on the data path. If these hosts are
chosen so that they are the closest pair among the two L sets, it helps in reducing the stretch on the data paths.

2.5 Invariants

All the properties described in the analysis hold as long as the hierarchy maintains its integrity. Thus, the objective
of NICE protocol is to scalably maintain the host hierarchy as new members join and existing members depart.
Specifically the protocol described in the next section maintains the following set of invariants:

e At every layer, hosts are paritioned into clusters of size between k and 2k — 1.
e All hosts belong to an Ly cluster, and each host belongs to only a single cluster at any layer

e The cluster leaders are the centers of their respective clusters and belong to the immediate higher layer.

3 The NICE Protocol

For the NICE protocol, we assume the existence of a special host that all members know of a-priori. Using nomencla-
ture developed in [7], we call this host the Rendezvous Point (RP). Each host that intends to join the application-layer
multicast group contacts the RP to initiate the join process. For ease of exposition, we assume that the RP is always
the leader of the single cluster in the highest layer of the hierarchy. It interacts with other cluster members in this
layer on the control path, and is bypassed on the data path. (Clearly, it is possible for the RP to not be part of the
hierarchy, and for the leader of the highest layer cluster to maintain a connection to the RP, but we do not belabor
that compexity further). For a real application like streaming media transfer, the RP could be a distinguished host
in the domain of the data source.

The NICE protocol itself has three main components: cluster assignment to new hosts as they join, periodic
cluster maintainenance and refinement, and cluster updates for host departures and leader failures. We discuss these
in turn.

3.1 New Host Joins

This component is responsible for mapping new hosts to clusters such that the protocol invariants are met.
When a new host joins the multicast group, it must be mapped to some cluster in layer Ly. We illustrate the
join procedure in Figure 7. Assume that host A3 wants to join the multicast group. First, it contacts the RP with
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Figure 7: Host Az joins the multicast group.

its join query (Panel 0). The RP responds with the hosts that are present in the highest layer of the hierarchy. The
joining host then contacts all members in the highest layer (Panel 1) to identify the member closest to itself. In the
example, the highest layer Lo has just one member, Cyy, which by default is the closest member to A3 amongst layer
La members. Host Cy informs As of the three other members (Bg, By and Bs) in its Ly cluster. Az then contacts
each of these members with the join query to identify the closest member among them (Panel 2), and iteratively uses
this procedure to find its Lg cluster.

It is important to note that any host, H, which belongs to any layer L; is the center of its L;_; cluster, and
recursively, 1s an approximation of the center among all members in all Ly clusters that are below this part of the
layered hierarchy. Hence, querying each layer in succession from the top of the hierarchy to layer Ly results in a
progressive refinement by the joining host to find the most appropriate layer Ly cluster to join that is close to the
joining member. This procedure, however, is not infallible. If dp;gpes¢ is the least distance from the joining host to a
host in the highest layer, then it is possible for a host to join a cluster that is approximately dp;gnes¢ away from its
nearest cluster leader.

3.1.1 Join Latency

The joining process involves a message overhead of O(klog N') query-response pairs. The join-latency depends on the
delays incurred in this exchanges, which is typically about O(log N) round-trip times. In our protocol, we aggresively
locate possible “good” peers for a joining member; and the overhead for locating the appropriate attachments for
any joining member is relatively large In contrast, in Narada a joining member initially peers with a set of random
other members, and gradually improves the quality of the overlay.

To reduce the delay between a member joining the multicast group, and its receipt of the first data packet on
the overlay, we allow joining members to temporarily peer, on the data path, with the leader of the cluster of the
current layer it is querying. For example, in Figure 7, when Aj is querying the hosts By, B; and Bs for the closest
point of attachment, it temporarily peers with Cy (leader of the layer Ly cluster) on the data path. This allows the
joining host to start receiving multicast data on the group within a single round-trip latency of its join.

3.1.2 Joining Higher Layers

An important invariant in the hierarchical arrangement of hosts is that the leader of a cluster be the center of
the cluster. Therefore, as members join and leave clusters, the cluster-leader may occasionally change. When the
leadership of a cluster, C', in layer L; changes, the existing leader of C' removes itself from all layers L; ;1 and higher



Procedure : JoinLayer(h, i)
{ifi=0 then h is a new host joining layer Ly }
(C,j) — QueryRP()
{ RP returns the cluster, C' in highest layer L; }
while (j > i)
for (p € C)
Cp, — QueryHost(p,j)
end for
C — Cp st dist(p/, h) = min{dist(h,p),p € C}
Jo—=J-1
end while
{ Appropriate cluster, C, found in layer L;, send altach }
Attach(Ldr(C), ¢)

Figure 8: Join procedure to a cluster in layer L; for host, h. If at any layer, during the QueryHost for loop, no
response is received from any of the cluster members, in that layer L;, host A, restarts the query from L; 4, or from
the RP, as is appropriate.

to which it i1s attached. The new leader of C joins the appropriate cluster of L;;;. The procedure for joining a
higher layer is same the above, except that the process terminates at the layer L;;1, instead of Ly. However, in
this case, the new leader does not have to start by querying the RP since members keep information about their
super-cluster. It 1s possible for all of the super-cluster information to be stale; in this case, the member does have to
start by contacting the RP.

The join procedure to any layer is presented in pseudo-code as shown in Figure 8.

3.2 Cluster Maintenance and Refinement

Each member H of a cluster C'| sends a HeartBeat message every h seconds to each of its cluster peers. The message
contains the distance estimate of H to each other member of C'. Tt is possible for H to have inaccurate or no estimate
of the distance to some other members, e.g. immediately after it joins the cluster.

The cluster-leader includes the complete updated cluster membership in its HeartBeat messages to all other
members. This allows existing members to set up appropriate peer relationships with new cluster members on the
control path. For each cluster in level L;, the cluster-leader also periodicaly sends the its immediate higher layer
cluster membership (which is the super-cluster for all the other members of the cluster) to that L; cluster.

It is important to note that all of the cluster member state can be sent via unreliable messages and is kept by
each cluster member as soft-state, refreshed by the periodic HeartBeat messages. A member H is declared no longer
part of a cluster independently by all other members in the cluster if they do not receive a message from H for a
configurable number of HeartBeat message intervals.

3.2.1 Cluster Split and Merge

A cluster-leader periodically checks the size of its cluster, and appropriately splits or merges the cluster when it
detects a size bound violation. However, if a cluster that just exceeds the cluster size upper bound 2k — 1 is split, it
creates two clusters of size k each. Any single departure from these clusters will subsequently require a cluster merge
operation to meet the size lower-bound. For this reason, we relax the size upper bound to be 3k — 1 and leave the
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Figure 9: Restructuring when a cluster-leader departs.

lower bound unchanged. With this new upper bound, when a cluster is split into two equal parts, each of the parts
is guaranteed to be at least 3k/2, thus avoiding an immediate subsequent merge.

If the size of a cluster exceeds 3k — 1, the leader initiates a cluster split operation. Given a set of hosts and the
pairwise distances between them, the cluster split operation partitions them into subsets that meet the size bounds,
such that the maximum radius (in a graph-theoretic sense) of the new set of clusters is minimized. This is similar to
the K-center problem (known to be NP-Hard) with an additional size constraint. We use an approximation strategy
— the leader splits the current cluster into two equal-sized clusters, such that the maximum of the radii among the
two clusters is minimized. It also chooses the centers of the two partitions to be the leaders of the new clusters and
transfers leadership to the new leaders through LeaderTransfer messages. If these new clusters still violate the size
upper bound, they are split by the new leaders using identical operations.

If the size of a cluster C; (say in layer L;) falls below &, its leader J, initiates a cluster merge operation. Note, .J
itself belongs to a layer L;y1 cluster, Ciq11. J chooses its closest cluster-peer, K, in C;y1. K is also the leader of a
layer L; cluster, C/. J initiates the merge operation of C; with C! by sending a ClusterMergeRequest message to K.
J updates the members of C; with this merge information. K similarly updates the members of C!. Following the
merge, J removes itself from layer L;41.

3.2.2 Refining Cluster Attachments

During a phase a period of rapid membership changes to the group, a joining member may not be able to locate
its closest Lg cluster, and therefore, attach to some other cluster. This may be true in some cases for higher layer
members as well. Therefore, each member in any layer (say L;) periodically probes all members in its super-cluster
(they are the leaders of layer L; clusters), to identify a closer cluster for itself in layer L;. If a closer cluster is found,
then the probing member leaves its current cluster and joins the closer cluster.

3.3 Host Departure and Leader Selection

When a host, H, leaves the multicast group, it sends a Remove message to all clusters to which it is joined. This
is a graceful-leave. However, if H fails without being able to send out this message all cluster peers of H detects
this departure through non-receipt of the periodic HeartBeat message from H. If H was a leader of a cluster, this
triggers a new leader selection in the cluster. Each remaining member, J, of the cluster independently select a new
leader of the cluster, depending on who J estimates to be the center among these members. Multiple leaders are
re-conciled into a single leader of the cluster through exchange of additional control messages (LeaderChallenge and
LeaderTransfer) each time two candidate leaders detect this multiplicity. This is shown in Figure 9.

It is possible for members to have an inconsistent view of the cluster membership, and for transient cycles to
develop on the data path. These cycles are eliminated once the protocol reconciles the cluster view for all members,
and restores the hierarchy invariants.
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4 Simulation Experiments

In this section, we analyze the performance of NICE and compare it to three other protocols using detailed simulations.
The three other schemes we consider are: multi-unicast, native IP-multicast using the Core Based Tree protocol [2],
and the Narada application-layer multicast protocol.

Clearly, native TP multicast trees will have the least (unit) stress, and the multi-unicast trees will have the best
(unit) stretch. Thus, these two schemes provide us a reference against which to compare both Narada and NICE.

4.1 Simulation Environment

We have implemented a packet-level simulator for the four different protocols®. Our network topologies were generated
using the Transit-Stub graph model, using the GT-ITM topology generator [3]. All topologies in these simulations
had 10, 000 routers with an average node degree between 3 and 4. End-hosts were attached to a set of route, chosen
at uniformly at random, from among the stub-domain nodes. The number of such hosts in the multicast group were
varied between 8 and 2048 for different experiments. In our simulations, we only modeled loss-less links; thus, there
i1s no data loss due to congestion, and no notion of background traffic or jitter. However, data is lost whenever the
application-layer multicast protocol fails to provide a path from the source to a receiver, and duplicates are received
whenever there is more than one path. Thus, our simulations study the dynamics of the multicast protocol and its
effects on data distribution; when these protocols are implemented, the performance would also be affected by other
factors such as additional link latencies due to congestion.

As mentioned in Section 1, the Narada protocol involves an aggregate control overhead of O(N?). In our simulation
setup, we were unable to simulate Narada with groups of size 1024 or larger since the completion time for these
simulations were on the order of a day for a single run of one experiment on a 550 MHz Pentium IIT machine with 4

GB of RAM*.

4.1.1 Owur implementation of Narada

We implemented the entire Narada protocol from the description given in [7]. As described before, Narada is a
mesh-first application-layer multicast approach, designed primarily for small multicast groups. In Narada, the initial
set of peer assignments to create the overlay topology is done randomly. While this initial data delivery path may be
of “poor” quality, over time Narada adds “good” links and discards “bad” links from the overlay. Narada has O(N?)
aggregate control overhead because of its mesh-first nature: it requires each host to periodically exchange updates
and refreshes with all other hosts.

The protocol, as defined in [7], has a number of user-defined parameters that we needed to set. These include
the link add/drop thresholds, link add/drop probe frequency, the periodic refresh rates, the mesh degree, etc. We
experimented with a wide-range of values for these parameters to understand the behavior of Narada and observed
some interesting trade-offs in choosing these parameters. Specifically, we found that:

e The mesh degree bound for hosts should not be strictly enforced to ensure connectivity. Instead additional
mechanisms that limit the degree of the data path on the mesh should be used.

e There is a clear tradeoff between choosing a high versus low frequency for periodic probes to add or drop
links on the mesh. A high frequency allows members to aggressively add and drop good and bad overlay links
respectively. However, this leads to frequent changes to the data paths on the mesh, which can lead to a
temporary loss of data path to other members. (This effect is different than when a route changes and state

3Our simulator is available upon email request to the authors
4The NICE implementation with 1024 hosts on the same environment finishes in less than 10 minutes.
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for the old route can be temporarily maintained to mitigate the effect of the route change). We observed this
effect in our experiments where we use a high periodic probe frequency, especially if this parameter 1s set higher
than the route packet exchange frequency. In contrast, using a low probe frequency leads to more stable paths;
however, this implies that the mesh topology takes a long time to stabilize.

4.1.2 Data model

In these experiments, we wanted to model the scenario of a distinguished source streaming multimedia data to the
multicast group. Therefore, we chose a single end-host, uniformly at random, to be the data source, and generate
constant bit rate data. Since our simulations only model losses due to the application-layer multicast protocol
behavior, the bandwidth of the data stream is irrelevant. Thus, each packet in the data sequence samples the data
path on the overlay topology at that time instant, and the entire data packet sequence captures the evolution of the
data path over time.

4.2 Performance Metrics

We compare the performance of the different schemes along the following dimensions:

e Quality of data path: This is measured by three different metrics — tree degree distribution, stress on links and
routers and stretch of data paths to the group members.

e Recovery from host failure: As hosts join and leave the multicast group, the underlying data delivery path
adapts accordingly to reflect these changes. However, in transience, and particularly after host failures, path to
some hosts may be unavailable. It 1s also possible for multiple paths to exist to a single host and for cycles to
develop temporarily. To observe these effects, we measured the fraction of hosts that correctly receive the data
packets sent from the source. We also recorded the number of duplicates at each host. In all of our simulations,
for both the application-layer multicast protocols, the number of duplicates was insignificant and zero in most
cases.

o Control traffic overhead: We report the aggregate control bandwidth overheads at both routers and end hosts.

In the next section, we present a number of results from our simulations. Broadly, our findings can be summarized
as follows: NICE trees have data paths that have stretch comparable to Narada. The stress on links and routers
are lower in NICE, especially as the multicast group size increases. The failure recovery of both the schemes are
comparable, however, NICE provides similar performance with orders of magnitude lower control overhead for groups
of size > 32.

4.3 Simulation Results

In our experiments, we have simulated a wide-range of topologies, group sizes, member join-leave patterns, and
protocol parameters ®. We begin with results from a representative experiment that captures all the of different
aspects comparing the various protocols.

5For NICE, we set the cluster size parameter, k, as 3 in all the experiments presented here.
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4.3.1 Representative Scenario

This experiment has two different phases: a join phase and a leave phase. In the join phase a set of 128 members®
join the multicast group uniformly at random between the simulated time 0 and 200 seconds. These hosts are allowed
to stabilize into an appropriate overlay topology till simulation time 1000 seconds. The leave phase starts at time
1000 seconds: 16 hosts leave the multicast group over a short duration of 10 seconds. This is repeated four more
times, at 100 second intervals. The remaining 48 members continue to be part of the multicast group till the end of
simulation. All member departures are modeled as host failures since they have the most damaging effect on data
paths. We experimented with different numbers of member departures, from a single member to 32 members leaving
over the ten second window. Sixteen departures from a group of size 128 within a short time window is a drastic
scenario, but it helps illustrate the failure recovery modes of the different protocols better. Member departures in
smaller sizes cause correspondingly lower disruption on the data paths.

We experimented with different periodic refresh rate for Narada. For a higher refresh rate the recovery from host
failures 1s quicker, but at a cost of higher control traffic overhead. For Narada, we used different values for route
update frequencies and periods for probing other mesh members to add or drop links on the overlay. In our results,
we report results from using route update frequencies of once every 5 seconds (labeled Narada-5), and once every
30 seconds (labeled Narada-30). The 30 second update period corresponds to the what was used in [7]; we ran with
the b second update period since the heartbeat period in NICE was set to 5 seconds. Note that we could run with a
much smaller heartbeat period in NICE without significantly increasing control overhead since the control messages
are limited within clusters and do not traverse the entire group. We also varied the mesh probe period in Narada
and observed data path instability effect discussed above. In these results, we set the Narada mesh probe period to
20 seconds.

Data Path Quality

In Figures 10 and 11, we show the average link stress and the average path lengths for the different protocols as the
data tree evolves during the member join phase. Note that the figure shows the actual path lengths to the end-hosts;
the stretch is the ratio of average path length of the members of a protocol to the average path length of the members
in the multi-unicast protocol.

As explained earlier, the join procedure in NICE aggressively finds good points of attachment for the members in

8We show results for the 128 member case because that is the group size used in the experiments reported in [7]; NICE performs
increasingly better with larger group sizes.
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the overlay topology, and the NICE tree converges quicker to a stable value (within 350 seconds of simulated time).
In contrast, the Narada protocols gradually improve the mesh quality, and consequently so does the data path over
a longer duration. Its average data path length converges to a stable value of about 23 hops between 500 and 600
seconds of the simulated time. The corresponding stretch is about 2.18. In Narada path lengths improve over time
due to addition of “good” links on the mesh. At the same time, the stress on the tree gradually increases since the
Narada decides to add or drop overlay links based purely on the stretch metric.

The cluster-based data dissemination in NICE reduces average link stress, and in general, for large groups NICE
converges to trees with about 25% lower average stress. In this experiment, the NICE tree had lower stretch than the
Narada tree; however, in other experiments the Narada tree had a slightly lower stretch value. In general, comparing
the results from multiple experiments over different group sizes, (See Section 4.3.2), we concluded that the data path
lengths to receivers were similar for both protocols.

In Figures 12 and 13, we plot a cumulative distribution of the stress and path length metrics for the entire member
set (128 members) at a time after the data paths have converged to a stable operating point.

Narada uses fewer number of links on the topology than NICE, since it is comparably more aggressive in adding
overlay links with shorter lengths to the mesh topology. However, due to this emphasis on shorter path lengths,
the stress distribution of the links is heavy-tailed. More than 25% of the links have a stress of four and higher in
Narada, compared to < 5% in NICE. The distribution of the path lengths for the two protocols are comparable.
The multi-unicast scheme (presented for comparison) shows the shortest path length distribution if stress on links is
ignored.

Failure Recovery and Control Overheads

To investigate the effect of host failures, we present results from the second part of our scenario: starting at simulated
time 1000 seconds, a set of 16 members leave the group over a 10 second period. We repeat this procedure four more
times and no members leave after simulated time 1400 seconds when the group is reduced to 48 members. When
members leave, both protocols “heal” the data distribution tree and continue to send data on the partially connected
topology. In Figure 14, we show the fraction of members that correctly receive the data packets over this duration.
Both Narada-5 and NICE have similar performance, and on average, both protocols restore the data path to all
(remaining) receivers within 30 seconds, and on correctly serve over 90% of the members. We also ran the same
experiment with the 30 second refresh period for Narada. The lower refresh period caused significant disruptions on
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Group Router Stress Link Stress Path Length Bandwidth Overheads (Kbps)

Size Narada-5 NICE Narada-5 NICE Narada-5 NICE Narada-30 NICE

8 1.55 (1.30)  3.51 (3.30) | 1.19 (0.39) 3.24 (2.90) | 25.14 (9.49) 12.14 (2.29) | 0.61 (0.55) 1.54 (1.34)
16 1.84 (1.28)  2.34 (2.16) | 1.34 (0.76)  1.86 (1.39) | 19.00 (7.01)  20.33 (6.75) | 2.94 (2.81) 0.87 (0.81)
32 2.13 (2.17) 242 (2.60) | 1.54 (1.03)  1.90 (1.82) | 20.42 (6.00) 17.23 (5.25) | 9.23 (8.95) 1.03 (0.95)
64 2.68 (3.09) 223 (2.25) | 1.74 (1.53)  1.63 (1.39) | 22.76 (5.71) 20.62 (7.40) | 26.20 (28.86)  1.20 (1.15)
128 | 3.04 (4.03)  2.36 (2.73) | 2.06 (2.64) 1.63 (1.56) | 21.55 (6.03) 21.61 (7.75) | 65.62 (92.08)  1.19 (1.29)
256 | 3.63 (7.52)  2.31 (3.18) | 2.16 (3.02) 1.63 (1.63) | 23.42 (6.17) 24.67 (7.45) | 96.18 (194.00)  1.39 (1.76)
512 | 4.09 (10.74) 2.34 (3.49) | 2.57 (5.02) 1.62 (1.54) | 24.74 (6.00) 22.63 (6.78) | 199.96 (55.06)  1.93 (3.35)
1024 - 2.59 (4.45) - 1.77 (1.77) - 25.83 (6.13) - 2.81 (7.22)
1560 - 2.83 (5.11) - 1.88 (1.90) - 24.99 (6.96) - 3.28 (9.58)
2048 - 2.92 (5.62) - 1.93 (1.99) - 24.08 (5.36) - 5.18 (18.55)

Table 1: Data path quality and control overheads for varying multicast group sizes

the tree with periods of over 100 seconds when more than 60% of the tree did not receive any data. Lastly, we note
that the data distribution tree used for NICE is the least connected topology possible; we expect failure recovery
results to be much better if structures with alternate paths are built atop NICE.

In Figure 15, we show the byte-overheads for control traffic at the access links of the end-hosts. Each dot in the
plot represents the sum of the control traffic (in Kbps) sent or received by each member in the group, averaged over
10 second intervals. Thus for each 10 second time slot, there are two dots in the plot for each (remaining) host in
the multicast group corresponding to the control overheads for Narada and NICE. The curves in the plot are the
average control overhead for each protocol. As is evident from the plot, for groups of size 128, NICE has an order
of magnitude lower average overhead, e.g. at simulation time 1000 seconds, the average control overhead for NICE
is 0.97 Kbps versus 62.05 Kbps for Narada. At the same time instant, Narada-30 (not shown in the figure) had an
average control overhead of 13.43 Kbps. Lastly, we note that the NICE control traffic includes all protocol messages,
including messages for cluster formation, cluster splits, merges, layer promotions, and leader elections.

4.3.2 Aggregate Results

We present a set of aggregate results as the group size is varied. The purpose of this experiment is to understand
the scalability of the different application-layer multicast protocols. The entire set of members join in the first
200 seconds, and then we run the simulation for 1800 seconds to allow the topologies to stabilize. The data path
tree degree was low for both the protocols, and typically varied between 3 and 5 for the non-leaf members on the
distribution tree.

In Table 1, we compare the stress on network routers and links, the overlay path lengths to group members and
the average control traffic overheads at the network routers. For each metric, we present the both mean and the
standard deviation.

As we showed in our first experiment, Narada and NICE tend to converge to trees with similar path lengths.
The stress metric for both network links and routers, however, is consistently lower for NICE when the group size
is large (64 and greater). Tt is interesting to observe the standard deviation of stress as it changes with increasing
group size for the two protocols. The standard deviation for stress increased for Narada for increasing group sizes.
In contrast, the standard deviation of stress for NICE remains relatively constant; the topolgy-based clustering in
NICE distributes the data path more evenly among the different links on the underlying links regardless of group
size.

The control overhead numbers in the Table are different than the ones in Figure 15; the column in the table is
the average control traffic per network router as opposed to control traffic at an end-host. Since the control traffic
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gets aggregated inside the network, the overhead at routers is significantly higher than the overhead at an end-host.
For these router overheads, we report the values of the Narada-30 version in which the route update frequency set to
30 seconds. Recall that this protocol, Narada-30 performs relatively poorly when members leave, but is much more
efficient (specifically b times less overhead with groups of size 128) than the Narada-5 version. The refresh messages
in NICE were still sent at 5 second intervals. Even with this disparity, the average control traffic byte overheads at
a router for the different group sizes is an order of magnitude lower for NICE.

5 Related Work

There are a few closely related projects which explore implementing multicast at the application layer. They can
be classified into two broad categories: mesh-first (Narada [7], Gossamer [4]) and tree-first protocols (Yoid [9],
ALMI [12]). Yoid defines a distributed tree building protocol between the end-hosts, while ALMI uses a centralized
algorithm to create a minimum spanning tree rooted at a designated single source of multicast data distribution. The
JungleMonkey project” is a similar effort to create an application layer multicast overlay using a tree-first approach.

Bayeux [16] in another architecture for application layer multicast, where the end-hosts are organized into a
hierarchy as defined by the Tapestry overlay location and routing system [15]. A level of the hierarchy is defined by
a set of hosts that share a common suffix in their host IDs. Such a technique was proposed by Plaxton et.al. [13] for
locating and routing to named objects in a network.

The Overcast [11] protocol organizes a set of similar proxies (called Overcast nodes) into a distribution tree rooted
at a central source for single source multicast. A distributed tree-building protocol is used to create this source specific
tree, in a manner similar to Yoid. RMX [5] provides support for reliable multicast data delivery to end-hosts using
a set of such proxies, called Reliable Multicast proXies. Application end-hosts are configured to affiliate themselves
with the nearest RMX. The architecture assumes the existence of an overlay construction protocol, using which these
proxies organize themselves into an appropriate data delivery path. TCP is used to provide reliable communication
between each pair of peer proxies on the overlay.

6 Conclusions

In this paper, we have presented a new protocol for application-layer multicast. Our main contribution is an extremely
low overhead hierarchical control structure over which different data distribution paths can be built. Our results
show that it is possible to build and maintain application-layer multicast trees with very little overhead. Clearly,
existing protocols like Narada are very useful for small group sizes, but impose too much overhead for applications
that require large groups. We believe that the results of this paper are a significant first step towards contructing
large wide-area applications over application-layer multicast.
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