
A Protocol for Scalable Application Layer MulticastSuman Banerjee, Bobby Bhattacharjee, Srinivasan ParthasarathyDepartment of Computer Science, University of Maryland, College Park, MD 20742fsuman,bobby,srig@cs.umd.eduCS-TR 4278 and UMIACS-TR 2001-58AbstractWe describe a new application-layer multicast protocol that is speci�cally designed to scale to large groups.Our scheme is based upon a hierarchical clustering of the application-layer multicast peers and can be used toproduce a number of di�erent data delivery trees with speci�c properties. On average, group members using ourprotocol maintain only a constant amount of state about other group members, and incur a constant amount ofcontrol overhead. We present extensive simulations of both our protocol and the Narada protocol over Internet-like topologies. Our results show that for groups of size 32 or more, we reduce control overhead by orders ofmagnitude, and link stress by 25%, while retaining similar end-to-end latencies and failure recovery properties.1 IntroductionIP multicast is not widely deployed over a decade after it was developed [8]. Since the barriers for network layerdeployment are not necessarily all technical, it is not clear when global IP multicast deployment will become a reality.It is, however, clear that multicast itself is a useful network service for many applications, including media-streamingand bulk reliable �le transfer. A set of recent proposals [7, 9, 4, 11, 12] have proposed alternate architectures inwhich all multicast functionality is implemented at the end-hosts, thus obviating the need to change the unicast IPinfrastructure. In all of these Application-Layer Multicast schemes, the set of end-hosts that are part of a logicalmulticast group participate in a distributed protocol that is used to implement the multicasting functionality.The basic idea of application-layer multicast is shown in Figure 1. Unlike native multicast where data packetsare replicated at routers inside the network, in application-layer multicastdata packets are replicated at end hosts.Logically, the end-hosts form an overlay network, and the goal of application-layer multicast is to construct andmaintain an e�cient overlay for data transmission. Since application-layermulticast protocols must send the identicalpackets over the same link, they are less e�cient than native multicast. Two intuitive measures of the \goodness"of the overlay were de�ned in [7]: the stress and the stretch. The stress metric is de�ned per-link and counts thenumber of identical packets sent by a protocol over each underlying link in the network. The stretch metric is de�nedper-member and is the ratio of path-length from the source to a member versus the length of the unicast shortestpath. Consider an application-layer multicast protocol in which the data source unicasts the data to each receiver.Clearly, this \multi-unicast" protocol minimizes stretch, but at a cost of O(N ) stress at links near the source (N isthe number of group members) and a (O(N )control overhead at some single point. However, this protocol is robustin the sense that any number of group member failures do not a�ect the other members in the group.All the application-layer multicast protocols discussed in this paper, including ours, are purely end-to-end, i.e.they are oblivious to the underlying network topology. It is, in fact, impossible to generate the least-stress application-1
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Network Layer Multicast Application Layer MulticastFigure 1: Network-layer and application layer multicast. Square nodes are routers, and circular nodes are end-hosts.The dotted lines represent peers on the overlay.layer multicast tree without knowing the underlying topology. In general, application-layer multicast protocols canbe evaluated along three dimensions:� Quality of the data delivery path. The quality of the tree is measured using topological metrics such as stress,stretch, and node degrees.� Robustness of the overlay. Since end-hosts are potentially less stable than routers, it is important for application-layer multicast protocols to mitigate the e�ect of receiver failures. The robustness of application-layer multicastprotocols is measured by quantifying the extent of the disruption in data delivery when di�erent members fail,and the time it takes for the overlay to restore delivery to the other members. None of prior published workevaluates the robustness of the overlay during the members failure, and we present the �rst comparison of thisaspect of the application-layer multicast protocols.� Control overhead. Since application-layer multicast is inherently a cooperative venture, it is important todesign a protocol with low overhead such that the cost of participating in an application-layer multicast groupjusti�es the bene�ts.1.1 Existing ApproachesA number of di�erent application-layer multicast schemes have been proposed in recent literature. They can beclassi�ed into two broad categories: tree-�rst approaches and mesh-�rst approaches. In the tree-�rst approach,members directly construct an overlay tree topology for data delivery, and additional control links are monitoredand maintained to allow quick recovery from member failures. Yoid [9] and ALMI [12] are examples of the tree-�rst approach. As the name suggests, in the mesh-�rst approach, members distributedly construct a mesh (onoverlay members in which multiple paths exist between pairs of members). Each member then paricipates in arouting protocol on the mesh topology, and generates a source-speci�c tree to all other members. Narada [7], andGossamer [4] are examples of the mesh-�rst approach.None of these end-to-end distributed approaches can produce a topology with bounded stretch or stress. It ispossible to do better if (and only if) the underlying topology is known. In [10], a centralized topology-aware tree-building algorithm is described in which the stretch between any pair of end-points is bounded by a constant factor.The tree degree of a member, can however, be unbounded. However, with a slight modi�cation to this algorithm, itis possible simultaneously guarantee a constant degree bound for the members, and a O(logN ) bound for the stretch.1.2 NICE TreesOur application-layer multicast protocol was developed in context of the NICE project (NICE is a recursive2



acronym for \NICE is the Internet Cooperative Environment"). NICE is a programming environment for co-operatively implementing distributed applications over the Internet. The NICE environment uses an underlyingapplication-layer multicast protocol, which is the exclusive focus of this paper. In the rest of this paper, we refer tothe NICE application-layer multicast protocol as simply the NICE protocol. Our goals for NICE were to develop ascalable distributed tree-building protocol which did not require any underlying topology information. Speci�cally,we wanted to reduce the worst-case state and control overhead at any member to O(logN ), maintain a constantdegree bound for the group members and approach the O(logN ) stretch bound possible with the topology-awarecentralized algorithm.Unlike previous approaches, NICE is neither an exclusively tree- or mesh-�rst approach. We create a hierarchically-connected control topology which has higher connectivity than a tree. This control topology is equivalent to a mesh;however, the data delivery path is implicitly de�ned in the way the mesh is structured and no additional routecomputations are required. NICE is, therefore, a hybrid of the tree- and mesh-�rst approaches. Unlike the cen-tralized topology-aware algorithm described in [10], it is not possible to bound pair-wise end-to-end stretch using adistributed algorithm like NICE. However, on our simulated topologies, for topologies of size 128 and higher, all ofthe pair-wise end-to-end paths were, in fact, bounded by the O(logN ) stretch bound.In our performance comparisons, we compare NICE using detailed simulations to the Narada protocol. Naradais the only protocol that has previously been studied using both simulation [7] and implementation [6]. Narada is amesh-�rst protocol which creates source-speci�c trees and has an aggregate O(N2) control overhead.A key contribution of our approach is the de�nition of a control structure with low aggregate overhead (O(N ))over which di�erent data delivery trees can be built. On average, end hosts maintain state about a constant numberof other members, while a few members maintain state about O(logN ) other members. A scalable application-layer multicast protocol in which the overhead is independent of the tree size is likely to be useful for a number ofapplications, most notably media-streaming applications with large receiver sets. Compared to unicast solutions1now deployed in the Internet, an application-layer multicast solution such as Narada reduces the data overhead atthe source from O(N ) to O(1). However, we also need to ensure that the control overheads at each end host andthe network routers, are low. In comparison, on average NICE reduces both data and control overhead to a constantand can be used to support applications that requre large application-layer multicast groups. For groups of size 64or more, our simulations show that compared to Narada, NICE imposes orders of magnitude less control overhead,while producing trees with lower average stress and comparable stretch.The rest of the paper is structured as follows: In Section 2, we present our general approach, explain how di�erentdelivery trees are built over NICE, and provide a few theoretical bounds about the NICE protocol. In Section 3,we present the packet-level details of the protocol. We evaulate the performance of NICE and present a detailedcomparison with Narada in Section 4. We elaborate on related work in Section 5, and present conclusions in Section 6.2 Solution OverviewThe NICE protocol arranges the set of end hosts into a hierarchy; the basic operation of the protocol is to create andmaintain the hierarchy. The hierarchy de�nes a default data tree since any host can be reached from any other bytraversing up and down the levels in the hierarchy. The member hierarchy is also crucial for scalability, since mostmembers are in the bottom of the hierarchy and only maintain state about a constant number of other members.The members at the very top of the hierarchy maintain (soft) state about O(logN ) other members. Logically, eachmember keeps detailed state about other members that are near in the hierarchy, and only has limited knowledgeabout other members in the group. The hierarchical structure is also important for localizing the e�ect of memberfailures.In this paper, we use end-to-end path length as the distance metric between hosts. The NICE protocol can also be1For example, see http://www.real.com 3
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DFigure 2: Hierarchical arrangement of hosts in NICE. The layers are logical entities overlaid on the same underlyingphysical network.used with other metrics, e.g. latency or available bandwidth, but for the rest of this paper, we assume that distancesrefer to path lengths. While constructing this hierarchy, members that are \close" with respect to the distance metricare mapped to the same part of the hierarchy: this allows us to produce trees with low stretch. In the rest of thissection, we describe how the NICE hierarchy is de�ned, what invariants it must maintain, and describe how it isused to establish scalable control and data paths.2.1 A Hierarchical Arrangement of Group membersThe NICE hierarchy is created by assigning members to di�erent levels (or layers) as illustrated in Figure 2.Layers are numbered sequentially with the lowest layer of the hierarchy being layer zero (denoted by L0). Hosts ineach layer are partitioned into a set of clusters. Each cluster is of size between k and 2k � 1, where k is a constant,and consists of a set of hosts that are close to each other. Further, each cluster has a cluster leader. In our case, thecluster leader is the (graph-theoretic) center of the cluster, i.e. given a set of hosts in a cluster, the cluster leaderhas the minimummaximum distance to all other hosts in the cluster.Hosts are mapped to layers using the following scheme: All hosts are part of the lowest layer, L0. The clusteringprotocol at L0 partitions these hosts into a set of clusters. The cluster leaders of all the clusters in layer Li joinlayer Li+1. This is shown with an example in Figure 2, using k = 3. The layer L0 clusters are [ABCD], [EFGH] and[JKLM]2. In this example, we assume that C, F andM are the centers of their respective clusters of their L0 clusters,and are chosen to be the leaders. They form layer L1 and are clustered to create the layer L1 cluster, [CFM ]. F isthe center, and hence leader, of this cluster and belongs to layer L2 as well.The NICE clusters and layers are created using a distributed algorithm described in the next section; it isimportant to note that a separate instance of this clustering algorithm runs at each layer of the hierarchy. Thefollowing properties hold for the distribution of hosts in the di�erent layers:� A host belongs to only a single cluster at any layer.� If a host is present in some cluster in layer Li, it must occur in one cluster in each of the layers, L0; : : : ; Li�1.In fact, it is the cluster-leader in each of these lower layers.� If a host is not present in layer, Li, it cannot be present in any layer Lj, where j > i.� There are at most logk N layers, and the highest layer has only a single member.We also de�ne the term \super-cluster": for any host, H, it is the cluster to which its cluster leader belongs to.It follows that there is only one super-cluster de�ned for every host (except the host that belongs to the top-most2We denote a cluster comprising of hosts X;Y; Z; : : : by [XY Z : : :].4
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the data pathFigure 6: Data path enhancements using advanceddelegation.is as shown in Figure 4.2.3 AnalysisAssume that each cluster in the hierarchy has exactly k hosts. Then for the control topology, a host that belongsonly to layer L0 peers with k � 1 other hosts for exchange of control messages. In general, a host in layer Li peerswith k�1 other hosts in each of the layers L0; : : : ; Li. Therefore, the cluster-leader of the highest layer cluster (HostC0 in Figure 3), will peer with a total of (k�1) logN neighbors. Using amortized analysis, it follows that on average,each host peers with only O(k) neighbors.For the data path, each host in layer L0 peers with only one other host | its cluster-leader in the respective L0cluster. However, analogous to the control topology, a host that occurs in layer Li, and no other higher layer, peerswith k�1 hosts in each layer L0; : : : ; Li�1, and with one host in layer Li (its cluster-leader). Thus, while the averagehost on the data path peers with � 2 other hosts on the data path (again via amortized analysis), in the worstcase a host would peer with O(k logN ) other members. This is the case for the cluster-leader of the highest cluster.While an O(k logN ) upper-bound is acceptable for the control topology, for high data rates, hosts may be unable orunwilling to forward data to O(k logN ) other hosts. As we explain next, it is possible to reduce the per-host dataoverhead to a constant.2.4 Enhancing Data PathsThe basic data path in NICE routes data packets up and down the hierarchy like any hierarchical routing protocol.We de�ne an enhancement to this basic data path by allowing the cluster leaders to delegate data forwardingresponsibility to some of its cluster members in a deterministic manner. The basic data path transformation isillustrated with an example in Figure 6. Host C1 is the leader of an L0 cluster, [C1; A3; A4; A5; A6] and a leader ofan L1 cluster, [C1; B3; B4; : : :]. In the basic data path, it is responsible for forwarding data to all the other membersin its two clusters. In the enhanced path, it uses delegation of data forwarding responsibility.We de�ne two di�erent delegation schemes. They are:Simple Delegation: Consider a host, H, that is part of all layers, L0; : : : ; Li, and no higher layer. Clearly, itis the cluster-leader in the layers L0; : : : ; Li�1 and not a leader in its Li cluster. Let Sj denote the set of the othercluster members in the layer Lj cluster of H, where 0 � j < i. In the previously described data path, H peers withall the hosts in [jSj and also the cluster-leader of H in Li. In the enhanced data path, H delegates the hosts inSj�1 to peer with the hosts in Sj . Since the cluster sizes are bounded between k and 2k � 1, each host in Sj�1 istherefore required by H to peer with at most two hosts in Sj . H still continues to peer with the hosts in S0. Weillustrate this by an example in Figure 5.Using the above notation, for host, C1, the set S0 = fA3; A4; A5; A6g and set S1 = fB3; B4; : : :g. There itdelegates its overlay data paths to the set S1 members to the set S0 members, as the two overlay links: hA3; B3i and6



hA5; B4i.In the enhanced data path, each host that occurs only in L0 peers with at most 3 hosts, and all other hosts peerswith at most 2k + 2 other hosts.Advanced Delegation: In the advanced delegation, the multicast data in the group logically ows throughhorizontally across the layer L0 clusters. Each host, H,that belongs to all layers L0; : : : ; Li and no higher layer, wede�ne the sets Sj as before (in Simple Delegation). H forwards data to all members in S0 as before. It also delegatespeering relationship between members in sets Sj and Sj�1. However, in this case, these hosts in sets Sj and Sj�1further delegate these peering relationships down the hierarchy. Consequently, all the data paths on the hierarchyare through peers in the lowest layer L0.We state the above more formally as follows: Consider a host, x that is the cluster-leader of a cluster Ck, inlayer Lk.(Note that x belongs to some cluster Cj, in each layer Lj ; j � k.) We de�ne Lk(x) = Ck and Lj(x) =[y2Lj+1(x)Lj(y). Thus for every peering relation of x, and y who are in layers Li; i > 0 and Lj; j > 0 respectivelyon the control path, we pick two hosts, one each in Li(x) and Lj(y) to be peers on the data path. If these hosts arechosen so that they are the closest pair among the two L sets, it helps in reducing the stretch on the data paths.2.5 InvariantsAll the properties described in the analysis hold as long as the hierarchy maintains its integrity. Thus, the objectiveof NICE protocol is to scalably maintain the host hierarchy as new members join and existing members depart.Speci�cally the protocol described in the next section maintains the following set of invariants:� At every layer, hosts are paritioned into clusters of size between k and 2k � 1.� All hosts belong to an L0 cluster, and each host belongs to only a single cluster at any layer� The cluster leaders are the centers of their respective clusters and belong to the immediate higher layer.3 The NICE ProtocolFor the NICE protocol, we assume the existence of a special host that all members know of a-priori. Using nomencla-ture developed in [7], we call this host the Rendezvous Point (RP). Each host that intends to join the application-layermulticast group contacts the RP to initiate the join process. For ease of exposition, we assume that the RP is alwaysthe leader of the single cluster in the highest layer of the hierarchy. It interacts with other cluster members in thislayer on the control path, and is bypassed on the data path. (Clearly, it is possible for the RP to not be part of thehierarchy, and for the leader of the highest layer cluster to maintain a connection to the RP, but we do not belaborthat compexity further). For a real application like streaming media transfer, the RP could be a distinguished hostin the domain of the data source.The NICE protocol itself has three main components: cluster assignment to new hosts as they join, periodiccluster maintainenance and re�nement, and cluster updates for host departures and leader failures. We discuss thesein turn.3.1 New Host JoinsThis component is responsible for mapping new hosts to clusters such that the protocol invariants are met.When a new host joins the multicast group, it must be mapped to some cluster in layer L0. We illustrate thejoin procedure in Figure 7. Assume that host A3 wants to join the multicast group. First, it contacts the RP with7
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AttachFigure 7: Host A3 joins the multicast group.its join query (Panel 0). The RP responds with the hosts that are present in the highest layer of the hierarchy. Thejoining host then contacts all members in the highest layer (Panel 1) to identify the member closest to itself. In theexample, the highest layer L2 has just one member, C0, which by default is the closest member to A3 amongst layerL2 members. Host C0 informs A3 of the three other members (B0; B1 and B2) in its L1 cluster. A3 then contactseach of these members with the join query to identify the closest member among them (Panel 2), and iteratively usesthis procedure to �nd its L0 cluster.It is important to note that any host, H, which belongs to any layer Li is the center of its Li�1 cluster, andrecursively, is an approximation of the center among all members in all L0 clusters that are below this part of thelayered hierarchy. Hence, querying each layer in succession from the top of the hierarchy to layer L0 results in aprogressive re�nement by the joining host to �nd the most appropriate layer L0 cluster to join that is close to thejoining member. This procedure, however, is not infallible. If dhighest is the least distance from the joining host to ahost in the highest layer, then it is possible for a host to join a cluster that is approximately dhighest away from itsnearest cluster leader.3.1.1 Join LatencyThe joining process involves a message overhead of O(k logN ) query-response pairs. The join-latency depends on thedelays incurred in this exchanges, which is typically about O(logN ) round-trip times. In our protocol, we aggresivelylocate possible \good" peers for a joining member, and the overhead for locating the appropriate attachments forany joining member is relatively large In contrast, in Narada a joining member initially peers with a set of randomother members, and gradually improves the quality of the overlay.To reduce the delay between a member joining the multicast group, and its receipt of the �rst data packet onthe overlay, we allow joining members to temporarily peer, on the data path, with the leader of the cluster of thecurrent layer it is querying. For example, in Figure 7, when A3 is querying the hosts B0; B1 and B2 for the closestpoint of attachment, it temporarily peers with C0 (leader of the layer L1 cluster) on the data path. This allows thejoining host to start receiving multicast data on the group within a single round-trip latency of its join.3.1.2 Joining Higher LayersAn important invariant in the hierarchical arrangement of hosts is that the leader of a cluster be the center ofthe cluster. Therefore, as members join and leave clusters, the cluster-leader may occasionally change. When theleadership of a cluster, C, in layer Li changes, the existing leader of C removes itself from all layers Li+1 and higher8



Procedure : JoinLayer(h; i)f if i = 0 then h is a new host joining layer L0 g(C; j)  QueryRP()f RP returns the cluster, C in highest layer Lj gwhile (j > i)for (p 2 C)Cp  QueryHost(p; j)end forC  Cp0 s.t. dist(p0; h) = minfdist(h; p); p 2 Cgj  j � 1end whilef Appropriate cluster, C, found in layer Li, send attach gAttach(Ldr(C); i)Figure 8: Join procedure to a cluster in layer Li for host, h. If at any layer, during the QueryHost for loop, noresponse is received from any of the cluster members, in that layer Lj , host h, restarts the query from Lj+1, or fromthe RP, as is appropriate.to which it is attached. The new leader of C joins the appropriate cluster of Li+1. The procedure for joining ahigher layer is same the above, except that the process terminates at the layer Li+1, instead of L0. However, inthis case, the new leader does not have to start by querying the RP since members keep information about theirsuper-cluster. It is possible for all of the super-cluster information to be stale; in this case, the member does have tostart by contacting the RP.The join procedure to any layer is presented in pseudo-code as shown in Figure 8.3.2 Cluster Maintenance and Re�nementEach member H of a cluster C, sends a HeartBeat message every h seconds to each of its cluster peers. The messagecontains the distance estimate of H to each other member of C. It is possible for H to have inaccurate or no estimateof the distance to some other members, e.g. immediately after it joins the cluster.The cluster-leader includes the complete updated cluster membership in its HeartBeat messages to all othermembers. This allows existing members to set up appropriate peer relationships with new cluster members on thecontrol path. For each cluster in level Li, the cluster-leader also periodicaly sends the its immediate higher layercluster membership (which is the super-cluster for all the other members of the cluster) to that Li cluster.It is important to note that all of the cluster member state can be sent via unreliable messages and is kept byeach cluster member as soft-state, refreshed by the periodic HeartBeat messages. A member H is declared no longerpart of a cluster independently by all other members in the cluster if they do not receive a message from H for acon�gurable number of HeartBeat message intervals.3.2.1 Cluster Split and MergeA cluster-leader periodically checks the size of its cluster, and appropriately splits or merges the cluster when itdetects a size bound violation. However, if a cluster that just exceeds the cluster size upper bound 2k� 1 is split, itcreates two clusters of size k each. Any single departure from these clusters will subsequently require a cluster mergeoperation to meet the size lower-bound. For this reason, we relax the size upper bound to be 3k � 1 and leave the9
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selectedFigure 9: Restructuring when a cluster-leader departs.lower bound unchanged. With this new upper bound, when a cluster is split into two equal parts, each of the partsis guaranteed to be at least 3k=2, thus avoiding an immediate subsequent merge.If the size of a cluster exceeds 3k � 1, the leader initiates a cluster split operation. Given a set of hosts and thepairwise distances between them, the cluster split operation partitions them into subsets that meet the size bounds,such that the maximum radius (in a graph-theoretic sense) of the new set of clusters is minimized. This is similar tothe K-center problem (known to be NP-Hard) with an additional size constraint. We use an approximation strategy| the leader splits the current cluster into two equal-sized clusters, such that the maximum of the radii among thetwo clusters is minimized. It also chooses the centers of the two partitions to be the leaders of the new clusters andtransfers leadership to the new leaders through LeaderTransfer messages. If these new clusters still violate the sizeupper bound, they are split by the new leaders using identical operations.If the size of a cluster Ci (say in layer Li) falls below k, its leader J , initiates a cluster merge operation. Note, Jitself belongs to a layer Li+1 cluster, Ci+1. J chooses its closest cluster-peer, K, in Ci+1. K is also the leader of alayer Li cluster, C 0i. J initiates the merge operation of Ci with C0i by sending a ClusterMergeRequest message to K.J updates the members of Ci with this merge information. K similarly updates the members of C0i. Following themerge, J removes itself from layer Li+1.3.2.2 Re�ning Cluster AttachmentsDuring a phase a period of rapid membership changes to the group, a joining member may not be able to locateits closest L0 cluster, and therefore, attach to some other cluster. This may be true in some cases for higher layermembers as well. Therefore, each member in any layer (say Li) periodically probes all members in its super-cluster(they are the leaders of layer Li clusters), to identify a closer cluster for itself in layer Li. If a closer cluster is found,then the probing member leaves its current cluster and joins the closer cluster.3.3 Host Departure and Leader SelectionWhen a host, H, leaves the multicast group, it sends a Remove message to all clusters to which it is joined. Thisis a graceful-leave. However, if H fails without being able to send out this message all cluster peers of H detectsthis departure through non-receipt of the periodic HeartBeat message from H. If H was a leader of a cluster, thistriggers a new leader selection in the cluster. Each remaining member, J , of the cluster independently select a newleader of the cluster, depending on who J estimates to be the center among these members. Multiple leaders arere-conciled into a single leader of the cluster through exchange of additional control messages (LeaderChallenge andLeaderTransfer) each time two candidate leaders detect this multiplicity. This is shown in Figure 9.It is possible for members to have an inconsistent view of the cluster membership, and for transient cycles todevelop on the data path. These cycles are eliminated once the protocol reconciles the cluster view for all members,and restores the hierarchy invariants. 10



4 Simulation ExperimentsIn this section, we analyze the performance of NICE and compare it to three other protocols using detailed simulations.The three other schemes we consider are: multi-unicast, native IP-multicast using the Core Based Tree protocol [2],and the Narada application-layer multicast protocol.Clearly, native IP multicast trees will have the least (unit) stress, and the multi-unicast trees will have the best(unit) stretch. Thus, these two schemes provide us a reference against which to compare both Narada and NICE.4.1 Simulation EnvironmentWe have implemented a packet-level simulator for the four di�erent protocols3. Our network topologies were generatedusing the Transit-Stub graph model, using the GT-ITM topology generator [3]. All topologies in these simulationshad 10; 000 routers with an average node degree between 3 and 4. End-hosts were attached to a set of route, chosenat uniformly at random, from among the stub-domain nodes. The number of such hosts in the multicast group werevaried between 8 and 2048 for di�erent experiments. In our simulations, we only modeled loss-less links; thus, thereis no data loss due to congestion, and no notion of background tra�c or jitter. However, data is lost whenever theapplication-layer multicast protocol fails to provide a path from the source to a receiver, and duplicates are receivedwhenever there is more than one path. Thus, our simulations study the dynamics of the multicast protocol and itse�ects on data distribution; when these protocols are implemented, the performance would also be a�ected by otherfactors such as additional link latencies due to congestion.As mentioned in Section 1, the Narada protocol involves an aggregate control overhead ofO(N2). In our simulationsetup, we were unable to simulate Narada with groups of size 1024 or larger since the completion time for thesesimulations were on the order of a day for a single run of one experiment on a 550 MHz Pentium III machine with 4GB of RAM4.4.1.1 Our implementation of NaradaWe implemented the entire Narada protocol from the description given in [7]. As described before, Narada is amesh-�rst application-layer multicast approach, designed primarily for small multicast groups. In Narada, the initialset of peer assignments to create the overlay topology is done randomly. While this initial data delivery path may beof \poor" quality, over time Narada adds \good" links and discards \bad" links from the overlay. Narada has O(N2)aggregate control overhead because of its mesh-�rst nature: it requires each host to periodically exchange updatesand refreshes with all other hosts.The protocol, as de�ned in [7], has a number of user-de�ned parameters that we needed to set. These includethe link add/drop thresholds, link add/drop probe frequency, the periodic refresh rates, the mesh degree, etc. Weexperimented with a wide-range of values for these parameters to understand the behavior of Narada and observedsome interesting trade-o�s in choosing these parameters. Speci�cally, we found that:� The mesh degree bound for hosts should not be strictly enforced to ensure connectivity. Instead additionalmechanisms that limit the degree of the data path on the mesh should be used.� There is a clear tradeo� between choosing a high versus low frequency for periodic probes to add or droplinks on the mesh. A high frequency allows members to aggressively add and drop good and bad overlay linksrespectively. However, this leads to frequent changes to the data paths on the mesh, which can lead to atemporary loss of data path to other members. (This e�ect is di�erent than when a route changes and state3Our simulator is available upon email request to the authors4The NICE implementation with 1024 hosts on the same environment �nishes in less than 10 minutes.11



for the old route can be temporarily maintained to mitigate the e�ect of the route change). We observed thise�ect in our experiments where we use a high periodic probe frequency, especially if this parameter is set higherthan the route packet exchange frequency. In contrast, using a low probe frequency leads to more stable paths;however, this implies that the mesh topology takes a long time to stabilize.4.1.2 Data modelIn these experiments, we wanted to model the scenario of a distinguished source streaming multimedia data to themulticast group. Therefore, we chose a single end-host, uniformly at random, to be the data source, and generateconstant bit rate data. Since our simulations only model losses due to the application-layer multicast protocolbehavior, the bandwidth of the data stream is irrelevant. Thus, each packet in the data sequence samples the datapath on the overlay topology at that time instant, and the entire data packet sequence captures the evolution of thedata path over time.4.2 Performance MetricsWe compare the performance of the di�erent schemes along the following dimensions:� Quality of data path: This is measured by three di�erent metrics | tree degree distribution, stress on links androuters and stretch of data paths to the group members.� Recovery from host failure: As hosts join and leave the multicast group, the underlying data delivery pathadapts accordingly to reect these changes. However, in transience, and particularly after host failures, path tosome hosts may be unavailable. It is also possible for multiple paths to exist to a single host and for cycles todevelop temporarily. To observe these e�ects, we measured the fraction of hosts that correctly receive the datapackets sent from the source. We also recorded the number of duplicates at each host. In all of our simulations,for both the application-layer multicast protocols, the number of duplicates was insigni�cant and zero in mostcases.� Control tra�c overhead: We report the aggregate control bandwidth overheads at both routers and end hosts.In the next section, we present a number of results from our simulations. Broadly, our �ndings can be summarizedas follows: NICE trees have data paths that have stretch comparable to Narada. The stress on links and routersare lower in NICE, especially as the multicast group size increases. The failure recovery of both the schemes arecomparable, however, NICE provides similar performance with orders of magnitude lower control overhead for groupsof size > 32.4.3 Simulation ResultsIn our experiments, we have simulated a wide-range of topologies, group sizes, member join-leave patterns, andprotocol parameters 5. We begin with results from a representative experiment that captures all the of di�erentaspects comparing the various protocols.5For NICE, we set the cluster size parameter, k, as 3 in all the experiments presented here.12
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Narada-5Figure 12: Stress distribution4.3.1 Representative ScenarioThis experiment has two di�erent phases: a join phase and a leave phase. In the join phase a set of 128 members6join the multicast group uniformly at random between the simulated time 0 and 200 seconds. These hosts are allowedto stabilize into an appropriate overlay topology till simulation time 1000 seconds. The leave phase starts at time1000 seconds: 16 hosts leave the multicast group over a short duration of 10 seconds. This is repeated four moretimes, at 100 second intervals. The remaining 48 members continue to be part of the multicast group till the end ofsimulation. All member departures are modeled as host failures since they have the most damaging e�ect on datapaths. We experimented with di�erent numbers of member departures, from a single member to 32 members leavingover the ten second window. Sixteen departures from a group of size 128 within a short time window is a drasticscenario, but it helps illustrate the failure recovery modes of the di�erent protocols better. Member departures insmaller sizes cause correspondingly lower disruption on the data paths.We experimented with di�erent periodic refresh rate for Narada. For a higher refresh rate the recovery from hostfailures is quicker, but at a cost of higher control tra�c overhead. For Narada, we used di�erent values for routeupdate frequencies and periods for probing other mesh members to add or drop links on the overlay. In our results,we report results from using route update frequencies of once every 5 seconds (labeled Narada-5), and once every30 seconds (labeled Narada-30). The 30 second update period corresponds to the what was used in [7]; we ran withthe 5 second update period since the heartbeat period in NICE was set to 5 seconds. Note that we could run with amuch smaller heartbeat period in NICE without signi�cantly increasing control overhead since the control messagesare limited within clusters and do not traverse the entire group. We also varied the mesh probe period in Naradaand observed data path instability e�ect discussed above. In these results, we set the Narada mesh probe period to20 seconds.Data Path QualityIn Figures 10 and 11, we show the average link stress and the average path lengths for the di�erent protocols as thedata tree evolves during the member join phase. Note that the �gure shows the actual path lengths to the end-hosts;the stretch is the ratio of average path length of the members of a protocol to the average path length of the membersin the multi-unicast protocol.As explained earlier, the join procedure in NICE aggressively �nds good points of attachment for the members in6We show results for the 128 member case because that is the group size used in the experiments reported in [7]; NICE performsincreasingly better with larger group sizes. 13
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Narada-5 (Avg)Figure 15: Control bandwidth re-quired at end-host access linksthe overlay topology, and the NICE tree converges quicker to a stable value (within 350 seconds of simulated time).In contrast, the Narada protocols gradually improve the mesh quality, and consequently so does the data path overa longer duration. Its average data path length converges to a stable value of about 23 hops between 500 and 600seconds of the simulated time. The corresponding stretch is about 2.18. In Narada path lengths improve over timedue to addition of \good" links on the mesh. At the same time, the stress on the tree gradually increases since theNarada decides to add or drop overlay links based purely on the stretch metric.The cluster-based data dissemination in NICE reduces average link stress, and in general, for large groups NICEconverges to trees with about 25% lower average stress. In this experiment, the NICE tree had lower stretch than theNarada tree; however, in other experiments the Narada tree had a slightly lower stretch value. In general, comparingthe results from multiple experiments over di�erent group sizes, (See Section 4.3.2), we concluded that the data pathlengths to receivers were similar for both protocols.In Figures 12 and 13, we plot a cumulative distribution of the stress and path length metrics for the entire memberset (128 members) at a time after the data paths have converged to a stable operating point.Narada uses fewer number of links on the topology than NICE, since it is comparably more aggressive in addingoverlay links with shorter lengths to the mesh topology. However, due to this emphasis on shorter path lengths,the stress distribution of the links is heavy-tailed. More than 25% of the links have a stress of four and higher inNarada, compared to < 5% in NICE. The distribution of the path lengths for the two protocols are comparable.The multi-unicast scheme (presented for comparison) shows the shortest path length distribution if stress on links isignored.Failure Recovery and Control OverheadsTo investigate the e�ect of host failures, we present results from the second part of our scenario: starting at simulatedtime 1000 seconds, a set of 16 members leave the group over a 10 second period. We repeat this procedure four moretimes and no members leave after simulated time 1400 seconds when the group is reduced to 48 members. Whenmembers leave, both protocols \heal" the data distribution tree and continue to send data on the partially connectedtopology. In Figure 14, we show the fraction of members that correctly receive the data packets over this duration.Both Narada-5 and NICE have similar performance, and on average, both protocols restore the data path to all(remaining) receivers within 30 seconds, and on correctly serve over 90% of the members. We also ran the sameexperiment with the 30 second refresh period for Narada. The lower refresh period caused signi�cant disruptions on14



Group Router Stress Link Stress Path Length Bandwidth Overheads (Kbps)Size Narada-5 NICE Narada-5 NICE Narada-5 NICE Narada-30 NICE8 1.55 (1.30) 3.51 (3.30) 1.19 (0.39) 3.24 (2.90) 25.14 (9.49) 12.14 (2.29) 0.61 (0.55) 1.54 (1.34)16 1.84 (1.28) 2.34 (2.16) 1.34 (0.76) 1.86 (1.39) 19.00 (7.01) 20.33 (6.75) 2.94 (2.81) 0.87 (0.81)32 2.13 (2.17) 2.42 (2.60) 1.54 (1.03) 1.90 (1.82) 20.42 (6.00) 17.23 (5.25) 9.23 (8.95) 1.03 (0.95)64 2.68 (3.09) 2.23 (2.25) 1.74 (1.53) 1.63 (1.39) 22.76 (5.71) 20.62 (7.40) 26.20 (28.86) 1.20 (1.15)128 3.04 (4.03) 2.36 (2.73) 2.06 (2.64) 1.63 (1.56) 21.55 (6.03) 21.61 (7.75) 65.62 (92.08) 1.19 (1.29)256 3.63 (7.52) 2.31 (3.18) 2.16 (3.02) 1.63 (1.63) 23.42 (6.17) 24.67 (7.45) 96.18 (194.00) 1.39 (1.76)512 4.09 (10.74) 2.34 (3.49) 2.57 (5.02) 1.62 (1.54) 24.74 (6.00) 22.63 (6.78) 199.96 (55.06) 1.93 (3.35)1024 - 2.59 (4.45) - 1.77 (1.77) - 25.83 (6.13) - 2.81 (7.22)1560 - 2.83 (5.11) - 1.88 (1.90) - 24.99 (6.96) - 3.28 (9.58)2048 - 2.92 (5.62) - 1.93 (1.99) - 24.08 (5.36) - 5.18 (18.55)Table 1: Data path quality and control overheads for varying multicast group sizesthe tree with periods of over 100 seconds when more than 60% of the tree did not receive any data. Lastly, we notethat the data distribution tree used for NICE is the least connected topology possible; we expect failure recoveryresults to be much better if structures with alternate paths are built atop NICE.In Figure 15, we show the byte-overheads for control tra�c at the access links of the end-hosts. Each dot in theplot represents the sum of the control tra�c (in Kbps) sent or received by each member in the group, averaged over10 second intervals. Thus for each 10 second time slot, there are two dots in the plot for each (remaining) host inthe multicast group corresponding to the control overheads for Narada and NICE. The curves in the plot are theaverage control overhead for each protocol. As is evident from the plot, for groups of size 128, NICE has an orderof magnitude lower average overhead, e.g. at simulation time 1000 seconds, the average control overhead for NICEis 0.97 Kbps versus 62.05 Kbps for Narada. At the same time instant, Narada-30 (not shown in the �gure) had anaverage control overhead of 13.43 Kbps. Lastly, we note that the NICE control tra�c includes all protocol messages,including messages for cluster formation, cluster splits, merges, layer promotions, and leader elections.4.3.2 Aggregate ResultsWe present a set of aggregate results as the group size is varied. The purpose of this experiment is to understandthe scalability of the di�erent application-layer multicast protocols. The entire set of members join in the �rst200 seconds, and then we run the simulation for 1800 seconds to allow the topologies to stabilize. The data pathtree degree was low for both the protocols, and typically varied between 3 and 5 for the non-leaf members on thedistribution tree.In Table 1, we compare the stress on network routers and links, the overlay path lengths to group members andthe average control tra�c overheads at the network routers. For each metric, we present the both mean and thestandard deviation.As we showed in our �rst experiment, Narada and NICE tend to converge to trees with similar path lengths.The stress metric for both network links and routers, however, is consistently lower for NICE when the group sizeis large (64 and greater). It is interesting to observe the standard deviation of stress as it changes with increasinggroup size for the two protocols. The standard deviation for stress increased for Narada for increasing group sizes.In contrast, the standard deviation of stress for NICE remains relatively constant; the topolgy-based clustering inNICE distributes the data path more evenly among the di�erent links on the underlying links regardless of groupsize.The control overhead numbers in the Table are di�erent than the ones in Figure 15; the column in the table isthe average control tra�c per network router as opposed to control tra�c at an end-host. Since the control tra�c15



gets aggregated inside the network, the overhead at routers is signi�cantly higher than the overhead at an end-host.For these router overheads, we report the values of the Narada-30 version in which the route update frequency set to30 seconds. Recall that this protocol, Narada-30 performs relatively poorly when members leave, but is much moree�cient (speci�cally 5 times less overhead with groups of size 128) than the Narada-5 version. The refresh messagesin NICE were still sent at 5 second intervals. Even with this disparity, the average control tra�c byte overheads ata router for the di�erent group sizes is an order of magnitude lower for NICE.5 Related WorkThere are a few closely related projects which explore implementing multicast at the application layer. They canbe classi�ed into two broad categories: mesh-�rst (Narada [7], Gossamer [4]) and tree-�rst protocols (Yoid [9],ALMI [12]). Yoid de�nes a distributed tree building protocol between the end-hosts, while ALMI uses a centralizedalgorithm to create a minimum spanning tree rooted at a designated single source of multicast data distribution. TheJungleMonkey project7 is a similar e�ort to create an application layer multicast overlay using a tree-�rst approach.Bayeux [16] in another architecture for application layer multicast, where the end-hosts are organized into ahierarchy as de�ned by the Tapestry overlay location and routing system [15]. A level of the hierarchy is de�ned bya set of hosts that share a common su�x in their host IDs. Such a technique was proposed by Plaxton et.al. [13] forlocating and routing to named objects in a network.The Overcast [11] protocol organizes a set of similar proxies (called Overcast nodes) into a distribution tree rootedat a central source for single source multicast. A distributed tree-building protocol is used to create this source speci�ctree, in a manner similar to Yoid. RMX [5] provides support for reliable multicast data delivery to end-hosts usinga set of such proxies, called Reliable Multicast proXies. Application end-hosts are con�gured to a�liate themselveswith the nearest RMX. The architecture assumes the existence of an overlay construction protocol, using which theseproxies organize themselves into an appropriate data delivery path. TCP is used to provide reliable communicationbetween each pair of peer proxies on the overlay.6 ConclusionsIn this paper, we have presented a new protocol for application-layermulticast. Our main contribution is an extremelylow overhead hierarchical control structure over which di�erent data distribution paths can be built. Our resultsshow that it is possible to build and maintain application-layer multicast trees with very little overhead. Clearly,existing protocols like Narada are very useful for small group sizes, but impose too much overhead for applicationsthat require large groups. We believe that the results of this paper are a signi�cant �rst step towards contructinglarge wide-area applications over application-layer multicast.References[1] D. G. Andersen, H. Balakrishnan, M. Frans Kaashoek, and R. Morris. The Case for Resilient Overlay Networks. In Proc. HotOSVIII, Schloss Elmau, Germany, May 2001.[2] T. Ballardie, P. Francis, and J. Crowcroft. Core Based Trees (CBT): An Architecture for Scalable Multicast Routing. In Proceedingsof ACM Sigcomm, 1995.[3] K. Calvert, E. Zegura, and S. Bhattacharjee. How to Model an Internetwork. In Proceedings of IEEE Infocom, 1996.[4] Y. Chawathe. Scattercast: An Architecture for InternetBroadcastDistribution as an InfrastructureService.Ph.D. Thesis, Universityof California, Berkeley, December 2000.7http://www.junglemonkey.net 16
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