
Spatial Clustering for IP Multicast: Algorithms and anApplicationSuman Banerjee, Samrat BhattacharjeeSystems and Networking Research GroupDepartment of Computer ScienceUniversity of Maryland, College Park, MD 20742fsuman,bobbyg@cs.umd.eduAbstractWe introduce spatial clustering of multicast group members as a mechanism toscale wide-area multicast-based applications. To motivate the use of such structures,we present a clustering based re-keying scheme for secure multicast. Using amortizedanalysis, we show that the communication, processing, and storage costs for this schemeto distribute keys upon membership changes is of constant order. This improves uponthe previously known best-case logarithmic bounds under the same assumptions.Next, we develop a clustering algorithm and a cluster formation protocol that canbe built atop IP multicast to create clusters with properties required to implementthe secure multicast scheme. To show the viability of such a clustering scheme on theInternet, we present results from implementing this clustering technique on a Internetmap of over 280,000 IP routers. We describe how a small set (� 64) of multicastaddresses can be used to e�ciently implement intra-cluster communication in largegroups (> 64K members). Finally, we present results from packet-level simulations ofthe clustering protocol to demonstrate protocol robustness under varying membershipdynamics.1 IntroductionThe use of multicast has enabled large-scale wide-area applications on the Internet. In largemulticast groups senders cannot scalably maintain state for every receiver since this leadsto the well-known \feedback implosion" problem [15]. Additional receiver co-ordination,aggregation, and feedback control mechanisms are required to maintain large groups. The1



prototypical example where such state maintenance is necessary is reliable multicast. Reli-able multicast solutions that handle per-receiver state (e.g. retransmission request for lostpackets) at senders do not scale; hence, distributing this state maintenance to other entities,receivers [10, 21, 4] or \repair servers" [15] is important in creating a scalable framework.Clustering techniques have traditionally been used to provide scalable solutions in manysystems: adaptive clustering solutions are being currently de�ned to provide scalable routingsolutions for both static networks [23, 8], and for multi-hop mobile networks [20, 25]. Aclustering-based architecture has been proposed to generate dynamic distance maps of theInternet [27] and to provide aggregation of receivers with similar interests and capabilities[29].In this paper, we introduce topology-based member clustering as a mechanism to imposea distributed structure on multicast groups. Our clustering scheme performs a spatialpartitioning of the multicast topology to create local aggregation of state at distributedpoints in the network. To motivate such structures, we will apply spatial clustering to theproblem of distributing keys for secure multicast and derive a constant overhead re-keyingmechanism.1.1 Secure Multicast Key DistributionSecure group communication systems provide mechanisms for multi-party applications tocommunicate securely over an untrusted network. In order to send secure messages overan insecure channel, the message has to be encrypted. When such a message is sent to agroup, all members of the group must be able to decrypt the message. The most e�cientform of such secure group communication requires all members to possess the same \groupkey"; otherwise, en-route re-keying is required for every packet. However, for each groupmembership change, this group key needs to be replaced by a new group key. The centralizedsolution of individually exchanging the new key with each member does not scale to largegroups. We will present an e�cient clustering-based scheme for group re-keying. Each re-key in our scheme has constant amortized processing, message, and space overheads and thisis better the previously known-schemes [28, 6] all of which impose logarithmic overhead.To the best of our knowledge, the clustering-based algorithm described here is the �rstconstant time re-keying scheme when the group has to be re-keyed after every membershipchange. 2



1.2 Labeling and ClusteringWe decompose the problem of cluster formation into three-layers. Instead of exposingthe vagaries of the underlying topology to the clustering protocol, we layer the clusteringprotocol atop a labeling protocol. Given any arbitrary multicast distribution scheme (suchas IP-multicast), the labeling protocol is responsible for de�ning an ancestral relationshipamong the multicast group members (See Figure 1). Thus, the labeling protocol is used tode�ne an overlay tree containing only the multicast group members over which the clusteringprotocol will operate.Note that the ancestral relationship on the multicast tree can be made application-speci�c. For example, for a reliable multicast application, a member A can be an ancestorof another member B i� A is on the path from the source towards B, and has a higherbandwidth available from the source than B. In this case, the nearest ancestor would be agood candidate to be a re-transmission server [21].The clustering protocol operates on the overlay tree de�ned by the labeling proto-col. Each cluster is a connected component of the multicast tree and contains a distin-guished node | the cluster-leader. Usually the cluster-leader will be responsible for cluster-maintainance. The clustering protocol provides applications the ability to send messages tomembers in speci�c clusters and noti�es the application of changes in cluster membership.The complete three-layer decomposition is shown in Figure 1.
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� Derivation of a constant cost algorithm for secure key-distribution using clustering;� Analysis of the topological properties of clusters on Internet-like topologies to showthe viability of spatial clustering;� Simulation of the clustering protocol to demonstrate its convergence properties.1.3 RoadmapIn the next section, we present our clustering-based multicast key distribution scheme andderive the constant overhead bound. The scheme (and the description) will assume theexistence of a clustering protocol with speci�c properties. In Section 3, we describe how toimplement the underlying labeling protocol within IP multicast. We present the basic ideasof the spatial clustering algorithm in Section 4. Next we present results from simulating thisalgorithm on Internet-like topologies in order to validate the feasibility of such clusteringon the Internet. The �nal clustering protocol is presented in Section 6. In Section 7,we present a set of packet-level simulation results that demonstrate the robustness andconvergence properties of the clustering protocol. We discuss related work in Section 8 andconclude in Section 9.2 Secure Multicast using ClusteringIn this section, we present a secure key distribution scheme for multicast applications thathas a constant amortized cost overhead, to re-key over the entire group. The scheme assumesthe existence of a receiver clustering protocol, which given a set of members distributed ina multicast delivery tree, maintains a set of clusters with the following properties:� Each member belongs to exactly one cluster.� Each cluster is a connected sub-graph of the multicast delivery tree.� Each cluster has k members, for some �xed k, 1� Each cluster has a member chosen to be the cluster leader.Using this underlying clustering protocol, the key distribution mechanism creates a hier-archy of clusters, as shown in Figure 2. A \layer" comprises of a set of members of the1The size of a cluster does not need to be exactly k, but must be within some constant factor of k.4
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Layer 2Figure 2: A three layer hierarchy on the member overlay tree for key distribution in securemulticastsecure multicast group in the same level of the hierarchy. Layers are numbered sequentiallywith the lowest layer of the hierarchy being layer zero (L0). An instance of the clusteringprotocol is executed at each layer of the hierarchy to create a set of clusters. All membersof the secure multicast group are part of the lowest layer (L0). Only the cluster leaders ofthe clusters in layer Li are part of layer Li+1.Let us assume that the number of members (N) in the multicast group equals kR forsome integer R. The following properties hold:� There are exactly R+ 1 layers, where R = logk(N). For all j in [0; R], Lj has N=(kj)members. Speci�cally, L0 contains all the members, and the highest layer, LR, hasonly a� If a member u, is present in Lj , it is present in all lower layers L0 : : :Lj�1.� If a member u is not present in layer Lj , it is not present in any of the higher layers,Lj+1 : : :LR.2.1 Layer Keys and Cluster KeysA secret layer-key is associated with each layer of the hierarchy. A group member possessesa layer key for a speci�c layer if and only if it is a member of a cluster in that layer.Similarly, a secret cluster-key is also associated with each cluster. Once again, a groupmember possesses a cluster key for a speci�c cluster if and only if it is a member of thatcluster. 5



2.2 Communication on the Secure Multicast GroupSince all members belong to L0, the key associated with L0 is used to communicate withinthe secure multicast group. The encrypting and decrypting cost for sending a message tothe entire group is always O(1); there is no re-keying required at any node for data messages.As described next, the hierarchy of layers and the di�erent clusters are used to e�cientlyre-key the group upon member joins or leaves.2.3 Key Distribution ProtocolThe key distribution protocol ensures that at any instant, the layer key of each layer is onlyavailable to members joined to that layer. The membership in layer, Lj , can change if :� A member joins layer Lj : A member joins layer Lj ; j > 0 i� it has been chosenas the leader of some cluster in layer Lj�1 to which it is joined. A member would joinlayer L0 upon joining the secure multicast group.� An existing member leaves layer Lj : A member leaves the layer Lj ; j > 0 if itceases to be a cluster leader of any cluster in layer Lj�1, and it recursively leaves fromall higher layers. When a member leaves the secure multicast group entirely, it wouldleave all the layers to which it was joined.Whenever a member leaves (joins) a layer, Lj , a new layer key is required for that layer.The leader of the cluster of layer Lj , which is a�ected by this leave (join), sets up a newcluster key for the cluster. Assume, for simplicity, that a single designated member, S,generates new layer keys when needed The new layer key for the layer Lj , encrypted by thelayer key of Lj+1, is multicast by S to all members in layer Lj+1. (Recall that the membersof layer Lj+ are the cluster leaders for the clusters in layer Lj .) Subsequently, this newlayer key of layer, Lj |encrypted by the latest cluster key of each cluster| is multicastwithin the clusters by each of the cluster leaders to all the cluster members. These last setof multicast messages traverse disjoint parts of the delivery tree.The key distribution scheme can be described using the following notation.� Members and Member Sets{ u; v : Members of the secure multicast group{ S : The global key server for all the layers.6



{ Li : Layer i in the hierarchy{ C(u; j) : Cluster of layer Lj , to which u belongs.{ Ldr(u; j) : Leader of the cluster in layer Lj to which u belongs.� Keys and Messages{ �G(t) : The secret key of G at time t, where where G is a set of members. If Gis a cluster, then this is the cluster key, if G is a layer, then this is the layer key.If G is a pair of members, then this is a key shared only by these two members.{ fmge : Message m is encrypted by the key e.{ hUnicast :: u ! v : xi: u sends a unicast message x to v.{ hMulticast :: u ! G : xi: u multicasts message x to set of members G. Here,G can be either a cluster or a layer. Hence a message of the form hMultcast ::u ! L1 : xi means u multicasts message x to all members in layer L1.When a member u joins or leaves layer Lj , the following operations are performed distribut-edly by the key distribution protocol :1. Cluster re-key : Ldr(u; j) generates a new cluster key �C(u;j)(t+ 1) and unicasts it toeach current member of the cluster C(u; j) encrypted separately by the pair-wise keyof the leader with each member.8v 2 C(u; j); hUnicast :: Ldr(u; j) ! v : f�C(u;j)(t+ 1)g�fLdr(u;j);vgiObviously, in case u is leaving this cluster, this message is not sent to u. The totalcommunication overhead of this cluster re-key is O(k) per link.2. Layer re-key : The global key server S generates a new layer key for layer Lj , andmulticasts it to all the cluster-leaders of the clusters of layer Lj | these are exactlythe members of layer Lj+1. Each cluster leader of layer Lj then performs a clustermulticast to all the members of its cluster in layer Lj . The multicast messages areencrypted by the appropriate keys.hMulticast :: S ! Lj+1 : f�Lj(t + 1)g�Lj+1(t)i8v 2 Lj+1; hMulticast :: v ! C(v; j) : f�Lj(t + 1)g�C(v;j)(t+1)i7



The multicast message from S to layer Lj+1 traverses each link only once. Thecluster multicasts of the cluster-leaders of layer Lj traverse spatially disjoint parts ofthe multicast delivery tree. Hence, only one such multicast message traverses a linkin the tree. Thus, the combined communication cost of these multicasts is O(1) perlink.2.4 AnalysisThe e�ciency of the key distribution protocol is analyzed using three di�erent metrics :� Communication cost per link� Processing requirements at each member for encryption and decryption� Key storageCommunication cost : Upon most member joins or leaves, only the lowest layer, L0 willbe a�ected, leaving all other layers unperturbed. However, in the worst case (when thesingle member at layer Llogk N leaves) all the layer keys would need to be changed. In thiscase, one cluster at each layer needs to be re-keyed along with all the layer keys, makingthe worst case cost of a join or a leave O(k logN).Under the assumption that each member of the group is equally likely to join or leave,the amortized cost for joins and leaves is now shown to be of constant order. For anylayer, the number of members in that layer is N=kj . The cost of a single change (join orleave) at any layer is O(k + 2). Without loss of generality, only the communication cost ofmembers leaving the group is considered. When a member which occurs in layer Lj leaves,it leaves from each of the layers L0 : : :Lj . The communication cost per link for this changeis O((k+2)(j+1)). Hence, the amortized cost of for a member leaving the multicast groupis given by : 1N RXj=0 Nkj (2 + k)(j + 1) = O(k + logkNN ) where R = logkNHowever, k is a constant and the logNN ! 0 asymptotically with increasing N . Hence, theamortized cost of a member leaving (and also for joining) is O(k).Processing Costs and Key Storage : Similar analysis can be used to show that eachmember change requires only constant processing overhead (key encryption and decryption)at each of the members. The amortized number of keys stored at a member is also of aconstant order. 8



3 Multicast Tree Labeling ProtocolThe labeling protocol de�nes an parent-child relationship among the di�erent membersjoined to the multicast delivery tree. This relationship need not be purely based on thepoint of attachment of the host members on the multicast router tree, but can depend onany application-speci�c metric.
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Figure 3: Labeling scheme for secure multicast applicationSecure Multicast : For our re-keying scheme in secure multicast, we de�ne this parent-child relationship as follows :Let d(u; v) denote the distance between the members u and v along the multicast deliverytree in router hops and let member S be the source. A member y is considered to be aparent of member x, i� :C1: d(S; y) � d(S; x). This condition ensures that the parent is farther from the sourcethan the child.C2 8 nodes z that satisfy C1, d(y; x) � d(z; x). This condition chooses a closest memberthat satis�es condition C1.Since the members are almost always attached to leaf routers, the the path from the sourceto the parent of a member is not an exact, but an approximate pre�x of the path from thesource to th child. 9



The labeling protocol can be implemented on the existing IP multicast infrastructure,by a TTL-scoped expanding ring search mechanism. For example, in Figure 3, member Chas currently sent a TTL-scoped multicast probe (with a TTL of �ve). This probe wouldreach all the shaded routers in the �gure. As a consequence, group members B and E willreceive this probe packet. The probe packet from C carries the distance from the source toC. The probe packet at B and E serves two di�erent purposes:� Node B realizes that it is a possibly parent of C (C1). Hence, it would announceits presence to C. This would allow C to conclude that B is its parent, since only Bsatis�es C2.� Node E also realizes that C is possibly its parent, as it satis�es all the conditionsrequired at this time. Of course, E needs to search for better parent candidates, butnow it can limit the Expanding Ring Search to two hops, since it is already aware ofC.Thus, this labeling protocol provides a reduced functionality (commensurate with theneeds of the clustering protocol) than other router-intensive multicast tree discovery proto-cols, like Tracer [19] and STORM [26], that uses mtrace to discover all routers on the paths.Obviously, the other protocols can also be used instead of the protocol we have described.The labeling protocol can be adapted for other applications by suitably customizingthe conditions that de�ne that parent-child relationship. To create a preference clusteringamong receivers of a multicast group [29], we can de�ne a member y to be a parent of x i� yhas the closest match in preference to x within a hop-limited domain. Simple lexicographicorderings can be imposed to ensure that the relationship is asymmetric. On the overlaytree so created, a clustering technique, like the one described in this work, can be used togenerate all the receiver clusters based on preference proximity.4 Clustering Algorithm: Basic IdeaIn this section, we will describe a simple clustering algorithm that operates on the memberoverlay tree generated by the labeling protocol to create clusters of members. The algorithmtakes a single parameter k | the size of a cluster. However, algorithms that try to createclusters of size exactly k are likely to be unstable, since \good" clusters (of size k) will bedisbanded when even one member joins or leaves. Instead, the algorithm we present will10
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node z is the root.Figure 4: The simple clustering algorithm on a treecreate clusters of size between k and 2k. For the hierarchical secure multicast scheme, theamoritzed cost of re-keying would still be O(k).The simple algorithm, though e�cient, is centralized, and uses cluster size as the onlymetric to con�gure the clusters. However, it will help articulate the �nal clustering protocolthat takes both size and depth of clusters into account.The clustering algorithm takes an arbitrary tree, T , as an input and outputs a set ofclusters, which essentially are tree segments. Let T (u) denote the subtree rooted at nodeu. The tree is traversed from the leaves, upwards to the root, essentially in post-order. Letu be the �rst node in the post-order traversal, such that, jT (u)j � k and for each child v ofu, jT (v) < k. Clusters are formed at node u by incrementally grouping the subtrees T (v)till the size bound of k is met. The node u is placed in each of these clusters (to connectthe subtrees). There may be one remaining subtree, rooted at a child, x, of u, which couldnot be put into any cluster (jT (x)j must be < k). In this case u and T (x) is retained in thetree, while all the other nodes that have been put into clusters are deleted from the tree.At the end of a single pass of the entire tree, the set of desired clusters is generated.Consider an example in Figure 4. When node x is being processed, one cluster is created(x;E; F ), and the small subtree, G, could not be placed in any cluster is left in the tree, and11



Procedure 1 : ClusterTree(T; k)Returns ClusterSet as the set of clustersClusterSet  ?for u in post-order traversal of T doif jT (u)j � k thenTempClusters  MergeSubtrees(u; k)for v 2 Children(u) doif 9C 2 TempClusters s.t. v 2 C thenDelete T (v) from Tend ifend forif All children of u are deleted thenDelete u from Tend ifClusters  Clusters [ TempClustersend ifend forProcedure 2 : MergeSubtrees(u; k)Returns TempClusters as clusters createdTempClusters  ?; PartialCluster  ?for v 2 Children(u) doPartialCluster  PartialCluster [ T (v)if jPartialClusterj � k � 1 thenAdd fug to PartialClusterAdd fPartialClusterg to TempClustersPartialCluster  ?end ifend for 12



is formed into a cluster when processing at node y is done. The entire subtree rooted at yis deleted since all these nodes have been placed into some cluster. Processing at the root,z leaves one small cluster, (z; A), that does not meet the size bound. The exact algorithmis speci�ed in Procedure ClusterTree.5 Analysis on an Internet MapIn this section, we present the clustering performance of the simple algorithm on an In-ternet map obtained by the SCAN2 project. This map contains about 280; 000 IP routersdiscovered using traces on the Internet. The map has been created using the Mercator [11]tool. It uses the source-routing capability of some routers to detect many of the routeradjacencies that cannot be detected otherwise from a single point of observation.The members of a multicast application will usually be located on hosts that are onthe \edge" of the Internet. Therefore, for our experiments, we randomly attached memberhosts to only leaf routers (i.e. routers that have unit degree on the Internet map). About50% of all the routers in the map were edge routers. We attached between 10; 000 and500; 000 hosts onto these edge routers uniformly at random, for the experiments.5.1 Member Overlay TreeTo observe the structure of the member overlay tree created using the labeling protocol,we ran a set of experiments. We varied the number of group members between 20; 000 and140; 000 in steps of 20; 000 and collected results for each size using 100 randomly generatedmulticast trees. In general, the greater the number of high-degree non-leaf members inthe tree, the higher would be the overlap between clusters. As we discuss in our scalablere-keying mechanism for secure multicast, this would be undesirable. We observed thaton average, for all these di�erent member sets, about 80% of the non-leaf members in theoverlay tree had 6 or less children. As a consequence, we expect to achieve a good clusteringof the members, as is demonstrated in the next set of results.5.2 Assigning Multicast Addresses to ClustersIn each cluster, we assume that only the cluster-leader sends some local multicast tra�c toall other group members (as is true in our secure-multicast re-keying scheme). Ideally, we2http://www.isi.edu/scan 13
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Member B is cluster-leader of Cluster 1. Member S is cluster-leader of Cluster 2.Figure 5: \Spill-over" of cluster tra�c to routers outside clusterwant this tra�c to be localized to within the routers in the cluster topology only. Considerthe example in Figure 5. For cluster 1, multicasts from the cluster-leader B, will need aTTL value of 5 to reach the other members. If both the clusters use the same multicastaddress then all the routers will be joined to the multicast delivery tree. Hence, tra�c ofcluster 1 will be carried by routers 1��8 and by router 12. However, the tra�c at routers 6to 8 and 12 do not lead to any members of cluster 1. We denote such routers as \spill-over"routers for cluster 1. If two di�erent multicast addresses are used for the clusters, then thereare no spill-over routers for either of the clusters 3 (some routers on the path to the core ofthe multicast address can be considered to be spill-over routers, for core-based architectures[2], [9] and this overhead is unavoidable).We use two metrics to measure the e�ciency of clustering using the simple algorithm:� For each router, r, in the topology, we record the number of clusters whose tra�creaches r. For a perfect spatial clustering, each router should not handle the localtra�c of more than one cluster. However some routers will be required to carry tra�cfrom multiple clusters, when multiple clusters share the same multicast address.� For each cluster, we record the number of spill-over routers. The number of spill-over3In an architecture that has the capability to perform directed multicast to a subset of members (e.g.AIM [18], GRA [5]), such a facility can be used instead of allocating separate multicast addresses to thedi�erent clusters. 14



routers is zero if each cluster had its own multicast address and increases progressivelyas more clusters share the same address 4.In the ideal scenario, each cluster is given a separate multicast address. However, anapplication with 100; 000members with clusters of size 10, would then need 10; 000multicastaddresses. More realistically, a �xed number of multicast addresses need to be rationed tothe di�erent clusters. We experimented with a few distributed schemes of multicast addressallocation to the clusters. The optimal address allocation is equivalent to a graph coloringproblem, and is NP-hard. We experimented with a number of address allocation heuristics,and report results from one of them. Each cluster of depth D chooses one address atrandom from a set of addresses allotted to that partition. The number of addresses allotedto each partition of clusters is weighted by a factor, dD� size of the class, where d is theaverage degree of the tree. This scheme is completely distributed with no coordinationbeing required between clusters (as long as the maximum cluster depth is known or canbe estimated). We ran a large number of experiments with varying multicast group andcluster sizes. Next, we present results from groups containing 68; 000 members and clustersize between 8 and 16. These results are representative of the other results in the otherexperiments.Cluster Tra�c at the Routers : In Figure 6 we plot the cumulative distributionof the number of routers for di�erent number of clusters whose tra�c pass through therouters (averaged over 100 di�erent trees). When a single multicast address is used, manyof the routers have to handle non-local cluster tra�c, and more than 40% of routers seetra�c from 30 or more clusters. Distributing even a small number of multicast addressesamong the clusters is useful in reducing the router overheads. When 64 addresses are used,less than 20% of the routers handle tra�c of more than 5 clusters. The ideal (of using onemulticast address per cluster or a directed multicast capability in the network) leads to 90%or more routers handling tra�c of � 2 clusters.Spill-over Routers : In Figure 7, we plot the cumulative distribution of the clusters,for the number of spill-over routers for each cluster (again averaged over 100 trees). In theideal scenario of directed multicast, all cluster tra�c is carried usefully. With 256 multicast4Usage of multiple multicast addresses for a single application has previously been proposed to provideout-of-band retransmission of lost packets to a set of members in reliable multicast [16] and to partitionheterogeneous receiver sets by their tra�c preferences [29]; we will use this technique to limit spill-overmulticast tra�c. 15
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d � D d > Ds < k �Ld+ �(k � s) �LD + �H(d�D) + �(k � s)k � s < 2k �Ld �LD + �H(d�D)s � 2k �Ld + �LD + �H(d�D) +�(s � 2k + 1) �(s � 2k + 1)Table 1: Cost of cluster of size s and depth dand increases linearly (with slope �) as the size of the cluster decreases below k orincreases beyond 2k.� The cost of a cluster, due to its depth, d increases slowly with increase in depth (�L),up to the chosen parameter, D, and increases at a higher rate (�H) beyond that.Obviously, �L should be less than �H .Using this model, the cost of a cluster of size s and depth d can be expressed of thesetwo parameters shown in Table 1. The purely size-based clustering scheme can exactly bemapped into this model by choosing appropriate constants in the function.To control the stability of the protocol we use two cost thresholds: a low watermark,L, and a high watermark, H. Cluster of cost less than or equal to L are considered stable.Hence, L is set to the maximum cost of a cluster that meets both the size and depth bounds.The gap between the two watermarks are used to dampen frequent reclustering due to smallchanges in the cost for every join and leave by members using the multicast application.Only when the cost of a cluster increases beyond H does it attempt to re-cluster.6.2 Cost-Based Clustering ProtocolThe cost-based clustering protocol is a distributed implementation of the simple size-basedclustering algorithm, with the newly de�ned costs replacing the size metric The labelingprotocol layered below this clustering protocol also tracks the subtree size and the subtreedepth at each member by aggregating this information from the periodic messages receivedfrom each child member in the tree.The distributed implementation proceeds as follows :1. Each member initially creates a trivial cluster, with itself as the only member, whenit joins the tree. 18



2. Each member attempts to add its children on the tree to its current cluster, but onlyif by doing so, the new cost of the cluster is reduced (the cluster cost may go up, ifthe cluster depth increases beyond the depth parameter, D). In this way, the initialclusters start growing.3. Whenever a cluster becomes \stable" i.e. its cost is below L, its cluster-root, (themember in the cluster closest to the root) does not include these members in itssubtree size report to its parent. This is the equivalent of subtree deletion in thesimple size-based algorithm.4. Through member aditions and deletions, if the cost of a once-stable cluster exceeds, H,the current cluster-root of the cluster, re-starts reporting the presence of the clustermembers in its subtree size and depth information to its parent. Hence, all thesemembers can be incrementally re-clustered by step 2.7 Simulation ResultsIn this section, we present simulation results from our packet-level simulation of the cost-based clustering protocol on the ns (version 2) simulator. Due to the high processing andmemory demands of ns, we were limited to simulations on topologies with upto 1000 nodes.We added a new agent object to perform the task of the clustering and labeling protocolsin ns. All clustering related messages are piggybacked on periodic labeling protocol mes-sages. During membership changes, the labeling protocol can would temporarily mislabelthe parent-child relationship of the members; in these cases clustering protocol would alsobe subject to errors. These conditions are modeled in our simulations.7.1 Experimental MethodologyThe simulation experiments using ns were run on di�erent multicast tree topologies. Weused randomly generated multicast trees, from graphs with the same average degree as theSCAN Internet topology map. The labeling protocol is implemented using TTL-scopedExpanding Ring Search messages that serve as periodic probes to discover the membertopology and changes to the topology. The time taken by the labeling protocol to discoverthis topology is directly related to the heart-beat period of the periodic probes. Since allclustering messages are piggybacked over these labeling messages, the convergence time19



Total Num. Num. of Low Avg. Avg. Avg. (Max)of Clusters Cost Cl. Cl. Size Cl. Depth Stab. Time (s)D = 6 k = 4 47 43 5.8 3.6 11.7 (22.9)k = 10 19 16 13.5 4.4 14.1 (25.0)k = 20 11 6 22.9 4.9 14.2 (27.3)D = 12 k = 4 50 41 5.5 3.3 11.6 (21.1)k = 10 17 16 15.0 4.5 14.7 (31.0)k = 20 9 8 28.2 5.8 17.8 (36.9)Table 2: Cluster characteristics as k and D change.for the clustering protocol is also directly related to this heartbeat period. For all theexperiments reported in this paper, we use the labeling heartbeat period �xed at 2 seconds.7.2 Performance Metrics and ResultsWe use the following metrics to evaluate the clustering:� Size and depth of clusters: This metric shows how well the clustering algorithmcan be used to create clusters that meet the required size and depth bounds.� Time to stabilize: We measure the amount of time taken for all the clusters toconverge after membership changes. Note that the actual time value is directly relatedto the heartbeat period since this is the minimum granularity at which the clusteringprotocol can exchange messages.7.2.1 Creating con�gurable clustersA fundamental goal of the clustering protocol is to create con�gurable receiver clusters ofbounded size and depth. We simulated the protocol for values of the size parameter kvarying from 3{20 and for the depth parameter varying from 4{12. For this experiment,there were 250 group members in a 500 node graph. A representative subset of the resultsis presented in Table 2. (The stability time column is discussed in the next section). In ouranalysis of the results, we noticed the following trends: The algorithm creates clusters withthe speci�ed size and depth properties subject to topological constraints. Thus, if the valueof k is large and the value of D is small, then the protocol is not able to construct low costclusters simply because they do not exist | this is the why only about 50% of the clusters20
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Figure 8: Individual cluster sizes as the sizeparameter k varies.
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Figure 9: Individual cluster sizes as the depthparameter D varies.formed for k = 20 and D = 6 are low cost clusters. Note that when the permitted depth isincreased, the fraction of low cost clusters increase as well.Figures 8 and 9 show details of a single representative run as the size and depth pa-rameters vary. In Figure 8, the maximum depth of the clusters is �xed at 8, and the sizeparameter is varied from 4{20. Individual cluster sizes for di�erent values of k are plottedin Figure 8. In all cases, the majority of clusters are constrained to the speci�ed size lim-its; however, for each value of k, there are a few clusters that are always smaller than therequisite size. Further analysis of our data showed that the members in these clusters werelocated in isolated parts of the topology: the only way to increase these clusters in size,would be by increasing the depth of the clusters, which would have led to increase in the cost21



of the resulting clusters. Figure 9 shows the corresponding results when the size parameterk is �xed at 8, and the depth parameter D is varied from 4{12. We note that for a �xed,k, as D is increased, the distribution of cluster depths do not increase proportionately overthe entire range. This is because once the clusters within requisite size bounds (8{16 in thisexperiment) are formed, the algorithm does not provide any incentive to expand clustersfurther and increase depth.7.2.2 StabilityIn this section, we present results on the convergence properties of the algorithm. All theresults here are shown using simulated elapsed time; the convergence times depend entirelyon the rate at which updates are sent which is �xed at 2 seconds.Initial StabilityIn this experiment, we start with an empty member set and simulate worst case startingconditions by allowing 250 group members to join the group at the time 1 second. Weconsider a member \stable" when the protocol assigns it to a cluster and the assignmentdoes not change further.
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the clusters to stabilize after these members join. After the clusters have stabilized (andthe join times recorded), the new members are made to leave the group at the same time| once again, we measure the time it takes for the clusters to stabilize. The results of thisexperiment is shown in Figure 11.We plot the number of members that join (and subsequently leave) on the x-axis (logscale) the time the clusters take to stabilize on the y-axis. The plot also shows the 95%con�dence interval obtained after repeating the experiments between 10{50 times (we hadto conduct more experiments with the smaller sets of members joining and leaving to getuseful con�dence intervals). From Figure 11, we observe that when the membership changesare minor, the time required to re-stabilize the clusters is small as well (once again, theheartbeat values are set at 2 seconds). As expected, the time to stabilize is proportional tothe change in the tree. Interestingly, when the membership change is extremely large, thetime to stabilize converges to about 40 seconds for the joins, and about 30 seconds for theleaves. This is because the incremental cost of joins and leaves for extra members decreaseas more and more members change the multicast membership within a small time period.Thus, the clustering protocol exhibits desired scaling properties as the rate of change in themember size joined to the tree increases.8 Related WorkClustering : Cluster decomposition techniques have traditionally been used to scale dis-tributed algorithms and communication networks [24]. Clustering has been recently beenused in other contexts as a mechanism to scale multicast applications. Wong et. al. [29]propose a preference clustering scheme for multicast applications, where members withsimilar preferences (e.g. video quality requirements for a video multicast) are grouped intoclusters. Other work by Cheung et al [7] groups receivers of a video multicast from a singlesource into separate groups, and each group is handled separately by the video server. Ourclustering approach di�ers from the prior work since we balance the size and the depths ofthe clusters, and minimize overlap between clusters which minimizes interference of intra-cluster tra�c. Topology-based clustering is used for routing in mobile ad-hoc networks inthe Cluster-Based Routing Protocol (CBRP) [14] to reduce routing information that needsto be ooded through such networks due to frequent changes, and in [17] as a mechanismto self-organize large networks 24



Secure Multicasting : There have been a set of particularly elegant protocols proposed forsecure multicast in recent literature. The �rst secure multicast protocol that did not requireO(N) time for re-keying was proposed by Wong et. al. [28]. They de�ne a tree hierarchyof keys distributed between di�erent sets of members. In non-trivial con�gurations, a keyservermanages 2N keys, whereN is the size of the group, while group members hold h keys,where h is the depth of the tree. In contrast we de�ne a hierarchy of the members. In ourapproach, in the worst case a member needs to maintain O(logN) keys, while the averagenumber of keys for a member is a constant dependent on k, the cluster size parameter.Iolus [22] is an administratively scoped secure multicast scheme. A set of pre-con�guredmembers, Group Security Controllers (GSCs), are deployed into the network and performthe task equivalent to our cluster leaders { thus the partitioning of members into sets ofclusters is statically dependent on the location of the member, and not on the changingmember dynamics of the delivery tree. Hence, Iolus cannot provide the low processing,storage and communication cost that our technique guarantees, by dynamically adaptingthe clusters to within required size and depth properties.A boolean function minimization technique has been proposed by Chang et. al. [6].In this scheme, each member is given a set of keys. The number of keys at a member isO(logN), where N is an identi�er space at least as large as the number of members inthe group. The authors show that their scheme uses O(logN) messages to redistribute thenew keys. Further, the incremental cost of re-keying decreases as the membership changesincrease. Compared to [6], members in our scheme only maintain an amortized constantnumber of keys, instead of O(logN).In MARKS [3], a low overhead key distribution scheme has been proposed where a keymanager reveals a key sequence to each member, at the time it joins. However, the protocolassumes an accurate knowledge of the duration over which a member stays joined to thesecure group at the time the member joins (and a key sequence of appropriate length isrevealed to that member).9 ConclusionsWe have introduced spatial clustering as a mechanism to scale wide-area multicast applica-tions and applied it to derive the theoretically best known secure multicast key distributionscheme. We have shown the viability of such clustering on Internet-like topologies and25
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