

1

Looking to Parallel Algorithms for ILP
and Decentralization

Efraim Berkovich

1,2,3

, Bruce L. Jacob

1

, Joseph Nuzman

1,2,3

, and Uzi Vishkin

1,2,3

Dept. of Electrical Engineering

1

 and
University of Maryland Institute for Advanced Computer Studies (UMIACS)

2

University of Maryland, College Park, MD

Abstract:

 We introduce explicit multi-threading (XMT), a decentralized architecture that

exploits fine-grained SPMD-style programming; a SPMD program can translate directly to MIPS

assembly language using three additional instruction primitives. The motivation for XMT is: (i) to

define an inherently decentralizable architecture, taking into account that the performance of future

integrated circuits will be dominated by wire costs, (ii) to increase available instruction-level paral-

lelism (ILP) by leveraging expertise in the world of parallel algorithms, and (iii) to reduce hardware

complexity by alleviating the need to detect ILP at run-time: if parallel algorithms can give us an

overabundance of work to do in the form of thread-level parallelism, one can extract instruction-

level parallelism with greatly simplified dependence-checking.

We show that implementations of such an architecture tend towards decentralization and

that, when global communication is necessary, overall performance is relatively insensitive to large

on-chip delays. We compare the performance of the design to more traditional parallel architectures

and to a high-performance superscalar implementation, but the intent is merely to illustrate the per-

formance behavior of the organization and to stimulate debate on the viability of introducing SPMD

to the single-chip processor domain. We cannot offer at this stage hard comparisons with well-

researched models of execution.

When programming for the SPMD model, the total number of operations that the processor

has to perform is often slightly higher. To counter this, we have observed that the length of the critical

path through the dynamic execution graph is smaller than in the serial domain, and the amount of

ILP is correspondingly larger. Fine-grained SPMD programming connects with a broad knowledge

base in parallel algorithms and scales down to provide good performance relative to high-perfor-

mance superscalar designs even with small input sizes and small numbers of functional units.

Keywords:

Fine-grained SPMD, parallel algorithms. spawn-join, prefix-sum, instruction-

level parallelism, decentralized architecture.

3

supported by NSF grant 9416890

2

1 Introduction

For some time, researchers have known that processor interconnect delays would some day

constitute a dominating fraction of overall circuit delay [3, 29]. In future technologies, only a fraction

of the processor will be reachable in a single clock cycle. For instance, at 0.1

µ

m (projected by SIA to

occur within a decade [30]), only 16% of the die will be reachable in a clock cycle [26]. One conclu-

sion is that future architectures must limit global communication; that is, most communication

should be localized, and functions that require the propagation of cross-chip signals should be few

and infrequently used. This has already surfaced in contemporary research and actual processors: for

instance, Farkas,

et al

. have investigated implementing a partitioned register file to circumvent clock

speed issues [8], and this type of partitioned register file has appeared in the recent Alpha 21264 [14].

In addition to the interconnect limit, architects are also faced with a perceived limit in avail-

able instruction-level parallelism; that is, our ability to extract ILP is growing less rapidly than our

ability to integrate larger numbers of functional units on a single processor. This has led to several

innovative paradigms in recent years to use functional units in novel ways [7, 9, 10, 23, 25, 27, 34,

36], as opposed to simply increasing the issue width of traditional superscalar designs.

To address these problems, we present an architecture that—like the multiscalar paradigm

[10], the M-Machine architecture [9], “Raw” processors [36], single-chip multiprocessors [27], and

simultaneous multi-threading [34]—maps well to future process technologies that are dominated by

interconnect overheads and thus demand decentralization at an architecture level. Like the recent

investigations of vector processing to more fully exploit on-chip bandwidth, to better map to future

IC technologies, and to take full advantage of the large numbers of functional units available to

today’s microarchitects [7, 25, 23], this proposed architecture combines two things: (i) programming-

model-specific support for an inherently parallel model of execution, and (ii) contemporary concepts

in high-performance microarchitecture.

In our case, the inherently parallel model of execution is

single program, multiple data

(SPMD)

, in which independent threads concurrently execute the same code on different data (e.g

[22]). We use spawn-join “independence of order semantics” (IOS), where each virtual thread initi-

ated by a spawn progresses at its own speed and terminates at a

join

 instruction. Thus, no thread ever

needs to wait on another thread. A process executing on the architecture will spawn threads that exe-

cute asynchronously in parallel, and when all threads have

join

ed, the process returns to serial mode

until the next spawn. Our architecture, which is called

explicit multi-threading (XMT)

, supports this

3

type of programming model. It implements spawn-join semantics in hardware, reminiscent of the

n

-

way spawn-join semantics implemented in software by the KSR system [20] and the 2-way fork-join

mechanism implemented in hardware by the P-RISC [28]. We provide no hardware support for sepa-

rate stack space, as in P-RISC—all state local to a thread is contained in a separate hardware context:

a local register file dedicated to each thread.

In this paper, we show that the XMT architecture inherently lends itself to decentralized

implementations in which most on-chip communication is localized. We show that the architecture is

fairly insensitive to the cost of on-chip communication even when the time it takes a signal to cross

the chip is 32 clock cycles (which should correspond roughly to 0.05

µ

m technology [26, 30]). We

describe a data cache organization and show how the programming paradigm inherently supports a

relaxed consistency model, thereby allowing a simple cache coherence mechanism. We compare the

performance of the design to high-performance superscalar designs; we also quote a comparison to

more traditional parallel architectures. Our goal is to describe the architecture, motivate its design,

and suggest the merit of further evaluating the paradigm as a means to designing high-performance

execution engines for future technologies that are limited by interconnect delays.

1.1 This solution

Research over the last two decades by academic algorithm designers has produced a huge

knowledge-base of parallel algorithmic methods, which is arguably second in its magnitude only to

serial algorithms. The model of parallel computation used for developing this knowledge-base is

called PRAM (for parallel random-access machine, or model). The (virtual) thread structure of

PRAM-like algorithms is very dynamic: the number of threads that need to be generated changes fre-

quently, new threads are generated and terminated frequently, and often threads are relatively short.

Perhaps the most distinguishing feature about the XMT framework is that it envisions an extension to

a standard instruction set which aspires to efficiently implement PRAM-like algorithms; XMT does

so using explicit multi-threaded instruction-level parallelism.

The broad XMT framework [35] extends from algorithms to architecture. The purpose of this

paper is to take a closer look at the architecture end by describing possible architecture choices and

studying the microarchitecture performance implications. Our proposed architecture is inspired by

IOS spawn-join SPMD programming with a flexible thread structure. The organization contains mul-

tiple hardware contexts on a single chip to which one can spawn independent threads to execute con-

currently and allows for quick spawning, coordination, and termination of threads. Of course, during

4

periods where the code is purely serial, these hardware contexts will lie dormant.

The XMT architecture integrates several well-understood and widely-used programming

primitives that are usually implemented in software; the novelty of the architecture is the integration

of these primitives in a single-chip environment, which offers increased communication bandwidth

and significantly decreased communication latency compared to more traditional parallel architec-

tures. The integrated primitives are the

spawn-join

mechanism, which enables parallelism by initiat-

ing and terminating the concurrent execution of multiple threads of control, and the

prefix-sum

operation, which is used to coordinate the threads, similar to fetch-and-add [13].

A

spawn

 instruction sets up the execution of a specified number of threads. The XMT archi-

tectural framework transparently manages the case when the number of threads to spawn is larger

than the number of hardware contexts available. A

join

 instruction signals that a particular hardware

context has finished executing its thread; it either begins executing a new thread that is part of the cur-

rent spawn (in the case where there is more work to do than processing elements to do it), or it lies

dormant until the next spawn. The architecture described in the current paper has the compiler pro-

duce assembly code for explicitly starting and terminating the required threads, but direct hardware

support for thread generation and termination may also be useful.

The prefix-sum operation is similar to an atomic fetch-and-increment [12] and can provide an

emulation of serialization—that is, it enables conflict-free execution of multiple threads without the

need for any thread to busy-wait. One can map any of a wide family of SPMD algorithms onto an

architecture using these three primitives [35].

There are a number of benefits in following such an SPMD-style model of execution. First, it

connects with a large body of knowledge in parallel algorithms, giving us algorithms and paralleliz-

ing compiler techniques with which to work. Second, by definition, concurrently executing threads

are independent, which suggests a microarchitecture implementation in which separate areas of the

chip can execute for periods of time without requiring any synchronization—this approaches the goal

of decentralization. Third, the programming paradigm provides a degree of static memory disambig-

uation that one can exploit in the memory system: communication through the memory system will

be highly structured, regular, and predictable; the XMT programming paradigm leads to trivially par-

titioned cache designs. And last, since the communication costs are low relative to those in more tra-

ditional parallel architectures, we can see the performance benefits of parallel programming at much

lower data set sizes. The main potential drawback of the design is that it could exacerbate the already

troublesome memory bandwidth problems since parallel programs typically require more data move-

5

ments than comparable serial programs. Another concern is the complexity of design verification.

While the architecture appears attractive for its modularity, the interaction issues among the various

elements as well as the magnitude of the design size may hinder verification.

1.2 Overview of this paper

In this paper, we address these issues and provide insight into the performance behavior of

the architecture. Section 2 describes the XMT programming paradigm and the hardware architecture

that supports it. Section 3 describes one possible implementation which exhibits the property of

decentralization; it also describes the architecture used in our simulations. Section 4 provides insight

into the performance behavior of the system, as compared to massively parallel processors and tradi-

tional superscalar designs. Section 5 addresses some of the potential drawbacks of implementing our

model on a single chip. Section 6 describes related existing work and Section 7 concludes.

2 The XMT parallel programming paradigm

Spawn-join

and

prefix-sum

 translate to three instruction primitives that are orthogonal to the

underlying instruction set architecture—they can be added retroactively to a standard instruction set.

2.1 Spawn-join semantics

An in-depth discussion or primer on parallel algorithms is beyond the scope of this paper; the

interested reader is referred to [18]. Suffice it to say that many programs can be made to look like the

diagram in Figure 1, where the heavier lines represent computation and the lighter lines represent the

spawning and joining of multiple parallel threads. The diagram shows a process that splits several

times during the course of its execution into multiple concurrent threads. Each time multiple threads

are spawned, the number and execution length of the threads spawned may vary; each thread may

Figure 1: Serial and concurrent execution in a parallel application. A parallel application can spawn multiple
threads during the course of its execution. The x-axis represents time; the heavier lines represent computation, and
the lighter lines represent the creation and termination of concurrent threads.

Serial execution

Parallel execution

Spawn threads

Join threads

6

proceed at its own speed from beginning to end.

Much code is known to be parallelizable without resorting to multi-threading. For example,

in loop unrolling and software pipelining, we allow different loop iterations to execute concurrently.

In a multithreaded design, one can assign different loop iterations to different independent threads,

subject to the same loop-independence caveats.

2.2 Prefix-sum semantics

The prefix-sum is similar to a fetch-and-increment. It has the following semantics, where B is

called the “base” of the prefix-sum, and R is a register that acts as both a source and a target:

prefix-sum R B -> (i) B = B + R, and (ii) R = initial value of B

The instruction by itself is not very interesting, but it happens to be very useful when several threads

perform a prefix-sum against a common base. Since each prefix-sum is atomic, each thread will

receive a different value in its local storage R; the mechanism can thus be used for parallel execution

of threads that emulates serial execution without resorting to busy-waiting. Prefix-sum is frequently

used in parallel algorithms for this and many other purposes. If a large number of prefix-sums using a

common base can be performed in a short amount of time (e.g. a constant number of cycles: O(1),

not O(

n

)), then the primitive can support efficient inter-thread communication; this is possible if the

value to be added to the base is constrained to be small (for instance, a 1-bit value) [35].

To demonstrate the use of the prefix-sum, suppose we have an array of integers and wish to

“compact” the array; that is, we wish to copy all non-zero values from the array into another array,

thereby creating a smaller, denser array. Figure 2 illustrates. Here is the corresponding pseudocode

using spawn, join, and prefix-sum primitives; all threads execute the same code (the

spawn-block

,

Figure 2: The array compaction problem. The non-zero values in array A are copied to array B, in an arbitrary
order. This is easily parallelized using the prefix-sum operation.

9123
0
0
0
0
45
0
0
0
83

0
0

0
17
0
0

9123
83

45
17

A B

7

delimited by curly brackets—the right bracket is an implicit

join

), and the variables within the brack-

ets are assumed to be local to each thread:

int arrays A[n], B[n];
int base = 0;
spawn (n)
{

int $ID; /* different for each thread: values between 0 and n-1 */
int r = 1;
if (A[$ID] != 0) {

r = prefix_sum(r, base);
B[r] = A[$ID];

}
} /* join */

The variable $ID is the thread ID (analogous to a loop counter variable). Each thread in a spawn

receives a different ID. We will discuss one implementation of assigning thread IDs in Section 3.

Given the array in Figure 2, 16 threads will execute the code in the spawn-block. Each will

receive a unique thread ID and so each will load a different value from array A. Only four will load

non-zero values. These four will attempt to write to array B, but will synchronize their access through

a prefix-sum. Each executes the prefix-sum independently and (potentially) at a different point in

time. After the execution of the prefix-sum, each of the remaining threads’ local value

r

 contains a

unique value between 0 and 3 (because the prefix-sum is executed by four threads, thereby incre-

menting the base by 4). Each thread uses its $ID and

r

 values to read and write to the arrays without

fear of causing memory inconsistencies. No thread ever needs to busy-wait. Note that once all threads

are finished, the variable

base

 contains the size of the compacted array B.

2.3 XMT instruction set

In the SPMD-based XMT model, all threads of a common spawn-block run the same code;

i.e.

 they begin execution at the same program counter. Therefore the spawn operation needs to spec-

ify a PC, the size of the spawn, and the initial thread ID. Without loss of generality, the IDs assigned

to the threads of a spawn are all the integers between the initial ID and (the initial ID + the size of the

spawn - 1). The join operation needs no arguments. The prefix-sum operation needs to specify a base

(which can be either a global register or a global memory location) and a register local to the thread

issuing the prefix-sum.

These primitives are orthogonal to any underlying instruction-set architecture, and for our

simulations, we simply added the following instructions to a MIPS-like instruction set

1

 (actually, the

instruction set looks like SimpleScalar [4], as it does not use architected delay slots).

8

spawn rS, id, offset:

Instantiates a number of threads all starting at a PC-relative offset. The

size of the spawn is found in register

rS

, the initial thread ID is found in the immediate value

id

, and the PC-relative offset at which each thread begins execution is found in the immediate

value

offset

. Because the base thread ID is usually an integral part of the algorithm, it is

usually known at compile time; we therefore use an immediate value.

join:

Signals the end of a spawn-block.

ps.r rR, rB:

Executes a prefix-sum operation using a global register as a base. The base register

is register

rB

, and the local register (which is used as both a source and a target for the prefix-

sum) is register

rR

. After execution, register

rB

 contains the sum of

rB

 and

rR

, and the

register

rR

 contains the value previously found in register

rB

.

psi.r rR, rB, imm:

Immediate-value form of the prefix-sum instruction

ps.r

. This behaves like

ps.r

, except that the value added to the base is the unsigned immediate value

imm

, therefore

register

rR

 is used only as a target, not as a source.

We also assume the availability of load and store instructions using scaled addressing mode [16] to

simplify array addressing:

lwa

 and

swa

. For the purposes of the examples in this paper, these take the

form

op rT, C(rB)[rI]

, where

rT

 is the target register,

C

 is a constant offset, r

B

 is the array base, and

rI

 is the array index that is scaled (left-shifted) by the wordsize.

To distinguish between registers local to a thread and registers global to all threads, we mod-

ify the assembly-code specification of registers while in a spawn-block. The label

tN

 is meant to indi-

cate register N local to the thread, and the label

gN

 refers to global register N. To avoid breaking

compatibility with existing binaries, assemblers, compilers, development tools, and operating sys-

tems for the instruction set, one can simply divide the architectural register file into two partitions: the

lower partition contains the “global” registers, the upper partition refers to registers local to the

thread. Therefore, a reference to register $5 in the MIPS assembly language implies a global register

access, while a reference to register $37 implies access to a register local to an individual thread.

We can now rewrite the earlier example pseudocode in MIPS-style assembly language. To

simplify the example, we assume that the arrays are small and that their base addresses can be refer-

1. The paper [35], this paper, and the simulator use slight variations of the assembly language described.

9

enced by an immediate value (so we can use constants in the load and store instructions). Assume

that the array size (and spawn size)

N

 is a constant less than 65,536:

Register assignments:
g0 - is hard-wired to zero
g1 - holds the spawn size (N)
g3 - the prefix-sum base
t0 - holds the unique thread ID
t1 - holds the value A[ID]
t2 - holds a unique index into array B

A: .space 4 * N # allocate array A
B: .space 4 * N # allocate array B

ori g1, g0, N # initialize register holding the spawn size
ori g3, g0, 0 # initialize prefix-sum base
spawn g1, 0, GO # spawn N threads starting at PC go

GO: # at this point, t0 is initialized with the unique thread ID
lwa t1, A(g0)[t0] # load the IDth element of array A (wordsize = 4)
beq t1, g0, END # if A[ID] is zero, skip to join instruction
psi.r t2, g3, 1 # get unique index into array B
swa t1, B(g0)[t2] # store value loaded from A into B (wordsize = 4)

END: join

3 A decentralized implementation

This section describes an XMT implementation; it is intended to offer insight into the XMT

architectural paradigm, not to stand as the sole implementation of that paradigm. To begin with, we

note that most communication will be intra-thread. This suggests a multi-clustered organization,

wherein each cluster looks much like a contemporary superscalar architecture or SMT design. An

example of a cluster is shown in Figure 3. The important differences between an XMT cluster and a

Figure 3: An XMT cluster. The XMT cluster includes a small instruction cache, a small data cache, a local register
file, several independent pipelines, and a number of functional units shared among the pipelines. Its organization is
similar to many contemporary superscalar designs, as well as an SMT processor.

INSTRUCTION

CACHE

IF

IF

IF

ID

ID

ID

...

Dispatch

REGISTER
FILE

Functional units

DATA

CACHE

buffers

...

Independent pipelines

10

contemporary superscalar design are that, due to the programming paradigm, the pipelines of the

XMT cluster are independent (each manages a single thread) and need no cross-checking of depen-

dencies to send instructions to the dispatch buffers. Similarly, the issue mechanism is simplified

because the hardware need not cross-check dependencies between instructions in different dispatch

buffers when issuing to functional units; and we can divide the register file into as many partitions as

there are independent pipelines (i.e. it might be prudent to protect the registers of different threads),

therefore the register file can be multiported through banking without fear of contention for read or

write ports. Alternatively, one could share the register file among threads to implement low-latency

inter-thread communication, but that is beyond the scope of this paper; for the moment we are inter-

ested in specifying as decentralized a design as possible. We will refer to a hardware thread context as

a

thread control unit (

TCU

)

; each of the independent pipelines in the diagram is a TCU. Each TCU

has a fixed unique ID used only to determine static ranking (i.e. which TCU should take priority in a

given situation).

Each cluster should be able to handle as many threads (as many TCUs) as is reasonable,

given the limitation of single-cycle communication within a cluster; that is, a cluster should be as

large as possible without being so large that signals take multiple clock cycles to propagate within the

cluster. Mechanisms that require extra-cluster communication can be centrally located to minimize

the worst-case communication cost; other organizations such as those that optimize best-case com-

munication are possible, but we do not consider them in this study.

Figure 4 illustrates the organization of independent clusters within the full architecture, and

shows the extra-cluster communication channels. These are the channels that will take multiple

cycles to send a signal across. The operations that require extra-cluster or inter-cluster communica-

tion are as follows:

•

prefix-sum

•

spawn/join

•

references to global registers

•

cache misses and cache coherence

The following sections describe each of these in more detail.

3.1 Prefix-sum coordinator

The prefix-sum mechanism goes through a central facility that can compute results from

n

threads in O(1) time, not O(

n

) time: there is a dedicated prefix-sum bus with 1 bit of data per hard-

11

ware context. All prefix-sum requests that arrive in the same time slice are processed simultaneously,

and the results are sent out simultaneously. The whole process is pipelined, so that a number of differ-

ent prefix-sum operations can be in flight at the same time. The base register contents are fired out on

a dataword-wide bus as soon as the first request for a particular base arrives, followed by the register

number identifying the base. The I/F (interface) units in each cluster keep track of these bases. A pre-

fix-sum result is a single-cycle broadcast of two bits per hardware thread: one bit indicates whether

the thread participated in the prefix-sum, the other bit is the value that the thread contributed to the

sum. We can use a static ranking scheme (e.g. smallest TCU ID goes first) to determine the order in

which threads add to the base, therefore each I/F unit can compute its own results in a distributed

manner. The coordinator broadcasts a base value only once; it need not send out the contents of the

base register again until a thread explicitly writes to that register (thus modifying it in a manner

opaque to the I/F units). While this organization increases the size of each cluster, it reduces the

amount of extra-cluster communication, as well as the widths of the buses required.

3.2 Spawn/join coordinator

The central spawn/join coordinator needs to do two things: (a) to activate all the TCUs and

broadcast the PC of the spawn to them and (b) to discover when all TCUs have stopped executing

threads so that it can resume serial mode. The coordinator can broadcast the spawn-PC over the same

data bus that the prefix-sum unit uses (requiring a few bits of control signal to identify the data on the

LEVEL 2

CACHE

DATA

Figure 4: The full XMT architecture. Communication paths in this diagram require more than one cycle. The
module labeled “central management” contains such functions as the prefix-sum operator, global registers, and the
spawn-join coordinator.

IC DC

...

LEVEL 2

CACHE

IC DC

IC DC

INSTRUCTION

I/F

I/F

I/F

CENTRAL
MANAGEMENT

Independent clusters

12

bus). When they finish, the TCUs can signal the central coordinator using a single bit-line per cluster

that ANDs the TCU signals. The implication is that once the spawn coordinator initiates a spawn, it

must wait a minimum number of cycles before it can assume the join signals are valid. Thus a spawn-

block of only one instruction will take as much time to execute as a spawn-block of two or three

instructions. Provided that short threads are infrequent, we do not think this will be problematic;

however, we are in the process of quantifying it.

Given prefix-sum, spawn/join becomes simple. The spawn coordinator broadcasts a spawn-

PC and all TCUs begin executing at that program counter. The first task of each thread is to obtain a

thread ID and then verify that it is less than the spawn size. (Note that, for simplicity, we left out that

step earlier.) Why is this important? Doing so supports an extremely simple mechanism for assigning

new threads to TCUs when they finish: when the central management sends out a single spawn, it

need not do anything else until all TCUs signal that they have joined. A TCU keeps trying to instanti-

ate new threads until it fails; then it joins. When the thread gets to the end of the spawn-block, it

jumps back to the beginning to attempt to start up a new thread. As soon as it obtains an invalid thread

ID, the TCU executes a join. Here is the final code for the array compaction algorithm:

Register assignments:
g0 - is hard-wired to zero
g1 - holds the spawn size (N)
g2 - holds the thread ID counter
g3 - the prefix-sum base
t0 - holds the unique thread ID
t1 - holds the value A[ID]
t2 - holds a unique index into array B

A: .space 4 * N # allocate array A
B: .space 4 * N # allocate array B

ori g1, g0, N # initialize register holding the spawn size
ori g2, g0, 0 # initialize register holding the initial thread ID
ori g3, g0, 0 # initialize prefix-sum base
spawn g1, 0, GO # spawn N threads starting at PC go

GO: psi.r t0, g2, 1 # get unique thread ID into t0
slt t1, t0, g1 # is the ID less than the spawn size?
beq t1, g0, END # if not, terminate execution
lwa t1, A(g0)[t0] # load the IDth element of array A
beq t1, g0, GO # if A[ID] is zero, try to start another thread
psi.r t2, g3, 1 # get unique index into array B
swa t1, B(g0)[t2] # store value loaded from A into B
j GO # try to instantiate a new thread

END: join # really terminate

Note that we have initialized register t0 (holding the unique thread ID) with a prefix-sum operation,

then verified the value before using it. Since thread IDs are defined to be all integers between some

base and base+spawnsize, prefix-sum is a natural mechanism to use, and doing so can reduce the

13

amount of special hardware needed by the system. Note also that this implementation obviates the

need to specify any parameters in the spawn instruction. Furthermore, it is possible to optimize this

code a bit more since the initial thread IDs can be computed directly without the use of a prefix-sum:

TCU_ID is the static TCU identifier, 0 to num TCUs - 1

spawn g1, 0, GO # spawn N threads starting at PC go
GO: addi t0, TCU_ID, 0 # get initial thread ID into t0
L1: slt t1, t0, g1 # is the ID less than the spawn size?

beq t1, g0, END # if not, terminate execution
...
swa t1, B(g0)[t2] # store value loaded from A into B
psi.r t0, g2, 1 # get unique thread ID into t0
j L1 # try to instantiate a new thread

END: join # really terminate the initial batch of thread IDs.

3.3 Global register coordinator

It is likely that the global register coordinator can use the same broadcast data bus as the pre-

fix-sum unit, since that bus is used once per initialization of a register to be used for a prefix-sum and

once per spawn. The rest of the time the bus lies dormant. Therefore we believe we can also use it to

broadcast global register values whenever they are written. Each local register file can cache these

values, as, by virtue of the programming model, communication through these registers will be regu-

lar. During a spawn block, the programming model guarantees that a global register will be either

read-only by many threads, exclusively read-write by one thread, or written by many threads by

means of a prefix-sum. Therefore the clusters can safely cache the global register values and simply

invalidate them at the end of a spawn block.

3.4 Cache consistency

The per-cluster instruction caches need not be kept coherent since they are read-only. By vir-

tue of the programming model, during parallel execution (during a spawn), threads are guaranteed

never to overwrite each other’s data—they are completely independent. Therefore, the data caches

need not be kept coherent during a spawn, and as in Hammond’s scheme [15], we can have a very

simple write-buffer mechanism to keep the on-chip level-2 cache up-to-date. It is likely that a write

cache will be very useful in such an environment [19]. While operating in parallel mode, each clus-

ter’s data cache can withstand a degree of inconsistency with the data caches of other clusters. Once

serial mode returns, the caches should become consistent, which means updating or invalidating

every line that was partially written. This is similar to the global-registers mechanism that must inval-

idate cached copies of the global registers. We have not studied this but intend to.

14

3.5 Design optimizations

Many optimizations of the basic XMT design are possible. The implications and tradeoffs in

these optimizations are beyond the scope of this paper. An extension which we have started to

research is a prefix-sum to memory operation. This operation would be a prefix-sum which uses a

memory address as a base instead of a register. The issues here which appear to preclude a low com-

munication design are large (memory-address wide) base identifiers and the large number of bases.

For optimizing thread creation, one can add hardware support instead of the spawning and

joining code described above. We implement this optimization in our simulator. The additional hard-

ware required is a dedicated prefix-sum for the purpose of generating new thread IDs and a special

spawn register will be used for the base instead of a general purpose register. The spawn prefix-sum

unit can have simpler hardware than the general purpose prefix-sum because no mechanism for

detecting different bases is necessary and the communication can be simplified.

While for simplicity of hardware and design single issue pipelines for TCUs were described,

it should be possible to increase the issue width of each TCU by means of standard superscalar tech-

niques. Adding optimizations like branch prediction may also be desirable. We defer this question to

future research since it is not clear what level of extra hardware complexity per TCU is desirable.

Note that when the XMT processor is in serial mode, it is simply running a single thread on

TCU 0. In our current work, TCU 0 is identical to any other TCU in the system. However, because

this first unit has the unique task of running serial code, it may be augmented with additional super-

scalar improvements and a direct connection to global registers. This improvement should enable the

processor to execute serial code with performance comparable to a standard superscalar.

3.6 Organization of simulator

The XMT simulator that produced the performance results is similar to the model described

in this section, without the per-cluster caches. The rest of the differences are outlined in Table 1.

Table 1: XMT simulator organization

Spawn-Join Hardware support instead of software implementation: dedicated PS unit for thread ID generation. Join
handling early in pipeline.

Memory D-cache and I-cache can have up to 200 pending read requests each, a cache line is fetched when a request
is filled. Two configurations were used: 100 cycle latency and 1 read processed per cycle (“real” memory); 1
cycle latency and 8 reads processed per cycle (“perfect” memory)

Caches Cache lines are 4 64-bit words long. D-cache is 2 way set associative. I-cache is direct mapped and holds
128 cache lines. D-cache is write through with no fetch on write-miss.

15

4 Performance behavior

In this section, we provide intuition into the performance behavior of the system. Since this is

a new model of execution, we cannot hope to provide a thorough performance comparison with more

established models such as superscalar, vector, etc. That is a future goal. Here, we make the first steps

towards such a characterization.

4.1 Performance compared to MPPs

In MPPs, latency is typically measured in microseconds; on a single chip, latency will be

measured in nanoseconds. This creates an opportunity; whereas reduced communication costs will

not eliminate the inherent start-up costs of parallel algorithms, reduced communication costs do

allow the XMT architecture to become competitive with serial implementations at much smaller

data-set sizes. Also, manufacturing costs for XMT implementations should be orders of magnitude

lower than those of MPPs. Thus, achieving a speedup over serial implementations that is commensu-

rate with the cost ratio of the implementations should be possible at much lower data-set sizes. We

have described this elsewhere [35]. Figure 5 gives an example of the comparison between XMT and

the Intel Paragon on list ranking, which is a fundamental component of most parallel graph algo-

rithms. Note that the data-set sizes where the parallel implementations become competitive, and

Clusters 6 ALUs (1 cycle latency); 4 Branch (1 cycle latency); 6 MultDiv (2 cycle multiply, 40 cycle divide, neither is
pipelined). 4 slot load-store buffer, 4 ports to D-cache. PS I/F unit has 8 slot buffer for pending requests.

TCUs Six stage single issue pipeline, stall on branch, 4 slot Dispatch buffer, 4 TCUs/Cluster

Prefix-sum (PS) Units are pipelined with 3 cycle latency after request received.

Configurations TCUs: 8, 32, 128. Each has a D-cache scaled with its size. D-Cache: 2K word; 8K word; 32K word.
Two additional configurations with Join Delays of 4 and 16 cycles on the 128 TCU design.
These 5 configurations were each set with “real” and “perfect” memory for a total of 10 configurations.

Table 1: XMT simulator organization

Figure 5: XMT vs. MPP on list
ranking (very similar to the listsort
benchmark discussed later).

The graph shows that XMT can
achieve speedups over serial
implementations at much lower data-
set sizes than a traditional MPP. “ILP”
simply means the total number of
instructions the XMT design can have
pending during a cycle.2 3 4 5 6 7 8

Speed-up

5

10

15

20

25

30

35

40

45

50

60

55

100

100
60

100

200

500
LEGEND:

Input size: powers of 10

100
Means Multi-processing with 100 processors.

200
Means XMT with ILP of 200

16

especially the data-set sizes where the parallel implementations become cost-competitive, are much

lower than in the massively parallel implementations.

4.2 Performance compared to superscalars

The problem with comparing a parallel model to a serial one is that it is very difficult to find

benchmarks that are not biased against one of the execution models. Therefore we chose to compare

not entire benchmarks but components of applications that are primitives used in both serial and par-

allel benchmarks. We are aware of the criticism of observing program kernels rather than observing

entire programs, but we feel that it is a much more impartial comparison, and it still provides reason-

able intuition into the performance of the XMT architecture. We picked code snippets with a variety

of degrees of inherent parallelism. We tried to find representatives of a particular behavior rather than

representatives of classes of applications.

We chose small data sets to illustrate the fact that the XMT model can achieve speedups over

serial code for small input sizes. Table 2 gives descriptions of the benchmarks. The serial execution

Table 2: Code snippets used in experiments

Benchmarks Description Input sizes

Serial

linkedlist

condition

Traverse a linked list dispersed through memory and find the sum of the list
item data values. This application is not one which we know how to parallelize,
so it is implemented with a serial algorithm.

50 item list spaced in
200 words, 500 item list
spaced in 2000 words,
5000 item list spaced in
20K words

An if-statement with six clauses ANDed together. Here we demonstrate how
MT techniques can be used to speed up code which seems inherently serial by
splitting each clause into a thread. Whereas this type of approach may be
useful to implement at the compiler level on particular kinds of code (such as
our example), it is not the thrust of the XMT programming model.

Six conditions

Embarrassingly
parallel

stream

Based on the STREAM benchmark [33], we sequentially read arrays, perform
some short calculations on the values, and write the results to another array.
Since each iteration of the loop is independent, parallelization of execution is
obvious. In the superscalar domain, one approach for speeding up this code is
loop unrolling; we do that for the SimpleScalar version.

50 item array, 500 item
array, 5000 item array

Mildly
interacting
parallel

arrcomp

Compacting an array, we take a sparse array and rewrite into a compact form.
This application requires keeping a running count of the next available location
in the new array. Two variants of arrcomp were simulated: arrcomp_d which
just reads the original array (regular memory access) and arrcomp_i which
uses indirection through another array (irregular memory access).

50 item array, 500 item
array, 5000 item array
(uncompacted arrays are
1/4 full)

17

model is represented by SimpleScalar [4]. The XMT organizations simulated are described in Sec-

tion 3. SimpleScalar was configured with perfect branch prediction; 8-way/32-way/128-way instruc-

tion fetch, decode, issue, and retire; and 2K/8K/32K word level-1 caches. Figures 6 and 7 give the

results of the comparison with XMT.

The extra superscalar parallelism gave limited performance improvement; for example, Sim-

pleScalar 128-way executed the 500 input size stream benchmark at only a 1.08 speedup over the 8-

way configuration. For the larger input sizes, the increased cache size for the configuration had a

much more significant effect on performance than the increased parallelism. On the other hand, XMT

was able to take advantage of the increase in available parallelism as demonstrated in the graphs.

More frequently
interacting
parallel

max

Find the maximum value of a list. In the serial case, we read through the list,
keeping a running maximum. For the parallel, we have two approaches. Both
use balanced binary trees where a node of the tree will have the result of a
maximum operation on its two child nodes. The root of the tree will have the
maximum of the list. In max_synch , we synchronize after every level in the
tree. The threads are very short and there are log(n) spawn-joins. The
max_asynch snippet spawns a thread for each value in the list. Each thread
carries its value as far up the tree as it can: terminating if it is the first thread to
arrive to a node and performing the comparison between two values and
carrying the maximum higher if it is the second to arrive. The last thread to
arrive to the root of the tree will have the maximum. We do not present results
for max_asynch since it uses prefix-sum to memory operations and we do not
discuss those in this paper.

50 item array, 500
item array, 5000 item
array

Sorting

listsort

integersort

Unraveling a linked list of known length which is packed within an array. This
application is useful for managing linked-list free space in OSes [31]. In the
serial algorithm, we traverse the list and rewrite it in the proper order. For the
XMT version, we use the simplest (from a coding point of view) approach:
Wyllie’s pointer jumping algorithm [18]. We note that more efficient parallel
approaches exist and were explored in [35].

50 item array, 500 item
array, 5000 item array

A variant of Radix-sort. It sorts integers from a range of values by applying bin-
sort in iterations for a smaller range. For speed-up evaluations, one would wish
to compare integersort with the fastest serial sorting algorithms, and not only
serial Radix sort, as we did; however, the literature implies that for some
memory architectures radix-sort is fastest [2], while for others other sorting
routines are fastest [24].

50 item array, 500 item
array, 5000 item array

Table 2: Code snippets used in experiments

Benchmarks Description Input sizes

18

 For XMT, we get significant speedups for 32-way parallelism for most of the snippets. Note

that while these speedups typically increase for going to 128-way parallelism, we usually do not get

to the theoretical factor of 4 improvement. An explanation is that the 100 cycle latency to memory

does not allow more than 100 requests to be in-flight at the same time. A simple example follows.

Consider 512 virtual threads in a program and suppose that each thread results in a single cache miss.

For the 32 TCU configuration, this would mean processing the first 32 misses in 132 cycles, the next

32 in 100 more cycles, and so on for a total of 1632 cycles. For 128 TCUs, on the other hand, it is not

better than 100 TCUs; it will take a total of 612 cycles to process the same 512 misses. Since 1632/

612 is about 2.7, we see why approaching a factor of 4 improvement may be impossible. Note that

for 8 TCUs it takes 6408 cycles to process the misses and that 6408/1632 is about 3.9. This effect

may explain why the 32-way configuration often offered better performance over the 8-way than the

128-way offered over the 32-way.

Figure 6: XMT vs. serial execution for linkedlist, condition, stream, and max.

8−way 32−way 128−way 8−way 32−way 128−way 8−way 32−way 128−way
0.00

0.05

0.10

0.15

0.20

0.25

Ins
tru

cti
on

s p
er

 C
yc

le
(IP

C)

SimpleScalar Average IPC
XMT Average IPC
XMT: IPC in spawn mode
XMT: IPC in serial mode

0.00

0.25

0.50

0.75

1.00

1.25

Speedup over Serial

Speedup over Serial

Input size: 50 Input size: 500 Input size: 5000

linkedlist.real

8−way 32−way 128−way 8−way 32−way 128−way
0.0

0.5

1.0

1.5

2.0

2.5

Ins
tru

cti
on

s p
er

 C
yc

le
(IP

C)

SimpleScalar Average IPC
XMT Average IPC
XMT: IPC in spawn mode
XMT: IPC in serial mode

0

1

2

3

4

5

Speedup over Serial

Speedup over Serial

Real Memory System Perfect Memory System

condition.real

8−way 32−way 128−way 8−way 32−way 128−way 8−way 32−way 128−way
0

4

8

12

16

20

24

Ins
tru

cti
on

s p
er

 C
yc

le
(IP

C)

SimpleScalar Average IPC
XMT Average IPC
XMT: IPC in spawn mode
XMT: IPC in serial mode

0

2

4

6

8

10

12

Speedup over Serial

Speedup over Serial

Input size: 50 Input size: 500 Input size: 5000

stream.real

8−way 32−way 128−way 8−way 32−way 128−way 8−way 32−way 128−way
0

1

2

3

4

5

6

7

8

Ins
tru

cti
on

s p
er

 C
yc

le
(IP

C)

SimpleScalar Average IPC
XMT Average IPC
XMT: IPC in spawn mode
XMT: IPC in serial mode

0

3

6

9

12

15

18

21

24

Speedup over Serial

Speedup over Serial

Input size: 50 Input size: 500 Input size: 5000

max_synch.real

19

Wyllie’s algorithm (used in listsort) is competitive when we have small inputs and high par-

allelism because of its O(n logn) work behavior [35]; note the degradation in performance as input

size increases. For input size of 5000, another parallel algorithm would be a better choice. At this

input size, cache effects also start to play a role as the number of misses decreases from 128068 for

the 8-way to 57834 for the 32-way to 8407 for the 128-way XMT (note the jump in performance

from 32-way to 128-way); this is a peculiarity of the cache/input size interaction for this problem.

We modeled long-distance communication in the XMT simulator; we modeled thread ID

generation requests (i.e., prefix-sum after a join) as taking 1, 4, and 16 cycles (corresponding to

cross-chip communications of 2, 8, and 32 cycles). The normalized execution time results are given

in Figure 8 for two of the benchmarks configured with “real” and “perfect” memory. The rest of the

benchmarks behave similarly and show that the impact of increased communication cost on the per-

formance behavior of a program is secondary to the latency issue and suggest that XMT is resilient to

increased interconnect delays.

8−way 32−way 128−way 8−way 32−way 128−way 8−way 32−way 128−way
0

1

2

3

4

5

6

7

8

Ins
tru

cti
on

s p
er

 C
yc

le
(IP

C)

SimpleScalar Average IPC
XMT Average IPC
XMT: IPC in spawn mode
XMT: IPC in serial mode

0

2

4

6

8

10

12

14

16

Speedup over Serial

Speedup over Serial

Input size: 50 Input size: 500 Input size: 5000

arrcomp_d.real

8−way 32−way 128−way 8−way 32−way 128−way 8−way 32−way 128−way
0

1

2

3

4

5

6

7

8

Ins
tru

cti
on

s p
er

 C
yc

le
(IP

C)

SimpleScalar Average IPC
XMT Average IPC
XMT: IPC in spawn mode
XMT: IPC in serial mode

0

5

10

15

20

25

30

35

40

Speedup over Serial

Speedup over Serial

Input size: 50 Input size: 500 Input size: 5000

arrcomp_i.real

Figure 7: XMT vs. serial execution for arrcomp_d, arrcomp_i, listsort, and integersort.

8−way 32−way 128−way 8−way 32−way 128−way 8−way 32−way 128−way
0

8

16

24

32

40

Ins
tru

cti
on

s p
er

 C
yc

le
(IP

C)

SimpleScalar Average IPC
XMT Average IPC
XMT: IPC in spawn mode
XMT: IPC in serial mode

0

2

4

6

8

10

Speedup over Serial

Speedup over Serial

Input size: 50 Input size: 500 Input size: 5000

listsort.real

8−way 32−way 128−way 8−way 32−way 128−way 8−way 32−way 128−way
0

8

16

24

32

40

Ins
tru

cti
on

s p
er

 C
yc

le
(IP

C)

SimpleScalar Average IPC
XMT Average IPC
XMT: IPC in spawn mode
XMT: IPC in serial mode

0

2

4

6

8

10

Speedup over Serial

Speedup over Serial

Input size: 50 Input size: 500 Input size: 5000

integersort.real

20

5 Potential drawbacks

5.1 Complexity of the design

There is an inherent complexity in a single-chip parallel-computer implementation; as a

result, the interaction of numerous independent state machines will likely make verification of the

design extremely difficult. While it is not intuitively clear whether verification will be more or less

difficult than that of an enormously complex superscalar machine with branch prediction, speculative

execution, out-of-order issue, and several forms of data prediction, it nonetheless is intuitively clear

that the fundamental building blocks described in this paper (the XMT clusters) will individually be

simpler to verify than a complex superscalar machine, as the implementation we studied here dis-

penses with all of that complexity and still achieves a speedup over a serial implementation. Simi-

larly, the overall processor should be easier to design, since design involves little more than the

“stapling together” of these clusters. The complexity could negatively affect clock speed compared to

a superscalar design, but because we have restricted ourselves to using almost entirely components

that are commonplace in today’s high-speed processors, we do not consider this an issue.

n=50 n=500 n=5000 n=50 n=500 n=5000 n=50 n=500 n=5000
0

2

4

6

8

Ins
tru

cti
on

s p
er

Cy
cle

 (IP
C)

XMT Average IPC
XMT: IPC in spawn mode
XMT: IPC in serial mode

0.0

0.5

1.0

1.5

2.0

Normalized Execution Time

Normalized Execution Time

1−cycle Latency 4−cycle Latency 16−cycle Latency

max_synch.real

n=50 n=500 n=5000 n=50 n=500 n=5000 n=50 n=500 n=5000
0

15

30

45

60

Ins
tru

cti
on

s p
er

Cy
cle

 (IP
C)

XMT Average IPC
XMT: IPC in spawn mode
XMT: IPC in serial mode

0.0

0.5

1.0

1.5

2.0

Normalized Execution Time

Normalized Execution Time

1−cycle Latency 4−cycle Latency 16−cycle Latency

max_synch.perf

n=50 n=500 n=5000 n=50 n=500 n=5000 n=50 n=500 n=5000
0

15

30

45

60

75

Ins
tru

cti
on

s p
er

Cy
cle

 (IP
C)

XMT Average IPC
XMT: IPC in spawn mode
XMT: IPC in serial mode

0.0

0.5

1.0

1.5

2.0

2.5

Normalized Execution Time

Normalized Execution Time

1−cycle Latency 4−cycle Latency 16−cycle Latency

stream.perf

Figure 8: A look at the effects of interconnect delays.

n=50 n=500 n=5000 n=50 n=500 n=5000 n=50 n=500 n=5000
0

5

10

15

20

Ins
tru

cti
on

s p
er

Cy
cle

 (IP
C)

XMT Average IPC
XMT: IPC in spawn mode
XMT: IPC in serial mode

0.0

0.5

1.0

1.5

2.0

Normalized Execution Time

Normalized Execution Time

1−cycle Latency 4−cycle Latency 16−cycle Latency

stream.real

21

There is also the issue of scalability: the prefix-sum mechanism, to reduce the amount and

overhead of long-distance communication, uses a bus that scales with the number of TCUs in the sys-

tem, which is inherently problematic if one wishes to move to large numbers of hardware contexts.

There are other implementation possibilities, however: a more scalable implementation could work

as follows. First, we notice that a prefix-sum request which contributes zero is equivalent to a read of

the base, with no specified ordering. Thus, these requests can be handled locally by the cluster I/F

unit. Prefix-sum instructions from the same cluster using the same base can be combined into a single

request to the global prefix-sum unit. The global unit groups these requests into batches of the same

base, performs a prefix-sum across the batch, and broadcasts the results. Each cluster would effec-

tively be given a range within that cycle’s prefix-sum and it can decide which of its local prefix-sum

requests gets which value. It would reduce the number of wires from 2n, where n is the number of

TCUs, to c*log2(n/c), where c is the number of clusters. This approach can generalize to a hierarchi-

cal tree structure in which each node in the tree is given a range within the prefix-sum by its parent

and gives sub-ranges of that range to its child nodes.

5.2 Memory traffic

A serious issue is the increased memory traffic because of the pattern in which parallel algo-

rithms tend to revisit more of their data relative to their serial counterparts. In XMT, we reuse TCUs

for different virtual threads and so flush data which could actually be reused. This large-scale data-

movement is necessary for XMT but would often be redundant in a serial uniprocessor executing a

different algorithm. However, since a parallel algorithm provides better memory latency hiding,

improved throughput to memory can make the performance of the parallel algorithm competitive.

This effect of multi-threading is demonstrated by the data in Table 3.

Table 3: Memory throughput comparison

Benchmark SimpleScalar (128-way) XMT (128 TCUs) Factor increase XMT vs. SS

arrcomp_d (5000 item array) dcache misses: 1251
time in cycles: 70945
mem fetches/cycle: 0.0176

dcache misses: 1251
time in cycles: 4767
mem fetches/cycle: 0.262

misses: 1.00
speedup: 14.9
mem throughput: 14.9

arrcomp_i (5000 item array) dcache misses: 2095
time in cycles: 159230
mem fetches/cycle: 0.0132

dcache misses: 2095
time in cycles: 4919
mem fetches/cycle: 0.426

misses:1.00
speedup: 32.4
mem throughput: 32.4

integersort (5000 item array) dcache misses: 2274
time in cycles: 168541
mem fetches/cycle: 0.0135

dcache misses: 4566
time in cycles: 29617
mem fetches/cycle: 0.154

misses: 2.01
speedup: 5.69
mem throughput: 11.4

22

6 Related work

Lee and DeVries investigate single-chip vector microprocessors as a way to exploit more par-

allelism with less hardware and reduced instruction bandwidth [25]. They expose more instruction-

level parallelism to the processor core by moving to a more explicitly parallel programming model.

Similarly, the IRAM project uses vector processing to increase parallelism; the project also aims to

fully exploit the bandwidth possibilities of integrating DRAM onto the microprocessor [23]. Com-

plementing this research, out-of-order, multi-threaded, and decoupled vector architectures have been

proposed by Espasa, Mateo, and Smith [5, 6, 7] as methods to improve the performance of vector

processing. The XMT architecture has much in common with the recent vector approaches, as we are

solving many of the same problems in much the same way: we are looking at increasing the abun-

dance of instruction-level parallelism by relying on the programming paradigm—the primary differ-

ence is in our use of a SPMD-style parallel algorithm programming model instead of a vector model.

Several architectures exist that range from moderately to highly decentralized. The multisca-

lar paradigm [10, 32] uses a uni-directional ring of processing elements in which each processing ele-

ment need only communicate to its immediate neighbor: long-distance communication is mostly

limited to servicing memory requests; even the address resolution mechanism is decentralized [11].

The XMT architecture differs in that hardware contexts never communicate directly with each other.

The edited book [17] is an excellent general reference for known approaches to multithread-

ing. The approaches described there emphasize the case where in a given cycle instructions from only

one thread can be issued. A very interesting architecture is presented in the Tera computer [1] which

linkedlist (5000 item list) dcache misses: 4365
time in cycles: 305569
mem fetches/cycle: 0.0143

dcache misses: 4365
time in cycles: 495966
mem fetches/cycle: 0.0088

misses: 1.00
speedup: 0.616
mem throughput: 0.616

listsort (5000 item list) dcache misses: 2501
time in cycles: 195214
mem fetches/cycle: 0.0128

dcache misses: 8407
time in cycles: 24252
mem fetches/cycle: 0.347

misses: 3.36
speedup: 8.05
mem throughput: 27.1

max (5000 item array) dcache misses: 1251
time in cycles: 135146
mem fetches/cycle: 0.00926

dcache misses: 2501
time in cycles: 6605
mem fetches/cycle: 0.379

misses: 2.00
speedup: 20.5
mem throughput: 40.9

stream (5000 item array) dcache misses: 3751
time in cycles: 192050
mem fetches/cycle: 0.0195

dcache misses: 3751
time in cycles: 17421
mem fetches/cycle: 0.215

misses: 1.00
speedup: 11.0
mem throughput: 11.0

Table 3: Memory throughput comparison

Benchmark SimpleScalar (128-way) XMT (128 TCUs) Factor increase XMT vs. SS

23

uses multithreading for memory latency hiding. The difference with our approach is that Tera focuses

on supporting a plurality of threads by constantly switching among threads, but Tera does not issue

instructions from more than one thread at the same cycle. This would limit the relevance of our multi-

operand and spawn-join instructions for their architecture.

Simultaneous multi-threading [34] improves parallelism by issuing instructions from several

concurrently executing threads to multiple functional units each cycle. The architecture is targeted at

supporting standard programming (the simulations are based on Multiflow-compiled SPEC bench-

marks), and proposed SMT designs have supported up to eight concurrently executing contexts,

which is appropriate for most standard code. The goal of the XMT architecture is to support parallel

programming, in addition to standard code, and so we envision much larger numbers of hardware

contexts.

Single-chip multiprocessors [27] are analogous to symmetric multiprocessors and are aimed

at exploiting thread-level and process-level parallelism, especially as supported by multitasking oper-

ating systems [15]. The M-Machine architecture [9] is a similar example. These architectures are

inherently decentralized, as an implementation is comprised of several identical processor cores com-

municating through an on-chip level-2 cache. Raw processors [36] go a step further: rather than

implementing medium-scale SMPs on a single chip, the Raw architecture is intended to implement

an MPP on a single chip, supporting 128 nodes or more. Each processing node is very simple, and

the nodes on a chip are connected in a 2D mesh network. The on-chip cache and even the on-chip

register file is distributed among the processing elements. XMT differs from the Raw architecture in

that resources local to a hardware thread context are not directly addressable by other hardware

thread contexts, as they are in the Raw machines.

Multi-prefix primitives (i.e. prefix-sum, prefix-max, etc.) have been proposed for multipro-

cessor architectures (see the NYU-Ultracomputer [13], and SB-PRAM [21]), but not for instruction-

level parallelism.

In contrast to [12], who studied fetch-and-increment in a multiprocessor setting, XMT dis-

cusses an on-chip implementation of fetch-and-increment and provides a sense for which fetch-and-

increment gives wait-free coordination. Wait-free was stated as a desired goal in [12] who used fetch-

and-increment for bottleneck-free coordination (which is weaker than wait-free). Another difference

is the use of spawn-join. The paper [35] explains how our use of Arbitrary CRCW PRAM does not

limit (relative to the stronger CRCW PRAM models) the algorithms that can be used for XMT and

enabled its significant wait-free advantages. This contrasts with [12] whose weaker coordination con-

24

cept supports a more general CRCW PRAM algorithmic model.

7 Concluding remarks

The performance of future IC technologies will be dominated by interconnect delays, there-

fore microprocessor architectures should aim for designs wherein most communication is localized.

Functions that require the propagation of cross-chip signals should be few and infrequently used.

The research area of SPMD as it connects with parallel algorithms offers an interesting

design point: these algorithms map well to hardware support for multiple independent concurrent

threads. This hardware support in turn maps well to the limitations of future IC technologies: a

SPMD processor can comprise numerous, simple, independent, identical thread-execution units, and

the nature of the programming paradigm is such that inter-thread communication is highly structured

and regular. This paper shows that such an architecture can withstand high cross-chip communication

costs. It can also take advantage of very large numbers of execution units, as opposed to traditional

superscalar designs, which typically cannot make use of more than one or two dozen execution units.

Finally, we note that while significant speedups can be achieved by SPMD programs, the

speedup of standard code often requires other techniques. The XMT “ideology” does not exclude

using other methods within the design, since intra-thread parallelism can be exploited in addition to

the explicit inter-thread parallelism of XMT.

References

[1] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, and B. Smith. “The Tera computer system.” International
Conference on Supercomputing. 1990.

[2] R.C. Argarwal. “A Super Scalar Sort Algorithm for RISC Processors.” ACM-SIGMOD 96. Montreal, Canada. June 1996.

[3] M. T. Bohr. “Interconnect scaling—the real limiter to high performance ULSI.” In Proc. 1995 IEEE International Electron
Devices Meeting, 1995, pp. 241–244.

[4] D. Burger and T. M. Austin. “The SimpleScalar tool set, version 2.0.” Tech. Rep. CS-1342, University of Wisconsin-Madison,
June 1997.

[5] R. Espasa and M. Valero. “Decoupled vector architectures.” In Proc. Second International Symposium on High Performance
Computer Architecture (HPCA-2), San Jose CA, February 1996, pp. 281–290.

[6] R. Espasa and M. Valero. “Multithreaded vector architectures.” In Proc. Third International Symposium on High Performance
Computer Architecture (HPCA-3), San Antonio TX, February 1997, pp. 237–248.

[7] R. Espasa, M. Valero, and J. E. Smith. “Out-of-order vector architectures.” In Proc. 30th Annual International Symposium on
Microarchitecture (MICRO-30), Research Triangle Park NC, December 1997, pp. 160–170.

[8] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic. “The multicluster architecture: Reducing cycle time through partitioning.”
In Proc. 30th Annual International Symposium on Microarchitecture (MICRO-30), Research Triangle Park NC, December
1997, pp. 149–159.

25

[9] M. Fillo, S. Keckler, W. Dally, N. Carter, A. Chang, Y. Gurevich, and W. Lee. “The M-Machine multicomputer.” In Proc. 28th
Annual International Symposium on Microarchitecture (MICRO-28), Ann Arbor MI, November 1995, pp. 146–156.

[10] M. Franklin and G. Sohi. “The expandable split window paradigm for exploiting fine-grain parallelism.” In Proc. 19th Annual
International Symposium on Computer Architecture (ISCA-19), Gold Coast, Australia, May 1992, pp. 58–67.

[11] M. Franklin and G. S. Sohi. “ARB: A hardware mechanism for dynamic reordering of memory references.” IEEE Transactions
on Computers, vol. 45, no. 5, pp. 552–571, May 1996.

[12] E. Freudenthal and A. Gottlieb. “Process Coordination with Fetch-and-Increment.” Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS-4). Santa Clara, CA. April 1991.

[13] A. Gottlieb, B. Lubachevksy, and L. Rudolph. “Basic techniques for the efficient coordination of large numbers of cooperating
sequential processors.” ACM Transactions on Programming Languages and Systems, vol. 5, no. 2, 1983.

[14] L. Gwennap. “Digital 21264 sets new standard.” Microprocessor Report, vol. 10, no. 14, October 1996.

[15] L. Hammond, B. Nayfeh, and K. Olukotun. “A single-chip multiprocessor.” IEEE Computer, vol. 30, no. 9, pp. 79–85,
September 1997.

[16] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach, 2nd Edition. Morgan Kaufmann
Publishers, Inc., 1996.

[17] R.A. Iannucci, G.R. Gao, R. H. Halstead, and B. Smith (editors). Multithreaded Computer Architecture - A Summary of the State
of the Art. Kluwer, Boston, MA. 1994.

[18] J. Ja-Ja. An Introduction to Parallel Algorithms. Addison-Wesley, Reading MA, 1992.

[19] N. P. Jouppi. “Cache write policies and performance.” In Proc. 20th Annual International Symposium on Computer Architecture
(ISCA-20), May 1993, pp. 191–201.

[20] Kendall Square Research. KSR/Series Parallel Programming. Kendall Square Research Corporation, Cambridge MA, 1993.

[21] C. W. Kessler. “Quick reference guides: (i) Fork95, and (ii) SB-PRAM: Instruction set simulator system software.” Tech. Rep.,
Fachbereich 4 Informatik, Univ. Trier, D-54286 Trier, Germany, May 1996.

[22] C. W. Kessler and H. Seidl. “Integrating synchronous and asynchronous paradigms: The Fork95 parallel programming
language.” Tech. Rep. 95-05, Fachbereich 4 Informatik, Univ. Trier, D-54286 Trier, Germany, 1995.

[23] C. Kozyrakis, S. Perissakis, D. Patterson, T. Anderson, K. Asanovic, N. Cardwell, R. Fromm, J. Golbus, B. Gribstad,
K. Keeton, R. Thomas, N. Treuhaft, and K. Yelick. “Scalable processors in the billion-transistor era: IRAM.” IEEE Computer,
vol. 30, no. 9, pp. 75–78, September 1997.

[24] A. LaMarca and R. E. Ladner. “The Influence of Caches on the Performance of Sorting.” Proceedings of the Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, 1997. pp. 370-379.

[25] C. G. Lee and D. J. DeVries. “Initial results on the performance and cost of vector microprocessors.” In Proc. 30th Annual
International Symposium on Microarchitecture (MICRO-30), Research Triangle Park NC, December 1997, pp. 171–182.

[26] D. Matzke. “Will physical scalability sabotage performance gains?” IEEE Computer, vol. 30, no. 9, pp. 37–39, September 1997.

[27] B. Nayfeh, L. Hammond, and K. Olukotun. “Evaluation of design alternatives for a multiprocessor microprocessor.” In Proc.
23rd Annual International Symposium on Computer Architecture (ISCA-23), Philadelphia PA, May 1996, pp. 67–77.

[28] R. S. Nikhil and Arvind. “Can dataflow subsume von Neumann computing?” In Proc. 16th Annual International Symposium on
Computer Architecture (ISCA-16), Jerusalem, Israel, May 1989, pp. 262–272.

[29] K. Saraswat and F. Mohammadi. “Effect of scaling interconnections on the time delay of VLSI circuits.” IEEE Transactions on
Electron Devices, vol. 29, no. 4, pp. 645–650, April 1982.

[30] Semiconductor Industry Association. The National Technology Roadmap for Semiconductors, 1997 Edition. SIA: The
Semiconductor Industry Association, 1997.

[31] A. Silberschatz and P. B. Galvin. Operating System Concepts, Fifth Edition. Addison Wesley Longman, Inc. 1998. p. 384

[32] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. “Multiscalar processors.” In Proc. 22nd Annual International Symposium on
Computer Architecture (ISCA-22), Santa Margherita Ligure, Italy, June 1995, pp. 414–425.

[33] STREAM. STREAM: Measuring Sustainable Memory Bandwidth in High Performance Computers. The University of Virginia,
http://www.cs.virginia.edu/stream/, 1997.

[34] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and R. L. Stamm. “Exploiting choice: Instruction fetch and issue
on an implementable simultaneous multithreading processor.” In Proc. 23rd Annual International Symposium on Computer
Architecture (ISCA-23), Philadelphia PA, May 1996, pp. 191–202.

26

[35] U. Vishkin, S. Dascal, E. Berkovich, and J. Nuzman. “Explicit Multi-threaded (XMT) bridging models for Instruction
Parallelism.” In Proc. of Tenth Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA). Puerto Vallarta,
Mexico. July 1998

[36] E. Waingold, M. Tayor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank, P. Finch, R. Barua, J. Babb,
S. Amarasinghe, and A. Agarwal. “Baring it all to software: Raw machines.” IEEE Computer, vol. 30, no. 9, pp. 86–93,
September 1997.

Appendix: Comparing parallel programming/algorithms approaches

Advantages
Vector: Mature compiler technology. Fast when data availability is predictable (e.g. where data access is regular). Parallel algorithms
knowledge base applies.
XMT: Parallel algorithms knowledge base applies. Each thread can progress at its own speed. Resilient to slow execution (and
upredictable data access time) of some instructions.
Existing multi-threading: Suits existing serial and parallel machines.

Disadvantages
Vector: Slow for unpredictable/irregular data access: “everything is delayed” if one instruction is slow to finish. May encourage
algorithms that result in more data movements.
XMT: May encourage algorithms that will result in more data movements than for existing multi-threading; however, for the same
algorithm, usually does not require more data movements than the other two approaches
Existing multi-threading: More difficult to program. Smaller algorithmic knowledge base.

length 1 “threads” longer threads

Examples Vector XMT Existing multi-threading
Many, including KSR, SMT

Programming/
algorithms

Priority CRCW PRAM,
Vector programming &
compiling

Arbitrary CRCW PRAM
(SPMD)

Shared memory programming,
Message passing programming (e.g.
SPMD)

Synchronization Each step Joins only Many forms

To substitute one
Spawn-Join for
existing SPMD

many steps a few Spawn-Joins same (i.e., one Spawn-Join)

Thread
interaction

special rules (concurrent
read-write conventions)

no-busy-wait
prefix-sum

many forms

