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Abstract:

 

   We introduce explicit multi-threading (XMT), a decentralized architecture that 

exploits fine-grained SPMD-style programming; a SPMD program can translate directly to MIPS 

assembly language using three additional instruction primitives. The motivation for XMT is: (i) to 

define an inherently decentralizable architecture, taking into account that the performance of future 

integrated circuits will be dominated by wire costs, (ii) to increase available instruction-level paral-

lelism (ILP) by leveraging expertise in the world of parallel algorithms, and (iii) to reduce hardware 

complexity by alleviating the need to detect ILP at run-time: if parallel algorithms can give us an 

overabundance of work to do in the form of thread-level parallelism, one can extract instruction-

level parallelism with greatly simplified dependence-checking.

We show that implementations of such an architecture tend towards decentralization and 

that, when global communication is necessary, overall performance is relatively insensitive to large 

on-chip delays. We compare the performance of the design to more traditional parallel architectures 

and to a high-performance superscalar implementation, but the intent is merely to illustrate the per-

formance behavior of the organization and to stimulate debate on the viability of introducing SPMD 

to the single-chip processor domain. We cannot offer at this stage hard comparisons with well-

researched models of execution.

When programming for the SPMD model, the total number of operations that the processor 

has to perform is often slightly higher. To counter this, we have observed that the length of the critical 

path through the dynamic execution graph is smaller than in the serial domain, and the amount of 

ILP is correspondingly larger. Fine-grained SPMD programming connects with a broad knowledge 

base in parallel algorithms and scales down to provide good performance relative to high-perfor-

mance superscalar designs even with small input sizes and small numbers of functional units.
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1 Introduction 

 

For some time, researchers have known that processor interconnect delays would some day 

constitute a dominating fraction of overall circuit delay [3, 29]. In future technologies, only a fraction 

of the processor will be reachable in a single clock cycle. For instance, at 0.1 

 

µ

 

m (projected by SIA to 

occur within a decade [30]), only 16% of the die will be reachable in a clock cycle [26]. One conclu-

sion is that future architectures must limit global communication; that is, most communication 

should be localized, and functions that require the propagation of cross-chip signals should be few 

and infrequently used. This has already surfaced in contemporary research and actual processors: for 

instance, Farkas, 

 

et al

 

. have investigated implementing a partitioned register file to circumvent clock 

speed issues [8], and this type of partitioned register file has appeared in the recent Alpha 21264 [14].

In addition to the interconnect limit, architects are also faced with a perceived limit in avail-

able instruction-level parallelism; that is, our ability to extract ILP is growing less rapidly than our 

ability to integrate larger numbers of functional units on a single processor. This has led to several 

innovative paradigms in recent years to use functional units in novel ways [7, 9, 10, 23, 25, 27, 34, 

36], as opposed to simply increasing the issue width of traditional superscalar designs.

To address these problems, we present an architecture that—like the multiscalar paradigm 

[10], the M-Machine architecture [9], “Raw” processors [36], single-chip multiprocessors [27], and 

simultaneous multi-threading [34]—maps well to future process technologies that are dominated by 

interconnect overheads and thus demand decentralization at an architecture level. Like the recent 

investigations of vector processing to more fully exploit on-chip bandwidth, to better map to future 

IC technologies, and to take full advantage of the large numbers of functional units available to 

today’s microarchitects [7, 25, 23], this proposed architecture combines two things: (i) programming-

model-specific support for an inherently parallel model of execution, and (ii) contemporary concepts 

in high-performance microarchitecture. 

In our case, the inherently parallel model of execution is 

 

single program, multiple data 

(SPMD)

 

, in which independent threads concurrently execute the same code on different data (e.g 

[22]). We use spawn-join “independence of order semantics” (IOS), where each virtual thread initi-

ated by a spawn progresses at its own speed and terminates at a 

 

join

 

 instruction. Thus, no thread ever 

needs to wait on another thread. A process executing on the architecture will spawn threads that exe-

cute asynchronously in parallel, and when all threads have 

 

join

 

ed, the process returns to serial mode 

until the next spawn. Our architecture, which is called 

 

explicit multi-threading (XMT)

 

, supports this 
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type of programming model. It implements spawn-join semantics in hardware, reminiscent of the 

 

n

 

-

way spawn-join semantics implemented in software by the KSR system [20] and the 2-way fork-join 

mechanism implemented in hardware by the P-RISC [28]. We provide no hardware support for sepa-

rate stack space, as in P-RISC—all state local to a thread is contained in a separate hardware context: 

a local register file dedicated to each thread.

In this paper, we show that the XMT architecture inherently lends itself to decentralized 

implementations in which most on-chip communication is localized. We show that the architecture is 

fairly insensitive to the cost of on-chip communication even when the time it takes a signal to cross 

the chip is 32 clock cycles (which should correspond roughly to 0.05 

 

µ

 

m technology [26, 30]). We 

describe a data cache organization and show how the programming paradigm inherently supports a 

relaxed consistency model, thereby allowing a simple cache coherence mechanism. We compare the 

performance of the design to high-performance superscalar designs; we also quote a comparison to 

more traditional parallel architectures. Our goal is to describe the architecture, motivate its design, 

and suggest the merit of further evaluating the paradigm as a means to designing high-performance 

execution engines for future technologies that are limited by interconnect delays.

 

1.1 This solution

 

Research over the last two decades by academic algorithm designers has produced a huge 

knowledge-base of parallel algorithmic methods, which is arguably second in its magnitude only to 

serial algorithms. The model of parallel computation used for developing this knowledge-base is 

called PRAM (for parallel random-access machine, or model). The (virtual) thread structure of 

PRAM-like algorithms is very dynamic: the number of threads that need to be generated changes fre-

quently, new threads are generated and terminated frequently, and often threads are relatively short. 

Perhaps the most distinguishing feature about the XMT framework is that it envisions an extension to 

a standard instruction set which aspires to efficiently implement PRAM-like algorithms; XMT does 

so using explicit multi-threaded instruction-level parallelism. 

The broad XMT framework [35] extends from algorithms to architecture. The purpose of this 

paper is to take a closer look at the architecture end by describing possible architecture choices and 

studying the microarchitecture performance implications. Our proposed architecture is inspired by 

IOS spawn-join SPMD programming with a flexible thread structure. The organization contains mul-

tiple hardware contexts on a single chip to which one can spawn independent threads to execute con-

currently and allows for quick spawning, coordination, and termination of threads. Of course, during 
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periods where the code is purely serial, these hardware contexts will lie dormant. 

The XMT architecture integrates several well-understood and widely-used programming 

primitives that are usually implemented in software; the novelty of the architecture is the integration 

of these primitives in a single-chip environment, which offers increased communication bandwidth 

and significantly decreased communication latency compared to more traditional parallel architec-

tures. The integrated primitives are the 

 

spawn-join 

 

mechanism, which enables parallelism by initiat-

ing and terminating the concurrent execution of multiple threads of control, and the 

 

prefix-sum

 

 

operation, which is used to coordinate the threads, similar to fetch-and-add [13]. 

A 

 

spawn

 

 instruction sets up the execution of a specified number of threads. The XMT archi-

tectural framework transparently manages the case when the number of threads to spawn is larger 

than the number of hardware contexts available. A 

 

join

 

 instruction signals that a particular hardware 

context has finished executing its thread; it either begins executing a new thread that is part of the cur-

rent spawn (in the case where there is more work to do than processing elements to do it), or it lies 

dormant until the next spawn. The architecture described in the current paper has the compiler pro-

duce assembly code for explicitly starting and terminating the required threads, but direct hardware 

support for thread generation and termination may also be useful.

The prefix-sum operation is similar to an atomic fetch-and-increment [12] and can provide an 

emulation of serialization—that is, it enables conflict-free execution of multiple threads without the 

need for any thread to busy-wait. One can map any of a wide family of SPMD algorithms onto an 

architecture using these three primitives [35].

There are a number of benefits in following such an SPMD-style model of execution. First, it 

connects with a large body of knowledge in parallel algorithms, giving us algorithms and paralleliz-

ing compiler techniques with which to work. Second, by definition, concurrently executing threads 

are independent, which suggests a microarchitecture implementation in which separate areas of the 

chip can execute for periods of time without requiring any synchronization—this approaches the goal 

of decentralization. Third, the programming paradigm provides a degree of static memory disambig-

uation that one can exploit in the memory system: communication through the memory system will 

be highly structured, regular, and predictable; the XMT programming paradigm leads to trivially par-

titioned cache designs. And last, since the communication costs are low relative to those in more tra-

ditional parallel architectures, we can see the performance benefits of parallel programming at much 

lower data set sizes. The main potential drawback of the design is that it could exacerbate the already 

troublesome memory bandwidth problems since parallel programs typically require more data move-
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ments than comparable serial programs. Another concern is the complexity of design verification. 

While the architecture appears attractive for its modularity, the interaction issues among the various 

elements as well as the magnitude of the design size may hinder verification.

 

1.2 Overview of this paper

 

In this paper, we address these issues and provide insight into the performance behavior of 

the architecture. Section 2 describes the XMT programming paradigm and the hardware architecture 

that supports it. Section 3 describes one possible implementation which exhibits the property of 

decentralization; it also describes the architecture used in our simulations. Section 4 provides insight 

into the performance behavior of the system, as compared to massively parallel processors and tradi-

tional superscalar designs. Section 5 addresses some of the potential drawbacks of implementing our 

model on a single chip. Section 6 describes related existing work and Section 7 concludes.

 

2 The XMT parallel programming paradigm

 

Spawn-join 

 

and 

 

prefix-sum

 

 translate to three instruction primitives that are orthogonal to the 

underlying instruction set architecture—they can be added retroactively to a standard instruction set.

 

2.1 Spawn-join semantics

 

An in-depth discussion or primer on parallel algorithms is beyond the scope of this paper; the 

interested reader is referred to [18]. Suffice it to say that many programs can be made to look like the 

diagram in Figure 1, where the heavier lines represent computation and the lighter lines represent the 

spawning and joining of multiple parallel threads. The diagram shows a process that splits several 

times during the course of its execution into multiple concurrent threads. Each time multiple threads 

are spawned, the number and execution length of the threads spawned may vary; each thread may 

Figure 1:  Serial and concurrent execution in a parallel application. A parallel application can spawn multiple
threads during the course of its execution. The x-axis represents time; the heavier lines represent computation, and
the lighter lines represent the creation and termination of concurrent threads.

Serial execution

Parallel execution

Spawn threads

Join threads
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proceed at its own speed from beginning to end. 

Much code is known to be parallelizable without resorting to multi-threading. For example, 

in loop unrolling and software pipelining, we allow different loop iterations to execute concurrently. 

In a multithreaded design, one can assign different loop iterations to different independent threads, 

subject to the same loop-independence caveats.

 

2.2 Prefix-sum semantics

 

The prefix-sum is similar to a fetch-and-increment. It has the following semantics, where B is 

called the “base” of the prefix-sum, and R is a register that acts as both a source and a target:

 

prefix-sum R B -> (i) B = B + R, and (ii) R = initial value of B

 

The instruction by itself is not very interesting, but it happens to be very useful when several threads 

perform a prefix-sum against a common base. Since each prefix-sum is atomic, each thread will 

receive a different value in its local storage R; the mechanism can thus be used for parallel execution 

of threads that emulates serial execution without resorting to busy-waiting. Prefix-sum is frequently 

used in parallel algorithms for this and many other purposes. If a large number of prefix-sums using a 

common base can be performed in a short amount of time (e.g. a constant number of cycles: O(1), 

not O(

 

n

 

)), then the primitive can support efficient inter-thread communication; this is possible if the 

value to be added to the base is constrained to be small (for instance, a 1-bit value) [35]. 

To demonstrate the use of the prefix-sum, suppose we have an array of integers and wish to 

“compact” the array; that is, we wish to copy all non-zero values from the array into another array, 

thereby creating a smaller, denser array. Figure 2 illustrates. Here is the corresponding pseudocode 

using spawn, join, and prefix-sum primitives; all threads execute the same code (the 

 

spawn-block

 

, 

Figure 2:  The array compaction problem. The non-zero values in array A are copied to array B, in an arbitrary
order. This is easily parallelized using the prefix-sum operation.
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delimited by curly brackets—the right bracket is an implicit 

 

join

 

), and the variables within the brack-

ets are assumed to be local to each thread:

 

int arrays A[n], B[n];
int base = 0;
spawn (n) 
{

int $ID; /* different for each thread: values between 0 and n-1 */
int r = 1;
if (A[$ID] != 0) {

r = prefix_sum(r, base);
B[r] = A[$ID];

}
} /* join */

 

The variable $ID is the thread ID (analogous to a loop counter variable). Each thread in a spawn 

receives a different ID. We will discuss one implementation of assigning thread IDs in Section 3.

Given the array in Figure 2, 16 threads will execute the code in the spawn-block. Each will 

receive a unique thread ID and so each will load a different value from array A. Only four will load 

non-zero values. These four will attempt to write to array B, but will synchronize their access through 

a prefix-sum. Each executes the prefix-sum independently and (potentially) at a different point in 

time. After the execution of the prefix-sum, each of the remaining threads’ local value 

 

r

 

 contains a 

unique value between 0 and 3 (because the prefix-sum is executed by four threads, thereby incre-

menting the base by 4). Each thread uses its $ID and 

 

r

 

 values to read and write to the arrays without 

fear of causing memory inconsistencies. No thread ever needs to busy-wait. Note that once all threads 

are finished, the variable 

 

base

 

 contains the size of the compacted array B. 

 

2.3 XMT instruction set

 

In the SPMD-based XMT model, all threads of a common spawn-block run the same code; 

 

i.e.

 

 they begin execution at the same program counter. Therefore the spawn operation needs to spec-

ify a PC, the size of the spawn, and the initial thread ID. Without loss of generality, the IDs assigned 

to the threads of a spawn are all the integers between the initial ID and (the initial ID + the size of the 

spawn - 1). The join operation needs no arguments. The prefix-sum operation needs to specify a base 

(which can be either a global register or a global memory location) and a register local to the thread 

issuing the prefix-sum.

These primitives are orthogonal to any underlying instruction-set architecture, and for our 

simulations, we simply added the following instructions to a MIPS-like instruction set

 

1

 

 (actually, the 

instruction set looks like SimpleScalar [4], as it does not use architected delay slots).
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spawn rS, id, offset:  

 

Instantiates a number of threads all starting at a PC-relative offset. The 

size of the spawn is found in register 

 

rS

 

, the initial thread ID is found in the immediate value 

 

id

 

, and the PC-relative offset at which each thread begins execution is found in the immediate 

value 

 

offset

 

. Because the base thread ID is usually an integral part of the algorithm, it is 

usually known at compile time; we therefore use an immediate value.

 

join:  

 

Signals the end of a spawn-block. 

 

ps.r rR, rB:  

 

Executes a prefix-sum operation using a global register as a base. The base register 

is register 

 

rB

 

, and the local register (which is used as both a source and a target for the prefix-

sum) is register 

 

rR

 

. After execution, register 

 

rB

 

 contains the sum of 

 

rB

 

 and 

 

rR

 

, and the 

register 

 

rR

 

 contains the value previously found in register 

 

rB

 

. 

 

psi.r rR, rB, imm:  

 

Immediate-value form of the prefix-sum instruction 

 

ps.r

 

. This behaves like 

 

ps.r

 

, except that the value added to the base is the unsigned immediate value 

 

imm

 

, therefore 

register 

 

rR

 

 is used only as a target, not as a source.

We also assume the availability of load and store instructions using scaled addressing mode [16] to 

simplify array addressing: 

 

lwa

 

 and 

 

swa

 

. For the purposes of the examples in this paper, these take the 

form 

 

op rT, C(rB)[rI]

 

, where 

 

rT

 

 is the target register, 

 

C

 

 is a constant offset, r

 

B

 

 is the array base, and 

 

rI

 

 is the array index that is scaled (left-shifted) by the wordsize.

To distinguish between registers local to a thread and registers global to all threads, we mod-

ify the assembly-code specification of registers while in a spawn-block. The label 

 

tN

 

 is meant to indi-

cate register N local to the thread, and the label 

 

gN

 

 refers to global register N. To avoid breaking 

compatibility with existing binaries, assemblers, compilers, development tools, and operating sys-

tems for the instruction set, one can simply divide the architectural register file into two partitions: the 

lower partition contains the “global” registers, the upper partition refers to registers local to the 

thread. Therefore, a reference to register $5 in the MIPS assembly language implies a global register 

access, while a reference to register $37 implies access to a register local to an individual thread. 

We can now rewrite the earlier example pseudocode in MIPS-style assembly language. To 

simplify the example, we assume that the arrays are small and that their base addresses can be refer-

 

1. The paper [35], this paper, and the simulator use slight variations of the assembly language described.
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enced by an immediate value (so we can use constants in the load and store instructions). Assume 

that the array size (and spawn size) 

 

N

 

 is a constant less than 65,536:

 

# Register assignments:
# g0 - is hard-wired to zero
# g1 - holds the spawn size (N)
# g3 - the prefix-sum base
# t0 - holds the unique thread ID
# t1 - holds the value A[ID]
# t2 - holds a unique index into array B

A: .space 4 * N # allocate array A
B: .space 4 * N # allocate array B

ori g1, g0, N # initialize register holding the spawn size
ori g3, g0, 0 # initialize prefix-sum base
spawn g1, 0, GO # spawn N threads starting at PC go

GO: # at this point, t0 is initialized with the unique thread ID
lwa t1, A(g0)[t0] # load the IDth element of array A (wordsize = 4)
beq t1, g0, END # if A[ID] is zero, skip to join instruction
psi.r t2, g3, 1 # get unique index into array B
swa t1, B(g0)[t2] # store value loaded from A into B (wordsize = 4)

END: join

 

3 A decentralized implementation

 

This section describes an XMT implementation; it is intended to offer insight into the XMT 

architectural paradigm, not to stand as the sole implementation of that paradigm. To begin with, we 

note that most communication will be intra-thread. This suggests a multi-clustered organization, 

wherein each cluster looks much like a contemporary superscalar architecture or SMT design. An 

example of a cluster is shown in Figure 3. The important differences between an XMT cluster and a 

Figure 3:  An XMT cluster. The XMT cluster includes a small instruction cache, a small data cache, a local register
file, several independent pipelines, and a number of functional units shared among the pipelines. Its organization is
similar to many contemporary superscalar designs, as well as an SMT processor.
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contemporary superscalar design are that, due to the programming paradigm, the pipelines of the 

XMT cluster are independent (each manages a single thread) and need no cross-checking of depen-

dencies to send instructions to the dispatch buffers. Similarly, the issue mechanism is simplified 

because the hardware need not cross-check dependencies between instructions in different dispatch 

buffers when issuing to functional units; and we can divide the register file into as many partitions as 

there are independent pipelines (i.e. it might be prudent to protect the registers of different threads), 

therefore the register file can be multiported through banking without fear of contention for read or 

write ports. Alternatively, one could share the register file among threads to implement low-latency 

inter-thread communication, but that is beyond the scope of this paper; for the moment we are inter-

ested in specifying as decentralized a design as possible. We will refer to a hardware thread context as 

a 

 

thread control unit (

 

TCU

 

)

 

; each of the independent pipelines in the diagram is a TCU. Each TCU 

has a fixed unique ID used only to determine static ranking (i.e. which TCU should take priority in a 

given situation).

Each cluster should be able to handle as many threads (as many TCUs) as is reasonable, 

given the limitation of single-cycle communication within a cluster; that is, a cluster should be as 

large as possible without being so large that signals take multiple clock cycles to propagate within the 

cluster. Mechanisms that require extra-cluster communication can be centrally located to minimize 

the worst-case communication cost; other organizations such as those that optimize best-case com-

munication are possible, but we do not consider them in this study. 

Figure 4 illustrates the organization of independent clusters within the full architecture, and 

shows the extra-cluster communication channels. These are the channels that will take multiple 

cycles to send a signal across. The operations that require extra-cluster or inter-cluster communica-

tion are as follows:

 

•

 

prefix-sum

 

•

 

spawn/join

 

•

 

references to global registers

 

•

 

cache misses and cache coherence

The following sections describe each of these in more detail.

 

3.1 Prefix-sum coordinator

 

The prefix-sum mechanism goes through a central facility that can compute results from 

 

n

 

 

threads in O(1) time, not O(

 

n

 

) time: there is a dedicated prefix-sum bus with 1 bit of data per hard-
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ware context. All prefix-sum requests that arrive in the same time slice are processed simultaneously, 

and the results are sent out simultaneously. The whole process is pipelined, so that a number of differ-

ent prefix-sum operations can be in flight at the same time. The base register contents are fired out on 

a dataword-wide bus as soon as the first request for a particular base arrives, followed by the register 

number identifying the base. The I/F (interface) units in each cluster keep track of these bases. A pre-

fix-sum result is a single-cycle broadcast of two bits per hardware thread: one bit indicates whether 

the thread participated in the prefix-sum, the other bit is the value that the thread contributed to the 

sum. We can use a static ranking scheme (e.g. smallest TCU ID goes first) to determine the order in 

which threads add to the base, therefore each I/F unit can compute its own results in a distributed 

manner. The coordinator broadcasts a base value only once; it need not send out the contents of the 

base register again until a thread explicitly writes to that register (thus modifying it in a manner 

opaque to the I/F units). While this organization increases the size of each cluster, it reduces the 

amount of extra-cluster communication, as well as the widths of the buses required.

 

3.2 Spawn/join coordinator

 

The central spawn/join coordinator needs to do two things: (a) to activate all the TCUs and 

broadcast the PC of the spawn to them and (b) to discover when all TCUs have stopped executing 

threads so that it can resume serial mode. The coordinator can broadcast the spawn-PC over the same 

data bus that the prefix-sum unit uses (requiring a few bits of control signal to identify the data on the 

LEVEL 2 

CACHE

DATA

Figure 4:  The full XMT architecture. Communication paths in this diagram require more than one cycle. The
module labeled “central management” contains such functions as the prefix-sum operator, global registers, and the
spawn-join coordinator.
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bus). When they finish, the TCUs can signal the central coordinator using a single bit-line per cluster 

that ANDs the TCU signals. The implication is that once the spawn coordinator initiates a spawn, it 

must wait a minimum number of cycles before it can assume the join signals are valid. Thus a spawn-

block of only one instruction will take as much time to execute as a spawn-block of two or three 

instructions. Provided that short threads are infrequent, we do not think this will be problematic; 

however, we are in the process of quantifying it.

Given prefix-sum, spawn/join becomes simple. The spawn coordinator broadcasts a spawn-

PC and all TCUs begin executing at that program counter. The first task of each thread is to obtain a 

thread ID and then verify that it is less than the spawn size. (Note that, for simplicity, we left out that 

step earlier.) Why is this important? Doing so supports an extremely simple mechanism for assigning 

new threads to TCUs when they finish: when the central management sends out a single spawn, it 

need not do anything else until all TCUs signal that they have joined. A TCU keeps trying to instanti-

ate new threads until it fails; then it joins. When the thread gets to the end of the spawn-block, it 

jumps back to the beginning to attempt to start up a new thread. As soon as it obtains an invalid thread 

ID, the TCU executes a join. Here is the final code for the array compaction algorithm:

# Register assignments:
# g0 - is hard-wired to zero
# g1 - holds the spawn size (N)
# g2 - holds the thread ID counter
# g3 - the prefix-sum base
# t0 - holds the unique thread ID
# t1 - holds the value A[ID]
# t2 - holds a unique index into array B

A: .space 4 * N # allocate array A
B: .space 4 * N # allocate array B

ori g1, g0, N # initialize register holding the spawn size
ori g2, g0, 0 # initialize register holding the initial thread ID
ori g3, g0, 0 # initialize prefix-sum base
spawn g1, 0, GO # spawn N threads starting at PC go

GO: psi.r t0, g2, 1 # get unique thread ID into t0
slt t1, t0, g1 # is the ID less than the spawn size?
beq t1, g0, END # if not, terminate execution
lwa t1, A(g0)[t0] # load the IDth element of array A
beq t1, g0, GO # if A[ID] is zero, try to start another thread
psi.r t2, g3, 1 # get unique index into array B
swa t1, B(g0)[t2] # store value loaded from A into B
j GO # try to instantiate a new thread

END: join # really terminate

Note that we have initialized register t0 (holding the unique thread ID) with a prefix-sum operation, 

then verified the value before using it. Since thread IDs are defined to be all integers between some 

base and base+spawnsize, prefix-sum is a natural mechanism to use, and doing so can reduce the 
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amount of special hardware needed by the system. Note also that this implementation obviates the 

need to specify any parameters in the spawn instruction. Furthermore, it is possible to optimize this 

code a bit more since the initial thread IDs can be computed directly without the use of a prefix-sum:

# TCU_ID is the static TCU identifier, 0 to num TCUs - 1

spawn g1, 0, GO # spawn N threads starting at PC go
GO: addi t0, TCU_ID, 0 # get initial thread ID into t0
L1: slt t1, t0, g1 # is the ID less than the spawn size?

beq t1, g0, END # if not, terminate execution
... 
swa t1, B(g0)[t2] # store value loaded from A into B
psi.r t0, g2, 1 # get unique thread ID into t0
j L1 # try to instantiate a new thread

END: join # really terminate the initial batch of thread IDs. 

3.3 Global register coordinator

It is likely that the global register coordinator can use the same broadcast data bus as the pre-

fix-sum unit, since that bus is used once per initialization of a register to be used for a prefix-sum and 

once per spawn. The rest of the time the bus lies dormant. Therefore we believe we can also use it to 

broadcast global register values whenever they are written. Each local register file can cache these 

values, as, by virtue of the programming model, communication through these registers will be regu-

lar. During a spawn block, the programming model guarantees that a global register will be either 

read-only by many threads, exclusively read-write by one thread, or written by many threads by 

means of a prefix-sum. Therefore the clusters can safely cache the global register values and simply 

invalidate them at the end of a spawn block.

3.4 Cache consistency

The per-cluster instruction caches need not be kept coherent since they are read-only. By vir-

tue of the programming model, during parallel execution (during a spawn), threads are guaranteed 

never to overwrite each other’s data—they are completely independent. Therefore, the data caches 

need not be kept coherent during a spawn, and as in Hammond’s scheme [15], we can have a very 

simple write-buffer mechanism to keep the on-chip level-2 cache up-to-date. It is likely that a write 

cache will be very useful in such an environment [19]. While operating in parallel mode, each clus-

ter’s data cache can withstand a degree of inconsistency with the data caches of other clusters. Once 

serial mode returns, the caches should become consistent, which means updating or invalidating 

every line that was partially written. This is similar to the global-registers mechanism that must inval-

idate cached copies of the global registers. We have not studied this but intend to.
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3.5 Design optimizations

Many optimizations of the basic XMT design are possible. The implications and tradeoffs in 

these optimizations are beyond the scope of this paper. An extension which we have started to 

research is a prefix-sum to memory operation. This operation would be a prefix-sum which uses a 

memory address as a base instead of a register. The issues here which appear to preclude a low com-

munication design are large (memory-address wide) base identifiers and the large number of bases. 

For optimizing thread creation, one can add hardware support instead of the spawning and 

joining code described above. We implement this optimization in our simulator. The additional hard-

ware required is a dedicated prefix-sum for the purpose of generating new thread IDs and a special 

spawn register will be used for the base instead of a general purpose register. The spawn prefix-sum 

unit can have simpler hardware than the general purpose prefix-sum because no mechanism for 

detecting different bases is necessary and the communication can be simplified.

While for simplicity of hardware and design single issue pipelines for TCUs were described, 

it should be possible to increase the issue width of each TCU by means of standard superscalar tech-

niques. Adding optimizations like branch prediction may also be desirable. We defer this question to 

future research since it is not clear what level of extra hardware complexity per TCU is desirable.

Note that when the XMT processor is in serial mode, it is simply running a single thread on 

TCU 0. In our current work, TCU 0 is identical to any other TCU in the system. However, because 

this first unit has the unique task of running serial code, it may be augmented with additional super-

scalar improvements and a direct connection to global registers. This improvement should enable the 

processor to execute serial code with performance comparable to a standard superscalar.

3.6 Organization of simulator

The XMT simulator that produced the performance results is similar to the model described 

in this section, without the per-cluster caches. The rest of the differences are outlined in Table 1. 

Table 1:  XMT simulator organization

Spawn-Join Hardware support instead of software implementation: dedicated PS unit for thread ID generation. Join 
handling early in pipeline.

Memory D-cache and I-cache can have up to 200 pending read requests each, a cache line is fetched when a request 
is filled. Two configurations were used: 100 cycle latency and 1 read processed per cycle (“real” memory); 1 
cycle latency and 8 reads processed per cycle (“perfect” memory)

Caches Cache lines are 4 64-bit words long. D-cache is 2 way set associative. I-cache is direct mapped and holds 
128 cache lines. D-cache is write through with no fetch on write-miss.
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4 Performance behavior

In this section, we provide intuition into the performance behavior of the system. Since this is 

a new model of execution, we cannot hope to provide a thorough performance comparison with more 

established models such as superscalar, vector, etc. That is a future goal. Here, we make the first steps 

towards such a characterization.

4.1 Performance compared to MPPs

In MPPs, latency is typically measured in microseconds; on a single chip, latency will be 

measured in nanoseconds. This creates an opportunity; whereas reduced communication costs will 

not eliminate the inherent start-up costs of parallel algorithms, reduced communication costs do 

allow the XMT architecture to become competitive with serial implementations at much smaller 

data-set sizes. Also, manufacturing costs for XMT implementations should be orders of magnitude 

lower than those of MPPs. Thus, achieving a speedup over serial implementations that is commensu-

rate with the cost ratio of the implementations should be possible at much lower data-set sizes. We 

have described this elsewhere [35]. Figure 5 gives an example of the comparison between XMT and 

the Intel Paragon on list ranking, which is a fundamental component of most parallel graph algo-

rithms. Note that the data-set sizes where the parallel implementations become competitive, and 

Clusters 6 ALUs (1 cycle latency); 4 Branch (1 cycle latency); 6 MultDiv (2 cycle multiply, 40 cycle divide, neither is 
pipelined). 4 slot load-store buffer, 4 ports to D-cache. PS I/F unit has 8 slot buffer for pending requests.

TCUs Six stage single issue pipeline, stall on branch, 4 slot Dispatch buffer, 4 TCUs/Cluster

Prefix-sum (PS) Units are pipelined with 3 cycle latency after request received.

Configurations TCUs: 8, 32, 128. Each has a D-cache scaled with its size. D-Cache: 2K word; 8K word; 32K word.
Two additional configurations with Join Delays of 4 and 16 cycles on the 128 TCU design.
These 5 configurations were each set with “real” and “perfect” memory for a total of 10 configurations.

Table 1:  XMT simulator organization

Figure 5:  XMT vs. MPP on list 
ranking (very similar to the listsort 
benchmark discussed later). 

The graph shows that XMT can
achieve speedups over serial
implementations at much lower data-
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especially the data-set sizes where the parallel implementations become cost-competitive, are much 

lower than in the massively parallel implementations.

4.2 Performance compared to superscalars

The problem with comparing a parallel model to a serial one is that it is very difficult to find 

benchmarks that are not biased against one of the execution models. Therefore we chose to compare 

not entire benchmarks but components of applications that are primitives used in both serial and par-

allel benchmarks. We are aware of the criticism of observing program kernels rather than observing 

entire programs, but we feel that it is a much more impartial comparison, and it still provides reason-

able intuition into the performance of the XMT architecture. We picked code snippets with a variety 

of degrees of inherent parallelism. We tried to find representatives of a particular behavior rather than 

representatives of classes of applications. 

We chose small data sets to illustrate the fact that the XMT model can achieve speedups over 

serial code for small input sizes. Table 2 gives descriptions of the benchmarks. The serial execution 

Table 2:  Code snippets used in experiments

Benchmarks Description Input sizes

Serial

linkedlist

condition

Traverse a linked list dispersed through memory and find the sum of the list 
item data values. This application is not one which we know how to parallelize, 
so it is implemented with a serial algorithm.

50 item list spaced in 
200 words, 500 item list 
spaced in 2000 words, 
5000 item list spaced in 
20K words

An if-statement with six clauses ANDed together. Here we demonstrate how 
MT techniques can be used to speed up code which seems inherently serial by 
splitting each clause into a thread. Whereas this type of approach may be 
useful to implement at the compiler level on particular kinds of code (such as 
our example), it is not the thrust of the XMT programming model.

Six conditions

Embarrassingly 
parallel

stream

Based on the STREAM benchmark [33], we sequentially read arrays, perform 
some short calculations on the values, and write the results to another array. 
Since each iteration of the loop is independent, parallelization of execution is 
obvious. In the superscalar domain, one approach for speeding up this code is 
loop unrolling; we do that for the SimpleScalar version.

50 item array, 500 item 
array, 5000 item array

Mildly 
interacting 
parallel

arrcomp

Compacting an array, we take a sparse array and rewrite into a compact form. 
This application requires keeping a running count of the next available location 
in the new array. Two variants  of arrcomp  were simulated: arrcomp_d  which 
just reads the original array (regular memory access) and arrcomp_i  which 
uses indirection through another array (irregular memory access).

50 item array, 500 item 
array, 5000 item array 
(uncompacted arrays are 
1/4 full)
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model is represented by SimpleScalar [4]. The XMT organizations simulated are described in Sec-

tion 3. SimpleScalar was configured with perfect branch prediction; 8-way/32-way/128-way instruc-

tion fetch, decode, issue, and retire; and 2K/8K/32K word level-1 caches. Figures 6 and 7 give the 

results of the comparison with XMT. 

The extra superscalar parallelism gave limited performance improvement; for example, Sim-

pleScalar 128-way executed the 500 input size stream benchmark at only a 1.08 speedup over the 8-

way configuration. For the larger input sizes, the increased cache size for the configuration had a 

much more significant effect on performance than the increased parallelism. On the other hand, XMT 

was able to take advantage of the increase in available parallelism as demonstrated in the graphs.

More frequently 
interacting 
parallel

max

Find the maximum value of a list. In the serial case, we read through the list, 
keeping a running maximum. For the parallel, we have two approaches. Both 
use balanced binary trees where a node of the tree will have the result of a 
maximum operation on its two child nodes. The root of the tree will have the 
maximum of the list. In max_synch , we synchronize after every level in the 
tree. The threads are very short and there are log(n) spawn-joins. The 
max_asynch  snippet spawns a thread for each value in the list. Each thread 
carries its value as far up the tree as it can: terminating if it is the first thread to 
arrive to a node and performing the comparison between two values and 
carrying the maximum higher if it is the second to arrive. The last thread to 
arrive to the root of the tree will have the maximum. We do not present results 
for max_asynch  since it uses prefix-sum to memory operations and we do not 
discuss those in this paper.

50 item array, 500 
item array, 5000 item 
array

Sorting

listsort

integersort

Unraveling a linked list of known length which is packed within an array. This 
application is useful for managing linked-list free space in OSes [31]. In the 
serial algorithm, we traverse the list and rewrite it in the proper order. For the 
XMT version, we use the simplest (from a coding point of view) approach: 
Wyllie’s pointer jumping algorithm [18]. We note that more efficient parallel 
approaches exist and were explored in [35].

50 item array, 500 item 
array, 5000 item array

A variant of Radix-sort. It sorts integers from a range of values by applying bin-
sort in iterations for a smaller range. For speed-up evaluations, one would wish 
to compare integersort with the fastest serial sorting algorithms, and not only 
serial Radix sort, as we did; however, the literature implies that for some 
memory architectures radix-sort is fastest [2], while for others other sorting 
routines are fastest [24].

50 item array, 500 item 
array, 5000 item array

Table 2:  Code snippets used in experiments

Benchmarks Description Input sizes
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 For XMT, we get significant speedups for 32-way parallelism for most of the snippets. Note 

that while these speedups typically increase for going to 128-way parallelism, we usually do not get 

to the theoretical factor of 4 improvement. An explanation is that the 100 cycle latency to memory 

does not allow more than 100 requests to be in-flight at the same time. A simple example follows. 

Consider 512 virtual threads in a program and suppose that each thread results in a single cache miss. 

For the 32 TCU configuration, this would mean processing the first 32 misses in 132 cycles, the next 

32 in 100 more cycles, and so on for a total of 1632 cycles. For 128 TCUs, on the other hand, it is not 

better than 100 TCUs; it will take a total of 612 cycles to process the same 512 misses. Since 1632/

612 is about 2.7, we see why approaching a factor of 4 improvement may be impossible. Note that 

for 8 TCUs it takes 6408 cycles to process the misses and that 6408/1632 is about 3.9. This effect 

may explain why the 32-way configuration often offered better performance over the 8-way than the 

128-way offered over the 32-way.

Figure 6:  XMT vs. serial execution for linkedlist, condition, stream, and max. 
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Wyllie’s algorithm (used in listsort) is competitive when we have small inputs and high par-

allelism because of its O(n logn) work behavior [35]; note the degradation in performance as input 

size increases. For input size of 5000, another parallel algorithm would be a better choice. At this 

input size, cache effects also start to play a role as the number of misses decreases from 128068 for 

the 8-way to 57834 for the 32-way to 8407 for the 128-way XMT (note the jump in performance 

from 32-way to 128-way); this is a peculiarity of the cache/input size interaction for this problem.

We modeled long-distance communication in the XMT simulator; we modeled thread ID 

generation requests (i.e., prefix-sum after a join) as taking 1, 4, and 16 cycles (corresponding to 

cross-chip communications of 2, 8, and 32 cycles). The normalized execution time results are given 

in Figure 8 for two of the benchmarks configured with “real” and “perfect” memory. The rest of the 

benchmarks behave similarly and show that the impact of increased communication cost on the per-

formance behavior of a program is secondary to the latency issue and suggest that XMT is resilient to 

increased interconnect delays.
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Figure 7:  XMT vs. serial execution for arrcomp_d, arrcomp_i, listsort, and integersort. 
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5 Potential drawbacks

5.1 Complexity of the design

There is an inherent complexity in a single-chip parallel-computer implementation; as a 

result, the interaction of numerous independent state machines will likely make verification of the 

design extremely difficult. While it is not intuitively clear whether verification will be more or less 

difficult than that of an enormously complex superscalar machine with branch prediction, speculative 

execution, out-of-order issue, and several forms of data prediction, it nonetheless is intuitively clear 

that the fundamental building blocks described in this paper (the XMT clusters) will individually be 

simpler to verify than a complex superscalar machine, as the implementation we studied here dis-

penses with all of that complexity and still achieves a speedup over a serial implementation. Simi-

larly, the overall processor should be easier to design, since design involves little more than the 

“stapling together” of these clusters. The complexity could negatively affect clock speed compared to 

a superscalar design, but because we have restricted ourselves to using almost entirely components 

that are commonplace in today’s high-speed processors, we do not consider this an issue.
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Figure 8:  A look at the effects of interconnect delays. 

n=50 n=500 n=5000 n=50 n=500 n=5000 n=50 n=500 n=5000
0

5

10

15

20

Ins
tru

cti
on

s p
er 

Cy
cle

 (IP
C)

XMT Average IPC
XMT: IPC in spawn mode
XMT: IPC in serial mode

0.0

0.5

1.0

1.5

2.0

Normalized Execution Time

Normalized Execution Time

1−cycle Latency 4−cycle Latency 16−cycle Latency

stream.real



21

There is also the issue of scalability: the prefix-sum mechanism, to reduce the amount and 

overhead of long-distance communication, uses a bus that scales with the number of TCUs in the sys-

tem, which is inherently problematic if one wishes to move to large numbers of hardware contexts. 

There are other implementation possibilities, however: a more scalable implementation could work 

as follows. First, we notice that a prefix-sum request which contributes zero is equivalent to a read of 

the base, with no specified ordering. Thus, these requests can be handled locally by the cluster I/F 

unit. Prefix-sum instructions from the same cluster using the same base can be combined into a single 

request to the global prefix-sum unit. The global unit groups these requests into batches of the same 

base, performs a prefix-sum across the batch, and broadcasts the results. Each cluster would effec-

tively be given a range within that cycle’s prefix-sum and it can decide which of its local prefix-sum 

requests gets which value. It would reduce the number of wires from 2n, where n is the number of 

TCUs, to c*log2(n/c), where c is the number of clusters. This approach can generalize to a hierarchi-

cal tree structure in which each node in the tree is given a range within the prefix-sum by its parent 

and gives sub-ranges of that range to its child nodes.

5.2 Memory traffic

A serious issue is the increased memory traffic because of the pattern in which parallel algo-

rithms tend to revisit more of their data relative to their serial counterparts. In XMT, we reuse TCUs 

for different virtual threads and so flush data which could actually be reused. This large-scale data-

movement is necessary for XMT but would often be redundant in a serial uniprocessor executing a 

different algorithm. However, since a parallel algorithm provides better memory latency hiding, 

improved throughput to memory can make the performance of the parallel algorithm competitive. 

This effect of multi-threading is demonstrated by the data in Table 3.

Table 3:  Memory throughput comparison

Benchmark SimpleScalar (128-way) XMT (128 TCUs) Factor increase XMT vs. SS

arrcomp_d (5000 item array) dcache misses: 1251
time in cycles: 70945
mem fetches/cycle: 0.0176 

dcache misses: 1251
time in cycles: 4767
mem fetches/cycle: 0.262

misses: 1.00
speedup: 14.9
mem throughput: 14.9

arrcomp_i (5000 item array) dcache misses: 2095
time in cycles: 159230
mem fetches/cycle: 0.0132

dcache misses: 2095
time in cycles: 4919
mem fetches/cycle: 0.426

misses:1.00
speedup: 32.4
mem throughput: 32.4

integersort (5000 item array) dcache misses: 2274
time in cycles: 168541
mem fetches/cycle: 0.0135

dcache misses: 4566
time in cycles: 29617
mem fetches/cycle: 0.154

misses: 2.01
speedup: 5.69
mem throughput: 11.4
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6 Related work

Lee and DeVries investigate single-chip vector microprocessors as a way to exploit more par-

allelism with less hardware and reduced instruction bandwidth [25]. They expose more instruction-

level parallelism to the processor core by moving to a more explicitly parallel programming model. 

Similarly, the IRAM project uses vector processing to increase parallelism; the project also aims to 

fully exploit the bandwidth possibilities of integrating DRAM onto the microprocessor [23]. Com-

plementing this research, out-of-order, multi-threaded, and decoupled vector architectures have been 

proposed by Espasa, Mateo, and Smith [5, 6, 7] as methods to improve the performance of vector 

processing. The XMT architecture has much in common with the recent vector approaches, as we are 

solving many of the same problems in much the same way: we are looking at increasing the abun-

dance of instruction-level parallelism by relying on the programming paradigm—the primary differ-

ence is in our use of a SPMD-style parallel algorithm programming model instead of a vector model.

Several architectures exist that range from moderately to highly decentralized. The multisca-

lar paradigm [10, 32] uses a uni-directional ring of processing elements in which each processing ele-

ment need only communicate to its immediate neighbor: long-distance communication is mostly 

limited to servicing memory requests; even the address resolution mechanism is decentralized [11]. 

The XMT architecture differs in that hardware contexts never communicate directly with each other. 

The edited book [17] is an excellent general reference for known approaches to multithread-

ing. The approaches described there emphasize the case where in a given cycle instructions from only 

one thread can be issued. A very interesting architecture is presented in the Tera computer [1] which 

linkedlist (5000 item list) dcache misses: 4365
time in cycles: 305569
mem fetches/cycle: 0.0143

dcache misses: 4365
time in cycles: 495966
mem fetches/cycle: 0.0088

misses: 1.00
speedup: 0.616
mem throughput: 0.616

listsort (5000 item list) dcache misses: 2501
time in cycles: 195214
mem fetches/cycle: 0.0128

dcache misses: 8407
time in cycles: 24252
mem fetches/cycle: 0.347

misses: 3.36
speedup: 8.05
mem throughput: 27.1

max (5000 item array) dcache misses: 1251
time in cycles: 135146
mem fetches/cycle: 0.00926

dcache misses: 2501
time in cycles: 6605
mem fetches/cycle: 0.379

misses: 2.00
speedup: 20.5
mem throughput: 40.9

stream (5000 item array) dcache misses: 3751
time in cycles: 192050
mem fetches/cycle: 0.0195

dcache misses: 3751
time in cycles: 17421
mem fetches/cycle: 0.215

misses: 1.00
speedup: 11.0
mem throughput: 11.0

Table 3:  Memory throughput comparison

Benchmark SimpleScalar (128-way) XMT (128 TCUs) Factor increase XMT vs. SS
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uses multithreading for memory latency hiding. The difference with our approach is that Tera focuses 

on supporting a plurality of threads by constantly switching among threads, but Tera does not issue 

instructions from more than one thread at the same cycle. This would limit the relevance of our multi-

operand and spawn-join instructions for their architecture.

Simultaneous multi-threading [34] improves parallelism by issuing instructions from several 

concurrently executing threads to multiple functional units each cycle. The architecture is targeted at 

supporting standard programming (the simulations are based on Multiflow-compiled SPEC bench-

marks), and proposed SMT designs have supported up to eight concurrently executing contexts, 

which is appropriate for most standard code. The goal of the XMT architecture is to support parallel 

programming, in addition to standard code, and so we envision much larger numbers of hardware 

contexts. 

Single-chip multiprocessors [27] are analogous to symmetric multiprocessors and are aimed 

at exploiting thread-level and process-level parallelism, especially as supported by multitasking oper-

ating systems [15]. The M-Machine architecture [9] is a similar example. These architectures are 

inherently decentralized, as an implementation is comprised of several identical processor cores com-

municating through an on-chip level-2 cache. Raw processors [36] go a step further: rather than 

implementing medium-scale SMPs on a single chip, the Raw architecture is intended to implement 

an MPP on a single chip, supporting 128 nodes or more. Each processing node is very simple, and 

the nodes on a chip are connected in a 2D mesh network. The on-chip cache and even the on-chip 

register file is distributed among the processing elements. XMT differs from the Raw architecture in 

that resources local to a hardware thread context are not directly addressable by other hardware 

thread contexts, as they are in the Raw machines.

Multi-prefix primitives (i.e. prefix-sum, prefix-max, etc.) have been proposed for multipro-

cessor architectures (see the NYU-Ultracomputer [13], and SB-PRAM [21]), but not for instruction-

level parallelism.

In contrast to [12], who studied fetch-and-increment in a multiprocessor setting, XMT dis-

cusses an on-chip implementation of fetch-and-increment and provides a sense for which fetch-and-

increment gives wait-free coordination. Wait-free was stated as a desired goal in [12] who used fetch-

and-increment for bottleneck-free coordination (which is weaker than wait-free). Another difference 

is the use of spawn-join. The paper [35] explains how our use of Arbitrary CRCW PRAM does not 

limit (relative to the stronger CRCW PRAM models) the algorithms that can be used for XMT and 

enabled its significant wait-free advantages. This contrasts with [12] whose weaker coordination con-
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cept supports a more general CRCW PRAM algorithmic model.

7 Concluding remarks

The performance of future IC technologies will be dominated by interconnect delays, there-

fore microprocessor architectures should aim for designs wherein most communication is localized. 

Functions that require the propagation of cross-chip signals should be few and infrequently used. 

The research area of SPMD as it connects with parallel algorithms offers an interesting 

design point: these algorithms map well to hardware support for multiple independent concurrent 

threads. This hardware support in turn maps well to the limitations of future IC technologies: a 

SPMD processor can comprise numerous, simple, independent, identical thread-execution units, and 

the nature of the programming paradigm is such that inter-thread communication is highly structured 

and regular. This paper shows that such an architecture can withstand high cross-chip communication 

costs. It can also take advantage of very large numbers of execution units, as opposed to traditional 

superscalar designs, which typically cannot make use of more than one or two dozen execution units. 

Finally, we note that while significant speedups can be achieved by SPMD programs, the 

speedup of standard code often requires other techniques. The XMT “ideology” does not exclude 

using other methods within the design, since intra-thread parallelism can be exploited in addition to 

the explicit inter-thread parallelism of XMT.
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Appendix: Comparing parallel programming/algorithms approaches

Advantages
Vector:  Mature compiler technology. Fast when data availability is predictable (e.g. where data access is regular). Parallel algorithms 
knowledge base applies.
XMT: Parallel algorithms knowledge base applies. Each thread can progress at its own speed. Resilient to slow execution (and 
upredictable data access time) of some instructions.
Existing multi-threading: Suits existing serial and parallel machines.

Disadvantages
Vector:  Slow for unpredictable/irregular data access: “everything is delayed” if one instruction is slow to finish. May encourage 
algorithms that result in more data movements.
XMT: May encourage algorithms that will result in more data movements than for existing multi-threading; however, for the same 
algorithm, usually does not require more data movements than the other two approaches
Existing multi-threading:  More difficult to program. Smaller algorithmic knowledge base.

length 1 “threads” longer threads 

Examples Vector XMT Existing multi-threading
Many, including KSR, SMT

Programming/
algorithms

Priority CRCW PRAM, 
Vector programming & 
compiling

Arbitrary CRCW PRAM 
(SPMD)

Shared memory programming, 
Message passing programming (e.g. 
SPMD)

Synchronization Each step Joins only Many forms

To substitute one 
Spawn-Join for 
existing SPMD

many steps a few Spawn-Joins  same (i.e., one Spawn-Join)

Thread 
interaction

special rules (concurrent 
read-write conventions)

no-busy-wait
prefix-sum

many forms


