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Abstract

We extend a numerical approximate solution method (the Z-iteration) to time-dependent
open networks of M(t)/M(t)/1/00 and M(t)/M(t)/1/K queues, and apply the method to obtain
transient performance metrics of large IP networks. The method generates a set of coupled dif-
ferential equations, one for each queue in the network. The equations are numerically unstable
under certain conditions (e.g., large bandwidths and buffers), and we present techniques to over-
come this problem. The resulting numerical procedure is accurate and very fast. For example,
a 20-second evolution for a 1000-node network with high-speed links (~ 10?packets/sec) and
large buffers (2 10*packets) was obtained in 18 minutes on an Ultra Sparc, whereas simulation
would take days.

1 Introduction

Evaluating the performance of large TP networks is an important problem, but an adequate
technique does not currently exist. Analytical approaches cannot handle many critical network
features. Packet-level simulation is popular but it is extremely slow when bandwidths are high
and buffers are large, even for networks of moderate size. Flow-level simulation is faster but its
accuracy is questionable [because it makes the unrealistic assumption that the interval between
successive changes in the network-wide flow pattern is large enough so that steady state holds
for most of the interval].

We take an alternative approach, based on transient metrics. We are interested in observing
the behavior of a network when a perturbation is applied, such as a node/link failure, load
change, routing change, etc. We would like to know, for example, which links become congested
and how quickly, how long an overload can be maintained before the blocking probability exceeds
a specific value, and such like.

Time-dependent queuing systems are a natural modeling tool for investigating such issues.
Their arrival and service rates can vary over time to reflect external or feedback control, and solv-
ing them yields transient responses to network and workload changes. The difficulty, of course,
is that these systems are not tractable by traditional approaches. Analytical and simulation
approaches fail for the same reasons mentioned above. Numerical solutions are unmanageable
for realistic networks because the state space becomes enormous.
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MDA90497C3015 to the University of Maryland. It should not be interpreted as representing the opinions or views
of ARPA, DoD, or the U.S. Government.



The Z-iteration is an attempt to address this problem. It is a numerical approximate solution
method that yields the time evolution of ensemble metrics (e.g. instantaneous queue size distribu-
tion) at a cost several orders cheaper than simulation. The first version of the Z-iteration [3, 4]
handled single multi-class multi-resource queues, adequate for analyzing connection-oriented
networks with strict access control and resource reservation. In this paper, we develop another
formulation that also handles networks of time-dependent queues, appropriate for modeling

classical datagram networks.

Figure 1 illustrates an application of this Z-iteration. The network in Figure 1(a) has 52
nodes, 66 links, and 457 end-to-end user classes subject to shortest-hop routing. At time ¢t = 10
sec, the link marked by the arrow fails and routes are updated. Figure 1(b) shows the evolution
of the instantaneous average queue size at the link from nodes 1 to 3, obtained from Z-iteration
and from simulation. The Z-iteration took 18 seconds, compared with 2.5 hours for packet-level

simulation (averaging over 5 runs).
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Figure 1: A network and example evolution

The rest of the paper is organized as follows. Section 2 describes how we model a datagram

network by a network of time-dependent queues. Section 3 describes the Z-iteration for single
queues and for networks of queues. Section 4 examines numerical stability issues. Examples are

presented in Section 5. We conclude in Section 6.

2 Network Model
We consider a datagram network with some routing algorithm. The links have fixed bandwidths
and the routers allocate fixed-size buffers for each outgoing link. The traffic consists of end-
to-end wuser classes, each defined by source node, destination node, and time-dependent packet
generation rate. We assume fixed-size packets. We focus on networks with high-speed links
(= 10*packets/sec) and large link buffers (= 10*packets), similar to the IP networks of today.
We model each outgoing link of a node by a M/M/1/K queue with service rate equal to the
link bandwidth and max queue size K equal to the link buffer space. The routing between the
queues is determined by the network topology, user classes, and routing tables.
To illustrate, suppose node A has an outgoing link Al to node B, and node B has outgoing
links, B1, B2, and B3. Then in the queueing model, the output of Al can go to B1, B2, B3,



or be absorbed within node B, as shown in Figure 2. The probability "Al,B1 of going to B1 is
given by the fraction of the total user class rates in Al that are forwarded to Bl (note that the
path of a user class is determined by the routing tables). For example, if the traffic that arrives
at queue Al consists of two classes, one with rate 5000 pkts/sec and another with rate 3000
pkts/sec, and node B routes the first class to Bl and the second class to B2, than the routing
probability for B1 is 5000/(5000 4+ 3000) = 5/8, for B2 is 3000/(5000+ 3000) = 3/8, and for B3
18 0.
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Figure 2: The queue model for a link from node A to node B.

3 Z-iteration

The Z-iteration is an efficient numerical approximation method that computes instantaneous
ensemble metrics of time-dependent queuing systems. It is based on functional approximations
of relationships between instantaneous metrics by the corresponding steady-state relationships.
These approximations allow the evolution of the metrics to be defined by a small number of
differential equations, rather than the large number of Chapmann-Kolmogorov equations (which
are as many as the maximum queue size).

Table 1 gives the notation we use for a queue. Instantaneous parameters refer to a queue
with time-varying arrival and service rates. Steady-state parameters refer to a queue in steady
state, with constant arrival and service rates.

3.1 Old Version

The first version of the Z-iteration was based on the following flow equation, obtainable from
the Chapmann-Kolmogorov equations:

dN(t

O Mo - B - v ) 0
The idea is to express B(¢) and U(t) in terms of N(¢), resulting in a single scalar differential
equation for N (). It turns out that the relationship between B(t) and N(?) is very well approx-
imated by the relationship between steady-state B and steady-state N. The same holds for the
relationship between U(t) and N ().

Thus we want functions expressing B and U in terms of N. What is available, however, are
functions expressing N, B, and U in terms of the steady-state traffic intensity p (= A/p). We
denote these functions by Fiy(-), Fg(-), and F7(-), respectively. For example, for a M/M/1/c0
queue we have [2]



instantaneous arrival rate at time ¢
instantaneous service rate at time ¢
instantantaneous average queue size at time ¢
instantaneous blocking probability at time ¢
instantaneous utilization at time ¢
instantaneous virtual traffic intensity at time ¢ (# A(¢)/u(t))
steady-state arrival rate

steady-state service rate

steady-state traffic intensity (= A/p)
steady-state average number of customers
steady-state blocking probability

e e S e e e

WwE2w = >

U steady-state utilization
Fn(-) function yielding N in terms of p
Fg(-) function yielding B in terms of p
Fy () function yielding U in terms of p

Table 1: Notation
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For a M/M/1/K queue, we have [2]:

p (B A1)

N = FN(p) = =, 1=Kt
L—p
1—pK
U = Fylp) = 1= &+ 7 (3)

For M/M/1/co, we can invert I'N(p) and so obtain B and U in terms of N, specifically,
B=0and U = N/(N +1). But in general, including the case of blocking queues, we cannot
invert Fi(p) analytically. So instead we inverted numerically, using another approximation as
follows:

e U is computed from N assuming a non-blocking system.

e B is computed as the fixed point of B = Fg(p) and p = U/(1 — B) (obtained by equating
the inflow A(1 — B) to the outflow uU7). The resulting value of p is simply the steady-state
traffic intensity value consistent with B and N.

This approach works very well for M(t)/M(t)/1/00 and M(t)/M(t)/K/K queues, and for
M(t)/M(t)/1/K queues when A(¢) < p(t). But it does not work for networks of these queues or
for M/M/1/K queues when A(¢) > pu(t).

3.2 New Version

We now develop a formulation of the Z-iteration that eliminates the non-blocking assumption
used in the numerical inversion operation above. This version works for open networks of
M(t)/M(t)/1/K and M(t)/M(t)/1/00 queues.

As mentioned above, formulas for N, B and U are usually in terms of p. This suggests that
we introduce an instantaneous version of p, which we refer to as the instantaneous virtual traffic



intensity, denoted by z(t), and develop a differential equation for z(¢) rather than for N(¢).
Then N(t), U(t), and B(t) can be approximated by

N(t) = Fn(=(1))
B(t) = Fp(=(1))
U(t) = Fy(=(1)) (4)

Although z(t) is fictitious, it has a natural interpretation: at any time ¢, it is the amount
of traffic intensity that if applied constantly would result in steady-state N, B, and U equal to
N(t), B(t), and U(t), repsectively. In fact, z(¢) is just a more accurate version of the iterate
p that appears in the numerical fixed-point inversion in the old version. Note that z(t) is not

equal to A(t)/p(t).
To obtain a differential equation for z(¢), we start with the differential equation for N ()

dN(t)
dt
Replacing dN(t)/dt by (dN(t)/dz(t))(dz(t)/dt), dN(t)/dz(t) by dFN(z)/dz, B(t) by F'g(z(t)),
and U(t) by Fyj(2(t)), we obtain

= A1 = B®)] — p(t) Ut);

dzi” - dFN(lz)/dZ MO = F((1)) = p(D) Fy (=(1))] (5)

Thus we have a scalar differential equation whose solution yields the evolution of z(¢). Plugging
z(t) into equation (4) yields evolutions of N(¢), U(t), and B(%).

Equation (5) can be instantiated for any type of M/M/- queue. For a M/M/1/c0 queue, we
obtain

dz(t)

= (L= 20 (A(D) = p(D)=(1) (6)
For a M/M/1/K queue, we obtain
de(t) (L= - 2()F)(1 — 2(1))”
a = (= (O — (K 4 2R (1 2y )~ #O=0) @

Example (M/M/1/K) We apply the method to M/M/1/K queues driven by constant A
and p. The queues are initially empty. The accuracy of the results is demonstrated by comparing
against direct solution of the Chapman-Kolmogorov equations. Figure 3 has plots of N(t) and
U(t) for A =15, p = 2.0 and K = 7. Figure 4 shows N(¢) and B(t) for A = 2.0, 4 = 1.5 and
K = 10. i

3.3 Networks of Queues

We extend the Z-iteration to networks of M(t)/M(t)/1/0c and M(t)/M(t)/1/K queues. Here, a
departure from queue ¢ is routed to queue j with a time-dependent probability r;;(¢), and leaves
the network with probability 1 — Z]' 73;(t). The arrivals to queue ¢ consist of external arrivals
Ai(t) (from outside the network) and departures from queues in the network routed to queue .

The total arrival rate of queue ¢, denoted Af(?), is given by

n

AL = Ai(t) + Z FHONHORUIO (8)

Any arriving customer can be blocked, except, of course, customers feeding back from queue
i. The differential equation for z;(¢), the instantaneous virtual traffic intensity of queue ¢, is
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Figure 3: Results for M/M/1/K queue with A = 1.5, p =2.0, K =7

obtained by appropriately modifying equation (6) or (7). If queue ¢ is a M/M/1/c0 queue, we
have
dz(t) 2 .
o = (L= z) () + Yo iy () = w1 = ra®)z(0] (9)

j=l#i

If queue 7 is a M/M/1/K queue, we have

d (=AY (1 - )
dt (=Y (K 1022 (1= )2
X @)+ D a0 Fy () = pi()(1 = rig)zi] (10)
=Lt

Example (network of M/M/1/K queues) We apply the method to networks of
M/M/1/K queues driven by constant A and p. The networks are initially empty. The ac-
curacy of the results is demonstrated by comparing against simulation. The first example is
the network shown in Figure 5(a). Evolutions of instantaneous average queue size for the two
queues are shown in Figure 5(b) and (c¢). A second example, dealing with a tandem network
with feedback, is shown in Figure 6. | |

From experimentation we find that the method works very well for open queueing networks
but fails for closed queueing networks. To work well with closed queueing networks, we need
the standard normalization constant (for computing B, U and N).

4 Numerical Issues

Recall that we model TP networks by networks of M/M/1/K queues. We are interested in
IP networks with large link speeds (a 10%packets/sec), large link buffers (= 10*packets), and
high utilizations, which translates into large values for K, A, and p. This makes the system of
differential equations for z;(t) extremely stiff, giving rise to problems of numerical stability and
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Figure 4: Results for M/M/1/K queue with A = 2.0, p = 1.5, K = 10

convergence. Applying regular solving methods to the differential equations as stated above will
produce an incorrect answer or no answer at all, and applying stiff equation solvers will produce
a correct answer but extremely slowly (for a good coverage of differential equation solvers, see
5)).

In this section, we describe how to overcome these problems for networks of M(t)/M(t)/1/K
queues. Consider the differential equation (10). Observe that for high K (= 10%), we have
K~ 0forz < 1—ecand 2% & oo for z > 1 + ¢, for some e. Using this, equation (10) becomes

(L= )2 [ Mi(t) + ( Xofo e mioty min(zy, 1)) — pa(6)(1 = rii)zi ] for 2 <1—¢

dZZ' _2)2 n .
pr o2 LX)+ (0o g oty min(zy, 1) = pa(D)(L = rig)z ] for 2 > 1+
as in equation (10) otherwise

The formulas for N, B and U are similarly modified. For example, for N we have:

T for z; <1—¢
Ny = ¢ Ki+ % for z; > 1+¢ (12)
as in equation (3) otherwise

These modifications are not sufficient. We need to stop using equation (10) around z; = 1.00.
To do so, we first find an € for which N, computed using z = 1 — € and (12) is equalt to the N
computed using z = 1 4+ € and (12). That is,
1+e€ 1—c¢

L s el (13

which yields ¢ = 2/ K. So we make the computation jump over the interval [l —¢, 14¢] as follows:
whenever 1 — 2/K; < z; < 1 would hold, we set z; = 1 + 2/K;; whenever 1 < z; < 14 2/K;
would hold, we set z; = 1 — 2/K;. Outside this interval, we continue using equation (11).

This is still not good enough. For large A and p;, we get a lot of large fluctuations when
zi(t) comes close to the value Af(t)/u;(¢). This is because dz;(t)/dt becomes highly negative
(positive) when z;(t) is slightly higher (lower) than AF(¢)/u;(¢). To overcome this problem, we
exploit a monotonicity property.
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Figure 5: A simple network and the results obtained for it.

Consider the evolution of z;. At any moment?, z; tends to evolve monotonically (increasing or
decreasing) from its current value to A7 (¢)/p:(¢). So we introduce a “slope” flag which indicates
the sign of the slope of z;, i.e., positive when z; 1s increasing and negative when z; is decreasing.
The initial value of the slope flag is determined by the sign of dz;(0.00)/dt. While X*(¢)/pu(t)
does not change, the flag does not change. At each time step in the numerical solution, if we
obtain a negative dz;(t)/dt and the slope flag is positive, we do the following: if A7 (¢)/p;(?) has
decreased from its value at the previous time step, set the slope flag to negative, otherwise set
dz;i(t)/dt to 0. We proceed in a similar way if we obtain a positive dz;(t)/dt and the slope flag
is negative.

This strategy is also used when modifying z; around 1.00. whenever 1 —2/K; < z; < 1 would
hold, we set z; = 1+2/K; only if the slope flag is plus; whenever 1 < z; < 1+ 2/K; would hold,
we set z; = 1 — 2/ K; only if the slope flag is negative.

Finally, some implementation issues. We use the standard Runge-Kutta method, of fixed
order, choosing a proper step size (around 1072). We take care that step - max;z; < marAz
holds, so that the step can be smaller when some dz; /dt is large. The modifications of the slope
flags and the jump over 1.00 are handled outside the inner Runge-Kutta loop.

The combination of all these techniques yields a very fast and accurate solver (see run times
in following section).



5 Evolutions of IP Networks

This section describes evolutions for two IP networks, one of 52 nodes and one of 1000 nodes.
We used the Transit-Stub model in the GT-ITM (Georgia Tech Internetwork Topology Models)
[1] to generate the network topoplogies.

The network of 52 nodes is displayed in Figure 7. Figures 8 and 9 show the evolution of
the instantaneous queue size at various links. Each figure has two curves, one obtained by
the Z-iteration and one by averaging b simulation runs. The Z-iteration took 18 seconds of
computation time on an Ultra Sparc, whereas each simulation run took 30 minutes for a total
of 2.5 hours for the 5 simulations.

The plots for links 1-17 and 3-1 in the figures clearly show that many more simulations need
to be averaged to obtain decent confidence intervals, probably around 20 simulations which
would require about 10 hours (as opposed to the Z-iteration’s 18 seconds). Even though the
simulations in the other plots in the figures appear to be of adequate confidence, this is a
misleading conclusion resulting from the large scaling in these plots. For instance, plots of the
blocking probabilities on these links would show variation similar to that in the plots for links
1-17 and 3-1.

The 1000-node network is “shown” in Figure 10, with certain parts relevant to the evolutions
highlighted. The subsequent figures show the evolution of the instantaneous queue size at various
links, obtained by the Z-iteration. It required about 18 minutes of computation time. We did
not attempt a simulation of this as that would have taken far too long (at least many days for
one run).

6 Conclusions and Future Work

Queuing systems are a natural way of modeling computer networks and many other systems.
One usually obtains steady-state metrics of queueing models, because this is relatively tractable
for many kinds of queueing systems. But steady-state metrics do not offer answers to many
interesting questions. Transient evolutions, on the other hand, can provide answers to most
questions that one would like to ask in evaluating a system. They also allow for realistic
modeling of critical events such as network routing updates, unlike steady-state models.

Transient metrics are usually very hard to obtain, unmanageable by analytical methods and
time-consuming by simulation. But the Z-iteration changes this premise, allowing very fast
computation of some very useful transient metrics. It translates a queuing network with N
nodes into a system of N coupled differential equations. Looking at the results and the run
time, we conclude that it offers the power of simulation at a fraction of cost for these transient
metrics.

One area of future work is to extend the results here to multi-class queueing networks. These
would be needed for modeling QoS datagram networks (incorporating buffer and bandwidth
reservation), like the next generation of IP networks.

Another area of future work is to develop a performance evaluation procedure. Using the
Z-iteration, one can obtain evolutions of ensemble transient metrics. But this by itself does not
amount to evaluation. We need to develop a collection of scenarios of adequate coverage for
a given network, obtain their evolutions and resulting metrics, interpret the data, and reach
conclusions.
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N(t) in packets

N(t) in packets

Network consists of 52 nodes and 66 links
organized as 1 backbone (nodes 0, 1, 2, 3)
and 8 LANs (attached via access links at
nodes 13, 6, 17, 25, 31, 36, 41, 50).

Buffer capacity for outgoing link queues
backbone/access link: 50,000 pkts
LAN link: 25,000 pkts

Bandwidth of links
backbone/access link: 30,000 pkts/sec
LAN link: 15,000 pkts/sec

Workload
457 end-to-end connections, each
with poisson traffic of 1500 pkts/sec

Routing
single shortest-hop route for each connection

Perturbation event
at time 10 sec, the link indicated by arrow fails
routes are recomputed, and changes in link
queues are plotted.

Figure 7: Network 1: “small” network of 52 nodes.
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Figure 10: Network 2: overview.
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Figure 11: Network 2: instantaneous queue size evolution for links 10-11, 10-7 and 7-1.
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Figure 12: Network 2: instantaneous queue size evolution for 7-10, 22-2 and 24-22.
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Figure 13: Network 2: instantaneous queue size evolution for links 53-54, 190-189 and 189-194.



