
Fast Evaluation of Ensemble Transients of Large IP Networks �Catalin T. Popescu A. Udaya Shankarcpopescu@cs.umd.edu shankar@cs.umd.eduDepartment of Computer ScienceUniversity of Maryland, College ParkCS-TR-3903May 11, 1998AbstractWe extend a numerical approximate solution method (the Z-iteration) to time-dependentopen networks of M(t)/M(t)/1/1 and M(t)/M(t)/1/K queues, and apply the method to obtaintransient performance metrics of large IP networks. The method generates a set of coupled dif-ferential equations, one for each queue in the network. The equations are numerically unstableunder certain conditions (e.g., large bandwidths and bu�ers), and we present techniques to over-come this problem. The resulting numerical procedure is accurate and very fast. For example,a 20-second evolution for a 1000-node network with high-speed links (� 104packets/sec) andlarge bu�ers (� 104packets) was obtained in 18 minutes on an Ultra Sparc, whereas simulationwould take days.1 IntroductionEvaluating the performance of large IP networks is an important problem, but an adequatetechnique does not currently exist. Analytical approaches cannot handle many critical networkfeatures. Packet-level simulation is popular but it is extremely slow when bandwidths are highand bu�ers are large, even for networks of moderate size. Flow-level simulation is faster but itsaccuracy is questionable [because it makes the unrealistic assumption that the interval betweensuccessive changes in the network-wide ow pattern is large enough so that steady state holdsfor most of the interval].We take an alternative approach, based on transient metrics. We are interested in observingthe behavior of a network when a perturbation is applied, such as a node/link failure, loadchange, routing change, etc. We would like to know, for example, which links become congestedand how quickly, how long an overload can be maintained before the blocking probability exceedsa speci�c value, and such like.Time-dependent queuing systems are a natural modeling tool for investigating such issues.Their arrival and service rates can vary over time to reect external or feedback control, and solv-ing them yields transient responses to network and workload changes. The di�culty, of course,is that these systems are not tractable by traditional approaches. Analytical and simulationapproaches fail for the same reasons mentioned above. Numerical solutions are unmanageablefor realistic networks because the state space becomes enormous.�This work is supported partially by ARPA contract number DABT6396C0075 and DoD contract numberMDA90497C3015 to the University of Maryland. It should not be interpreted as representing the opinions or viewsof ARPA, DoD, or the U.S. Government. 1



The Z-iteration is an attempt to address this problem. It is a numerical approximate solutionmethod that yields the time evolution of ensemble metrics (e.g. instantaneous queue size distribu-tion) at a cost several orders cheaper than simulation. The �rst version of the Z-iteration [3, 4]handled single multi-class multi-resource queues, adequate for analyzing connection-orientednetworks with strict access control and resource reservation. In this paper, we develop anotherformulation that also handles networks of time-dependent queues, appropriate for modelingclassical datagram networks.Figure 1 illustrates an application of this Z-iteration. The network in Figure 1(a) has 52nodes, 66 links, and 457 end-to-end user classes subject to shortest-hop routing. At time t = 10sec, the link marked by the arrow fails and routes are updated. Figure 1(b) shows the evolutionof the instantaneous average queue size at the link from nodes 1 to 3, obtained from Z-iterationand from simulation. The Z-iteration took 18 seconds, compared with 2.5 hours for packet-levelsimulation (averaging over 5 runs).
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(a) (b)Figure 1: A network and example evolutionThe rest of the paper is organized as follows. Section 2 describes how we model a datagramnetwork by a network of time-dependent queues. Section 3 describes the Z-iteration for singlequeues and for networks of queues. Section 4 examines numerical stability issues. Examples arepresented in Section 5. We conclude in Section 6.2 Network ModelWe consider a datagram network with some routing algorithm. The links have �xed bandwidthsand the routers allocate �xed-size bu�ers for each outgoing link. The tra�c consists of end-to-end user classes, each de�ned by source node, destination node, and time-dependent packetgeneration rate. We assume �xed-size packets. We focus on networks with high-speed links(� 104packets/sec) and large link bu�ers (� 104packets), similar to the IP networks of today.We model each outgoing link of a node by a M/M/1/K queue with service rate equal to thelink bandwidth and max queue size K equal to the link bu�er space. The routing between thequeues is determined by the network topology, user classes, and routing tables.To illustrate, suppose node A has an outgoing link A1 to node B, and node B has outgoinglinks, B1, B2, and B3. Then in the queueing model, the output of A1 can go to B1, B2, B3,2



or be absorbed within node B, as shown in Figure 2. The probability rA1,B1 of going to B1 isgiven by the fraction of the total user class rates in A1 that are forwarded to B1 (note that thepath of a user class is determined by the routing tables). For example, if the tra�c that arrivesat queue A1 consists of two classes, one with rate 5000 pkts/sec and another with rate 3000pkts/sec, and node B routes the �rst class to B1 and the second class to B2, than the routingprobability for B1 is 5000=(5000+ 3000) = 5=8, for B2 is 3000=(5000+ 3000) = 3=8, and for B3is 0.
r
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Queue B3
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A1,B3Figure 2: The queue model for a link from node A to node B.3 Z-iterationThe Z-iteration is an e�cient numerical approximation method that computes instantaneousensemble metrics of time-dependent queuing systems. It is based on functional approximationsof relationships between instantaneous metrics by the corresponding steady-state relationships.These approximations allow the evolution of the metrics to be de�ned by a small number ofdi�erential equations, rather than the large number of Chapmann-Kolmogorov equations (whichare as many as the maximum queue size).Table 1 gives the notation we use for a queue. Instantaneous parameters refer to a queuewith time-varying arrival and service rates. Steady-state parameters refer to a queue in steadystate, with constant arrival and service rates.3.1 Old VersionThe �rst version of the Z-iteration was based on the following ow equation, obtainable fromthe Chapmann-Kolmogorov equations:dN (t)dt = �(t)[1� B(t)]� �(t)U (t) (1)The idea is to express B(t) and U (t) in terms of N (t), resulting in a single scalar di�erentialequation for N (t). It turns out that the relationship between B(t) and N (t) is very well approx-imated by the relationship between steady-state B and steady-state N . The same holds for therelationship between U (t) and N (t).Thus we want functions expressing B and U in terms of N . What is available, however, arefunctions expressing N , B, and U in terms of the steady-state tra�c intensity � (= �=�). Wedenote these functions by FN(�), FB(�), and FU(�), respectively. For example, for a M/M/1/1queue we have [2] N = FN(�) = �1� �3



�(t) instantaneous arrival rate at time t�(t) instantaneous service rate at time tN (t) instantantaneous average queue size at time tB(t) instantaneous blocking probability at time tU (t) instantaneous utilization at time tz(t) instantaneous virtual tra�c intensity at time t (6= �(t)=�(t))� steady-state arrival rate� steady-state service rate� steady-state tra�c intensity (= �=�)N steady-state average number of customersB steady-state blocking probabilityU steady-state utilizationFN(�) function yielding N in terms of �FB(�) function yielding B in terms of �FU(�) function yielding U in terms of �Table 1: NotationB = FB(�) = 0U = FU(�) = � (2)For a M=M=1=K queue, we have [2]:N = FN(�) = �1� � � (K + 1)�(K+1)1� �(K+1)B = FB(�) = 1� �1� �(K+1) �KU = FU(�) = 1� �K1� �(K+1) � (3)For M/M/1/1, we can invert FN(�) and so obtain B and U in terms of N , speci�cally,B = 0 and U = N=(N + 1). But in general, including the case of blocking queues, we cannotinvert FN(�) analytically. So instead we inverted numerically, using another approximation asfollows:� U is computed from N assuming a non-blocking system.� B is computed as the �xed point of B = FB(�) and � = U=(1�B) (obtained by equatingthe inow �(1�B) to the outow �U ). The resulting value of � is simply the steady-statetra�c intensity value consistent with B and N .This approach works very well for M(t)/M(t)/1/1 and M(t)/M(t)/K/K queues, and forM(t)/M(t)/1/K queues when �(t) < �(t). But it does not work for networks of these queues orfor M/M/1/K queues when �(t) > �(t).3.2 New VersionWe now develop a formulation of the Z-iteration that eliminates the non-blocking assumptionused in the numerical inversion operation above. This version works for open networks ofM(t)/M(t)/1/K and M(t)/M(t)/1/1 queues.As mentioned above, formulas for N , B and U are usually in terms of �. This suggests thatwe introduce an instantaneous version of �, which we refer to as the instantaneous virtual tra�c4



intensity, denoted by z(t), and develop a di�erential equation for z(t) rather than for N (t).Then N (t), U (t), and B(t) can be approximated byN (t) = FN(z(t))B(t) = FB(z(t))U (t) = FU(z(t)) (4)Although z(t) is �ctitious, it has a natural interpretation: at any time t, it is the amountof tra�c intensity that if applied constantly would result in steady-state N , B, and U equal toN (t), B(t), and U (t), repsectively. In fact, z(t) is just a more accurate version of the iterate� that appears in the numerical �xed-point inversion in the old version. Note that z(t) is notequal to �(t)=�(t).To obtain a di�erential equation for z(t), we start with the di�erential equation for N (t)dN (t)dt = �(t)[1� B(t)]� �(t) U (t);Replacing dN (t)=dt by (dN (t)=dz(t))(dz(t)=dt), dN (t)=dz(t) by dFN(z)=dz, B(t) by FB(z(t)),and U (t) by FU(z(t)), we obtaindz(t)dt = 1dFN(z)=dz [�(t)(1 � FB(z(t))) � �(t)FU(z(t))] (5)Thus we have a scalar di�erential equation whose solution yields the evolution of z(t). Pluggingz(t) into equation (4) yields evolutions of N (t), U (t), and B(t).Equation (5) can be instantiated for any type of M/M/� queue. For a M/M/1/1 queue, weobtain dz(t)dt = (1� z(t))2(�(t) � �(t)z(t)) (6)For a M/M/1/K queue, we obtaindz(t)dt = (1 � z(t)(K+1))(1 � z(t)K )(1� z(t))2(1� z(t)(K+1))2 � (K + 1)2z(t)K(1� z(t))2 (�(t) � �(t)z(t)) (7)Example (M/M/1/K) We apply the method to M/M/1/K queues driven by constant �and �. The queues are initially empty. The accuracy of the results is demonstrated by comparingagainst direct solution of the Chapman-Kolmogorov equations. Figure 3 has plots of N (t) andU (t) for � = 1:5, � = 2:0 and K = 7. Figure 4 shows N (t) and B(t) for � = 2:0, � = 1:5 andK = 10.3.3 Networks of QueuesWe extend the Z-iteration to networks of M(t)/M(t)/1/1 and M(t)/M(t)/1/K queues. Here, adeparture from queue i is routed to queue j with a time-dependent probability rij(t), and leavesthe network with probability 1�Pj rij(t). The arrivals to queue i consist of external arrivals�i(t) (from outside the network) and departures from queues in the network routed to queue i.The total arrival rate of queue i, denoted ��i (t), is given by��i (t) = �i(t) + nXj=1 rji(t) �j(t) Uj(t): (8)Any arriving customer can be blocked, except, of course, customers feeding back from queuei. The di�erential equation for zi(t), the instantaneous virtual tra�c intensity of queue i, is5



0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

time(sec)

N
(t

)

Evolution of N(t)

Z−iteration       
Chapman−Kolmogorov

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time(sec)

U
(t

)

Evolution of U(t)

Z−iteration       
Chapman−KolmogorovFigure 3: Results for M/M/1/K queue with � = 1:5, � = 2:0, K = 7obtained by appropriately modifying equation (6) or (7). If queue i is a M/M/1/1 queue, wehave dzi(t)dt = (1� zi(t))2[�i(t) + nXj=1;j 6=i rji(t)�j(t)FUj(zj(t)) � �i(t)(1� rii(t))zi(t)] (9)If queue i is a M/M/1/K queue, we havedzidt = (1� z(Ki+1)i )(1 � zKii )(1 � zi)2(1� z(Ki+1)i )2 � (Ki + 1)2zKii (1� zi)2� [�i(t) + ( nXj=1;j 6=i rji�j(t)FUj(zj)) � �i(t)(1� rii)zi] (10)Example (network of M/M/1/K queues) We apply the method to networks ofM/M/1/K queues driven by constant � and �. The networks are initially empty. The ac-curacy of the results is demonstrated by comparing against simulation. The �rst example isthe network shown in Figure 5(a). Evolutions of instantaneous average queue size for the twoqueues are shown in Figure 5(b) and (c). A second example, dealing with a tandem networkwith feedback, is shown in Figure 6.From experimentation we �nd that the method works very well for open queueing networksbut fails for closed queueing networks. To work well with closed queueing networks, we needthe standard normalization constant (for computing B, U and N ).4 Numerical IssuesRecall that we model IP networks by networks of M/M/1/K queues. We are interested inIP networks with large link speeds (� 104packets/sec), large link bu�ers (� 104packets), andhigh utilizations, which translates into large values for K, �, and �. This makes the system ofdi�erential equations for zi(t) extremely sti�, giving rise to problems of numerical stability and6
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5 Evolutions of IP NetworksThis section describes evolutions for two IP networks, one of 52 nodes and one of 1000 nodes.We used the Transit-Stub model in the GT-ITM (Georgia Tech Internetwork Topology Models)[1] to generate the network topoplogies.The network of 52 nodes is displayed in Figure 7. Figures 8 and 9 show the evolution ofthe instantaneous queue size at various links. Each �gure has two curves, one obtained bythe Z-iteration and one by averaging 5 simulation runs. The Z-iteration took 18 seconds ofcomputation time on an Ultra Sparc, whereas each simulation run took 30 minutes for a totalof 2.5 hours for the 5 simulations.The plots for links 1-17 and 3-1 in the �gures clearly show that many more simulations needto be averaged to obtain decent con�dence intervals, probably around 20 simulations whichwould require about 10 hours (as opposed to the Z-iteration's 18 seconds). Even though thesimulations in the other plots in the �gures appear to be of adequate con�dence, this is amisleading conclusion resulting from the large scaling in these plots. For instance, plots of theblocking probabilities on these links would show variation similar to that in the plots for links1-17 and 3-1.The 1000-node network is \shown" in Figure 10, with certain parts relevant to the evolutionshighlighted. The subsequent �gures show the evolution of the instantaneous queue size at variouslinks, obtained by the Z-iteration. It required about 18 minutes of computation time. We didnot attempt a simulation of this as that would have taken far too long (at least many days forone run).6 Conclusions and Future WorkQueuing systems are a natural way of modeling computer networks and many other systems.One usually obtains steady-state metrics of queueing models, because this is relatively tractablefor many kinds of queueing systems. But steady-state metrics do not o�er answers to manyinteresting questions. Transient evolutions, on the other hand, can provide answers to mostquestions that one would like to ask in evaluating a system. They also allow for realisticmodeling of critical events such as network routing updates, unlike steady-state models.Transient metrics are usually very hard to obtain, unmanageable by analytical methods andtime-consuming by simulation. But the Z-iteration changes this premise, allowing very fastcomputation of some very useful transient metrics. It translates a queuing network with Nnodes into a system of N coupled di�erential equations. Looking at the results and the runtime, we conclude that it o�ers the power of simulation at a fraction of cost for these transientmetrics.One area of future work is to extend the results here to multi-class queueing networks. Thesewould be needed for modeling QoS datagram networks (incorporating bu�er and bandwidthreservation), like the next generation of IP networks.Another area of future work is to develop a performance evaluation procedure. Using theZ-iteration, one can obtain evolutions of ensemble transient metrics. But this by itself does notamount to evaluation. We need to develop a collection of scenarios of adequate coverage fora given network, obtain their evolutions and resulting metrics, interpret the data, and reachconclusions.References[1] Ken Calvert Ellen W. Zegura and S. Bhattacharjee. How to Model an Internetwork. InIEEE Infocom '96, San Francisco, CA, 1996.[2] L. Kleinrock. Queueing Systems, volume I and II. New York: Wiley, 1976.9



[3] I. Matta and A.U. Shankar. Z-Iteration: A Simple Method for Throughput Estimationin Time-Dependent Multi-Class Systems. In ACM SIGMETRICS/PERFORMANCE '95,pages 126{135, Ottawa, Canada, May 1995.[4] I. Matta and A.U. Shankar. Fast Time-Dependent Evaluation of Integrated Services Net-works. Computer Networks and ISDN System { Special Issue on Modeling of Wired andWireless ATM, 1998. To appear. Preliminary version in Proc. IEEE ICNP '94, 1994.[5] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer-Verlag, secondedition, 1993.
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organized as 1 backbone (nodes 0, 1, 2, 3)
and 8 LANs (attached via access links at
nodes 13, 6, 17, 25, 31, 36, 41, 50).

Network consists of 52 nodes and 66 links

Buffer capacity for outgoing link queues
   backbone/access link: 50,000 pkts
   LAN link:  25,000 pkts

Bandwidth of links
   backbone/access link: 30,000 pkts/sec
   LAN link:  15,000 pkts/sec

                        
Workload
  457 end-to-end connections, each
   with poisson traffic of 1500 pkts/sec

Routing
  single shortest-hop route for each connection

Perturbation event
  at time 10 sec, the link indicated by arrow fails
  routes are recomputed, and changes in link
queues are plotted.
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Figure 7: Network 1: \small" network of 52 nodes.
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Figure 8: Network 1: instantaneous queue size evolution for links 0-3, 1-3 and 1-17.
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Figure 9: Network 1: instantaneous queue size evolution for links 3-1, 31-32 and 20-17.ii



The links indicated by arrows will 
fail at time 10 sec.

The labeled nodes will have the 
traffic rate of their outgoing connections
modified at the same time.
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Figure 10: Network 2: overview.
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Figure 11: Network 2: instantaneous queue size evolution for links 10-11, 10-7 and 7-1.iii
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Figure 12: Network 2: instantaneous queue size evolution for 7-10, 22-2 and 24-22.
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Figure 13: Network 2: instantaneous queue size evolution for links 53-54, 190-189 and 189-194.iv


