
CAUCHY-LIKE PRECONDITIONERS FOR 2-DIMENSIONALILL-POSED PROBLEMS �MISHA E. KILMERyAbstract. Ill-conditioned matrices with block Toeplitz, Toeplitz block (BTTB) structure arisefrom the discretization of certain ill-posed problems in signal and image processing. We use apreconditioned conjugate gradient algorithm to compute a regularized solution to this linear systemgiven noisy data. Our preconditioner is a Cauchy-like block diagonal approximation to an orthogonaltransformation of the BTTB matrix. We show the preconditioner has desirable properties when thekernel of the ill-posed problem is smooth: the largest singular values of the preconditioned matrixare clustered around one, the smallest singular values remain small, and the subspaces correspondingto the largest and smallest singular values, respectively, remain unmixed. For a system involving npvariables, the preconditioned algorithm costs only O(np(lgn + lg p)) operations per iteration. Wedemonstrate the e�ectiveness of the preconditioner on three examples.Key words. Regularization, ill-posed problems, Toeplitz, Cauchy-like, preconditioner, conju-gate gradient, normal equations, image processing, deblurringAMS(MOS) subject classi�cations. 65R20, 45L10, 94A12March 28, 19971. Introduction. The two-dimensional integral equationZ �u�l Z �u�l t(�; �; ; �)f̂ (�; �)d�d� = ĝ(; �)is often used to describe the process by which data in signal and image processingapplications is acquired. In optics, for example, t is called the point spread functionand describes the response of the system or measuring device to a single point oflight at coordinates (�; �) [10]. Thus if the values f̂(�; �) represent light intensitiesreected from a three-dimensional object, the integral equation might be used tomodel the blurring of that object when its picture is taken using a camera with awarped lens.For simplicity, suppose quadrature is used to discretize the integral, and supposep is the number of grid points �j in the � direction and n is the number of grid points�l in the � direction. The integral equation becomes a system of np linear equationsof the form T f̂ = ĝ(1)where f̂ is np � 1 with entries f̂ (�j; �l), 1 � j � p, 1 � l � n. We note that manyother discretization methods for the integral equation yield a system of np linearequations in which p and n have analogous de�nitions.A Toeplitz matrix Ti is one whose elements are constant along diagonals; thatis, the (k; j) entry in Ti is given by t(i)k�j . In applications, properties of the kernel,discretization process, and a suitable ordering of unknowns can cause T to have ablock Toeplitz structure in which each p�p block is Toeplitz. This structure arises, for� This work was supported by the National Science Foundation under Grant CCR 95-03126.y Applied Mathematics Program, University of Maryland, College Park, MD 20742(mek@math.umd.edu) 1



example, by applying quadrature to a kernel t of the form t(�; �; ; �) = t(��; ���),ordering the unknowns f̂ (�j; �l) �rst by increasing j, then by increasing l. In thiscase, the (i; j) component in the (k; l) block is given by (Tkl)ij = t(k�l)i�j for 1 � i; j � p,1 � k; l � n. We then say that T is a block Toeplitz, Toeplitz block (BTTB) matrix.Given ĝ and T in (1), the discrete inverse problem is to recover f̂ . However, thecontinuous problem is generally ill-posed in the sense that small changes in ĝ causearbitrarily large changes in f̂ . Consequently, the matrix T will be ill-conditioned.Recovery of f̂ is then complicated by the fact that noise e is also present in themeasured data. That is, we have measured g rather than ĝ, whereTf = ĝ + e = g:(2)Given the ill-conditioning of T , the exact solution, f , to (2) is not a reasonableapproximation to f̂ . We instead seek an approximate solution f by solving a nearby,more well-posed problem. This method of approximating f̂ is called regularization.We use a preconditioned conjugate gradient algorithm to compute such a regularizedsolution. A discussion of the methods of direct and iterative regularization techniquescan be found in [15].Iterative methods like conjugate gradients can take advantage of the well-knownfact that matrix-vector products involving BTTB matrices with n blocks of size pcan be computed in O(np(lgp + lgn)) operations by embedding the matrix insidea 2pn � 2pn block circulant matrix with circulant blocks [4]. Also, preconditionersfor BTTB matrices which are block circulant (BC), circulant block (CB), or blockcirculant with circulant blocks (BCCB) have been found to be very e�cient [4, 23, 1].For example, if the preconditioner is determined to be block Toeplitz with circulantblocks (BTCB), applying the preconditioner can be reduced to solving p systemsinvolving n � n Toeplitz matrices [4]. However, for inde�nite and/or ill-conditionedsystems, the O(n lg2 n) and O(n2) factorization algorithms for Toeplitz matrices canbe numerically unstable; these algorithms can require as many as O(n3) operationsin order to maintain stability [25, 12, 7].To overcome this di�culty, we make use of the fact that Toeplitz matrices arerelated to Cauchy-like matrices by fast orthogonal transformations [17, 9, 11]. Theparticular Cauchy-like matrices discussed in x2 permit fast matrix-vector multiplica-tion. An advantage of Cauchy-like matrices is that their inverses are also Cauchy-like,unlike Toeplitz matrices whose inverses are not generally Toeplitz. In addition, modi-�ed complete pivoting can be incorporated in the LDU factorization of a Cauchy-likematrix for a total cost of only O(n2).In the course of this paper we develop a block Cauchy-like preconditioner that canbe used to �lter noise and accelerate convergence of the conjugate gradient iterationto an approximate solution of (2) when T is BTTB. This preconditioner is the two-dimensional generalization of the preconditioner for Toeplitz matrices discussed in[22]. We begin with a discussion in x2 of Cauchy-like matrices and some of theirimportant properties. We discuss the regularizing properties of conjugate gradientsand our choice of preconditioner in x3. In x4 we show that our preconditioner hasdesirable properties. Computational issues are the focus of x5, where it is shown thateach iteration can be completed in O(pn(lg p + lgn)) operations. Section 6 containsnumerical results for several examples, and x7 presents conclusions and future work.2



2. Transformation from Toeplitz to Cauchy-like structure. A matrix Chaving the formC = � aTi bj!i � �j�1�i;j�n (ai; bj 2 C`�1;!i; �j 2 C;!i 6= �j)(3)is called a Cauchy-like, or generalized Cauchy, matrix. If ` = 1 and aibj = 1, thenthe matrix is said to be Cauchy. The matrix C can also be identi�ed as the uniquesolution of the displacement equation
C � C� = ABT(4)where
 = diag(!1; : : : ; !n);� = diag(�1; : : : ; �n); A = 0B@ aT1...aTn 1CA ; B = 0B@ bT1...bTn 1CA :The matrices A and B are called the generators of C with respect to 
 and �,and ` � n is called the displacement rank. Notice that only the 2n` + 2n non-zeroentries of A;B;
;� need to be stored to completely specify the entries of the matrix.Fortunately, certain properties of Cauchy-like matrices insure that LU factorizationsof Cauchy-like matrices may be computed using only the matrices 
;� and the gen-erators without ever forming the matrix C; see [9], for example.One disadvantage of Toeplitz matrices is that permutations of Toeplitz matricesare not necessarily Toeplitz, so that incorporating pivoting into fast factorizationschemes becomes di�cult and expensive. However, because of (4), it is easy to showthe following (see [17, 11], for example):Property 1. Row and column permutations of Cauchy-likematrices are Cauchy-like, as are leading principal submatrices.This property and the fact that Schur complements of Cauchy-like matrices areCauchy-like [9] lead to fast algorithms for factoring Cauchy-like matrices which canpivot for stability [9, 11].We use the algorithm developed by Gu [11] which performs a fast O(`n2) variationof LU decomposition with modi�ed complete pivoting. Recall that in complete pivot-ing, at every elimination step one chooses the largest element in the current submatrixas the pivot in order to reduce element growth. Gu proposes instead that one �nd anentry su�ciently large in magnitude by considering the largest 2-norm column of oneof the generators that remains to be factored at each step. This algorithm computesthe pivoted LU factorization (C = PLUQ where P and Q are permutation matrices)[11, Alg. 2] using only the generators, which are easy to determine and to update(see x5), and Gu shows that the algorithm can be e�cient and numerically stable.Although the Cauchy-like matrices of interest to us are full, they have displacementrank ` = 1 or 2, which makes them both e�cient to store using relation (4) andfast to factor. For our purposes it was convenient to set D = diag(u11; : : : ; unn) andU  D�1U to obtain the equivalent factorization C = PLDUQ.We also exploit the following property of Cauchy-like matrices [17].Property 2. The inverse of a Cauchy-like matrix is Cauchy-like:C�1 = �� xTi wj�i � !j�1�i;j�n (xi; wj 2 C`�1):(5) 3



The generators X and W can be determined from the relations [17]CX = A; WTC = BT :(6)Thus, given the LU factorization of C, solving for X and W requires only O(`n2)operations and is stable when C is well-conditioned.The third important property is that Toeplitz matrices also satisfy certain dis-placement equations [21, 9] which allow them to be transformed via fast Fouriertransforms into Cauchy-like matrices [17, 9]:Property 3. Every Toeplitz matrix T satis�es an equation of the formR1T � TR�1 = ABT(7)where A 2 Cn�`, B 2 Cn�`, 1 � ` � 2, andR� = 0BBBBBB@ 0 0 : : : 0 �1 0 � � � � � � 00 1 . . . ...... . . . . . . ...0 � � � 0 1 0 1CCCCCCA :The Toeplitz matrix T is orthogonally related to a Cauchy-like matrixC = FTS�0F �that satis�es the displacement equationS1C � CS�1 = (FA)(BTS�0F �) ;(8)where S1 = diag(1; e 2�in ; : : : ; e 2�in (n�1));S�1 = diag(e�in ; : : : ; e (2n�1)�in );S0 = diag(1; e�in ; : : : ; e�in (n�1));and F is the normalized inverse discrete Fourier transform matrix de�ned byF = 1pn �exp�2�in (j � 1)(k � 1)��1�j;k�n :We note that Toeplitz matrices are orthogonally related to Cauchy-like matricesthrough other fast transformations as well [11]. However, the particular relation inProperty 3 can be exploited to determine a O(n lgn) stable algorithm for multiplica-tion by the inverse of the Cauchy-like matrix [22].Property 3 implies that if T is a Toeplitz block matrix, it satis�es(I 
 F )T (I 
 S�0F �) = C4



where 
 denotes the Kronecker tensor product and C is Cauchy-like. Also, since eachblock of C is of the form FTijS�0F �, where Tij is the (i; j) block of T , the blocks ofC are themselves Cauchy-like. In this case, however, the displacement rank ` of C isbetween p and 2p. Thus, algorithms like Gu's algorithm which rely on C having smalldisplacement rank will become expensive if p is large, requiring O(p(np)2) operationsfor a full factorization. Instead, we seek an approximation to T which, under anappropriate transformation, becomes block diagonal with Toeplitz blocks. Then itsassociated Cauchy-like matrix will be block diagonal with Cauchy-like blocks. In orderto obtain a full factorization of the latter matrix, one need only apply Gu's algorithmto each individual block on the block diagonal. Following the discussion in x3.2, weobserve that a full factorization of the approximation can be obtained in only O(pn2)operations.3. Regularization and preconditioning. We could solve the linear system (2)exactly by transforming the BTTB matrix T to a Cauchy-like matrix as mentionedabove and factoring. However, the solution we would compute in this manner wouldbe hopelessly contaminated with noise, as we now discuss. The analysis will be basedon the following four assumptions:1. The matrix T has been normalized so that its largest singular value is of order1.2. The uncontaminated data vector ĝ satis�es the discrete Picard condition; i.e.,the spectral coe�cients of ĝ decay in absolute value faster than the singularvalues [27, 14].3. The additive noise is zero-mean white Gaussian. In this case, the componentsof the error e are independent random variables normally distributed withmean zero and variance �2.4. The noise level, kek2kĝk2 , is strictly less than one.Let T = U�V T be the singular value decomposition of T and let f be the exactsolution to the noisy system Tf = g = ĝ + e:(9)The spectral coe�cients of the exact solution ĝ and noise e are � = UT ĝ and � = UT e,respectively. For the remainder of the paper we will assume that N = pn is thedimension of T . Using (9), we observe thatf = NXi=1 �i + �i�i vi;(10)where vi denotes the ith column of V and �i denotes the ith diagonal element of thediagonal matrix �.Under the white noise assumption, the coe�cients �i are roughly constant in size,while the discrete Picard condition tells us that the �i go to zero at least as fast asthe singular values �i. Thus, components for which �i is of the same order as �i areobscured by noise.By assumptions 2 and 4, there exists �m > 0 such that for all i > �m, the �i areindeed indistinguishable from the �i. Further, there exists 0 < m� � �m such thatfor i > m� it is never the case that j�ij � j�ij. We therefore choose to partition thecolumns of V into bases for the upper, lower, and transition subspaces as follows.We say that the upper subspace is the space spanned by the �rst m� columns of V .5



Hence the upper subspace corresponds to the largest m� singular values. The lowersubspace is the space spanned by the last N � �m columns for V ; i.e. those columns ofV corresponding to the smallest singular values. Finally, the transition subspace is thespace spanned by the remaining �m�m� columns of V . Since these columns correspondto the mid-range singular values, the transition subspace is generally di�cult to resolveunless there is a gap in the singular value spectrum.Comparing the exact solution f̂ of (1) to f in (10), we see that the greatestdi�erence is in the magnitude of the components in the lower subspace. Thus wechoose to use an iterative method called CGLS which at early iterations produces aregularized solution with small components in the lower subspace and which resemblesf̂ in the upper subspace. An appropriate preconditioner will speed convergence tothis approximate solution without adding components in the lower subspace.3.1. Regularization by preconditioned conjugate gradients. The stan-dard conjugate gradient (CG) method [18] is an iterative method for solving systemsof linear equations for which the matrix is symmetric positive de�nite. If the matrixis not symmetric positive de�nite, one can use the CGLS algorithm [18], a variantof standard CG that solves the normal equations in factored form. If the discretePicard condition holds, then CGLS acts as an iterative regularization method withthe iteration index taking the role of the regularization parameter [8, 13, 15]. Thespread and clustering of the singular values govern the speed and convergence of thealgorithm [26]. Preconditioning is therefore often applied in an e�ort to cluster thesingular values and thus, to speed convergence.According to (10), we desire that the preconditioner cluster only the large singu-lar values for which j�ij � j�ij. Unfortunately, the indices for which this holds aredi�cult, if not impossible, to determine in advance. However, as we show in x4, itis possible to choose a preconditioner that clusters most of the largest m� singularvalues while leaving the small singular values, and with them, the lower subspace, rel-atively unchanged. In this case, the �rst few iterations of CGLS will quickly capturethe solution lying within the upper subspace. Ideally, a modest number of subse-quent iterations will provide some improvement over the transition subspace withoutsigni�cant contamination from the noise contained in the lower subspace.3.2. The preconditioner. The given BTTB matrix T has the following blockstructure: T = 26666664 T0 T�1 T�2 : : : T1�nT1 T0 T�1 : : : T2�nT2 T1 . . . . . . T3�n... . . . . . . . . . ...Tn�1 : : : : : : T1 T0 37777775 ;where each Ti is Toeplitz; that is, (Ti)kl = t(i)k�l. For each Ti, let us de�ne Hi to beits T. Chan circulant approximation [6], so that the diagonals of Hi are given byh(i)j = ( (n�j)t(i)j +jt(i)j�nn 0 � j < nh(i)n+j 0 < �j < n :6



The matrixHi is the closest circulant matrix in the Frobenius norm to Ti [6]. Finally,we de�ne H to be the BTCB matrixH = 26666664 H0 H�1 H�2 : : : H1�nH1 H0 H�1 : : : H2�nH2 H1 . . . . . . H3�n... . . . . . . . . . ...Hn�1 : : : : : : H1 H0 37777775 :It was shown in [4] that H is the closest BTCB matrix to T in the Frobenius norm.The goal is to develop a preconditioner from an appropriately transformed version ofthe matrix H.We de�ne the matrices F and S0 as in Property 3, with the dimension being eitherp or n as is appropriate in context. Since the matrices T and H are block Toeplitz,the matrices (I 
 F )T (I 
 F �) and (I 
 F )H(I 
 F �) with their (i; j) blocks givenby FTi�jF � and FHi�jF �, respectively, are also block Toeplitz.Now since the Hi are circulant, they can be diagonalized by the matrix F [4];therefore, for each (i; j), FHi�jF � is diagonal. In x1 we assumed that the unknownsare ordered �rst in the increasing � direction, then in order of increasing �. Let P̂be the N � N permutation matrix which reorders the unknowns in the increasing �direction �rst. Then ~T = P̂ (I 
 F )T (I 
 F �)P̂Tis a block matrix with Toeplitz n� n blocks while~H = P̂ (I 
 F )H(I 
 F �)P̂Tis a block diagonal matrix with n� n Toeplitz blocks.Since ~T has size n Toeplitz blocks, ~T is related to a Cauchy-like matrix ~C asmentioned at the end of x2: ~C = (I 
 F ) ~T (I 
 S�0F �)where F and S0 now have dimension n. Each block of ~C is Cauchy-like. Likewise, ~His related to a Cauchy-like matrix with Cauchy-like blocks:~K = (I 
 F ) ~H(I 
 S�0F �):Since ~H is block diagonal with Toeplitz blocks, ~K is block diagonal with Cauchy-likeblocks. Finally, we observe that solving Tf = g must be equivalent to solving~C ~f = ~gwhere ~f = (I 
 FS0)P̂ (I 
 F )f , ~g = (I 
 F )P̂ (I 
 F )g.As mentioned before, since ~C is Cauchy-like, we could apply Gu's factorizationalgorithm directly to it; however, the cost of a full factorization would be O(p(np)2)operations. Fortunately, ~K, our approximation of ~C, is block diagonal. Since each ofthe p blocks ~Kii is an n�n Cauchy-like matrix of displacement rank 2, to completelyfactor ~K requires only O(pn2) operations.A factorization of ~Kii using a modi�ed complete pivoting strategy may lead toan interchange of rows (speci�ed by a permutation matrix Pi) and columns (speci�ed7



by a permutation matrix Qi). Let P = diag(P1; : : : ; Pp) and Q = diag(Q1; : : : ; Qp).We will use an appropriate piece of the matrix P T ~KQT , to be de�ned shortly, toprecondition the matrixP T ~CQT . First we summarize the sequence of transformationswhich leads to the development of the preconditioner:1. Transform the matrices T and H to the Toeplitz block matrices ~T and ~H:~T = P̂ (I 
 F )T (I 
 F �)P̂T~H = P̂ (I 
 F )H(I 
 F �)P̂T :Note that ~H is also block diagonal.2. Transform the matrices ~T and ~H to Cauchy-like matrices with Cauchy-likeblocks ~Cij; ~Kij, respectively:~C = (I 
 F ) ~T (I 
 S�0F �)~K = (I 
 F ) ~H(I 
 S�0F �) :3. Permute the matrices ~C and ~K using the block diagonal permutation matricesP and Q: C = PT ~CQTK = PT ~KQT :Note that since all the transformations are accomplished with unitary matrices,C and T have the same singular values, as do K and H.Hence, setting y = Q ~f , and z = P T ~g, the problem we wish to solve isCy = z:(11)We choose a left preconditioner M , determined from K, so thatM�1Cy = M�1zand use CGLS to solve the corresponding normal equations(M�1C)�(M�1C)y = (M�1C)�M�1z:(12)Recall from x3.1 that we wish to design a preconditioner that clusters the largestm� singular values while leaving the the small singular values unchanged. Notice alsothat the singular values of K, our approximation to C, are simply the union of thesingular values of the Kii = PTi ~KiiQTi . Let � be set of the largest m� singular valuesof K. Then precisely mi singular values of Kii are in �, with m� = Ppi=1mi. As aresult of pivoting during Gu's factorization algorithm, the mi�mi leading submatrixof Kii corresponds to the well-conditioned part of K while the rest contributes to theill-conditioned part. Let Kii = LiiDiiUii and write this equation in block form, wherethe upper left blocks are mi �mi:" K(1)ii K(2)iiK(3)ii K(4)ii # = " L(1)ii 0L(2)ii L(3)ii #" D(1)ii 00 D(2)ii #" U (1)ii U (2)ii0 U (3)ii # :(13)Here L(1)ii ; L(3)ii are lower triangular, U (1)ii ; U (3)ii are upper triangular, and D(1)ii andD(2)ii are diagonal. Then we de�neMi = � L(1)ii 00 I �� D(1)ii 00 I � � U (1)ii 00 I � = � K(1)ii 00 I � :8



Finally, we choose as our preconditioner the matrixM = diag(M1; : : : ;Mp):Since leading principal submatrices of Cauchy-like matrices are Cauchy-like, M is ablock diagonal matrix with Cauchy-like blocks each augmented by an identity.Let us compare our preconditioning scheme with the preconditioning methodgiven in [13] for the BTTB matrices of discrete ill-posed problems. In [13] the precon-ditioner is determined by forming the T. Chan BCCB approximant to T , computingits eigenvalues via 2-D fast Fourier transforms, and then replacing all the eigenvaluesbelow a tolerance with ones. Therefore, our method is similar to their BCCB basedpreconditioner in that we also rely on a rank revealing factorization to determine theappropriate cuto� which is used to form the preconditioner. We choose our cuto�tolerance in a manner similar to that given in [13]. However, our preconditioner isformed from a BTCB approximant to T , which requires approximating T only on onelevel unlike the BCCB approximant which requires approximating T on two levels.The most notable di�erence is that is we rely on a transformation to Cauchy-like matrices; therefore we may use a fast pivoted factorization scheme, rather than2-D Fourier transforms, to generate the necessary rank revealing information. Whilethe preconditioner in [13] requires O(pn(lgp + lgn)) operations to precompute, ourpreconditioner requires, in the worst case, O(pbw lg p+pn lgn+Ppi=1m2i ) operations toprecompute, where bw denotes the maximumblock bandwidth of the matrix. However,in applications the block bandwidth is sometimes small compared to n and whenthe blocks of T are symmetric, the number of operations required to initialize ourpreconditioner can be reduced to O(pn lgn+ bwp lg p+ms) where ms = m21+m2p=2+Pp=2i=1m2i when p is even. In some cases (when the dimension of the upper subspace issmall, for example) we have observed m� is small relative to pn lgn, which implies ourpreconditioner can be just as cheap to precompute. Our preconditioner is competitivewith the BCCB matrix in that it is stable to compute and can be applied in at mostO(pn lgn), rather than O(pn(lgn + lg p)), operations. In the next section, we showthat our preconditioner is just as e�ective as the one in [13] in clustering the largesingular values around one. Further, we show that the small singular values remainsmall and that the upper and lower subspaces remain unmixed.4. Properties of the preconditioner. In this section we give theoretical re-sults which show how successful our preconditioner is in �ltering noise and acceleratingconvergence to a regularized solution.4.1. Clustering. Under the assumptions in x3 for an ill-conditioned matrix C,in order for the �rst few iterations of CGLS to capture the solution corresponding tothe largest m� singular values, the preconditioner must cluster the majority of the m�singular values while leaving the small singular values and lower subspace essentiallyunchanged. We show that the question of how well our preconditioner M clustersthe singular values can be reduced to the question of how well K approximates C, orequivalently, how well H approximates T .We argue as follows. We �rst note that to show that the largest m� singularvalues of M�1C cluster around one, it su�ces to show that the smallest m� singularvalues of I �M�1C cluster around zero. We denote the k-th largest singular value ofa matrix Z by �k(Z), and the k-th largest eigenvalue by �k(Z).9



Let K �C = R. Now K = M + S, where S is block diagonal with blocksSi = " 0 K(2)iiK(3)ii K(4)ii � I # :Thus, M �C = R� S. We therefore obtain the equalityI �M�1C = M�1(R� S) = M�1(K � C)�M�1S:(14)Now let Yi = � 0 0K(3)ii K(4)ii � and Zi = � 0 K(1)�1ii K(2)ii0 �I � :De�ne ES and EM to be the block diagonal matricesES = diag(Y1; : : : ; Yp) and EM = diag(Z1; : : : ; Zp):Then M�1S = ES +EM , where ES and EM each have rank N �m�. From Theorem3.3.16 of [19] , �k+N�m� (M�1S) � �k(ES) k = 1; : : : ;m�:Applying the same theorem to Equation (14) with 2 � i+j � N +1 for N �m�+1 �j � N we have�i+j�1(I �M�1C) � �i(M�1(K � C)) + �j(M�1S)� �1(M�1)�i(K �C) + �j(M�1S)� �1(M�1)�i(H � T ) + �j+m��N (ES):In particular,�i+N�m� (I �M�1C) � �i(H � T )�N (M ) + �1(ES) i = 1; : : : ;m�:(15)Hence, under the assumptions that the preconditioner is well-conditioned and thatthe matrix ES has su�ciently small elements, the clustering of the singular values ofI �M�1C around zero depends on the clustering of the �rst m� singular values ofH � T around zero. We now discuss two special cases for which H � T has singularvalues clustered around zero. First we will need the following lemma from [4].Lemma 4.1 (R. Chan and Q. Jin). Assume that the BTTB matrix T is sym-metric. Let the entries of block Ti be denoted t(i)jk = t(i)jj�kj for 1 � j; k � p, 1 � i � n.Assume that the generating sequence of T is absolutely summable, i.e.,1Xi=0 1Xj=0 jt(i)j j � J <1:Then for all � > 0, there exists a k� > 0 such that for all p > k� and n > 0, at mostO(n) eigenvalues of H � T have absolute values exceeding �.Since H � T is symmetric for symmetric BTTB matrices T , combining Equation(15) with Lemma 4.1, we obtain the following.10



Theorem 4.2. Assume T is a symmetric BTTB matrixwith an absolutely summablegenerating sequence. Then for all � > 0, there exists a k� > 0 such that for all p > k�and n > 0, at most O(m� � n) singular values of I �M�1C exceed ��N (M) + �1(ES).Let us consider another special case for which we are guaranteed clustering. LetC2� denote the Banach space of all 2�-periodic, continuous, complex-valued functionsequipped with the norm k � k1 . This class of functions contains the Wiener class [2].For all h 2 C2�, let the Fourier coe�cients of h be de�ned by�tk = 12� Z ��� h(�)eik�d�; k = 0;�1;�2; � � � ;where i = p�1. Let �T be the p � p complex Toeplitz matrix whose diagonals aregiven by �tk, and let �H be its T. Chan circulant approximation. Finally, let the BTTBmatrix T be given as T = �R
 �T ; where �R is a non-singular n � n matrix. A lemmaproved by R. Chan and M. Yeung [3] will be useful.Lemma 4.3 (R. Chan and M. Yeung). Let h 2 C2�. Then for all � > 0, thereexist k� and j� > 0, such that for all p > k�,�T � �H = �U + �Vwhere rank( �U ) � j�and k�V k2 � �:Applying this lemma to T we obtain the following result.Lemma 4.4. Given � > 0, let k�, j�, �U , and �V be de�ned as in Lemma 4.3 withh 2 C2�. Then �i(T �H) � k �Rk2�; N � nj� + 1 � i � N:Proof: Using [19, lemmas 3.3.16 and 4.2.15],�i(T �H) � �i( �R
 �U) + �1( �R
 �V ) � �i( �R
 �U) + k �Rk2�; i = 1; : : : ; N:However, since �U has rank j�, the rank of �R
 �U is N � nj�, so that�i(T �H) � k �Rk2�; N � nj� + 1 � i � N: 2We use Lemma 4.4 and Equation (15) to deduce the following.Theorem 4.5. Let the BTTB matrix T be de�ned as T = �R 
 �T for a givenn�n nonsingular matrix �R, and let the entries of the p�p matrix �T be given by �tk�jde�ned above with h 2 C2�. Then for all � > 0, there exist k� and j� > 0, such thatfor all p > k�, at most m��nj� singular values of I�M�1C exceed k �Rk2��N (M) +�1(ES).In both the aforementioned cases, assuming the values mi were chosen appropri-ately, the preconditioner will cluster most of the m� singular values of the precondi-tioned matrix around one when a su�cient number of the singular values of T � Hare small. As these special cases illustrate, a proof that our preconditioner is e�ectiveat clustering the large singular values is reduced to a proof that many of the singularvalues of T �H are small for the given BTTB matrix T .11



4.2. Unmixing results. Recall that the transformation from the problem in-volving T to one involving C was accomplished using a sequence of orthogonal trans-forms. Thus, the singular values of T and C are the same, as is our de�nition of theupper, lower, and transition spaces in x3. That is, we have changed the bases for therespective spaces, but we have not mixed them.For the approximate solution generated by CGLS in early iterates to be essentiallyuna�ected by noisy components in the lower subspace, we require that the precondi-tioner not mix the upper and lower subspaces. The following theorem tells the extentto which preconditioning by M mixes these subspaces.Theorem 4.6. Let k be the dimension of the subspace corresponding to thesmallest k singular values and letC = [Q1Q2Q3]24 �1 0 00 �2 00 0 �3 3524 V �1V �2V �3 35 ;M�1C = hQ̂1 Q̂2 Q̂3i24 �̂1 0 00 �̂2 00 0 �̂3 3524 V̂ �1̂V �2̂V �3 35be singular value decompositions with V3; V̂3 2 CN�k and V1; V̂1 2 CN�m� . ThenkV �1 V̂3k2 � �̂N�k+1�m� (maxf1;maxi kK(1)ii k2g):Proof: Using the decompositions we haveV �1 V̂3 = (V �1 C�1)M (M�1CV̂3)= ��11 Q�1MQ̂3�̂3:Since Q�1 has orthonormal columns, as does Q̂3, it follows thatkV �1 V̂3k2 � �̂N�k+1�m� kMk2 = �̂N�k+1�m� (maxf1;maxi kK(1)ii k2g): 2We note that if the preconditioner developed in [13] for their right preconditioningscheme is applied to the left rather than the right, a similar result can be obtained.Next we show that �̂j � �j for �j corresponding to the last N � m� singularvalues, and thus �̂N�k+1 is small. Hence, if M is well-conditioned, we are guaranteedthat the upper and lower subspaces remain unmixed.For given values of mi, we �rst rewrite C in block form:C = 2666666666664 C(1)11 C(2)11 C(1)12 C(2)12 : : : C(2)1nC(3)11 C(4)11 C(3)12 C(4)12 : : : C(4)1nC(1)21 C(2)21 C(1)22 C(2)22 : : : C(2)2nC(3)21 C(4)21 C(3)22 C(4)22 : : : C(4)2n... ... ... ... ... ...C(1)n1 C(2)n1 C(1)n2 C(2)n2 : : : C(2)nnC(3)n1 C(4)n1 C(3)n2 C(4)n2 : : : C(4)nn 377777777777512



where C(1)ii is mi �mi and C(4)ii is n �mi � n�mi. Likewise, we rewrite M�1CM�1C = 2666666666664 K(1)�111 C(1)11 K(1)�111 C(2)11 K(1)�111 C(1)12 K(1)�111 C(2)12 : : : K(1)�111 C(2)1nC(3)11 C(4)11 C(3)12 C(4)12 : : : C(4)1nK(1)�122 C(1)12 K(1)�122 C(2)12 K(1)�122 C(1)22 K(1)�122 C(2)12 : : : K(1)�122 C(2)2nC(3)21 C(4)21 C(3)22 C(4)22 : : : C(4)2n... ... ... ... ... ...K(1)�1nn C(1)n1 K(1)�1nn C(2)n1 K(1)�1nn C(1)n2 K(1)�1nn C(2)n2 : : : K(1)�1nn C(2)nnC(3)n1 C(4)n1 C(3)n2 C(4)n2 : : : C(4)nn 3777777777775 :Let the rank m� matrices EM1 ; EC1 be de�ned from the odd row-blocks of C andM�1C: EC1 = 266664 C(1)11 C(2)11 C(1)12 C(2)12 : : : C(2)1nC(1)21 C(2)21 C(1)22 C(2)22 : : : C(2)2n... ... ... ... ... ...C(1)n1 C(2)n1 C(1)n2 C(2)n2 : : : C(2)nn 377775 ;EM1 = 266664 K(1)�111 C(1)11 K(1)�111 C(2)11 K(1)�111 C(1)12 K(1)�111 C(2)12 : : : K(1)�111 C(2)1nK(1)�122 C(1)12 K(1)�122 C(2)12 K(1)�122 C(1)22 K(1)�122 C(2)12 : : : K(1)�122 C(2)2n... ... ... ... ... ...K(1)�1nn C(1)n1 K(1)�1nn C(2)n1 K(1)�1nn C(1)n2 K(1)�1nn C(2)n2 : : : K(1)�1nn C(2)nn 377775 ;and let E1 be the rank N � m� matrix de�ned from the even row-blocks of C andM�1C: E1 = 266664 C(3)11 C(4)11 C(3)12 C(4)12 : : : C(4)1nC(3)21 C(4)21 C(3)22 C(4)22 : : : C(4)2n... ... ... ... ... ...C(3)n1 C(4)n1 C(3)n2 C(4)n2 : : : C(4)nn 377775 :Under this partitioning, it easy to verify the relations(M�1C)�(M�1C) = EM + EC�C = EC +E(16)where EM = E�M1EM1 , EC = E�C1EC1 , and E = E�1E1. Consequently, we obtain thefollowing:Theorem 4.7. The (m� + i)th singular value of each of the matrices C andM�1C lies in the interval [0; �i(E)], for i = 1; : : : ; N �m�.Proof: Since the matrices in (16) are all Hermitian, we may apply Corollary IV.4.9and problem 4, page 211, of [24] to obtain�N (E) + �m�+i(EM ) � �m�+i((M�1C)�(M�1C)) � �m�+1(EM) + �i(E)and �N (E) + �m�+i(EC) � �m�+i(C�C) � �m�+1(EC) + �i(E):13



However, �N (E) = 0 and �m�+1(EM) = 0 = �m�+1(EC), and thus0 � �m�+i((M�1C)�(M�1C)) � �m�+1(EM ) + �i(E) = �i(E)and 0 � �m�+i(C�C) � �m�+1(EC) + �i(E) = �i(E):The proof is completed by taking square roots. 24.3. Properties of the factorization. The theorems in x4.1 and x4.2 showthat the preconditioner will be e�ective under two restrictions. First M , and henceeach K(1)ii , must be well conditioned. Second, the entries in E and ES are required tobe small. We now discuss to what extent these conditions hold for integral equationdiscretizations. We begin by showing how the entries of ~K are computed from theelements of H.Since the entries of ~K can be written in terms of the generators of each block,it is necessary to discuss how these generators are obtained. Because each block ofH is circulant, the non-zero entries of (I 
 F )H(I 
 F �), which lie on the diagonalsof each of its blocks, are the eigenvalues of each block of H. Let �(l)k for 1 � k � p,1 � n � l � n � 1 denote the kth eigenvalue of block Hl. It is well known thatthe eigenvalues of a p � p circulant matrix can be computed by means of an FFTin O(p lgp) operations. Since there are at most 2n distinct Hl, all the �(l)k can becomputed in at most O(np lgp) operations. The matrix P̂ permutes these eigenvaluesso that ~H = P̂ (I 
F )H(I 
F �)P̂T is a block diagonal matrix with p, n�n Toeplitzmatrices ~Hi on its diagonal. The diagonals of ~Hi are given by ~t(i)j = �ji , 1� n � j �n� 1; i = 1; : : : ; p.Since ~Hi is Toeplitz, it satis�es (7) with A = Ai and B = Bi. Examinationof Equation (7) shows that the entries of the n � l matrices Ai and Bi are easilydetermined. The �rst column of Ai is the �rst unit vector, and the second column isgiven by[0;~t(i)n�1; ~t(i)n�2; : : : ; ~t(i)p�1; : : : ; ~t(i)1 ]T + [~t(i)0 ; ~t(i)�1; ~t(i)�2; : : : ; ~t(i)�(q�1); : : : ; ~t(i)�(n�1)]T(17)The �rst column of Bi is[~t(i)�(n�1); ~t(i)�(n�2); : : : ; ~t(i)�(q�1); : : : ; ~t(i)�1; ~t(i)0 ]T � [~t(i)1 ; ~t(i)2 ; : : : ; ~t(i)p�1; : : : ; ~t(i)n�1; 0]T(18)and the second column is the last unit vector. The generators for ~Kii are then ~Ai �FAi and ~Bi � conj(FS0)Bi, where conj(�) denotes complex conjugation, with F andS0 as described in Property 3. Since ~Ai and ~Bi can be computed by means of theinverse fast Fourier transform of size n, computing all p generator pairs requires atotal of O(np lgn) operations.Now the absolute value of the (k; j) entry of ~Kll is given byj ~Klljkj = j~a(l)Tk ~b(l)j jj!k � �j jwhere !k and �j are the kth and jth diagonal entries of S1 and S�1 de�ned in Property3, respectively, and ~a(l)Tk and ~b(l)j denote the kth row of ~Al and the jth row of ~Bl,14



respectively. Following the discussion in [22],j~a(l)Tk ~b(l)j jj!k � �j j < 10j~a(l)Tk ~b(l)j jaway from the corners and the diagonal of ~Kll .By direct computation it can be shown thatj~a(l)Tk ~b(l)j j = 1pn jconj(�(l)j ) + en�1n �i(1�2j)�(l)k j; i = p�1where �(l)k is the kth entry in the second column of ~Al and �(l)j is the jth entry in the�rst column of FS0conj(Bl). Therefore it is the normalized inverse Fourier coe�cientsof the second column of Al and the �rst column of S0conj(Bl) that determine themagnitude of j~a(l)Tk ~b(l)j j.However, since Hj is the T. Chan circulant approximant of Tj , we have [5]�(j)l = n�1Xs=�n+1 t(j)s (1� jsjn )e 2�in sl; i = p�1:Since ~t(l)j = �(j)l we use the above substitution in Equations (17) and (18). De�ningt(n)s = 0, we obtain j�(l)k j � 1pn n�1Xs=�n+1 j(1� jsjn )jjv(s)k j; wherev(s)k = n�1Xj=0(t(�j)s + t(n�j)s )e 2�in jkand j�(l)k j � 1pn n�1Xs=�n+1 j(1� jsjn )jju(s)k j; whereu(s)k = n�1Xj=0 e�ijn (t(�j)s + t(n�j)s )e 2�in jk:But v(s)k is just the kth inverse Fourier coe�cient of a vector having entries (t(�j)s +t(n�j)s ); j = 0; : : : ; n� 1. Likewise, u(s)k is just the kth inverse Fourier coe�cient of avector having entries e�ijn (t(�j)s + t(n�j)s ); j = 0; : : : ; n� 1.Therefore, if the kernel t in the integral equation is smooth, for every s v(s)k andu(s)k will be large only for small indices k. Hence,j~a(l)Tk ~b(l)j jj!k � �j j < 10pn (j�kj+ j�jj)� 1away from the corners of ~Kll .Thus, by relating the entries of ~Kii back to the entries in T as shown above, wediscover the following property: 15



Property 4. Suppose T is the BTTB matrix which results from the discretiza-tion of a smooth kernel t, normalized so the maximumelement is one. For l = 1; : : : ; p,let ~Kll = F ~HlS�0F � where ~Hl is a n � n Toeplitz matrix from the block diagonal ofthe matrix ~H de�ned in x3.2. Then for n su�ciently large, there exists an �� 1 andml � n such that all the elements of ~Kll are less than � in magnitude except for thoselocated in the four corner blocks of total dimension ml �ml.Consequently, each Cauchy-like block of ~K can be permuted to contain the largeelements in its upper left block. We have observed that when Gu's algorithm is appliedto ~Kll having the structure described in Property 4, his pivoting strategy is such thatK(1)ll will contain the four corner blocks. In fact, any pivoting strategy that yields thistype of permutation will give a reasonable preconditioner for our scheme. We referthe interested reader to [11] for details of Gu's modi�ed complete pivoting strategy.The key fact is that his algorithm makes its pivoting decision based on the size of theelements in the generator corresponding to the block that remains to be factored.Thus, the components of the matrix ES in x4.1 are small, and therefore ourpreconditioner has the property that the largest singular values of the preconditionedmatrix are clustered, provided that the singular values of K �C are small. But if thesingular values of K � C are small, then the matrix E in x4.2 necessarily has smallsingular values. Hence, the invariant subspace corresponding to the small singularvalues of C is not much perturbed by preconditioning. We therefore expect that theinitial iterations of CGLS applied to the preconditioned system will produce a solutionthat is a good approximation to the noise free solution f̂ .5. Algorithmic issues. Our algorithm is as follows:Algorithm 1: Solving Tf = g1. Compute the generators for each submatrix Kii (see x5.3).2. For each i, determine the size mi of the partial factorization andfactor Kii = PiLiiDiiUiiQi.3. Set P = diag(P1; : : : ; Pp), Q = diag(Q1; : : : ; Qp), z = P TF ~g.4. For i = 1 : : :n, determine the generators of the mi � mi leadingprincipal submatrix, K(1)ii of Kii and let Mi = � K(1)ii 00 I � : (Seex4.3.)5. Set M = diag(M1; : : : ;Mp) and compute M�1 as in x5.3.6. Compute an approximate solution ~y to M�1Cy = M�1z using afew steps of CGLS where matrix vector products involving C =PT ~CQT are formed without forming C itself (see x5.2).7. The approximate solution in the original coordinate system isf = S�0F �QT y.A few comments about the algorithmare in order. First, the submatricesK(1)ii andthe matrixM are never actually formed; with only the easily determined generators ofK(1)ii and its factors, we can compute matrix-vector products with M�1 in O(pn lgn)operations (see x5.4). Second, when to stop the CGLS iteration in order to get thebest approximate solution is a well-studied but open question (for instance, see [16]and the references therein). We do not solve this problem, but we consider otheralgorithmic issues in the following subsections.16



5.1. Determining the size of the K(1)ii . As shown in x4, the choices of theparametersmi determine the number of clustered singular values in the preconditionedsystem. Since p partial factorizations of size mi need to be computed, they inuencethe amount of work per iteration. Most importantly, as Theorem 4.6 indicates, m� =Ppi=1mi inuences the mixing of upper and lower subspaces. We use a simple heuristicin our numerical experiments. Given the noisy right hand side vector g, let G be then � p matrix with entries given by Gkj = g(k�1)n+j for 1 � k � n, 1 � j � p, andlet ~G be its two-dimensional, normalized, inverse discrete Fourier transform. Then itis easy to show that the right hand side z de�ned in x3.2 results from stacking ~G bycolumns. We sort the absolute values of z and determine m� to be the index of thevalue, ctol, for which the Fourier coe�cients start to level o�. This is presumed to bethe noise level. Since ~G requires O(np(lg p + lgn)) operations to compute, the costinvolved in determining m� is also O(np(lg p+ lgn)) operations.We choose the values mi using two slightly di�erent methods, which we nowdescribe, and we compare the results in x6. In the �rst approach, each value mi isde�ned as the number of elements in the ith column of Ĝ which are larger than ctol.We call this method of computing the values mi the Fourier coe�cient method. Inthe second approach, a full factorization is performed on each block ~Kii so that allthe entries of each diagonal matrixDii are known. We set d to be the N length vectorcomprised of the diagonals of the Dii, sort the elements in decreasing magnitude, andset dtol to be the m�th largest magnitude element. The value mi is then de�ned to bethe number of diagonal entries in Dii which have magnitude greater than dtol. Thisis the d-selection method for computing the values mi.The latter approach appears the more expensive of the two, requiring O(pn2)operations to compute all values mi. However, we found that the entries of Dii decaynearly monotonically so that the values mi could be similarly obtained by performingthe steps of the factorization of each block in parallel. That is, the �rst step of thefactorization is performed on all the blocks sequentially, then the second step on allthe blocks, and so forth, up to step j. Block ~Kii ceases to be factored after stepj when j(Dii)jjj is determined to be too small. Hence, with careful administration,all values mi can be computed from the diagonal entries in Dii as they accumulatein O(Ppi=1m2i ) operations, where the values mi are almost identical to the valuesobtained in our second approach.5.2. Matrix vector products with C. Recall that C is related to the originalBTTB matrix T through a sequence of fast orthogonal transforms and permutationmatrices described in x3.2. As was mentioned in the introduction, matrix vectorproducts involving T can be computed in O(np(lgn + lg p)) operations. It followsthat matrix vector products involving C can also be computed in O(np(lgn + lgp))operations without ever having to compute the entries of C.5.3. Computing the preconditioner. By Property 3, ~Kii satis�es the dis-placement equation (4) with with 
 = S1 and � = S�1. Therefore using Property 1K(1)ii satis�es 
1K(1)ii �K(1)ii �1 = A(1)i B(1)Ti ;where 
1 and �1 are the leading principal submatrices of PTi 
Pi and Qi�QTi respec-tively, and A(1)i and B(1)i contain the �rst mi rows of PTi ~Ai and QTi ~Bi respectively(refer to x4.3). 17



From Property 5, the expression for the entries of K(1)�1ii isK(1)�1ii = � x(i)Tj w(i)k~�j � ~!k !1�j;k�n ;(19)where ~�j and ~!k are the elements of � and 
 that appear in �1 and 
1 respectivelyand, from (6), the vectors x(i)j and w(i)k are rows of X(1)i and W (1)i de�ned asK(1)ii X(1)i = A(1)i ; W (1)Ti K(1)ii = B(1)Ti :Computing X(1)i and W (1)i costs O(m2i ) operations, given the factorization of K(1)iiand the matrices A(1)i and B(1)i . Since M�1 is a block-diagonal matrix given byM�1 = diag(M�11 ; : : : ;M�1p ), it takes O(Ppi=1m2i ) operations to precompute giventhe matrices ~Ai; ~Bi for i = 1; : : : ; p. Since these generator matrices require O(bwp lg p+pn lgn) operations to precompute (refer to the beginning of x4.3), the total cost forprecomputing M�1 is O(bwp lgp+ pn lgn+Ppi=1m2i ) operations.5.4. Applying the preconditioner. Since M�1 is block diagonal, to computeM�1r requires the p computations K(1)�1ii ri where ri is the length mi subvector ofr beginning at index ip + 1. Using Algorithm 2 of [22], we compute each K(1)�1ii ristably in O(n lgn) operations. Thus each application of the preconditioner costs atmost a total of O(pn lgn) operations. (If pm < p of the values mi are nonzero, aswe often found in practice, the cost reduces to O(pmn lgn) operations.) Since matrixvector products involving the BTTB matrix T can be computed in O(np(lg p+ lgn))operations, each iteration of CGLS costs O(np(lg p+ lgn)) operations.6. Numerical results. In this section we summarize results of our algorithmon two test problems using Matlab and IEEE oating point double precision arith-metic. Our measure of success in �ltering noise is the relative error, the 2-norm of thedi�erence between the computed estimate f and the vector f̂ corresponding to zeronoise, divided by the 2-norm of f̂ . In each case, we apply the CGLS iteration withblock Cauchy-like preconditioner with m� =Ppi=1mi. The value m� = 0 correspondsto no preconditioning.6.1. Example 1. As mentioned in the introduction, BTTB matrices often arisein two dimensional image processing problems. For our �rst example, we began bygenerating the 64� 64 image shown in Figure 1. The tower in the image is composedof 3 concentric circles, centered at row 46, column 38, of radii 6,4, and 2, with values2,4, and 8, respectively. The 3� 3 spike in the image has its upper left corner at row39, column 29 and has height 10. The vector f̂ was then generated by stacking theimage by columns. We consider the BTTB matrix T with entries given byt(k�l)i�j = � ce�:1((i�j)2+(k�l)2); �5 � i � j; k � l � 50 otherwise;where c is a normalization constant. This matrix is the one used in [13] and has acondition number of about 1011. Since this is a BTTB matrix, only the �rst row and�rst column of the 2n blocks Ti; �n < i < n; need to be generated and stored.We next computed ĝ = T f̂ , and used the Matlab randn function to generate avector e of length N . We then scaled e such that the noise level, kek2kĝk2 , was equal18
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Fig. 1. Original image, Example 1.to 10�2. Finally, we set the noisy data g to g = ĝ + e. The blurred, noisy image,whose columns are the p length consecutive subvectors of g, is shown in Figure 2, andits sorted absolute 2-D Fourier coe�cients are displayed, along with the vector d ofx5.1, in Figure 3. An appropriate cuto� m� and the values mi were determined asexplained in x5.1.We conducted experiments for di�erent values ofm� using both of the methods forchoosing the mi. The solid line in Figure 4 shows the convergence of CGLS in relativeerror at each iteration. Whenm� = 0 (that is, no preconditioning is used), a minimumrelative error of 3:41� 10�1 is achieved at 90 iterations. The dashed line in Figure 4shows the convergence behavior for a preconditioner determined using m� = 711 andusing the d-method of determining mi. After 13 iterations, a relative error value of3:53�10�1 was reached. The dotted line shows the convergence using a preconditionerwhich was determined by setting m� = 583 and using the Fourier coe�cient method ofdeterminingmi. This was the best preconditioner that could be determined using thisselection method; after 13 iterations a relative error of 3:86� 10�1 was reached. Forcomparison, the dashed-dot line illustrates the optimal convergence behavior of right-preconditioned scheme in [13], where the cuto� was determined to be 725 eigenvalues.This method achieves a minimum relative error value of 3:49� 10�1 in 9 iterations.6.2. Example 2. As a second image processing example, we consider the BTTBmatrix T = T0 
 T0 where T0 is the 32� 32 Toeplitz matrix with diagonals (see [20])hk =8<: c sin( kBL )kBL 2 0 � jkj � Bw0 otherwisewhere c is a normalization constant, BL = 2, and Bw, the bandwidth of T0, is set to5. The condition number of T is approximately 1:6� 108.We then generate f̂ by forming the image shown in Figure 5 and stacking it bycolumns. The image itself was created by truncating to radius 8 a 2-D Gaussian withstandard deviation 30 centered at row 20, column 19, and multiplying the values by40. A 3� 3 spike of height 40 with upper left corner at row 13, column 10, was also19
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Fig. 2. Blurred, noisy image, Example 1.
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Fig. 4. Relative error in computed solutions for Example 1. Solid line shows convergence whenm� = 0; dashed line shows convergence for our preconditioner with m� = 711 using the d-selectionmethod; dotted line shows convergence when m� = 583 using the Fourier coe�cient selection method;dash-dotted line shows the convergence behavior for the preconditioning scheme in [13] with the cuto�at 725 eigenvalues.added. Next, we set g = T f̂ + e, where e is a normally distributed random vector,generated with the Matlab randn function, scaled so that the noise level was 10�2.The blurred noisy image, whose columns are the consecutive p length subvectors of g,is displayed in Figure 6 and its sorted absolute 2-D Fourier coe�cients together withthe vector d are shown in Figure 7.The solid line in Figure 8 shows the convergence of CGLS in relative error forExample 2. With no preconditioning (i.e. m� = 0) CGLS required 49 iterations toachieve its minimum relative error value of 2:54� 10�1. The dashed line in Figure 8depicts the convergence of CGLS on the left preconditioned system using our precon-ditioner with m� = 122 and where the d-method for selecting the mi is used. After 7iterations, a value of 2:59� 10�1 was achieved. The dotted line in the �gure showsthe convergence behavior on the left preconditioned system when m� = 109 using theFourier coe�cient method of determining mi. After 6 iterations, the minimum rela-tive error of 2:66� 10�1 was reached. In comparison, the dashed-dot line illustratesthe optimal convergence behavior of the right-preconditioned scheme in [13],wherethe cuto� was determined to be 116 eigenvalues. This method achieves a minimumrelative error value of 2:53� 10�1 in 7 iterations.In fact, we note that the matrices in Examples 1 and 2 are special examples ofBTTB matrices since they arise from tensor products of Toeplitz matrices. In thecase where T = T1 
 T2; T1 6= T2, the matrix ~K can be written as a tensor productof a p � p matrix times an n � n Cauchy-like matrix. Thus, only the single n � nCauchy-like matrix needs to be factored to obtain the preconditioner. Thereforeit is easy to show that the cost of precomputing our preconditioner is reduced toO(m21 + p lg p + n lgn + N ) operations for this special case. Likewise, the cost ofprecomputing the preconditioner in [13] reduces to O(p lgp+ n lgn+ N ) operations.6.3. Example 3. In both Examples 1 and 2, the matrix T was symmetric andits block bandwidth was small relative to the number p of blocks. Since unsymmetry21
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Fig. 5. Original image, Example 2.
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Fig. 6. Blurred, noisy image, Example 2.22
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Fig. 8. Relative error in computed solutions for Example 2. Solid line shows convergence whenm� = 0; dashed line shows convergence for our preconditioner with m� = 122 using the d-selectionmethod; dotted line shows convergence when m� = 109 using the Fourier coe�cient selection method;dash-dotted line shows the convergence behavior for the preconditioning scheme in [13] with the cuto�at 116 eigenvalues. 23
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Fig. 9. Blurred, noisy image, Example 3.and larger bandwidth can be encountered in practice, we consider the non-symmetricmatrix with a larger block bandwidth as follows. We set t(1)j and t(2)j to be the length32 vectors with entries given byt(1)j = c1e(�:1(1�j)2) if j � 6 and 0 otherwise;t(2)j = c2e(�:2(1�j)2) if j � 11 and 0 otherwise;where c1 and c2 were normalization constants, and we set �T to be the Toeplitz matrixwith �rst column t1 and �rst row t2 using the Matlab command �T = toep(t(1); t(2)).We then generate a matrix H as shown in Example 2 with BL = 1 and Bw = 12.Finally, we form T by tensor products:T = H 
 �T :The condition number of T is 1� 109.For this example we took the exact solution f̂ to be same as in Example 2. Next,we set g = T f̂ + e, where e is a normally distributed random vector scaled so that thenoise level was 10�3. The blurred, noisy image, whose columns are the consecutivep length subvectors of g, is displayed in Figure 9. The sorted absolute 2-D Fouriercoe�cients of g together with the vector d are shown in Figure 10.The relative error plot in Figure 11 shows that with no preconditioning, CGLSreaches its minimum relative error value of 1:05� 10�1 at 121 iterations. However,using our preconditioner with m� = 576 and the d-selection method for determiningthe mi, a relative error value of 1:06� 10�1 was reached in only 8 iterations. Whenm� = 435 and the Fourier coe�cient selection method is used to determine our pre-conditioner, a relative error value of 1:44� 10�1 was reached in 9 iterations; after 30iterations, the relative error was improved to 1:18� 10�1. In contrast, the precondi-tioned iterative scheme in [13] could do no better than 1:24� 10�1 after 17 iterations(the preconditioner which achieved this value was constructed using a cuto� of 574eigenvalues). 24
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Fig. 11. Relative error in computed solutions for Example 3. Solid line shows convergencewhen m� = 0; dashed line shows convergence for our preconditioner with m� = 576 using thed-selection method; dotted line shows convergence when m� = 435 using the Fourier coe�cientselection method; dash-dotted line shows the convergence behavior for the preconditioning scheme in[13] with the cuto� at 574 eigenvalues. 25



6.4. Results Summary. We conducted several other experiments comparingthe e�ectiveness of our preconditioner with the e�ectiveness of the preconditionerfound in [13]. The experiments, which we now summarize, were conducted usingmatrices of di�erent sizes and structure, di�erent original images, and various noiselevels. First, we found that in cases where the dimension of the transition subspacewas large relative to the dimension of the problem, while both preconditioners couldbe successful in speeding convergence in the �rst few iterations (i.e. the cuto�s couldchosen to cluster the largest singular values) it was unlikely that either precondi-tioned scheme could, within fewer iterations, produce solutions whose relative errorswere comparable to those generated by unpreconditioned CGLS. We attribute thisphenomena to the fact that both preconditioners mixed too much noise into early it-erates by clustering too many singular values without being able to reconstruct someimportant components of the solution lying in the transition space.As the ratio of block bandwidth to block size was increased, we found the BTCBapproximation to T did a much better job than the BCCB approximation to T ofapproximating the mid-range and small singular values of the matrix. We also foundthis to be true when the matrix was blockwise unsymmetric. Consequently, ourpreconditioner can show signi�cant improvement for these types of problems over thepreconditioner in [13] when the cuto�, determined by the noise level, is large enoughto include some mid-range singular values, as evidenced in Example 3. For larger noiselevels, there was no consistent or signi�cant advantage to using one precondition overthe other. We therefore particularly recommend our preconditioner when T is blockunsymmetric, has a ratio of block bandwidth to block size larger than say 1=8, andin other such cases when we expect that the T. Chan BCCB matrix approximationto T will fail to approximate T well on the block level.Examples 1 and 2 show that when the block bandwidth is small relative to blocksize, the matrix is symmetric, and the dimension of the upper subspace is smallrelative to N , the optimal preconditioner in [13] can produce solutions with slightlysmaller relative error in somewhat fewer iterations than our optimal preconditioner.It is important to remember that both preconditioners were sensitive to the choice ofcuto� so �nding the optimal preconditioner is di�cult in practice. Also, the cost toinitialize our preconditioner in Examples 1 and 2 is of the same order of magnitudeas the initialization cost of the preconditioner in [13].In short, our preconditioner never performs much worse than the preconditionerin [13] and can perform much better in some cases.7. Conclusions. We have developed an e�cient algorithm for computing regu-larized solutions to discrete ill-posed problems involving BTTB matrices. Our algo-rithm uses an orthogonal transform to transform the BTTB matrix and its BTCBapproximant to Cauchy-like matrices whose blocks are Cauchy-like. It then iteratesusing the CGLS algorithm on the left preconditioned system, where the precondi-tioner was determined using size mi partial factorizations with pivoting on each ofthe p blocks of the transformed BTCB matrix. By exploiting properties of the trans-formation, we showed each iteration of CGLS costs O(np(lgn + lg p)) operations fora Cauchy-like system with p blocks of size n.The theory developed in x4 predicts that for many types of BTTB matrices, thepreconditioner determined in the course of Gu's fast, modi�ed, complete pivotingalgorithm can be expected to cluster the largest singular values around one and tokeep the small singular values small while leaving the upper and lower subspaces un-mixed. Thus, CGLS produces a good approximation to the noise free solution within26
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