Compile-Time Analysis on Programs with Dynamic Pointer-Linked
Data Structures

Yuan-Shin Hwang Joel Saltz

Department of Computer Science
University of Maryland
College Park, MD 20742
{shin, sdltz} @cs.umd.edu

November 8, 1996

Abstract

This paper studies static analysis on programs that create and traverse dynamic pointer-linked data structures.
It introduces a new type of auxiliary structures, called link graphs, to depict the alias information of pointers and
connectionrelationships of dynamic pointer-linked data structures. The link graphs can be used by compilersto detect
side effects, to identify the patterns of traversal, and to gather the DEF-USE information of dynamic pointer-linked
data structures. The results of the above compile-time analysis are essential for parallelization and optimizations on

communication and synchronization overheads. Algorithms that perform compile-time analysis on side effects and
DEF-USE information using link graphswill be proposed.

Contents

1

2

Introduction
Extended SSA Representation

Link Graphs
31 Definition
32 Properties

Analysis Techniques Using Link Graphs
41 SideEffect AndysisonLinked DataStructures
4.2 DEF-USE Information of Dynamic Linked Data Structures

Interprocedural Analysis
5.1 Interprocedural SSA Representationand Link Graphs L
5.2 Safety Analysisof User-Defined Reduction Functions

Example
Related Work
Summary

Constant Propagation on Programswith Pointers

10

12

13

15

1 Introduction

This paper studies static analysis on programs that create and traverse dynamic pointer-linked data structures. It
proposes al gorithms that perform various types of compile-time analysisto provide information, such as side effects
and DEF-USE information of dynamic structures, for optimizationson sequential or data-parallel programs.

This work is motivated by the trend that more and more scientific applications use dynamic pointer-linked data
structures, such as linked lists and trees. One example is the Barnes-Hut N-body solver, which stores particlesin a
linked list and uses aspace subdivisiontree(i.e. an oct-tree) to summarizetheinformationof particles[1]. Furthermore,
there have been proposal sto introduce user-defined reducti on functionsto provide programmersthe ability to formul ate
new combining operations on dynamic pointer-linked data structures in data-parallel languages[8, 17].

Previously proposed methods for pointer analysis, such as side effect analysis [3, 11] and conflict/interference
analysis[10, 12], do not providesufficient information for compilersto perform parallelization on sequentia programs
or code transformation on data-parallel programs with dynamic pointer-linked data structures. In addition to the
information of side effects or conflicts on fixed-location variables at each program point, the knowledge of the process
of creating and traversing dynamic linked data structures by sequences of statementsisrequired for compile-time code
optimization. Furthermore, although shape analysis can estimate the possible shapes of pointer-linked data structures
[2,9, 15, 16], itisinefficient to combinetheeffects of sequences of statements on dynamic pointer-linked datastructures
by comparing all the shape graphs of these statements.

The goa of thisresearch isto develop a concise auxiliary structure to represent the alias information of pointers
and connection relationships of the dynamic pointer-linked data structures for multiple statements, and to develop
methods to identify the process of creation and traversal. Specifically, this paper isinterested in finding the answers of
the following questions:

o Arethe pointer-linked data structurestraversed by aloop static or dynamic? What are the patterns of traversal?
o For the data structuresthat are currently traversed by aloop, where are they created?
o Arethedata structures connected or independent?

These answers can be applied to remove redundant synchronizations between loops for programs on (distributed)
shared-memory multiprocessors, or to build communication schedules and embed communication cals for data
parallel programs on distributed memory systems.

Theinnovativeideaof thispaper isto differentiate associati ons (instances) of pointer variables, and to represent the
connection relationships of these pointer associations by constructing a new form of alias graphs, called link graphs.
In contrast to the structures proposed other researchers [2, 10, 12, 16] which build a table, a matrix, or a graph to
depict aliasinformation for every statement, only a singlelink graph is needed for multiple statements. Consequently,
link graphs are ideal to serve asthe platform for compile-time analysis on programs with dynamic pointer-linked data
structures, since it usualy takes multiple-statement program constructs, such as loops or recursive functions, to create
or traverse pointer-linked data structures. Compilerscan analyzethelinksof link graphsto answer the above questions,
i.e. to extract the patterns of structuretraversal, to determineif linked structures are static or dynamic, and to estimate
the connection rel ationships between pointer-linked data structures. Furthermore, this paper is the first to develop a
method to detect and represent theregions (i.e. sequences of statements) of programs that define or use dynamic linked
data structures, and identify the DEF-USE rel ationships of these regions.

The link graphs are constructed from an extended form of the SSA (Static Single Assignment) intermediate
representation [5]. This new SSA form extends the original SSA representation to accommodate both pointers and
variables. In addition to providing information for link graph construction, this extended form of SSA can be used to
perform compile-time analysis on programs with pointers. Algorithms using the original SSA form to perform code

optimizations on programs without pointers, such as constant propagation and induction variable analysis [18, 19],
can be modified to be applied on programs with pointers. Appendix A presents an example by adapting a constant
propagation algorithm [18].

The contributions of this paper are outlined as follows:

e An auxiliary structure, caled the link graph, is proposed to represent the connections among associations
(instances) of pointer variables and fixed-location variables. It can be used to identify the process of creating
and traversing dynamic pointer-linked data structures by sequences of statements. (See Section 3)

o A simpleagorithmthat detects side effects of programs with dynamic pointer-linked datastructuresis outlined.
It gathers side effect information from SSA representation without concerning aiases caused by pointers, and
then propagates the side effect information through the links of link graphs. (See Section 4.1)

o None of the previoudy devel oped methods provide information of how and where the currently referenced data
structureis created, modified, and traversed by previously executed statements [2, 3, 10, 11, 12, 16]. This paper
proposes an agorithm to identify DEF and USE regions in programs, and construct DEF-USE information of
dynamic pointer-linked data structures on link graphs. This DEF-USE information is essential for compile-time
optimi zation on synchronization and communi cation overheads of parallel programswith dynamic pointer-linked
data structures. (See Section 4.2)

e An interprocedural compile-time analysis algorithm, safety analysis on user-defined reduction functions with
dynamic pointer-linked data structures, is outlined. Without safety analysis, data-parallel language compilers
have to assume all user-defined reduction functions are safe [17]. This algorithm determines if side effects or
data access conflicts might cause the results of user-defined reduction functions to be unpredictable when they
are executed in any order. (See Section 5.2)

Note the examples in this paper are written in Fortran 90.

2 Extended SSA Representation

The original SSA transformation is designed specialy for programswith fixed-location variables only, e.g. Fortran-77
programs, since any definitions to a variable will create a new vaue in one location without affecting the existing
values of any other locations[5]. However, it does not apply for programs with pointers because every pointer can be
dynamically assigned to point to any location. Definitions via a pointer would potentially change any existing values.
Therefore, the dynamic associations of pointer variables must be resolved before converting programsinto SSA form.
This paper proposes an approach to represent the pointer associations by transform programs into an extended SSA
format.

For programs with pointers, gnment statements can be categorized into two classes — pointer gnment
statements and val ue assignment statements. Pointer assignment statements define the associ ations of pointer variables,
that is, each pointer assignment redirects a pointer variableto point to a certain location in program address space. On
the other hand, val ue assignments statements assign val ues to the locations corresponding to the referenced variables.
Althoughit seems that these two classes of assignment statementswork intotally different ways, an observation isthat
once all value assignment statements are removed from programs and all addresses of storage locations are treated as
values, the pointer assignment statements work in exactly the same way asval ue assignment statements. Consequently,
pointer assignment statements can be transformed into SSA representationsjust as val ue assignment statements.

The key isto separate pointer assignment statements from value assignment statements. For every program with
pointers, the SSA representation will consist of two parts— pointer SSA for pointer assignment statements and variable

SSA for value assignments. The pointer SSA contains only the pointer assignment statements along with control flow
statements, wheress the variable SSA has al statements of the program with all pointer assignment statements being
converted to regular assignment statements. For example, the pointer assignment statement p = v in the origina
program in Figure 1(a) has a definition p; = v in pointer SSA and another one p1 = v1 in variable SSA as shown
in Figure 1(b). Therationae isthat, after pointer assignment two conditions hold: (1) the pointer variable p has the
address of variable v, and (2) areference to p returns the value of v. The dashed lines link the instances of pointer
variablesin pointer SSA to any definitionsto their counterpartsin variable SSA. Note that the DEF-USE information
in variable SSA might not be precise because of aiases caused by pointers. However, the aias information can be
collected using pointer SSA to refine the variable SSA.

Pointers Variables
v=3 e =3
p=>v P=>V.__ . “pEwv
g=>u g=>u 0= U, \
if ()then if()then._______ if()then

q=>p 4=>Pp, ~oEp
u=v u=v,
else e -~
p=6 __P=6
u=v e U=V,
end if endif ../ endif
c=u+v g 0@, %) . Ta=0,)
=p=0(p, P)
U= @(Uy, Uy)
C= UtV
(a) Program (b) SSA Representation

Figure 1: SSA Representation of A Program with Pointers

References to componentsof records (or structures) can be model ed as referencesto array elements. Any references
to linked data structuresthrough sequences of selectors, e.g. struct%list%mneat%node, will be brokeninto sequences
of statements such that each statement hasat most one selector. Therefore, theonly possibletypesof pointer assignments
in pointer SSA form are

1. ptr1 = node;
2. ptr1 = noder%onext
3. ptri%next = nodey
4. allocate (ptr1)
5. ptrz = ¢ (ptry, ptrz)

The other type, ptr1%next = node;%next, is represented by two consecutive statements, tempi = node;%next
and ptr1%nexzt = temp,. Note that each allocation statement is modeled as a two step process: a memory location
isallocated and then a pointer assignment is performed to direct the pointer to point to the location.

3 Link Graphs

This section defines the link graphs and describes the procedure to build them from the extended SSA form. Fur-
thermore, agorithms of side effect analysis and DEF-USE information construction on programs with dynamic
pointer-linked data structures will be presented in the next section as the exampl e applications of the link graphs.

3.1 Definition

A link graph for a program or a procedure contains a set of nodes: a node for each fixed location variable (its
address is a constant on pointer SSA form), a node for every definition (association) to a pointer variable, and nodes
corresponding to heap alocated locations. There is a fourth type, virtual nodes, which will be explained later. The
nodes are connected by two types of edges: an undirected ¢ link between two nodes means these two pointer instances
are diased (i.e. they have the same address), and a directed edge represents that sink location can be reached from
source location through the sel ector, the name of the directed edge.

The stepsto build alink graph from an extended SSA representation are as follows:

1. Construct anodefor each pointer instance on SSA. Similarly, anodeis created for each allocation statement.
2. For each ptr1 = node; statement, create an undirected £ edge between node ptr1 and node.

3. For each ptrg = ¢ (ptra, ptro) statement, build e linksfrom ptr3 to ptr1 and ptra, respectively. Furthermore,
thesetwo ¢ links are denoted by a ¢ mark, which means the two ¢ links are mutually exclusive.

4, For each ptri%mnext = node; statement, build adirected link with label next from ptrq to node;.

5. For every ptri1 = node1%next statement, collect the set of nodes with an outgoing link labeled next that can
be reached from ptr1 through ¢ edges (without passing any two ¢ edges denoted by a ¢ mark) and create an ¢
edge between ptr; and the sink of the next link of each node in the set. However, if the set is empty, create a
virtual node, build a virtua directed link with label next from node; to the virtual node, and then insert an ¢
edge between ptr1 and the virtual node.

For example, thelink graph of thefirst loop of the program (in SSA format) in Figure 2(a), which is adapted from [2],
can be built by following the above steps, as shown in Figure 2(b). This link graph not only clearly depicts the
rel ationship between pointer variables w and «, but also carries important program flow control information.

Sometimes the extended SSA does not provide connection information that is required to build link graphs, i.e.
when the setsin Step 5 of the above link graph construction procedure are empty. This situation usually happenswhen
the linked data structures are constructed and then referenced in different loops or procedures. For instance, the link
list constructed in the first loop (s1-s9) in Figure 2(a) istraversed in the second loop (s10-s15). The pointer variables,
y and z, have no information of the linked locations on the structures, i.e. z2%cdr and y,%cdr are not defined within
theloop. In order to convey thisinformation, virtual nodes and directed edges are created, as the dashed circles and
directed linesin Figure 2(c). Although the connection information of virtual nodes is not currently known, it can be
recovered later by traversal on link graphs, e.g. the dashed undirected linesin Figure 2(c) link the virtual nodes to the
allocated nodes in Figure 2(b). The main advantage of introducing virtual nodes and edgesisthat it giveslink graphs
the ability to convey theinformation of linked structure traversal.

3.2 Properties

The edges of link graphs represent the associations of instances of pointer variables and the connections among
locations. Furthermore, since each edge corresponds to a unique statement on pointer SSA form, the program flow

do while(...)
W,= @(Wy, W,)
alocate (x,) @
X.%car =1
x%cdr =>wy
alocate (ws)
w%car = 2
wa%cdr => X,

end

™

BHLUBHROHKA

cdr '

J@} o
s10 z=>w, cdr = pe
sl dowhile(.) E aocs \ I
s12 Z= 0(z,,) -7) @,’

s13 y,=> z,%cdr

sl4 z=>Y, %cdr .-
s15 end oW,

aloc:s3

(a) Program (in extended SSA) (b) Link Graph of First Loop (c) Link Graph of Second Loop
Figure 2: SSA and Corresponding Link Graph

information is also carried by the link graphs. Consequently, important properties of dynamic pointer-linked data
structures can be obtained from link graphs.

Oneproperty isthat al thelocationslinked by the same data structure will be on the same connected component of
alink graph, and so aredll pointer referencesto the structure, no matter where they arein the program. Theimplication
isthat if two nodes of alink graph are not on the same connected component, i.e. thereis no path between them, the
corresponding pointer instances of SSA form are definitely not referencing the same linked data structure. Similarly,
the same assertion can be obtained for pointer-induced aliases. That is, if between two nodes of alink graph thereis
no path which consists of < edges only, the corresponding instances on SSA are not aliases.

Another specia property is that the link graphs can identify where (at which program points) dynamic pointer-
linked data structures are created and traversed. Theinformationis carried by the directed edges: solid directed edges
represent the creation and/or traversal of links between storage locations, whereas dashed ones means traversal down
thelinks. If alinked data structure is created or traversed by a sequence of straight statements (i.e. not aloop), the
link graph will be acyclic. Otherwise, those referenced nodes will be in the same strongly connected component,
i.e. acycle, with the iteration edge of the ¢-function at the header of the loop (the other edge of the same ¢ is the
initialization one). For example, thelink graphs of the first loop that creates alinked structure and the second one that
traversesit in Figure 2(a) are cyclic, as shown in Figure 2(b) and Figure 2(c), respectively.

Oneimportant ability isthat link graphs can differentiate the cyclesthat represent cyclesin run-time data structures
from those that represent unbounded acyclic data structures, in contrast to other similar graphs, e.g. aliasgraphs[12],
and storage shape graphs [2], etc. If acycle of alink graph does not have an iteration edge of the ¢-function at the
header of theloop, then it signalsacyclein adata structure at runtime. Otherwise, if acycle containsan iteration edge
and does not include nodes which are simple fixed locations (e.g. scalar variables), it means an unbounded acyclic
data structure. Of course, it ispossiblethat a cyclic linked list can have unbounded number of nodes. In thiscase, the
strongly connected component corresponding this cyclic structure will have two cycles. For example, if statements
s0a and s9a are added to the program in Figure 2(a) to create a cyclic linked list, the link graph shown in Figure 3 has
two cycles — one with the initiaization edge of the ¢-function at the header of theloop, while the other with iteration
edge.

p=>Ww,

dowhile(...)
w,= @(w,, W)
alocate (x,)
xYocar =1

x.%%6cdr => w, >
O

alocate (w;,)
wcar = 2
wabcdr => X, cdr

cdr
end . aloc:s7
a pYocdr =>w,

alloc:s3

eHUBHRHE/L RS

@

(a) Program to Create Cyclic Linked List (b) Link Graph
Figure 3: CyclesinLink Graph of Cyclic Linked List
4 Analysis Techniques Using Link Graphs

This section presents two algorithms of compile-time analysis, side effect analysis and DEF-USE information con-
struction for programs with dynamic pointer-linked data structures.

4.1 SideEffect Analysison Linked Data Structures

This agorithm detects side effects of programs with dynamic pointer-linked data structures. It reports the side effects
to fixed locations, i.e. variables or alocated heap storage, of certain program points, blocks of code, or the whole
program. It performs the analysis by collecting the side effects of statements from SSA form without concerning the
aliases of pointersand linked data structures, and then propagatesthe informationon link graphs. The a gorithm works
asfollows:

1. Transform the program into SSA representation and build the corresponding link graphs.

2. Collect the set of instances (pointers or variables) from the SSA form that will be modified by assignment
statements.

3. For each instance in the set, perform the following operations on the link graph:

o Mark the side effect at the corresponding node on the link graph.

o Starting from the node, mark all the nodes that can be reached through ¢ edges without passing any two ¢
links denoted by the same ¢ sign.

To givean example, thisalgorithmis applied on the program in Figure 2(a). Theresult will revea that the side effects
caused by statements s4 and s5 end up in the heap locations allocated by s3, and s7 and s8 by s6. Note that the side
effects do not reach the instance w1. It means the loop does not cause any side effects to any locations of the linked
data structure starting from wy, if it exists, that is created before entering the loop.

The side effect information can be more preciseif different marks are used to represent varioustypes of side effects.
For example, modification to afield of arecord can be denoted by placing a mark with the field name on the node of
link graph. Asaresult, the precision of the side effect information isimproved to record fields. Furthermore, the same
link graph can be used to detect read-write conflicts by properly marking every read and write on the corresponding
nodes. If there are any nodes on the link graph with conflicting marks, the function might have statements causing
read-write conflicts.

4.2

DEF-USE Information of Dynamic Linked Data Structures

The DEF-USE chains of variables are defined for every statement, since the target location of each reference can be
uniquely determined from program text. However, the same case might not apply on programs with pointers, because
pointers can dynamically point to any locations. Furthermore, it is common that locations of nodes in dynamic linked
data structures cannot be dereferenced through explicitly declared variable names, and consequently they have to be
referenced through proper pointer initialization and link traversal. That is, references to linked data structures are
usualy performed by sequences of statements. Therefore, DEF-USE information of regions (blocks of statements),
instead of statements, will be gathered.

dowhile(...)
W,= (Wi, W)
X= (P(Xh X3)
alocate (p.)
p.%next => w,
W;=> D,
alocate (p,)
p,%next => X,
X=> P,

sl10 end

BHLUGHRHBEA

sl p=>w,
s12 dowhile(...)
s13 p=o(p,p)

sl4

s15 p,=> p,%next
sl6 end

s17 P& X,

s18 dowhile(..) v
s19 p=9(p,p,) N

s20

21 p;=> p,%next

22 end

(a) Program (in Extended SSA) (b) Link Graph

Figure 4: DEF-USE Information of Linked Structures

This algorithm identifies the code fragments or program regions, especially loops, that create, modify, or traverse
dynamic pointer-linked data structures, and gather the DEF-USE information among these code fragments. It works
asfollows:

1.

2.

3.

Transform the program into SSA representation.
Build the corresponding link graphs without constructing virtua (dashed) undirected edges.

Traverse the link graphs and identify strongly connected components (cycles) with the iteration edges of the
¢-functionsat the headers of loops. Those cycleswith solid directed edges represent |oopsthat define, i.e. create
or modify, the linked data structures, while those with virtua directed edges only are loops that traverse the
linked structures without changing any connections.

. Connect the virtual (dashed) undirected edges of link graphs. The DEF regions of a USE region are those that

are connected to the USE region by undirected virtua links.

. Identify the groups of statements that define and reference linked data structures by mapping the edges of the

cycles on link graphs back to statementsin SSA form.

Note that a program region that traverses a dynamic linked data structure might have more than one defining region
since the data structure might be created by one region and modified by others before entering the current traversing
region.

Applying the algorithm to the program in Figure 4(a) reveas that the first loop (s1-s10) in fact creates two
independent linked lists starting from w and « respectively, whilethe second loop traverses the w list and the last [oop
references the other list. Thisinformation will be useful if the program is running on a (distributed) shared-memory
multiprocessor system, since it recognizes that only a global synchronization is required right after the end of the
first loop. There will be no reference conflicts between the second and the third loops because they traverse two
independent linked data structures.

5 Interprocedural Analysis

This section describes the extensions of SSA representation and link graphs so that they can carry interprocedural
information, and presents an example application of interprocedural compile-time analysis — safety analysis of user-
defined reduction functions with dynamic pointer-linked data structures.

5.1 Interprocedural SSA Representation and Link Graphs

An extension to the SSA representation is required to model the procedure calls. It models the passing of parameters
to and back from procedures. Each call-by-value parameter is modeled by assigning its actual parameter to formal
parameter, whereas each call-by-reference parameter is modeled by two assignment statements — the first assigns the
actual parameter to the formal one and the second assigns the formal parameter back to the actual one. Furthermore,
since each procedure might be called at different call sites, ajoin function similar to ¢-functionsis needed to merge
different incoming values of actua parameters and hence a @ node is inserted for each parameter right before the
procedure, if necessary. For example, a ®-function is placed before the subroutine insert in Figure 5(a), which has
two call siteswith actua parameters w and «, respectively. Each call site is attached with an assignment statement to
get the value of formal parameter back to actual one. Note this extension appliesto pointer SSA form as well.

do while(...)

W= @ (W, W)

call insert (w,); w,=>p,,
end do

dowhile(...)

X= _(p(XO, X,)

call insert (x,); x,=> p,,
end do

= O (W, X,)

subroutine insert (p,)
allocate (n)
nnext =>p,
p=>n,

end AN

pend: pZ \\; - .

(a) Interprocedural SSA (b) Interprocedural Link Graph

Figure5: Interprocedural SSA Representation and Link Graphs

Extra types of nodes need to be introduced to link graphs aso in order to model procedure calls. They are placed

right on the boundary that separates procedures. The boundary nodes with ®-functions merge the incoming values
from actual parameters, while the nodes without @ model the return of values of forma parameters back to actual
parameters. Consider the interprocedural SSA form shown in Figure 5(a). A boundary node with @ is added to the
link graph to copy the values of actua parameters wy and x; to the formal parameter p; and the boundary node p.,, 4
isincluded to return the fina value of forma parameter back to actual parameters, as shown in Figure 5(b). Thislink
graph depicts that two independent unbounded acyclic data structures are created by the two loops, which in turn call
the same procedure insert to insert new elementsto the structures. Thisinformation can be obtained by traversing the
link graph to find two cycles with ¢-functionsat headers of loops, if the link graph of the called procedure, i.e. insert,
can be shared by the link graphs of calling procedures, but not the two edges of @ boundary node.

5.2 Safety Analysisof User-Defined Reduction Functions

The introduction of user-defined reduction functions provides programmers the ability to formulate new combining
operations on dynamic pointer-linked datastructuresin data-parallel languages[8, 17]. It usualy takestwo parameters
— reduction variable is where the result is accumulated and input parameter passes the input value to the function.
However, none have proposed algorithmsto determineif user-defined reduction functionswith dynamic pointer-linked
data structures have undesired side effects. This section proposes an algorithm to determine if the side effects of
reduction functions are safe.

The agorithm checks three conditions to determine if a user-defined reduction function is safe, i.e. it does not
cause data access conflicts and the side effects will not change thefinal result. They are:

o The function does not cause any side effects to locations that are reachable from the input parameter,

o No side effects are imposed by the function to any variables referenced in the loop, and

¢ No statements in the loop, except for the one calling reduction function, reference the reduction variable.
The agorithm works as follows:

1. Construct the link graphs of the user-defined reduction function and the loop that enclosesit.

2. Collect the side effects of the reduction function from the SSA representation, and propagate them on the link
graphs by marking side effects on aliased nodes. Traverse the link graph of the second input parameter. If any
nodes on the link graph have the side effect marks, the user-defined reduction function is considered as not safe.

3. Check al thenodes onthelink graphsof the enclosing loop, except those of the reduction functionand thecalling
statement. If there are any nodes marked by the side effects, the user-defined reduction functionis considered as
not safe. Otherwise, each traversed node is marked as areference, and the mark is propagated to aliased nodes.

4. Traversethelink graph of thereduction variable. If any nodes on thelink graph have reference marks, enclosing
loop is considered as not safe. Otherwise, the reduction operation is considered as safe.

Consider the example user-defined reduction in Figure 6. It is an independent |oop to create an unordered linked
list by using two different versions of user-defined reduction function insert(). It iseasy totell that version 1 is not
safe since it modifies the input parameter node directly, whereas version 2 does not causes side effects on node and it
can be proved safe by applying the algorithm above. However, there are cases that user-defined reduction functions
are not safe even though they do not seem to cause any side effects to input parameters. For example, both versions
of the append function in Figure 7 do not modify the input parameter node directly. The safety analysis agorithm
revealsthat version 1 is not safe since it modifies the node appended to thelist at the previousiteration, while version
2issdfe.

{Main Loop} {Version 1} {Version 2}
'HPF$ INDEPENDENT subroutineinsert (list, node) subroutineinsert (list, node)

doi=1,N node%next = list allocate (p)
e list = node p%node = node
'HPF$ REDUCE end pY%next = list
call insert (list, node(i)) list=p

end do end

Figure 6: User-Defined Reduction — Node Insertion

{Main Loop} {Version 1} {Version 2}
'HPF$ INDEPENDENT subroutine append (list, node) subroutine append (list, node)
doi=1,N p=list p = list

e do while (associated(p%onext)) do while (associated(p%onext))

'HPF$ REDUCE p = p%next p = p%next

call append (list, node(i)) end do end do
end do p%next = node allocate (p%onext)

end p%next%node = node
end

Figure 7: User-Defined Reduction — Node Append
6 Example

This section studiesthe propertiesof thelinked list and tree used in asimplified version of the Barnes-Hut tree code [1]
by building link graphs and performing the side effect analysis and DEF-USE information construction. Based on the
properties reported by the analysi s techniques, the Barnes-Hut tree code has been parallelized by hand and the timing
results of the hand-parallelized tree code on Stanford DASH and Intel Paragon will be presented.

Figure 8 showsthe simplified version of thetree code. It consists of two loops—thefirst loop traverses the particle
list and creates a binary tree, and the second one cal cul ates the force imposed on each particle by all other particles
by calling a recursive tree traversal function. The link graphs of the smplified Barnes-Hut tree code are shown in
Figure9.

By observing the link graphs and applying the algorithmsin the previous section, the following information can
be obtained by compilers:

e Thetree creation loop (S1-S24) creates an acyclic linked data structure. The strongly connected component of
the link graph in Figure 9(a) contains theiteration edge of loop header, and hence concludes the created linked
data structure is acyclic.

e The particlelist and the tree are connected. However, paths exist only from the tree to the particle list, but not
vice versa. This connection causes other shape anaysis techniquesto wrongly guessthetreeiscyclic[9].

o Applying the DEF-USE agorithmwill revea that linked data structure referenced in the second 1oop (S25-29)
is created by the first loop. The other linked structure is traversed by both loops and and its structure remains
intact.

o Thesideeffect anaysisagorithmwill detect the side effectsthat occur to theallocated nodes during tree creation
loop and to the nodes of the particle list in the tree traversal 1oop. The tree traversal 1oop does not incur any

10

{Tree Creation} {Tree Traversal}

SI p=list S25 p=list
S2 dowhile (associated(p)) S26 dowhile (associated(p))
S3 n=tree S27 p%force = traverse_tree(p, tree)
A do S28 p= pY%next
S5 if (COMPARE(p, n)) then S29 enddo
S6 if (associated(n%left)) then
S7 n = n%left S30 recursivefunction traverse_tree(p, tree)
S8 else S31 if (TOO_FAR_AWAY (p, tree) then
9 allocate(n%l eft) S32 traverse_tree = FORCE(p, treg)
S10 n%leftdoparticle = p S33 ese
S11 exit S34 traverse_tree = traverse_tree(p, tree%oleft)
S12 end if + traverse_treg(p, tree%oright)
S13 else S35 endif
same as S6-S12, replace left by right S36 return
S21 end if S37 end
S22 enddo
S23 p = p%next
S24 enddo

Figure 8: Simplified Barnes-Hut Tree Code

€

praticle

(a) Tree Creation (b) Tree Traversa

Figure9: Link Graphs of Tree Code

side effects to tree. The implication of thisinformation is that the tree can be traversed independently by any
particlesin the list, since each iteration only updates the force field of the particle currently being referenced.

Based on the information shown above, the tree traversal 1oop can be executed in parallel. That is, each particle
can traverse the tree independently. However, the tree creation loop is executed sequentially. The timing results (in
seconds) of hand-parallelized Barnes-Hut code on Stanford DASH are listed in Table 1. The tree code was executed

11

for the time span of 0.5 seconds with each time step 0.025 seconds, and consequently 21 times of tree creations and
traversals were performed. It shows speedup of 5.4 on 8 processors and 7.6 on 16.

Table 1: Execution Tims for Barnes-Hut on DASH

Number Processors
of Particles 1 2 4 8 16
8192 4024.98 | 2093.03 | 1104.62 | 731.65 | 517.14

Thetree code can be parallelized on distributed memory machinesinthe sameway. However, sincetheparticlesare
distributed over processors, each processor hasto collect particlesfrom all other processors to construct thetree. Once
the tree construction is finished, each processor iterates through local particles and traverses the tree independently.
Although interprocessor communications incur overheads, good locality is observed and hence better speedup is
achieved. It achieves speedup of 13 on 16 processors of Intel Paragon. Table 2 shows the execution times of the
hand-parallelized tree code with 8K and 16K particles.

Table 2: Execution Timsfor Barnes-Hut on Paragon

Number Processors
of Particles 1 2 4 8 16
8192 1007.65 | 510.20 | 263.04 | 138.76 | 76.73
16384 2288.66 | 1157.86 | 592.40 | 310.65 | 169.83

The tree creation phase of both parallelized versions can not be executed in parallel because the original programis
designedto create asingletree structureto store particleinformation. Asaresult, compilerswould haveto sequentialize
the tree creation phase. However, other researchers have proposed and implemented tree codes that processors create
subtrees from loca particles in parallel [14]. Therefore, both phases can be executed in parallel. The user-defined
reduction functions can be used to program thistype of codes in data-parallel languages.

7 Reated Work

The analysis done in this paper is closely related to the side effect analysis on programs with pointers [3, 7, 11]
and conflict/interference analysis for programs with dynamic pointer-linked data structures [10, 12]. Each of these
algorithms builds either tables, graphs, or sets to represent the aliases or connections of locations, and then performs
compile-time analysis on these auxiliary structures. The difference of thiswork from othersisthat asingle link graph
is constructed for each procedure or a block of code, whereas others have to build an auxiliary structure for every
Statement.

Another related field is shape analysis, which is to find the characterization of possible shapes of the dynamic
linked data structuresin programs[2, 9, 15, 16]. The link graphsin this paper can differentiate the cycles that represent
cyclesin run-timedata structures from those that represent unbounded acyclic data structures, whilethe Storage Shape
Graphs (SSG) can not [2]. Plevyak et a. adapted the SSA and developed the Abstract Storage Graph (ASG) that
solved about problem [15]. However, unlike link graphs which can be constructed from SSA in a straightforward
manner, it takes considerable effortsto construct an ASG and, furthermore, it might not be easy to compare ASGs of
different statements to determine how the dynamic linked structures are modified because of possible deconstruction
and compression operations on them. The shape anaysis algorithm proposed by Ghiya and Hendren [9] reports that

12

linked structures created by the n-body solver [1] are cyclic, wheress the link graphs revedl that it is acyclic. The
link graphs are, in a sense, similar to the shape-graphs developed by Sagiv et a [16]. The nodes of the shape-graphs
represent distinct | ocationswhilethose of link graphs correspond to unique pointer instances, and theedges of both type
of graphs depict the connections. However, since each shape-graph records the current condition of linked structures
at aprogram point, it is not easy to characterize the effects by the execution of statements on the linked structures. On
the other hand, link graphs can not handle destructive updating on links as well as shape-graphs, since they are built
based on the information of SSA representation.

The distinct feature of this work is that link graphs can depict the process of creation and traversal of dynamic
pointer-linked data structures by sequences of statements, and consequently DEF-USE information of these linked
structures can be exploited for optimizations or program transformations by compilers. This piece of information is
not easy to extract from other auxiliary structures proposed by other researchers.

Recently, commutativity analysis has been proposed as a new framework for paralleizing compilers [13]. It
parallelizes programs by analyzing if the operations commute. However, it only applies to object-based programs.
Furthermore, its parallelization approach tends to generate programs with fine-grained parallelism and hence the
generated code might not be efficient when running on distributed memory systems.

8 Summary

This paper proposed link graphs to portray the aias information between pointers and the connection relationships
of dynamic pointer-linked data structures. Algorithms were presented to demonstrate that information essential for
optimizationson sequential and data-parallel programswith dynamic pointer-linked data structures can be gathered by
using the link graphs as the basis.

The extended form of SSA representation and link graphs have been implemented on top of the ParaScope
programming environment, originally developed by Rice University [4]. The implementation of the algorithms
proposed in the paper are currently underway. The agorithmswill be integrated as part of Fortran 90D compiler that
transforms data-parallel programs with dynamic pointer-linked data structures into efficient parallel code.

Although the examples in this paper are programmed in Fortran 90, which only supports single level pointers,
multiple level pointersin other languages, e.g. C, can aso be handled and be represented by SSA form. The key
concept istotreat each level asarecord that containsasingle selector (or field), which carriesthelocation of therecord
of next level pointer.

References

[1] J. Barnesand P. Hut. A hierarchical O(NlogN) force-calculation algorithm. Nature, pages 446449, December
1976.

[2] DavidR. Chase, Mark Wegman, and F. Kenneth Zadeck. Analysisof pointersand structures. SSGPLAN Notices,
25(6):296-310, June 1990. Proceedings of the ACM SIGPLAN ’'90 Conference on Programming Language
Design and Implementation.

[3] Jong-Deok Choi, Michagl Burke, and Paul Carini. Efficient flow-sensitive interprocedural computation of
pointer-induced aliases and side effects. 1n Conference Record of the Twentieth Annual ACM SSGPLAN-S GACT
Symposium on Principles of Programming Languages, pages 232245, Charleston, South Carolina, January
1993.

[4] K.D. Cooper, M. W. Hall, R. Hood, K. Kennedy, K. McKinley, J. Mdlor-Crummey, L. Torczon, and S. Warren.
The ParaScope parallel programming environment. Proceedings of the |EEE, pages 244-263, February 1993.

13

(5]

(6]

[7]

(8]
(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. Efficiently computing
static single assignment form and the control dependence graph. ACM Transactionson Programming Languages
and Systems, 13(4):451-490, October 1991.

Ron Cytron and Reid Gershbein. Efficient accommodation of may-alias information in ssa form. SIGPLAN
Notices, 28(6):36-45, June 1993. Proceedings of the ACM SIGPLAN ’ 93 Conference on Programming Language
Design and Implementation.

Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-sensitive interprocedural Points-to analysis
in the presence of function pointers. SIGPLAN Notices, 29(6):242-256, June 1994. Proceedings of the ACM
SIGPLAN ' 94 Conference on Programming Language Design and | mplementation.

High Performance Fortran Forum. HPF-2 Scope of Activities and Motivating Applications, November 1994.

Rakesh Ghiyaand Laurie J. Hendren. Isit atree, aDAG, or acyclic graph? A shape analysis for heap-directed
pointersin C. In Conference Record of POPL '96: 23nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 1-15, St. Petersburg Beach, Florida, January 1996.

Laurie J. Hendren and Alexandru Nicolau. Parallelizing programswith recursive data structures. |EEE Transac-
tionson Parallel and Distributed Systems, 1(1):35-47, January 1990.

William Landi, Barbara G. Ryder, and Sean Zhang. Interprocedura side effect analysis with pointer aiasing.
SIGPLAN Notices, 28(6):56-67, June 1993. Proceedings of the ACM SIGPLAN ' 93 Conference on Programming
Language Design and I mplementation.

James R. Larus and Paul N. Hilfinger. Detecting conflicts between structure accesses. SIGPLAN Notices,
23(7):21-34, July 1988. Proceedings of the ACM SIGPLAN ' 88 Conference on Programming Language Design
and Implementation.

Pedro C. DinizMartin C. Rinard. Commutativity analysis: A new anaysisframework for parallelizing compilers.
SIGPLAN Notices, 31(5):54-67, May 1996. Proceedings of the ACM SIGPLAN " 96 Conference on Programming
Language Design and I mplementation.

Kevin M. Olson and Charles V. Packer. An n-body tree algorithm for the Cray T3D. Technical Report 199882,
NASA Contractor Report, May 1996.

J. Plevyak, A. Chien, and V. Karamcheti. Analysis of dynamic structures for efficient parallel execution. In
Proceedings of the 6th International Workshop on Languages and Compilers for Parallel Computing, pages
37-56, Portland, Oregon, August 1993. Lecture Notesin Computer Science, Vol. 768, Springer Verlag.

Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Solving shape-analysis problemsin languages with destruc-
tive updating. 1n Conference Record of POPL '96: 23nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 1631, St. Petersburg Beach, Florida, January 1996.

Guhan Viswanathan and James R. Larus. User-defined reductionsfor communication in data-parallel 1anguages.
Technical Report 1293, Computer Science Department, University of Wisconsin-Madison, January 1996.

Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with conditional branches. ACM Transactions
on Programming Languages and Systems, 13(2):181-210, April 1991.

Michagl Wolfe. Beyond induction variables. SGPLAN Notices, 27(7):162-174, July 1992. Proceedings of the
ACM S GPLAN '92 Conference on Programming Language Design and I mplementation.

14

A Constant Propagation on Programswith Pointers

This section presents a constant propagation algorithm to demonstrate that it is easy to adapt existing a gorithms to
perform analysis on programs with pointers using the extended SSA form asthe basis. Thisagorithmis adapted from
the Sparse Conditional Constant (SCC) agorithm by Wegman and Zadeck [18]. It examines the SSA form at most
twice, in contrast to the one proposed by Cytron and Gershbein [6] which constructs a sequence of approximating and
partial SSA forms until convergence is reached.

T
any 1T = any
any I'1 1 =1

Q @ @k cric=cifi=j

CrMc=L1 ifiz]

(a) Three Level Lattice (b) T Operation
Figure 10: The Lattice and Rulesfor 1 Operator

This algorithm proceeds by lowering the Lattice Cell of each node until afixed point isachieved. The lattice and
the rules of the meet () operator are depicted in Figure 10. It uses three worklists: Flow WorkList is a worklist of
program flow graph, SSA WorkList isaworklist of variable SSA edges, and Pointer WorkList isaworklist of pointer
SSA edges. This agorithmworks as follows:

1. Initializethe Flow WorkList to contain the edges exiting the start node of the program. The SSA WorkL ist and
Pointer WorkList are initially empty.
Each program flow graph edge has an associated flag, the Executable Flag, that controls the evaluation of
¢-functionsin the destination node of that edge. Thisflagisinitialyf al se for all edges.
Each node of the variable SSA has a Lattice Cell, which is initialy T, while every pointer SSA node has a
Lattice Set, which isinitially empty.

2. Halt execution when al three worklists become empty.
Pointer WorkList has the priority.
Execution may proceed by processingitemsfrom either Flow WorkList or SSA WorkL.ist when Pointer WorkL st
is empty.

3. If theitem is a program flow graph edge from the Flow WorkList, then examine the Executable Flag of that
edge. If the Executable Flag ist r ue do nothing; otherwise:
(8 Mark the Executable Flag of the edge ast r ue.
(b) Perform Visit-¢ for al of the ¢-functions at the destination node.

(o) If only one of the Executable Flags associated with the incoming program flow graphist r ue (i.e, if this
isthefirst timethisnode has been evaluated), then perform Visit Expression for the expression in thisnode
and perform Update Aliasif the corresponding node exists.

(d) If the node only contains one outgoing flow graph edge, add that edge to the Flow WorkL.ist.

4. If theitem isan SSA edge from either the SSA WorkList or Pointer WorkList and the destination of that edgeis
a ¢-function, perform Visit-¢.

15

5. If theitemisan SSA edge from the SSA WorkL ist and the destination of the edge is an expression, the examine
Executable Flags for the program flow edges reaching that node. If any of them are t r ue, perform Visit
Expression. Otherwise, do nothing.

6. If the item is an SSA edge from the Pointer WorkList and the destination of the edge is an expression, the
examine Executable Flags for the program flow edges reaching that node. If any of them aret r ue, perform
Update Alias. Otherwise do nothing.

Visit-¢ is defined as follows: The Lattice Cdll, if the SSA node does not have any extra reaching definitions, or
Lattice Set for each operand of the ¢-function are defined on the basis of the Executable Flag for the corresponding
program flow edge.

e execut abl e: The Lattice Cell has the same vaue as the Lattice Cell at the definition end of the SSA edge.
The Lattice Set, if such pointer SSA nodeexists, hasthe same set of elements asthe Lattice Cell at the definition
end of the pointer SSA edge.

e not - execut abl e: The Lattice Cell hasthevalue T. The Lattice Set is (), if exists.

If any operands have extra reaching definition edges, the values of the Lattice Cells will be the meet of the values of
reaching definitions with executable program flow edges. The value of of Lattice Cell (Lattice Set) associated with
the output of a ¢-function of variable SSA (pointer SSA) is defined to be the meet (union) of all arguments whose
corresponding in-edge has been marked executable.

Visit Expression isdefined asfollows: Evaluate the expression abtaining the val ues of the operandsfrom the Lattice
Cellswhere they are defined (meet operationis performed if extra reaching definitions exist) and using the expression
rulesdefined in Figure 10. If thischanges thevalue of the Lattice Cell of the output of the expression, do thefollowing:

1. If the expression is part of an assignment node, add to the SSA WorkList all SSA edges starting at the definition
for that node.

2. If the expression controls a conditional branch, some outgoing flow graph edges must be added to the Flow
WorkList. If the Lattice Cell hasvaue L, al exit edges must be added to the Flow WorkList. If thevalueisa
congtant, only the flow graph edge executed as the result of the branch is added to the Flow WorkList.

(w)=3

/) extra
reaching
definition

(a) Before (b) After
Figure11: An ExtraReaching Added Dueto Alias

Update Aliasis defined as follows: Calculate the alias sets of the operands from the Lattice Sets where they are
defined. If this changes the value of the Lattice Set of the output of the expression, do the following for each newly
introduced aias:

o Follow the dashed link of the expression from pointer SSA to variable SSA and start from the second definition,
and add an extra reaching definition link to every use of the current definition of the aliased variable. For
example, the assignment statement «p, = 6 causes an extra reaching definition to the use of v in the statement
up = vy, 8 shown in Figure 11, since that p isaliased to v by the pointer assignment statement p; = v.

16

