
Synthesizing Protocol Speci�cations from ServiceSpeci�cations in Timed Extended Finite State Machines �Jun-Cheol Park Raymond E. MillerDepartment of Computer ScienceUniversity of Maryland, College Park, MD 20742fjcpark, millerg@cs.umd.eduSeptember 23, 1996AbstractWe propose a speci�cation model and present a method to algorithmically derive aprotocol speci�cation from a service speci�cation based on the model. Unlike the previousmodels based on �nite state machines, the proposed model can explicitly express concur-rency, synchronization, and timing requirements such as delays and timeouts. We assumethat there exists a reliable communication channel between any two protocol entities andthe maximum delay for each channel is bounded by a positive constant. Because of thevariable nature of the communication delays along with the time constraints associatedwith events, no protocol speci�cation can fully simulate the service speci�cation. The pro-posed method derives a protocol speci�cation that is optimal in the sense that it providesthe largest possible subset of the service speci�cation under the communication delay con-straints. We also give a method to derive a sub speci�cation from a service speci�cationand a maximum communication delay of each channel such that the sub speci�cation, butno superset of it, can be simulated by the derived protocol speci�cation.1 IntroductionThere are two common approaches for designing communication protocols: analysis and syn-thesis [4]. In the analysis method, the protocol designer begins with a preliminary versionof the protocol usually obtained by ad hoc methods. This approach usually results in an in-complete and erroneous design, which is followed by an analysis and redesign process. Thesequence of redesign, analysis, and error correction is applied iteratively until an error-freedesign is obtained. In the synthesis method, a partially speci�ed or incomplete protocol designis completed incrementally, or automatically, without any interaction by the designer such thatas the synthesis process proceeds correctness is maintained. The process ends with a designthat provides the set of speci�ed services. Therefore, no further veri�cation of the protocoldesign is necessary as in the analysis approach.Much research has been done in the area of protocol synthesis. The reader may refer to[1] for a survey and assessment of several synthesis methods. The synthesis methods can be�This research was supported by NASA Grant No. NAG 5-2648 and NSF Grant No. NCR9506039.1



classi�ed by the modeling formalism. The models include �nite state machines [2, 3, 7], Petrinets [5], LOTOS-like models [8, 9], etc. However, these methods do not provide or representthe notion of time, which is important for the proper functioning of communication systems.Recently, a few methods [10, 11] have been proposed that derive protocol speci�cations fromtimed service speci�cations. In [10], a model based on �nite state machines has been proposedfor specifying timing requirements by using a global clock, timers, and counters. The methodderives the protocol and medium speci�cations from a service speci�cation written as a setof timed transitions. The model represents temporal requirements between remote as wellas consecutive events, which necessarily introduces an exponential increase in the number oftimers. On the other hand, [11] has proposed a model based on LOTOS that restricts the timeconstraints of service speci�cations while �xing the maximum delay of the communicationmedia in the sense that the model can specify a complicated order of events in a structuralway.In this paper, we propose a model called timed extended �nite state machine(TEFSM)based on the extended �nite state machine(EFSM) model to deal with timed operations be-tween consecutive events. Delay and timeout are certainly two of the most useful timed op-erations. To represent these events, we use the notion of a timed transition in our modelby associating a time interval [l; u] with the transition. The lower and upper time limits aremeasured with respect to a global clock, and can thus be used in modeling timed propertiesincluding delays and timeouts. The notion of a timed transition is not new, and our model isin fact inspired by a few previous works [12, 13]. The main di�erence is that our model canexpress concurrency and synchronization among protocol entities explicitly while these previ-ous models could not. For synthesis, we assume that each communication channel is error-freeand has a propagation delay bounded by a constant, as in [11]. We present an algorithm thatderives a protocol speci�cation from a service speci�cation modeled as a TEFSM when anupper bound of delay for each channel is given.The paper is organized as follows. Section 2 describes our TEFSM model. Section 3formalizes the protocol synthesis problem and gives some notation. In section 4, we present analgorithm for deriving the protocol speci�cation of a protocol entity from a service speci�cationand prove the correctness of the algorithm by investigating the relationship between the servicespeci�cation and the protocol speci�cation. In section 5, we demonstrate the applicability ofour synthesis method by giving an example. Section 6 gives some concluding remarks anddiscusses areas requiring future work.2 The ModelThe TEFSM model is designed as a method for the formal description of service and protocolspeci�cations. A TEFSM M is de�ned by a tuple < S; FJ; V; T; �; s0 >, where (1) S is anonempty set of states and for each s 2 S, s is a choice, fork, join, or fork/join state. To repre-sent a possible parallel execution among protocol entities,M explicitly uses a pair (fork; join)of states such that the control ows(directed paths) from fork to join can be executed concur-rently and independently. If a join state is also a fork state which is matched with another joinstate, we call it fork/join state. Note that for each fork state, there exists a unique join stateand vice versa. All states other than fork, join, or fork/join states are choice states. If morethan one outgoing transition exists for a choice or a join state, M can arbitrarily choose onetransition and execute it. See Figure 1 for an example of the classi�cation of states; (2) FJ is2



a �nite(possibly empty) set of (fork,join) pairs inM ; (3) V is a set of variables including input,output, and local variables, denoted by I , O, and L, respectively; (4) T is a set of transitionsand each transition t 2 T is a 6-tuple < head(t); tail(t); P (t); E(t); host(t); [mint; maxt] >,where head(t) and tail(t) are respectively the head and the tail state of t, P (t) is the enablingpredicate in V associated with t, E(t) is the event on V associated with t, host(t) is the pro-tocol entity that executes t, and [mint; maxt] is the time interval associated with t such that tcan be executed aftermint, but no later thanmaxt has passed since the time of visit to head(t)state. If a time interval is not speci�ed explicitly, the default interval [0;1) is assumed. Anevent is a partial function: E(t) : L� I ! L�O. We denote ai[mint; maxt] as the transition twith the action a and the protocol entity i when the other components of t are of no concern;(5) � is a partial state transition function such that � : S � T ! S, and (6) s0 is an initialstate.
0

1

2

4

5 6

7

8

9

1012

3

11

a  b f
g

h
i j

k l

m
n

opq

c d e

fork state(s) : 0
join state(s) : 9
fork/join state(s) : 4
choice state(s) : all other states

(a, b) and (c, d, e) can be executed concurrently.
(f, g, h), (i, j) and (k, l) can be executed concurrently.Figure 1: The Classi�cation of States : An ExampleThe execution of a transition t is an instantaneous action in which both the event associatedwith t and the state change to the tail state of t occur simultaneously. A transition t in aTEFSM M must be executed within its time interval if (1) M is in head(t); (2) A �nite timeinterval is associated with t; and (3) t is enabled throughout the time interval.A protocol is speci�ed as a set of processes < PS0; PS1; :::; PSn > where each process PSiis a TEFSM that can communicate with other processes through FIFO channels. Note thateach process PSi has only choice states since no concurrent execution is allowed.A channel from PSi to PSj has a maximum delay Di;j such that the message transmissionsare carried out within Di;j , i.e., 0 < delay(i; j)� Di;j .A sending transition sij(m) denotes the nonblocking transmission of the message m fromPSi to PSj and a receiving transition rij(m) denotes the blocking reception of the message mcoming from PSi to PSj . Note that sij(m) and rij(m) are dual events.Since a TEFSM can be described as a labeled directed graph, we will use state and node,and event and transition interchangeably for the rest of the paper.3 Synthesis ProblemWe assume that there is a global digital clock that ticks at a constant frequency and all of therelative times of the protocol entities refer to this clock.Notation 1 (1) Given a �nite sequence �, first(�) and last(�) denote the �rst and the lastelement of �, respectively. Denote � for concatenation. � denotes an empty sequence, j�j = 0.(2) Given a sequence of events �, we denote � #i for the projection of � onto the events of PSi.3



(3) For a state s in a TEFSM, t(s) denotes the time when the machine has visited the state.(4) Given a state s in a TEFSM, IN(s) and OUT (s) denote the sets of the incoming and theoutgoing transitions of s, respectively.De�nition 1 For a join or a fork/join state s in a TEFSM, t(s) def= max1�i�kftij where ti isthe time when the incoming event ei of s has occurred, 1 � i � kg. For all other states s in aTEFSM, t(s) is de�ned to be the time when an incoming event e of s has occurred providedthe machine has executed e to reach the state s.De�nition 2 [10] A timed sequence S in a TEFSMM is a �nite or in�nite sequence of pairs< ei; ti >, where ti < ti+1 if host(ei) = host(ei+1) and ti � ti+1 otherwise and each pair< ei; ti > denotes that an event ei of M has occurred when the time is equal to ti.De�nition 3 A timed sequence S in a TEFSM M is valid if each ei has been executable athead(ei), i.e., P (ei) was true at head(ei) and has remained to be true till the execution of ei,and t(head(ei)) +minei � ti � t(head(ei)) +maxei .De�nition 4 Let fseq1; : : : ; seqng be a set of sequences, where seqi is a valid sequence in aTEFSM PSi; 1 � i � n. A merged sequence seq(Pni=1 i) from the set is a sequence of pairs< ei; ti >, where ei is in the union of the events of PSj ; 1 � j � n, such that seq(Pni=1 i) #j=seq(j), for each j; 1 � j � n, and ti � ti+1.Notation 2 (1) fPSi; 1 � i � ng denotes the set of the merged sequences fseq(Pni=1 i)jseq(Pni=1 i)is a merged sequence from fseq1; : : : ; seqng, where seqi is a valid sequence in a TEFSMPSi; 1 � i � ng. (2) fSSg denotes the set of valid sequences in a service speci�cation SS.The protocol synthesis problem is basically to derive a protocol speci�cation for the protocolentities from a given service speci�cation such that each protocol entity would be able to executeevents in exactly the same order as speci�ed in the service speci�cation. However, since thespeci�cation is modeled by a TEFSM, the problem now is to consider time constraints as wellas the relative order of the events in the service speci�cation. Along with the time constraintsassociated with events, the variable nature of the communication delays make it impossible toderive a protocol speci�cation which would be able to fully simulate the service speci�cation.Therefore, to cope with the discrepancy between protocol and service speci�cations, we de�nethe protocol synthesis problem as follows. Derive a protocol speci�cation from a given servicespeci�cation which satis�es the following conditions.De�nition 5 A derived protocol speci�cation PSi; 1 � i � n, is correct with respect to theservice speci�cation SS if (1) every merged sequence seq(Pni=1 i) from fseq(1); : : : ; seq(n)g,where seq(i) is a valid sequence in PSi, 1 � i � n, is a valid sequence in fSSg; and (2) everyvalid sequence � in fSSg is a merged sequence from fSS #1; : : : ; SS #ng, where SS #i preservesthe order of events as speci�ed in PSi; 1 � i � n.Condition (2) of De�nition 5 means that the derived protocol speci�cation should preservethe order of events, but not necessarily simulate the same time stamp of the events in theservice speci�cation. 4



4 Synthesis AlgorithmWe present an algorithm that derives the maximal protocol speci�cation among the correctprotocol speci�cations from a service speci�cation. Moreover, we also give an algorithm for�nding the maximal subset of a service speci�cation which can be represented by the derivedprotocol speci�cation.Since we assume that each protocol entity is modeled by a TEFSM, no (fork, join) pair in aservice speci�cation should contain a set of control ows that might be able to cause a conict,i.e., two or more concurrent events with the same host(protocol entity) and the same timestamp. To cope with the problem, we provide a su�cient condition for a service speci�cationto be conict-free. We believe that the condition given in Lemma 1 does not severely restrictthe modeling power of TEFSM.Lemma 1 A TEFSM M with nonempty FJ is conict-free if for each (f; j) 2 FJ , any twosequences s1 and s2 from f to j that can be executed concurrently by M do not share a host,i.e., host(s1) \ host(s2) = ;, where host(si) = fmjam is an event in sig.We also impose a restriction R1 to the service speci�cation SS as follows: for every choicestate s in SS, jhost(OUT (s))j = 1. R1 means that when a choice is possible during theexecution of a concurrent protocol system, the choice should be made locally by the sameprotocol entity to avoid possible deadlocks.For the sake of algorithm presentation, we denote (x; ei; y) as the event ei with the headstate x and the tail state y, respectively. The following algorithm generates PSi, the speci�ca-tion for protocol entity i, and we can get the protocol speci�cation PSi; 1 � i � n, by runningthe algorithm n times with di�erent i each time.Synthesis� Input: Service speci�cation SS with the condition in Lemma 1 and R1 represented by aTEFSM and Di;j; 8i; j; 1� i; j � n. Note that Di;i = 0; 8i; 1 � i � n.� Output: Protocol entity speci�cation PSi in a TEFSM1. For each state s with jIN(s)j > 0 in SS do the following:Let IN(s) = f(u1; ein1 ; s); : : : ; (uk; eink ; s) g andOUT (s) = f(s; fout1 ; v1); : : : ; (s; foutl; vl)g.(a) (Append send and/or receive transitions appropriately.)i. s is a choice state: Note that out1 = : : : = outl let= j.for each transition (ux; einx ; s); 1 � x � k, do:� if (inx 6= i^ j = i), then append a receive transition to the transition as inFigure 2(a);� else if (inx = i ^ j 6= i), then append a send transition to the transition asin Figure 2(b);� else if (inx = i ^ j = i) _ (inx 6= i ^ j 6= i), then do nothing;ii. s is a fork, but not a join state:for each transition (ux; einx ; s); 1 � x � k, do:� if (inx = i), then append a set of send transitions to the transition as inFigure 3(a); 5
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s is a join/fork state. As above, we know that feinx ; 1 � x � kg had occurred in �. We alsoknow that the subsequence einx ; : : : ; last(�) might have some events from OUT (s), but no ai'ssince otherwise ai would not have occurred at last(�), where einx is the most recently occurredevent from OUT (s) in �. Now, it is straightforward that ai had been executable at last(�).Thus, we conclude that ai had been executable at last(�) for all cases. Next we show thatt(s) + minai � t � t(s) + maxai, where [minai ; maxai] is the time interval associated withai in SS. The time interval associated with ai in PSi, by the algorithm Synthesis Step 1(b),becomes [minai; maxai �max1�x�kfDinx;ig]. Since �0 #i= � #i � < ai; t > is a valid sequencein PSi, we know that t(s) + minai + dinx;i � t � t(s) + dinx;i + maxai � max1�x�kfDinx;ig,where 0 < dinx;i � Dinx;i. Thus we have that t(s) +minai < t(s) +minai + dinx;i � t � t(s) +maxai �fmax1�x�kfDinx;ig� dinx;ig � t(s)+maxai . Therefore, since � is a valid sequence inSS by IH, �0 is also a valid sequence in SS from the above argument. To prove the maximalityof fPSi; 1 � i � ng, consider a sequence  in fSSg�fPSi; 1 � i � ng. It is clear that j j > 1,since any sequence in fSSg with length 1 should also be in fPSig, for some i. We know thatthere exists a pair of events< ei; te >;< f j ; tf > in  such that ei 2 IN(s); f j 2 OUT (s); i 6= j,and t(s) = te for some state s in SS, since otherwise  would not be in fSSg�fPSi; 1 � i � ng.Note that ei and f j might not be adjacent in  . By the algorithm Synthesis, the time intervalassociated with the event f j is adjusted into [minf j ; maxf j�max1�x�kfDinx;jg] in PSj , whereeinx 2 IN(s); 1� x � k. Assume the interval associated with the event f j in PSj is extendedto [minf j � �1; maxf j �max1�x�kfDinx;jg+ �2], where �1 and �2 are positive constants. Thente + minf j � �1 + � < te + minf j for a positive constant � such that � < �1 � Di;j . Hence,if the actual delay from PSi to PSj is �, then < ei; te >;< f j ; te + minf j � �1 + � > wouldnot be possible in any sequence in fSSg, since te +minf j � �1 + � < te +minf j . Similarly,te + maxf j � max1�x�kfDinx;jg + �2 +max1�x�kfDinx;jg = te + maxf j + �2 > te + maxf j .Thus, < ei; te >;< f j ; te + maxf j � max1�x�kfDinx;jg + �2 + max1�x�kfDinx;jg > wouldnot be possible in any sequence in fSSg, if max1�x�kfDinx;jg = Di;j and the actual delayfrom PSi to PSj is Di;j . Note that if max1�x�kfDinx;jg > Di;j , the validity of the pair< ei; te >;< f j ; te+maxf j �max1�x�kfDinx;jg+ �2 +Di;j > in SS depends upon the sign ofthe value Di;j + �2 �max1�x�kfDinx;jg.On the other hand, it should be clear that fSSg 6� fPSi; 1 � i � ng because of the ad-justment in Step 1(b) of the algorithm Synthesis. However, we can restrict SS to get a subspeci�cation SS� such that fSS�g � fPSi; 1 � i � ng. Here, we give an algorithm to generatesuch a sub speci�cation SS� which is maximal in the sense that fSS 0g � fPSi; 1 � i � ngimplies fSS 0g � fSS�g.Restriction� Input: Service speci�cation SS with the condition in Lemma 1 and R1 represented by aTEFSM and Di;j; 8i; j; 1� i; j � n. Note that Di;i = 0; 8i; 1 � i � n.� Output: Restricted service speci�cation SS� in a TEFSMFor each state s with jIN(s)j > 0 in SS do the following:1. Let IN(s) = f(u1; ein1 ; s); : : : ; (uk; eink ; s)g andOUT (s) = f(s; fout1 ; v1); : : : ; (s; foutl; vl)g.2. For each i; 1 � i � n, where n is the number of the protocol entities, do the following:8



� if i 2 fout1; : : : ; outlg, then [for each transition ty let= (s; fouty ; vy); 1 � y � l; suchthat outy = i, do: [minty ; maxty ]  T0<d�max1�x�kfDinx;ig f[minty + d;maxty �max1�x�kfDinx;ig+ d]g.2Lemma 3 Let PSi; 1 � i � n, be the derived protocol speci�cation from SS and SS� bethe restricted service speci�cation of SS. Then every valid sequence � in fSSg is a mergedsequence from fSS #1; : : : ; SS #ng, where SS #i preserves the order of events as speci�ed inPSi; 1 � i � n. Moreover, fSS�g � fPSi; 1 � i � ng, and fSS�g is maximal in the sense thatany extension of a time interval in SS� might be able to generate sequences which are not infPSi; 1 � i � ng under some speci�c delay constraints.Proof: Since SS and SS� are equivalent if timing is ignored, we know that it su�ces toshow that fSS�g � fPSi; 1 � i � ng to guarantee that the order of events speci�ed in SSis preserved in each PSi; 1 � i � n. We �rst show that fSS�g � fPSi; 1 � i � ng. Theproof is by induction on j�j, where � is a valid sequence in SS�. Base Case j�j = 1. It iseasy to see that � is a merged sequence from fPSig, where � =< ai; t >. Induction Hypoth-esis(IH for short) Assume the claim holds for j�j = k > 0. Let �0 = �� < ai; t >; j�j = k,be a valid sequence in SS�. By IH, we know that for each j; 1 � j � n, � #j is a validsequence in PSi. We show that � #i � < ai; t > is also a valid sequence in PSi, where weassume for the sake of the proof that PSi is the protocol speci�cation obtained in Step 3,i.e., one with � transitions. Note that � #j= �0 #j , for j 6= i; 1 � j � n. Let s let= head(ai).Since �0 is a valid sequence in SS�, it is clear that ai had been executable at last(�). We letlast(� #i) = first(�), if � #i= �. By Step 2 of the algorithm Synthesis, the transitions afterlast(� #i) through last(�), if any, in PSi would be � transitions. It is not hard to verify that,by investigating Step 1 and 2 of the algorithm Synthesis, the sequence � would be able tolead PSi into the state s and moreover s is reachable from either head(last(� #i)), if any, orthe start state of PSi, otherwise, via only �, send, and/or receive transitions. Next we showthat the inequalities t(s) + minPSiai + dinj ;i � t � t(s) + maxPSiai + dinj ;i hold regardless ofthe value of the actual delay dinj ;i as long as 0 < dinj ;i � Dinj;i, where [minPSiai ; maxPSiai ]is the time interval associated with ai in PSi and < einj ; te > is an incoming event ofs such that t(s) = te. Note that [minPSiai ; maxPSiai ] = [minai ; maxai � max1�j�kfDinj ;ig].Since �0 is a valid sequence in SS�, we have that t(s) + minSS�ai � t � t(s) + maxSS�ai ,where [minSS�ai ; maxSS�ai ] = T0<d�max1�j�kfDinj;ig f[minai+d;maxai�max1�j�kfDinj;ig+d]gis the time interval associated with ai in SS�. We have that t(s) + minPSiai + dinj ;i =t(s)+minai+dinj;i � t(s)+minai+Dinj ;i � t(s)+minai+max1�j�kfDinj;ig � t(s)+minSS�ai �t. Similarly, t � t(s) + maxSS�ai < t(s) + maxai �max1�j�kfDinj ;ig + �, where the last in-equality holds for any positive constant �. Hence, by choosing � su�ciently small, we havet(s) + maxPSiai + � � t(s) + maxPSiai + dinj;i, which completes the other half. Therefore,since � #i is a valid sequence in PSi (by IH), �0 #i= � #i � < ai; t > is also a valid se-quence in PSi. To prove the maximality of fSS�g, consider a sequence  in fSS 0g � fSS�g,where SS 0 is SS� with a time interval in SS� extended. We know that j j > 1, sinceany sequence in fSS�g with length 1 must have an unadjusted time interval, which im-plies that any extension of the interval would generate a sequence not in fSSg, a contra-diction. We know that there exists a pair of events < ei; te >;< f j ; tf > in  such thatei 2 IN(s); f j 2 OUT (s); i 6= j, and t(s) = te for some state s in SS and the time interval2If the intersection for any transition does not exist, SS� does not, either.9



associated with f j is extended in SS 0, since otherwise  would not be in fSS 0g � fSS�g.Note that ei and f j might not be adjacent in  . By the algorithm Restriction, the timeinterval associated with the event f j in SS� is adjusted into [l; u] let= T0<d�max1�x�kfDinx;jgf[minf j + d;maxf j �max1�x�kfDinx;jg+ d]g. Assume the extended interval associated withthe event f j in SS 0 is [l � �1; u] or [l; u+ �2], where �1 and �e are positive constants. Thenl � �1 = minf j + max1�x�kfDinx;jg � �1 < minf j + Di;j , if max1�x�kfDinx;jg = Di;j .Hence, if the actual delay from PSi to PSj is Di;j and max1�x�kfDinx;ig = Di;j , then< ei; te >;< f j ; te + l � �1 > would not be possible in fPSi; 1 � i � ng. Similarly,u + �2 > maxf j � max1�x�kfDinx;jg + �2. Thus, if the actual delay from PSi to PSj isless than �2, < ei; te >;< f j ; te + u+ �2 > would not be possible in fPSi; 1 � i � ng, either.By lemmas 2 and 3, we have the following theorem which proves the correctness of thealgorithm Synthesis.Theorem 1 A derived protocol speci�cation PSi; 1 � i � n, is correct with respect to theservice speci�cation SS.5 An ExampleTo demonstrate the synthesis method, we show the protocol speci�cation after each step of thealgorithm Synthesis when the service speci�cation SS in Figure 5 is given. Figure 6 (a),(b),and (c) describe the protocol speci�cation PS1 after each step of the algorithm Synthesis.After removing � transitions, we have the �nal protocol speci�cation PS1, which is given inFigure 7 along with the �nal protocol speci�cations PS2 and PS3.
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