
Synthesizing Protocol Speci�cations from ServiceSpeci�cations in Timed Extended Finite State Machines �Jun-Cheol Park Raymond E. MillerDepartment of Computer ScienceUniversity of Maryland, College Park, MD 20742fjcpark, millerg@cs.umd.eduSeptember 23, 1996AbstractWe propose a speci�cation model and present a method to algorithmically derive aprotocol speci�cation from a service speci�cation based on the model. Unlike the previousmodels based on �nite state machines, the proposed model can explicitly express concur-rency, synchronization, and timing requirements such as delays and timeouts. We assumethat there exists a reliable communication channel between any two protocol entities andthe maximum delay for each channel is bounded by a positive constant. Because of thevariable nature of the communication delays along with the time constraints associatedwith events, no protocol speci�cation can fully simulate the service speci�cation. The pro-posed method derives a protocol speci�cation that is optimal in the sense that it providesthe largest possible subset of the service speci�cation under the communication delay con-straints. We also give a method to derive a sub speci�cation from a service speci�cationand a maximum communication delay of each channel such that the sub speci�cation, butno superset of it, can be simulated by the derived protocol speci�cation.1 IntroductionThere are two common approaches for designing communication protocols: analysis and syn-thesis [4]. In the analysis method, the protocol designer begins with a preliminary versionof the protocol usually obtained by ad hoc methods. This approach usually results in an in-complete and erroneous design, which is followed by an analysis and redesign process. Thesequence of redesign, analysis, and error correction is applied iteratively until an error-freedesign is obtained. In the synthesis method, a partially speci�ed or incomplete protocol designis completed incrementally, or automatically, without any interaction by the designer such thatas the synthesis process proceeds correctness is maintained. The process ends with a designthat provides the set of speci�ed services. Therefore, no further veri�cation of the protocoldesign is necessary as in the analysis approach.Much research has been done in the area of protocol synthesis. The reader may refer to[1] for a survey and assessment of several synthesis methods. The synthesis methods can be�This research was supported by NASA Grant No. NAG 5-2648 and NSF Grant No. NCR9506039.1

classi�ed by the modeling formalism. The models include �nite state machines [2, 3, 7], Petrinets [5], LOTOS-like models [8, 9], etc. However, these methods do not provide or representthe notion of time, which is important for the proper functioning of communication systems.Recently, a few methods [10, 11] have been proposed that derive protocol speci�cations fromtimed service speci�cations. In [10], a model based on �nite state machines has been proposedfor specifying timing requirements by using a global clock, timers, and counters. The methodderives the protocol and medium speci�cations from a service speci�cation written as a setof timed transitions. The model represents temporal requirements between remote as wellas consecutive events, which necessarily introduces an exponential increase in the number oftimers. On the other hand, [11] has proposed a model based on LOTOS that restricts the timeconstraints of service speci�cations while �xing the maximum delay of the communicationmedia in the sense that the model can specify a complicated order of events in a structuralway.In this paper, we propose a model called timed extended �nite state machine(TEFSM)based on the extended �nite state machine(EFSM) model to deal with timed operations be-tween consecutive events. Delay and timeout are certainly two of the most useful timed op-erations. To represent these events, we use the notion of a timed transition in our modelby associating a time interval [l; u] with the transition. The lower and upper time limits aremeasured with respect to a global clock, and can thus be used in modeling timed propertiesincluding delays and timeouts. The notion of a timed transition is not new, and our model isin fact inspired by a few previous works [12, 13]. The main di�erence is that our model canexpress concurrency and synchronization among protocol entities explicitly while these previ-ous models could not. For synthesis, we assume that each communication channel is error-freeand has a propagation delay bounded by a constant, as in [11]. We present an algorithm thatderives a protocol speci�cation from a service speci�cation modeled as a TEFSM when anupper bound of delay for each channel is given.The paper is organized as follows. Section 2 describes our TEFSM model. Section 3formalizes the protocol synthesis problem and gives some notation. In section 4, we present analgorithm for deriving the protocol speci�cation of a protocol entity from a service speci�cationand prove the correctness of the algorithm by investigating the relationship between the servicespeci�cation and the protocol speci�cation. In section 5, we demonstrate the applicability ofour synthesis method by giving an example. Section 6 gives some concluding remarks anddiscusses areas requiring future work.2 The ModelThe TEFSM model is designed as a method for the formal description of service and protocolspeci�cations. A TEFSM M is de�ned by a tuple < S; FJ; V; T; �; s0 >, where (1) S is anonempty set of states and for each s 2 S, s is a choice, fork, join, or fork/join state. To repre-sent a possible parallel execution among protocol entities,M explicitly uses a pair (fork; join)of states such that the control ows(directed paths) from fork to join can be executed concur-rently and independently. If a join state is also a fork state which is matched with another joinstate, we call it fork/join state. Note that for each fork state, there exists a unique join stateand vice versa. All states other than fork, join, or fork/join states are choice states. If morethan one outgoing transition exists for a choice or a join state, M can arbitrarily choose onetransition and execute it. See Figure 1 for an example of the classi�cation of states; (2) FJ is2

a �nite(possibly empty) set of (fork,join) pairs inM ; (3) V is a set of variables including input,output, and local variables, denoted by I , O, and L, respectively; (4) T is a set of transitionsand each transition t 2 T is a 6-tuple < head(t); tail(t); P (t); E(t); host(t); [mint; maxt] >,where head(t) and tail(t) are respectively the head and the tail state of t, P (t) is the enablingpredicate in V associated with t, E(t) is the event on V associated with t, host(t) is the pro-tocol entity that executes t, and [mint; maxt] is the time interval associated with t such that tcan be executed aftermint, but no later thanmaxt has passed since the time of visit to head(t)state. If a time interval is not speci�ed explicitly, the default interval [0;1) is assumed. Anevent is a partial function: E(t) : L� I ! L�O. We denote ai[mint; maxt] as the transition twith the action a and the protocol entity i when the other components of t are of no concern;(5) � is a partial state transition function such that � : S � T ! S, and (6) s0 is an initialstate.
0

1

2

4

5 6

7

8

9

1012

3

11

a b f
g

h
i j

k l

m
n

opq

c d e

fork state(s) : 0
join state(s) : 9
fork/join state(s) : 4
choice state(s) : all other states

(a, b) and (c, d, e) can be executed concurrently.
(f, g, h), (i, j) and (k, l) can be executed concurrently.Figure 1: The Classi�cation of States : An ExampleThe execution of a transition t is an instantaneous action in which both the event associatedwith t and the state change to the tail state of t occur simultaneously. A transition t in aTEFSM M must be executed within its time interval if (1) M is in head(t); (2) A �nite timeinterval is associated with t; and (3) t is enabled throughout the time interval.A protocol is speci�ed as a set of processes < PS0; PS1; :::; PSn > where each process PSiis a TEFSM that can communicate with other processes through FIFO channels. Note thateach process PSi has only choice states since no concurrent execution is allowed.A channel from PSi to PSj has a maximum delay Di;j such that the message transmissionsare carried out within Di;j , i.e., 0 < delay(i; j)� Di;j .A sending transition sij(m) denotes the nonblocking transmission of the message m fromPSi to PSj and a receiving transition rij(m) denotes the blocking reception of the message mcoming from PSi to PSj . Note that sij(m) and rij(m) are dual events.Since a TEFSM can be described as a labeled directed graph, we will use state and node,and event and transition interchangeably for the rest of the paper.3 Synthesis ProblemWe assume that there is a global digital clock that ticks at a constant frequency and all of therelative times of the protocol entities refer to this clock.Notation 1 (1) Given a �nite sequence �, first(�) and last(�) denote the �rst and the lastelement of �, respectively. Denote � for concatenation. � denotes an empty sequence, j�j = 0.(2) Given a sequence of events �, we denote � #i for the projection of � onto the events of PSi.3

(3) For a state s in a TEFSM, t(s) denotes the time when the machine has visited the state.(4) Given a state s in a TEFSM, IN(s) and OUT (s) denote the sets of the incoming and theoutgoing transitions of s, respectively.De�nition 1 For a join or a fork/join state s in a TEFSM, t(s) def= max1�i�kftij where ti isthe time when the incoming event ei of s has occurred, 1 � i � kg. For all other states s in aTEFSM, t(s) is de�ned to be the time when an incoming event e of s has occurred providedthe machine has executed e to reach the state s.De�nition 2 [10] A timed sequence S in a TEFSMM is a �nite or in�nite sequence of pairs< ei; ti >, where ti < ti+1 if host(ei) = host(ei+1) and ti � ti+1 otherwise and each pair< ei; ti > denotes that an event ei of M has occurred when the time is equal to ti.De�nition 3 A timed sequence S in a TEFSM M is valid if each ei has been executable athead(ei), i.e., P (ei) was true at head(ei) and has remained to be true till the execution of ei,and t(head(ei)) +minei � ti � t(head(ei)) +maxei .De�nition 4 Let fseq1; : : : ; seqng be a set of sequences, where seqi is a valid sequence in aTEFSM PSi; 1 � i � n. A merged sequence seq(Pni=1 i) from the set is a sequence of pairs< ei; ti >, where ei is in the union of the events of PSj ; 1 � j � n, such that seq(Pni=1 i) #j=seq(j), for each j; 1 � j � n, and ti � ti+1.Notation 2 (1) fPSi; 1 � i � ng denotes the set of the merged sequences fseq(Pni=1 i)jseq(Pni=1 i)is a merged sequence from fseq1; : : : ; seqng, where seqi is a valid sequence in a TEFSMPSi; 1 � i � ng. (2) fSSg denotes the set of valid sequences in a service speci�cation SS.The protocol synthesis problem is basically to derive a protocol speci�cation for the protocolentities from a given service speci�cation such that each protocol entity would be able to executeevents in exactly the same order as speci�ed in the service speci�cation. However, since thespeci�cation is modeled by a TEFSM, the problem now is to consider time constraints as wellas the relative order of the events in the service speci�cation. Along with the time constraintsassociated with events, the variable nature of the communication delays make it impossible toderive a protocol speci�cation which would be able to fully simulate the service speci�cation.Therefore, to cope with the discrepancy between protocol and service speci�cations, we de�nethe protocol synthesis problem as follows. Derive a protocol speci�cation from a given servicespeci�cation which satis�es the following conditions.De�nition 5 A derived protocol speci�cation PSi; 1 � i � n, is correct with respect to theservice speci�cation SS if (1) every merged sequence seq(Pni=1 i) from fseq(1); : : : ; seq(n)g,where seq(i) is a valid sequence in PSi, 1 � i � n, is a valid sequence in fSSg; and (2) everyvalid sequence � in fSSg is a merged sequence from fSS #1; : : : ; SS #ng, where SS #i preservesthe order of events as speci�ed in PSi; 1 � i � n.Condition (2) of De�nition 5 means that the derived protocol speci�cation should preservethe order of events, but not necessarily simulate the same time stamp of the events in theservice speci�cation. 4

4 Synthesis AlgorithmWe present an algorithm that derives the maximal protocol speci�cation among the correctprotocol speci�cations from a service speci�cation. Moreover, we also give an algorithm for�nding the maximal subset of a service speci�cation which can be represented by the derivedprotocol speci�cation.Since we assume that each protocol entity is modeled by a TEFSM, no (fork, join) pair in aservice speci�cation should contain a set of control ows that might be able to cause a conict,i.e., two or more concurrent events with the same host(protocol entity) and the same timestamp. To cope with the problem, we provide a su�cient condition for a service speci�cationto be conict-free. We believe that the condition given in Lemma 1 does not severely restrictthe modeling power of TEFSM.Lemma 1 A TEFSM M with nonempty FJ is conict-free if for each (f; j) 2 FJ , any twosequences s1 and s2 from f to j that can be executed concurrently by M do not share a host,i.e., host(s1) \ host(s2) = ;, where host(si) = fmjam is an event in sig.We also impose a restriction R1 to the service speci�cation SS as follows: for every choicestate s in SS, jhost(OUT (s))j = 1. R1 means that when a choice is possible during theexecution of a concurrent protocol system, the choice should be made locally by the sameprotocol entity to avoid possible deadlocks.For the sake of algorithm presentation, we denote (x; ei; y) as the event ei with the headstate x and the tail state y, respectively. The following algorithm generates PSi, the speci�ca-tion for protocol entity i, and we can get the protocol speci�cation PSi; 1 � i � n, by runningthe algorithm n times with di�erent i each time.Synthesis� Input: Service speci�cation SS with the condition in Lemma 1 and R1 represented by aTEFSM and Di;j; 8i; j; 1� i; j � n. Note that Di;i = 0; 8i; 1 � i � n.� Output: Protocol entity speci�cation PSi in a TEFSM1. For each state s with jIN(s)j > 0 in SS do the following:Let IN(s) = f(u1; ein1 ; s); : : : ; (uk; eink ; s) g andOUT (s) = f(s; fout1 ; v1); : : : ; (s; foutl; vl)g.(a) (Append send and/or receive transitions appropriately.)i. s is a choice state: Note that out1 = : : : = outl let= j.for each transition (ux; einx ; s); 1 � x � k, do:� if (inx 6= i^ j = i), then append a receive transition to the transition as inFigure 2(a);� else if (inx = i ^ j 6= i), then append a send transition to the transition asin Figure 2(b);� else if (inx = i ^ j = i) _ (inx 6= i ^ j 6= i), then do nothing;ii. s is a fork, but not a join state:for each transition (ux; einx ; s); 1 � x � k, do:� if (inx = i), then append a set of send transitions to the transition as inFigure 3(a); 5

s (uij
inx inxinx

r (ui x s)

(a)

u s

e

x

s)x

(b)

u s

e

x Figure 2: Case(i) s is a choice state� else if (inx 6= i ^ i 2 fout1; : : : ; outlg), then append a receive transition tothe transition as in Figure 3(b);� else if (inx 6= i ^ i 62 fout1; : : : ; outlg), then do nothing;
inx

inxi (ux s)r

inx
x s)s (uij ε Jj J : not empty

J J - {j}

s

e

u x

(b)(a)

e

u x

s

J : empty

{out1 , . . . , out } and if outx then out JεxJ ilFigure 3: Case(ii) s is a fork, but not a join stateiii. s is a join or a fork/join state:� if (i 2 fin1; : : : ; inkg) ^ (i 2 fout1; : : : ; outlg), then append a set of sendand receive transitions to the transition as in Figure 4(a);� else if (i 2 fin1; : : : ; inkg)^(i 62 fout1; : : : ; outlg), then append a set of sendtransitions to the transition as in Figure 4(b);� else if (i 62 fin1; : : : ; inkg) ^ (i 2 fout1; : : : ; outlg), then append a set ofreceive transitions to the transition as in Figure 4(c);� else if (i 62 fin1; : : : ; inkg) ^ (i 62 fout1; : : : ; outlg), then do nothing;(b) (Adjust the time intervals associated with the outgoing transitions of s, if necessary.)if i 2 fout1; : : : ; outlg, then [for each transition ty let= (s; fouty ; vy); 1 � y � l; suchthat outy = i, do: [minty ; maxty] [minty ; maxty �max1�x�kfDinx;ig]1]2. (Project the SS from the Step 1 onto PSi.) For every event ez ; z 6= i, replace the eventwith an � transition.3. For each pair (sf ; sj) 2 FJ , remove all � paths from sf to sj , if any. If all the transitionsand states except sf and sj are removed, then merge sf and sj into a single state sf;j .4. Remove � transitions by the standard algorithm given in [6].1If minty > maxty �max1�x�kfDinx;ig, then the execution of fouty may not be possible under the delayconstraint. 6

inx

u
1

u
k

e in1

e ink

x s)s (uij ε Jj J : not empty x s)s (uij ε Jj J : not empty

J J - {j}
inx

u
1

u
k

e in1

e ink

e

u x

:

:
:

:

inx

u
1

u
k

e in1

e ink

e

u x

:

:
:

:

inx Iεinxi (ux s)r

I I - { inx

I : not empty

}

I : empty

I : empty

inx Iεinxi (ux s)r

I I - { inx

I : not empty

}

yout yout ε J.J 1 l{out , . . . , out } and if i then

ε I. i then in xin xI 1 k{in , . . . , in } and if

e

u x

s

:
:

:
:

J : empty
J : empty

J J - {j}

s

(a)

(b)

s
(c) Figure 4: Case(iii) s is a join or a fork/join stateLemma 2 Let PSi; 1 � i � n, be the derived protocol speci�cation from SS under the delayconstraints Di;j ; 1 � i; j � n. Then fPSi; 1 � i � ng � fSSg. Moreover, fPSi; 1 � i � ngis maximal in the sense that any extension of a time interval in any PSi might be able togenerate sequences which are not in fSSg under some speci�c delay constraints.Proof: We �rst show that fPSi; 1 � i � ng � fSSg. Let fseq(i); 1 � i � ng be a set ofsequences such that seq(i) is a valid sequence in PSi for each i; 1 � i � n. The proof is byinduction on j�j, where � is a merged sequence from fseq(i); 1 � i � ng. Base Case j�j = 1.It is clear that � is a valid sequence in SS. Induction Hypothesis(IH for short) Assume theclaim holds for j�j = k > 0. Let �0 = �� < ai; t >; j�j = k, be a merged sequence fromfseq(i); 1 � i � ng. Let s let= head(ai). Suppose s is a choice state. By the Step 1(a) ofthe algorithm Synthesis, PSi can execute ai either after having received a message from oneof PSinx ; inx 6= i or after having executed einx ; inx = i. In either case, we know from thealgorithm Synthesis that an event in IN(s) must have occurred in �. Let einx be the latestevent from IN(s) in �. Then, the subsequence einx ; : : : ; last(�) of � does not have any eventfrom OUT (s) since otherwise ai would not have occurred in �0 by the nature of choice state.Thus, we showed that ai had been executable at last(�). Suppose s is a fork, but not a joinstate. The only di�erence here from the above case(s:a choice state) is that the subsequenceeinx ; : : : ; last(�) of � might have some events from OUT (s), but no ai's since otherwise aiwould not have occurred at last(�). Suppose s is a join, but not a fork state. By the con-struction of PSi in Step 1(a) of the algorithm Synthesis, we know that PSi can execute aionly after having received a set of messages from fPSinx j where (ux; einx ; s) 2 IN(s); inx 6= ig, which implies that feinx ; inx 6= ig had occurred in � by PSinx , respectively. Also, we knowthat einy , where (uy ; einy ; s) 2 IN(s), and iny = i, if any, had occurred in �. Let the mostrecently occurred event from OUT (s) in � be einx , i.e., t(s) is equal to the time when einx hasoccurred. Then the subsequence einx ; : : : ; last(�) of � does not have any event from OUT (s)since otherwise ai would not have occurred. Thus, ai had been executable at last(�). Suppose7

s is a join/fork state. As above, we know that feinx ; 1 � x � kg had occurred in �. We alsoknow that the subsequence einx ; : : : ; last(�) might have some events from OUT (s), but no ai'ssince otherwise ai would not have occurred at last(�), where einx is the most recently occurredevent from OUT (s) in �. Now, it is straightforward that ai had been executable at last(�).Thus, we conclude that ai had been executable at last(�) for all cases. Next we show thatt(s) + minai � t � t(s) + maxai, where [minai ; maxai] is the time interval associated withai in SS. The time interval associated with ai in PSi, by the algorithm Synthesis Step 1(b),becomes [minai; maxai �max1�x�kfDinx;ig]. Since �0 #i= � #i � < ai; t > is a valid sequencein PSi, we know that t(s) + minai + dinx;i � t � t(s) + dinx;i + maxai � max1�x�kfDinx;ig,where 0 < dinx;i � Dinx;i. Thus we have that t(s) +minai < t(s) +minai + dinx;i � t � t(s) +maxai �fmax1�x�kfDinx;ig� dinx;ig � t(s)+maxai . Therefore, since � is a valid sequence inSS by IH, �0 is also a valid sequence in SS from the above argument. To prove the maximalityof fPSi; 1 � i � ng, consider a sequence in fSSg�fPSi; 1 � i � ng. It is clear that j j > 1,since any sequence in fSSg with length 1 should also be in fPSig, for some i. We know thatthere exists a pair of events< ei; te >;< f j ; tf > in such that ei 2 IN(s); f j 2 OUT (s); i 6= j,and t(s) = te for some state s in SS, since otherwise would not be in fSSg�fPSi; 1 � i � ng.Note that ei and f j might not be adjacent in . By the algorithm Synthesis, the time intervalassociated with the event f j is adjusted into [minf j ; maxf j�max1�x�kfDinx;jg] in PSj , whereeinx 2 IN(s); 1� x � k. Assume the interval associated with the event f j in PSj is extendedto [minf j � �1; maxf j �max1�x�kfDinx;jg+ �2], where �1 and �2 are positive constants. Thente + minf j � �1 + � < te + minf j for a positive constant � such that � < �1 � Di;j . Hence,if the actual delay from PSi to PSj is �, then < ei; te >;< f j ; te + minf j � �1 + � > wouldnot be possible in any sequence in fSSg, since te +minf j � �1 + � < te +minf j . Similarly,te + maxf j � max1�x�kfDinx;jg + �2 +max1�x�kfDinx;jg = te + maxf j + �2 > te + maxf j .Thus, < ei; te >;< f j ; te + maxf j � max1�x�kfDinx;jg + �2 + max1�x�kfDinx;jg > wouldnot be possible in any sequence in fSSg, if max1�x�kfDinx;jg = Di;j and the actual delayfrom PSi to PSj is Di;j . Note that if max1�x�kfDinx;jg > Di;j , the validity of the pair< ei; te >;< f j ; te+maxf j �max1�x�kfDinx;jg+ �2 +Di;j > in SS depends upon the sign ofthe value Di;j + �2 �max1�x�kfDinx;jg.On the other hand, it should be clear that fSSg 6� fPSi; 1 � i � ng because of the ad-justment in Step 1(b) of the algorithm Synthesis. However, we can restrict SS to get a subspeci�cation SS� such that fSS�g � fPSi; 1 � i � ng. Here, we give an algorithm to generatesuch a sub speci�cation SS� which is maximal in the sense that fSS 0g � fPSi; 1 � i � ngimplies fSS 0g � fSS�g.Restriction� Input: Service speci�cation SS with the condition in Lemma 1 and R1 represented by aTEFSM and Di;j; 8i; j; 1� i; j � n. Note that Di;i = 0; 8i; 1 � i � n.� Output: Restricted service speci�cation SS� in a TEFSMFor each state s with jIN(s)j > 0 in SS do the following:1. Let IN(s) = f(u1; ein1 ; s); : : : ; (uk; eink ; s)g andOUT (s) = f(s; fout1 ; v1); : : : ; (s; foutl; vl)g.2. For each i; 1 � i � n, where n is the number of the protocol entities, do the following:8

� if i 2 fout1; : : : ; outlg, then [for each transition ty let= (s; fouty ; vy); 1 � y � l; suchthat outy = i, do: [minty ; maxty] T0<d�max1�x�kfDinx;ig f[minty + d;maxty �max1�x�kfDinx;ig+ d]g.2Lemma 3 Let PSi; 1 � i � n, be the derived protocol speci�cation from SS and SS� bethe restricted service speci�cation of SS. Then every valid sequence � in fSSg is a mergedsequence from fSS #1; : : : ; SS #ng, where SS #i preserves the order of events as speci�ed inPSi; 1 � i � n. Moreover, fSS�g � fPSi; 1 � i � ng, and fSS�g is maximal in the sense thatany extension of a time interval in SS� might be able to generate sequences which are not infPSi; 1 � i � ng under some speci�c delay constraints.Proof: Since SS and SS� are equivalent if timing is ignored, we know that it su�ces toshow that fSS�g � fPSi; 1 � i � ng to guarantee that the order of events speci�ed in SSis preserved in each PSi; 1 � i � n. We �rst show that fSS�g � fPSi; 1 � i � ng. Theproof is by induction on j�j, where � is a valid sequence in SS�. Base Case j�j = 1. It iseasy to see that � is a merged sequence from fPSig, where � =< ai; t >. Induction Hypoth-esis(IH for short) Assume the claim holds for j�j = k > 0. Let �0 = �� < ai; t >; j�j = k,be a valid sequence in SS�. By IH, we know that for each j; 1 � j � n, � #j is a validsequence in PSi. We show that � #i � < ai; t > is also a valid sequence in PSi, where weassume for the sake of the proof that PSi is the protocol speci�cation obtained in Step 3,i.e., one with � transitions. Note that � #j= �0 #j , for j 6= i; 1 � j � n. Let s let= head(ai).Since �0 is a valid sequence in SS�, it is clear that ai had been executable at last(�). We letlast(� #i) = first(�), if � #i= �. By Step 2 of the algorithm Synthesis, the transitions afterlast(� #i) through last(�), if any, in PSi would be � transitions. It is not hard to verify that,by investigating Step 1 and 2 of the algorithm Synthesis, the sequence � would be able tolead PSi into the state s and moreover s is reachable from either head(last(� #i)), if any, orthe start state of PSi, otherwise, via only �, send, and/or receive transitions. Next we showthat the inequalities t(s) + minPSiai + dinj ;i � t � t(s) + maxPSiai + dinj ;i hold regardless ofthe value of the actual delay dinj ;i as long as 0 < dinj ;i � Dinj;i, where [minPSiai ; maxPSiai]is the time interval associated with ai in PSi and < einj ; te > is an incoming event ofs such that t(s) = te. Note that [minPSiai ; maxPSiai] = [minai ; maxai � max1�j�kfDinj ;ig].Since �0 is a valid sequence in SS�, we have that t(s) + minSS�ai � t � t(s) + maxSS�ai ,where [minSS�ai ; maxSS�ai] = T0<d�max1�j�kfDinj;ig f[minai+d;maxai�max1�j�kfDinj;ig+d]gis the time interval associated with ai in SS�. We have that t(s) + minPSiai + dinj ;i =t(s)+minai+dinj;i � t(s)+minai+Dinj ;i � t(s)+minai+max1�j�kfDinj;ig � t(s)+minSS�ai �t. Similarly, t � t(s) + maxSS�ai < t(s) + maxai �max1�j�kfDinj ;ig + �, where the last in-equality holds for any positive constant �. Hence, by choosing � su�ciently small, we havet(s) + maxPSiai + � � t(s) + maxPSiai + dinj;i, which completes the other half. Therefore,since � #i is a valid sequence in PSi (by IH), �0 #i= � #i � < ai; t > is also a valid se-quence in PSi. To prove the maximality of fSS�g, consider a sequence in fSS 0g � fSS�g,where SS 0 is SS� with a time interval in SS� extended. We know that j j > 1, sinceany sequence in fSS�g with length 1 must have an unadjusted time interval, which im-plies that any extension of the interval would generate a sequence not in fSSg, a contra-diction. We know that there exists a pair of events < ei; te >;< f j ; tf > in such thatei 2 IN(s); f j 2 OUT (s); i 6= j, and t(s) = te for some state s in SS and the time interval2If the intersection for any transition does not exist, SS� does not, either.9

associated with f j is extended in SS 0, since otherwise would not be in fSS 0g � fSS�g.Note that ei and f j might not be adjacent in . By the algorithm Restriction, the timeinterval associated with the event f j in SS� is adjusted into [l; u] let= T0<d�max1�x�kfDinx;jgf[minf j + d;maxf j �max1�x�kfDinx;jg+ d]g. Assume the extended interval associated withthe event f j in SS 0 is [l � �1; u] or [l; u+ �2], where �1 and �e are positive constants. Thenl � �1 = minf j + max1�x�kfDinx;jg � �1 < minf j + Di;j , if max1�x�kfDinx;jg = Di;j .Hence, if the actual delay from PSi to PSj is Di;j and max1�x�kfDinx;ig = Di;j , then< ei; te >;< f j ; te + l � �1 > would not be possible in fPSi; 1 � i � ng. Similarly,u + �2 > maxf j � max1�x�kfDinx;jg + �2. Thus, if the actual delay from PSi to PSj isless than �2, < ei; te >;< f j ; te + u+ �2 > would not be possible in fPSi; 1 � i � ng, either.By lemmas 2 and 3, we have the following theorem which proves the correctness of thealgorithm Synthesis.Theorem 1 A derived protocol speci�cation PSi; 1 � i � n, is correct with respect to theservice speci�cation SS.5 An ExampleTo demonstrate the synthesis method, we show the protocol speci�cation after each step of thealgorithm Synthesis when the service speci�cation SS in Figure 5 is given. Figure 6 (a),(b),and (c) describe the protocol speci�cation PS1 after each step of the algorithm Synthesis.After removing � transitions, we have the �nal protocol speci�cation PS1, which is given inFigure 7 along with the �nal protocol speci�cations PS2 and PS3.
D12 = 2 D

13
= 1

D
21

= 2 D
23

= 2

D31= 1 D32= 3

a [1,8]1

b [2,2]

c [2,3]

d [1,3]

e [2,5] f [1,3]

g [2,6]

h [2,8]i [3,9]

j [1,6]

k [2,4]

l [1,5]

m [1,7]

n [2,4]

1

1

1

1

1

1

2

2

2

3
3 3

3

0

2

3

4

5

6

7

8

9

1

FJ = {(0, 4)}Figure 5: A Service Speci�cation SS6 ConclusionWe proposed a model based on EFSM that can represent concurrency, synchronization, andtiming requirements explicitly, and presented a method to synthesize protocol speci�cationsfrom timed service speci�cations based on the model. The proposed method appropriatelyinserts send and/or receive transitions between the events in the service speci�cation so thatthe event orderings in the service speci�cation are preserved. The time intervals associatedwith transitions are also adjusted by the method to incorporate the delay between protocol10

b
1
[2,2]

c1[2,3]

d
1[1,3]

s12

l
1[1,5]

r
21

r
31

empty

r
31

k
1
[2,4]

s12

a1[1,6]

j1
[1,5]

b
1
[2,2]

c1[2,3]

d
1[1,3]

s12

e
2 f

3

l
1[1,5]

m2
r
21

r
31

empty g2

i
3 h

3

r
31

k
1
[2,4]

s12

a1[1,6]

j1
[1,5]s13n3 s13

b
1
[2,2]

c1[2,3]

d
1[1,3]

s12

l
1[1,5]

r
21

r
31

empty

r
31

k
1
[2,4]

s12

a1[1,6]

j1
[1,5]s13

(a) after Step1(a),(b)

*

*

ε
ε

ε
εε

ε

*

*
ε

(b) after Step 2

*

*

ε
ε

ε

ε

ε

(c) after Step 3

[,]* : time interval adjusted.

’empty’ becomes true only if all the previous send
or receive transitions are executed.

(24) (24)

(24)

(56) (56)

(56)

(78) (78)

(78)

(79)

(79) (79)

(80)

(80)

(80)

(90)

(90)

(90)

Figure 6: PS1 after each step of the algorithm Synthesis
k1[2,4]

b
1
[2,2]

c1[2,3]

d
1[1,3]

s12

j1
[1,5]

l
1[1,5]

s12

r
21

r
21

r
31

s13

a1[1,6] empty
r

31

e
2
[2,2]

s
23

empty
g
2
[2,3]

s23
r
32

r
12

r
23

f
3
[1,1]

s
32

r
23 h

3
[2,6]

i
3
[3,7]

s
32

r
23

n3[2,3]

r
32

(34)r
12

empty
m2

[1,4]

r
32(90)

s31(90)
s

32
(90)

s21(80)

s
31(56)

r
13(79)

r
23

(03)

(a) PS (b) PS

(c) PS

1 2

3

* ’empty’ becomes true only if all the previous send
 or receive transitions are executed.

empty

empty

(24)

(56)

(80)

(90)

(80)

(78)

(79)

(03)

(24)
(45)

(58)

(78)

 (34)

(45)

(58)

(03)

(03)

Figure 7: Protocol Speci�cations PS1; PS2, and PS311

entities for synchronization. We proved that the derived protocol speci�cation is optimal in thesense that any superset of the protocol speci�cation would necessarily include speci�cationswhich are not attainable from the service speci�cation under some speci�c delay constraints.We also presented a method to derive a sub speci�cation from a service speci�cation and amaximum communication delay of each channel such that the sub speci�cation, but no supersetof it, can be simulated by the derived protocol speci�cation.A formalization of logical errors in a TEFSM would be required to further investigate therelationship between the derived protocol speci�cation and the service speci�cation, as far asinsuring the absence of design errors.References[1] R. L. Probert and K. Saleh Synthesis of Communication Protocols: Survey and AssessmentIEEE Trans. Comput., vol. 40, no. 4, pp. 468-476, April 1991.[2] P. M. Chu and M. T. Liu Synthesizing Protocol Speci�cation from Service Speci�cation inthe FSM model Proc. Comput. Networking Symp., pp. 173-182, April 1988.[3] P. M. Chu and M. T. Liu Protocol Synthesis in a State-Transition Model Proc. COMP-SAC'88, pp. 505-512, October 1988.[4] P. Za�ropulo, C. H. West, H. Rudin, D. D. Cowan, and D. Brand Towards Analyzing andSynthesizing Protocols IEEE Trans. Commun., vol. COM-28, no. 4, pp. 651-661, April1980.[5] H. Yamaguchi, K. Okano, T. Higashino, and K. Taniguchi Synthesis of Protocol Entities'Speci�cations from Service Speci�cations in a Petri net Model with Registers Proc. IEEEInt'l Conf. Dist. Comp. Syst., pp. 510-517, May 1995.[6] W. A. Barrett and J. D. Couch Compiler Construction: Theory and Practice Chapter 3,Science Research Associates, 1979.[7] K. Saleh and R. L. Probert Automatic Synthesis of Protocol Speci�cations from ServiceSpeci�cations Proc. IEEE Phoenix Conf. Comput. and Commun., pp. 615-621, March1991.[8] C. Kant, T. Higashino, and G. v. Bochmann Deriving Protocol Speci�cations from ServiceSpeci�cations Written in LOTOS Distributed Computing, vol. 10, pp. 29-47, 1996.[9] R. Langerak Decomposition of Functionality: A Correctness-Preserving LOTOS Transfor-mation Proc. X IFIP Symp. Protocol Speci�cation, Testing and Veri�cation, pp. 229-242,June 1990.[10] A. Khoumsi, G. v. Bochmann, and R. Dssouli On Specifying Services and SynthesizingProtocols for Real-time Applications Proc. XIV IFIP Symp. Protocol Speci�cation, Testingand Veri�cation, pp. 177-192, June 1994.[11] A. Nakata, T. Higashino, and K. Taniguchi Protocol Synthesis from Timed and StructuredSpeci�cations Proc. Int'l Conf. Network Protocols, pp. 74-81, November 1995.12

[12] C.-M. Huang and S.-W. Lee Timed Protocol Veri�cation for Estelle-Speci�ed ProtocolsACM SIGCOMM Comput. Commun. Review, vol. 25, no. 3, pp. 5-32, July 1995.[13] K. Naik and B. Sarikaya Protocol Conformance Test Case Veri�cation Using Timed-Transitions Proc. XIV IFIP Symp. Protocol Speci�cation, Testing and Veri�cation, pp.98-113, June 1994.

13

