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Chapter 1IntroductionSelf-replicating systems are systems that have the ability to produce copies of themselves. Bio-logical organisms are the most familiar examples of such systems, and until the late 1940s, theonly instances formally researched. Mathematicians and scientists began studying arti�cial self-replicating systems when it became desirable to gain a deeper understanding of complex systems andthe fundamental information{processing principles involved in self{replication [von Neumann51,von Neumann66]. The initial models consisted of abstract logical machines, or automata, em-bedded in cellular spaces [Arbib66, Codd68, Holland76, Langton84, Reggia93]. In addition toautomata, other computational models such as those based on traditional programming languagescontinue to be the main subject of research [Ray92, Koza94]. Physical models exhibiting self-replication such as mechanical and biochemical models have also been constructed and stud-ied [Penrose58, Orgel92, Hong92].The previous computational models of self-replication in cellular spaces have all been manuallydesigned, a very di�cult and time-consuming process. This research introduces the use of geneticalgorithms to discover automata rules that govern emergent self-replicating processes. A new modelconsisting of movable automata embedded in a cellular space is introduced in this context, and isshown to have desirable properties when compared to von Neumann's cellular automaton model.Given dynamically evolving automata, identi�cation of e�ective performance measures, called �t-ness functions, for self-replicating structures is a di�cult task, and we give multiple solutions to thisproblem. A genetic algorithm using three �tness criteria was applied to automate rule discovery.The results indicate that the �tness functions employed are e�ective and that genetic algorithmscan be used to successfully discover rules for self-replicating structures. As a result of obtaininglarge quantities of self-replicating structures, a qualitative classi�cation system is identi�ed anddynamical systems issues are investigated. This investigation indicates that such structures aresituated in the phase transition between periodic and chaotic behaviors.1.1 MotivationsA better understanding of self-replicating systems and the automatic discovery of such systems couldbe useful in a number of ways, for both practical and theoretical purposes. These are describedbelow.
8



NanotechnologyResearch concerning atomic-scale manufacturing technologies or \nanotechnology" suggests thatself-replicating devices will play a key role [Drexler89], and some researchers have already gainedinsight from the early work on hand-designed self-replicating systems [Merkle94]. In this technology,assemblers are microscopic devices resembling industrial robot arms that are used to build molecularmachines. From [Drexler89, pg. 503]:If assemblers are to process large quantities of material atom-by-atom, many will beneeded; this makes pursuit of self-replicating systems a natural goal.In addition to the fundamental question of how to bring about such arti�cial self-replication, issuesfaced by the designer of self-replicating assemblers include self-inspection, the halting of the self-replication process, size minimization, and the choice of instruction encoding. These potentiallydi�cult design issues could be abated by systems that can automatically design self-replicatingassemblers. This is the theme of this dissertation.Within nanotechnology, researchers are also investigating engineering custom molecules. Ifthe basic physical processes can be identi�ed and represented e�ectively, automatic discovery ap-proaches might be applied to discover new self-replicating molecular structures.Programming Massively Parallel ComputersProgramming massively parallel computers has traditionally been a di�cult task, and to date,only a relatively small number of applications have made use of massive parallelism. It has beenproposed that evolutionary bred self-replicating programs could facilitate programming these sys-tems [Ray92]. Self-replicating sub-programs would compete for the available processors, and thosethat performed better with respect to the target application, would be allowed to create perfect andimperfect (mutation) copies as o�spring. Similar experiments performed on sequential computershave shown that self-replicating programs can optimize their algorithms by a factor of 5.75 in a fewhours of real time [Ray92].Programming Cellular AutomataCellular automata (CA) are a class of discrete dynamical system models in which many simple com-ponents interact to produce complicated patterns of behavior. A lattice of cells which representidentical �nite state machines de�nes the space of the CA. The behavior of each cell is governedby a global transition rule which speci�es the next state for every possible present state condition.This transition rule is typically a very large table of transitions and is thus very di�cult to man-ually program. Since CAs have found wide application in science and engineering, automaticallyprogramming them would be greatly bene�cial.Anti-virus TechnologyComputer viruses are programs that use the resources of a host computer system to passivelyself-replicate and \infect" computers. Because viruses can be destructive, creating e�ective anti-virus techniques is an important area of research. An important anti-virus method centers aroundscanning disks and memories for known viruses and then executing a repair operation if possible. A9



complementary approach is to monitor the computer's behavior and watch for telltale signs of virusactivity. These approaches have been somewhat successful, but it is believed that a biologically-inspired \immune system" approach would be e�ective in keeping up with the accelerated creationof new viruses and the increased interconnectivity of worldwide computers [Kephart94]. Thus,understanding the self-replication processes that govern viruses is an important area of research.Origins of LifeContemporary theories [Miller74, Watson87] of the origins of life postulate a prebiotic period ofmolecular replication before the emergence of living cells. Investigating the fundamental informa-tion processing mechanisms underlying self-replication can help us to answer questions concerningthe minimum information content needed for emergence of the �rst replicating molecules. Ana-lyzing \incubation periods" required for spontaneous emergence to occur in arti�cial systems canshed light on the origin of life under both terrestrial and extraterrestrial conditions. Self-replicatingmodels may also lead to a better understanding of the biology of life on Earth, based on the as-sumption that the rules underlying biological processes might also apply to arti�cial environmentsand structures.Studying computational models of self-replicating phenomena has certain advantages comparedto laboratory-based chemical experiments, which are also underway [Hong92, Orgel92]. Speci�cally,computational models allow the experimenter to precisely control the details and parameters ofexperiments. Computer simulations are open to repeated internal inspections and permit largenumbers of experiments. They are also helpful in separating speci�c chemical properties fromthe information processing properties present in the simulated system (for example [Chou94]). Inaddition, with the availability of more powerful computers, larger and more complex systems canbe simulated.Arti�cial LifeThe �eld of Arti�cial Life (ALife) which studies life-like behaviors (such as self-replication) from acomputational perspective was largely born out of studies [Langton86] based on cellular automata.From [Langton88, pg. 1]:Arti�cial Life is the study of man-made systems that exhibit behaviors characteristicof natural living systems. It complements the traditional biological sciences concernedwith the analysis of living organisms by attempting to synthesize life-like behaviorswithin computers and other arti�cial media. By extending the empirical foundationupon which biology is based beyond the carbon-chain life that has evolved on Earth,Arti�cial Life can contribute to theoretical biology by locating life-as-we-know-it withinthe larger picture of life-as-it-could-be.Thus, biology is seen as a top-down, analytic study of the material basis of life, whereas ALife is abottom-up, synthetic study of the formal basis of life. De�ning \life" in a precise manner is di�cultdue to the presence of organisms that are sterile, and organisms that lack a metabolism, such asviruses. However, self-replication is generally seen as a fundamental property of life [Farmer91].From this perspective, self-replicating systems play a critical role in advancing ALife research.10



Other MotivationsAdditional incentives for studying the automatic discovery of self-replicating systems include:� Topics in the study of dynamical systems theory could potentially bene�t from this research.Speci�cally, hypotheses which propose that systems having complexity similar to biologi-cal organisms are near the phase transition between complex and chaotic systems may besupported.� The transport of large numbers of industrial machines to the moon or Mars would be pro-hibitively costly. If a self-replicating machine that used locally-available materials could be de-veloped, this would make commercialization more feasible. A NASA study of self-replicatinglunar factories [Freitas82] investigated the requirements for this type of self-replicating system.� Previous research [Laing76] has described design possibilities for molecular realizations ofautomata, especially with respect to self-repair and self-inspection, which are closely relatedto self-replication.� Recent work on self-replicating digital electronic hardware [Mange94] seeks to create hardwaresystems that can self-replicate, self-repair, and evolve.1.2 ContributionsThe main contributions of this thesis are as follows.Automatic Discovery of Self-Replicating StructuresThis is the �rst work to show proof that it is possible to automatically discover self-replicatingstructures in cellular space automata models. Genetic algorithms are used in conjunction withnovel �tness functions, and the quantities of discovered structures found are shown to be statisti-cally signi�cant. The discovered structures, presented in Chapter 5, compare favorably in terms ofsimplicity with those generated manually in the past [Reggia93]. However, more interesting is thatthese replicating structures di�er in unexpected ways from those developed in previous automatamodels. For example, they all move during replication, and all generate active unused components.Furthermore, many past self-replicating structures have relied upon foreign components (i.e. com-ponents that do not comprise the original structure) to aid in directing the self-replication process.The automatically discovered structures presented in this thesis are able to self-replicate withoutsuch additional components, making them yet simpler than the manually-designed structures.Fitness Functions for Self-ReplicationThis is the �rst work to derive �tness functions for self-replication in any cellular space automatamodel. These �tness functions, derived in Chapter 4, are general and are applicable to many cellularspace models. In addition they may also be used with other optimization and search techniques.Finding appropriate functions is a di�cult task for reasons related to assigning partial �tnessmeasures. For example, a function based on counting the number of replicants is useless early onas there will generally be none. It was found that a �tness function based on multiple performance11



criteria, such as growth of individual components and relative position measures was needed. Thismultiobjective optimization problem was solved by weighting the three criteria via experimentation,and by using an adaptive �tness function { a second genetic algorithm was successfully employedto dynamically evolve higher performing �tness functions.Another impediment to deriving these �tness functions is the tendency to impose biases on theself-replication process, instead of allowing such processes to evolve \naturally". An example of suchbiases would be to assign �tness based on how well an evolving structure matched a prede�nedtemplate. This di�culty is overcome by designing �tness functions that use statistics that donot contain absolute position information in their calculation. To further guard against bias, key�tness function parameters are optimized using a second, higher-level meta-�tness function. Penaltyfunctions are derived and also aid in this regard.A New Paradigm for Weakly Rotation-Symmetric Cellular Space ModelsA new paradigm for weakly rotation symmetric cellular space models is introduced in Chapter 3which signi�cantly reduces rule table size without adversely a�ecting the 
exibility of the model.Called component-sensitive input, this technique is general enough so that it may be applied toany cellular space model having weak rotational symmetry. Interest in cellular space models thatincorporate weak rotational symmetry has grown in recent years, and this technique, introducedin Chapter 3, allows larger models (more states) to be computationally simulated. In the contextof automatically programming cellular space rule tables, this technique greatly reduces the searchspace size, thus facilitating the search process. Experimental results using genetic algorithms arepresented which verify this.A New Cellular Space ModelA new cellular space automata model called E�ector Automata (EA) is introduced in Chapter 3and shown to have the following advantages over similar models such as von Neumann's cellularautomata. First, the EA model more closely parallels physical systems by directly incorporatingmovement and characteristics of mass-preservation physics. In each cell, a new automaton can onlybe created as a result of cell division, whereas other models generally allow spontaneous generationof such automata. Thus, emergent structures in EA simulations have a higher degree of realism thanthose of other models. Second, by incorporating movement and automaton division, the EA modelis better suited to studying self-replicating systems. Third, simulation of the EA model is shownto be signi�cantly less resource intensive, and hence more computationally feasible, especially asthe number of states increases. Lastly, the EA model allows the designer to create cellular spacemodels at a higher level of abstraction using less rules than that of CA models. For example, inCA models, more rules are needed to encode the movement of an automaton. Those CA rules arestate transitions which are of a lower-level as compared to EA movement-actions, and thus theycan be more di�cult and tedious to work with.Comparison of Search TechniquesE�ective techniques for searching extremely large search spaces are compared with respect to theautomatic discovery of self-replicating structures in the CA and EA cellular space models. The12



techniques compared in Chapter 5 are genetic algorithms (GAs), and multiple restart stochas-tic hillclimbing, and simulated annealing. It is found that GAs outperform the other techniquesshowing that GAs are indeed e�ective at �nding self-replicating structures.While genetic algorithms have been previously applied in other computational models involv-ing cellular automata [Richards90, Mitchell94], their use to discover self-replicating structures isdaunting because of the large \chromosome" needed. Furthermore, the computational burden ofsimulating a large population of automata models is enormous, which presumably accounts for theabsence of research in this area. In spite of strides made in reducing the computational load (byusing the EA model and component-sensitive input techniques), the experimental results presentedin this thesis were run on parallel supercomputers, and individual runs often required days tocomplete.Classi�cation of Self-Replicating StructuresIn
uenced by biological models of self-replication, recent work in self-replicating structures has re-laxed the requirement for universal computation and construction. Such models have not presenteda precise de�nition and framework regarding self-replicating structures. This thesis presents the�rst detailed framework for studying self-replicating structures. Beginning with the de�nition of aself-replicating structure, relevant set-theoretic functions and terms are introduced.In addition, this is the �rst work to de�ne a classi�cation system for self-replication in cellularspace automata models. Previously, manual derivation of self-replicating structures produced tensof structures. With the capability to automatically generate thousands of such structures, it ispossible to demarcate qualitative classes of self-replication processes.Simulation SystemTo carry out the research described in this thesis, a large software system was created in whicha wide variety of experiments may be conducted. Two cellular space models are supported andalong with two rotational symmetries. This system also allows automatic programming of cellularspace models via genetic algorithms, and permits researchers to experiment with many modelparameters. Since certain experiments can require enormous amounts of processing, a version thatruns on parallel supercomputers was developed.1.3 Content of DissertationThe remainder of this dissertation is organized as follows. Chapter 2 reviews previous relatedwork and background material which is relevant to the thesis. This covers research in cellularspace automata models, self-replication in these models, genetic algorithms, and rule discoveryusing genetic algorithms. Chapter 3 presents a new cellular space model called E�ector Automata,develops its theory, and contrasts it with cellular automata models. Of particular concern are thesearch space sizes in which the genetic algorithm will search to discover rule tables that promoteself-replicating behavior. A new paradigm for automata input, called component-sensitive input, isintroduced which signi�cantly reduces the search space size (in both cellular and e�ector automatamodels), while preserving the desirable properties of the model. By reducing the search space13



size, search techniques, like the genetic algorithm can discover more rule tables that promote self-replicating behavior. Chapter 4 presents the detailed design of a genetic algorithm for the automaticdiscovery of self-replicating structures, the �rst such design to be reported. The problem of deriving�tness functions that promote self-replicating behaviors is shown to be a di�cult problem, andnovel solutions are given by deriving general �tness functions comprised of multiple criteria. Todescribe self-replicating processes more formally than previous work in this area, a framework isdeveloped including a precise de�nition of a self-replicating structure. Chapter 4 also describeshow multiobjective optimization was accomplished by the use of a second GA, called a meta-level GA. Chapter 5 presents the results and analysis of the experiments to automatically discoverself-replicating structures in both cellular automata and e�ector automata models. RepresentativeGA-discovered self-replicating structures are shown using varying seed sizes. Statistical signi�cancemeasures of the experimental results, and GA performance curves are also described and analyzed.Since this is �rst work to produce hundreds of self-replicating structures, a new classi�cation systemis devised to categorize the behavior of self-replicating structures. Chapter 6 contains a summaryof the results and suggestions for future work in this area.
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Chapter 2Background and Previous WorkTo better understand the results of this dissertation, this chapter brie
y reviews cellular spaceautomata models, self-replicating systems, genetic algorithms, and the relevant literature in theseareas.2.1 Cellular AutomataCellular automata (CA) are a class of discrete dynamical system models in which many simplecomponents interact to produce potentially complex patterns of behavior. CAs have been used tomodel a broad range of natural phenomena and in engineering applications, for example: astro-physical modeling [Perdang93], heart �brillation [Burks74], ecological processes [Hogeweg88], 
uiddynamics [Frisch86], and image processing [Preston84].In a cellular automata model, time is discrete, and space is divided into a lattice of cells, eachrepresenting a �nite state machine or automaton. At each time-step, each automaton uses the samefunction � or rule table1 to determine its next state as a function of its current state and the stateof neighboring cells. This set of neighboring cells is called a neighborhood, the size (n) of whichis commonly 3 cells in 1-D CAs, and 5 or 9 cells in 2-D models (see Figure 2.1). Note that, byconvention, the center cell is included in its own neighborhood. Each cell can be in one of k possiblestates, one of which is designated the quiescent or inactive state. When a quiescent cell has anentirely quiescent neighborhood, a widely accepted convention is that it will remain quiescent atthe next time-step.The CA rule table is a complete2 list of transition rules that specify the next state for every pos-sible neighborhood combination. In a 2-D, 5-neighbor model using the von Neumann neighborhood,the individual transition rules would be of the form:CTRBL! C0which speci�es the states of the Center, Top, Right, Bottom, and Left positions of the neighbor-hood's present state, and C0 represents the next state of the center cell. Using this neighborhoodwith 2-state automata, consider the cellular automaton for the parity function shown in Table 2.1.1This is frequently referred to as a \transition function", \transition rule" or simply \rule" in the CA literature,but \rule table" will be used in this work for clarity.2Rule tables are sometimes partially speci�ed by listing only the rules needed to enable a speci�c behavior.15
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(a) (b) (c)Figure 2.1: Common neighborhood templates in 1-D and 2-D CA: (a) 3-cell neighbor-hood; (b) 5-cell von Neumann neighborhood; (c) 9-cell Moore neighborhoodStates are represented by 0 and 1, and for each of the 25 = 32 neighborhoods a transition ruleis speci�ed. The next state is a 1 if the parity of the neighborhood cells is odd, and 0 if even.Figure 2.2 shows the �rst three time-steps when the initial con�guration is a 5� 5 square pattern.Also shown is the complex pattern that emerges at t = 22. If the space is not constrained, complexpatterns will continue to form and the structure will expand outward inde�nitely.CTRBL C000000 000001 100010 100011 000100 100101 000110 000111 1
CTRBL C001000 101001 001010 001011 101100 001101 101110 101111 0

CTRBL C010000 110001 010010 010011 110100 010101 110110 110111 0
CTRBL C011000 011001 111010 111011 011100 111101 011110 011111 1Table 2.1: Parity rule table for 2-state, 5-neighbor cellular automata. There are 32 tran-sition rules that comprise this rule table.The underlying space of CA models is typically de�ned as being isotropic, meaning that theabsolute directions of north, south, east, and west are indistinguishable. However, the rotationalsymmetry of cell states is frequently varied. Strong rotational symmetry implies that all cell statesare unoriented, meaning that each neighbor to a cell has no special absolute nor relative position.Weak rotational symmetry implies that at least some of the cell states3 are directionally oriented,meaning that the cell designates speci�c neighbors as being its top, right, bottom, and left neigh-bors. For example, the cell state designated " in von Neumann's work is weakly-symmetric andthus permutes to di�erent cell states !, #, and under successive 90� rotations. It represents oneoriented component that can exist in four orientations. In the parity rule of Table 2.1, both states(0,1) are strongly rotation symmetric. In CAs that contain both weak and strong rotationally sym-3The quiescent state is always a strongly rotation symmetric cell state and is thus included in CA models withweak rotational symmetry. 16
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metric states, it is common to represent the \strong" states using symbols that appear rotationallysymmetric (e.g. �, +, �), and the \weak" states using symbols that are not rotationally symmetric(e.g. ", A, L).In addition to isotropic spaces, non-isotropic spaces are also possible. In a non-isotropic spaceone direction is specially designated and is known to all automata. Thus every automaton hasexactly the same orientation and senses an \absolute north" direction. A diagram summarizing therelationships of the models described above in shown in Figure 2.3.
Cellular Space

Automata Models

Non-Isotropic Isotropic

Strong Rotational
Symmetry

Weak Rotational
SymmetryFigure 2.3: Dichotomy of cellular space automata models with respect to the underlyingcellular space.2.2 Self-replicating Structures in Cellular Space Models2.2.1 Cellular Automata ModelsA self-replicating structure in a cellular automata model is informally de�ned as follows. In theCA model, one state is designated the quiescent state, and the remaining states are consideredactive. A self-replicating structure is represented as a con�guration of contiguous active cells, eachof which represents a component of the machine. At each discrete time-step, each automaton(cell) uses an identical rule table to determine its next state as a function of its current state andthe state of its immediate neighbor cells. Based solely on these concurrent local interactions, aninitially speci�ed structure (at time t = 0) goes through a sequence of steps to construct a duplicatecopy of itself. The replica can be displaced and perhaps rotated relative to the original at a latertime t0. A two-dimensional cellular space model illustrating this is shown in Figure 2.4. In thisparticular example, cell-states are integers, and the quiescent state (0), is depicted by an emptycell for clarity. The other states (1, 2, 3) are shown forming a �ve-component structure (t = 0)which then self-replicates over time and produces a replicant at a later time (t = t0).The type of self-replication described above is technically asexual reproduction: an o�spring isan exact copy of the parent. Sexual reproduction in CA, mentioned in the next section (page 20)with respect to a previous work, is beyond the scope of this thesis.The mathematician John von Neumann conducted research on self-replicating automata be-tween 1948-1953 [von Neumann66]. Since he was the �rst person to formally study these systems,18
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Figure 2.4: Illustration of a self-replicating structure in a 2-D cellular space model.it is interesting to point out his motivations. In [Burks70] it is suggested that von Neumann wasenvisioning a systematic theory of natural and arti�cial automata, mainly because he believed thatdesigning complex systems (e.g. large-scale computers) would be di�cult without such a theory.In [McMullin92b] it is asserted that von Neumann was primarily interested in spontaneous growthof complexity (particularly through Darwinian evolution) and that studying self-replication was asuitable means to this ends4.Von Neumann conceived of �ve models of self-replication: kinematic, cellular, excitation-threshold-fatigue, continuous, and probabilistic [von Neumann66]. The kinematic model was theforerunner to the cellular model. Stanislaw Ulam suggested the cellular model during a discussionof the kinematic model since it was thought the cellular framework would be more suitable to math-ematical and logical analysis. Because of this, the cellular automata model became the only modelformally researched by von Neumann, and was used to design the �rst logical automaton capableof directing its own replication. An overview of this design is shown in Figure 2.5. It consisted of atwo-dimensional array of cells, each of which could be in one of 29 states (29 was the least numberof states he could devise). A group of cells that comprised the \construction-arm" functioned toconstruct a new automaton. The tail-like \tape" contained the instructions that speci�ed how tobuild the new structure. Since the machine would construct any con�guration speci�ed on thetape, von Neumann's machine is said to be construction universal. Thus, when the instructions onthe tape specify how to build a copy of itself, self-replication can proceed.One measure of the complexity of von Neumann's logical machine is to count the number of29-state cells that comprise the self-replicating entity. Estimates range from 40,000 { 200,000 cells.This high degree of complexity seemed to be consistent with the remarkable complexity of biologicalself-replicating systems. However the research of E. F. Codd and Christopher Langton reportedsimpler self-replicating structures in CA. Codd produced a sheathed loop structure embedded inan 8-state, 5-neighbor, 2-D CA [Codd68]. Langton took a component of Codd's structure andmade further reductions. He describes an 8-state, 86-component, sheathed-loop self-replicatingstructure [Langton84] depicted in Figure 2.6(a). In [Byl89], an even smaller 6-state, 12-cell self-4The work presented in this thesis is very much related to this theme since genetic algorithms, which are basedon biological evolution, are used extensively. 19
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Figure 2.8: Automaton in Arbib's CT-Machine model.state, 5-neighbor CA model similar to Codd's, he was able to produce two structures capable ofsexual reproduction [Vit�anyi73]. He argues that in transitioning from asexual to sexual reproductionrequires a change in the number and structure of instruction tapes. He creates M-type (male) andF-type (female) automata, each containing two, nearly identical instruction tapes. Although hisautomata are quite complex, he shows that sexual reproduction of automata is possible, and thatthe recombination process is similar to that of nature.2.2.2 Arbib's ModelIn the mid-1960s, Michael Arbib observed that the large degree of complexity of von Neumann'sand Codd's self-replicating automata could be greatly reduced if the fundamental componentswere more complex [Arbib66, Arbib69a]. His rationale for doing this was to adopt a hierarchicalapproach, where his automata would be analogous to cells, as opposed to macromolecules. Hecreated a version of the 2-D cellular space automata model called Constructing Turing Machines,or CT-machines [Thatcher70]. Each cell in this space contains a �nite-state automata that executeshort 22-instruction programs (see Figure 2.8). The instructions consist of actions such as weldand move, and internal control constructs such as if/then and goto. Self-replication occurs whenindividual CT-machines copy their instructions into empty cells. Structures composed of multipleCT-machines are able to move as one unit since individual automata can be welded to each other.Using elements from the CT-machine model, Arbib also describes [Arbib67] the Mark II cellularspace model. In this model, automata are capable of dividing into two automata or self-destruction,and cells in the cellular space are either empty or occupied by an automaton (as opposed to having aquiescent state). The new cellular space model presented in Chapter 3 retains these three properties,however the automata are much simpler than CT-machines.2.2.3 Holland's ModelIn the mid-1970s John Holland explored automatic discovery of self-replicating automata by focus-ing on spontaneous emergence of such structures. He developed a theoretical framework and soughtto provide existence proofs for the spontaneous emergence of a class of arti�cial self-replicating22



systems [Holland76]. Holland de�nes a set of model \universes" containing abstract counterpartsto rudimentary chemical and kinetic mechanisms such as bonding and movement. He wanted toloosely model natural chemical processes (di�usion, activation) acting on structures composed ofelements (nucleotides, amino acids) to show that even with random agitations, the tendency ofsuch a system would not be sustained randomness, but rather, life \in the sense of self-replicatingsystems undergoing heritable adaptations."Although these �-Universes, as they are called, are termed cellular automata models in Holland'spaper, they actually have little in common beyond discretized time and space. The concept of a stateis represented by elements that are logical abstractions of physical entities (e.g. atoms) and obeythe conservation of mass. In Figure 2.9 a 1-dimensional example �-Universe is shown along with atable of elements and \codons". Elements are the fundamental units, and codons encode elements(the analogy is that of amino acid triplets encoding protein sequences). Many interactions amongthe elements are strictly local as in CA, but some are localized to aggregate structures (strings ofbonded elements). The elements themselves can be thought of as automata during the �rst of three\phases" of each discrete time-step. However, during the second and third phases, they are actedupon by the physics of the �-Universe. Holland calls these forces \operators" and de�nes four:bonding, movement, copy, and decode. Because of these global operators, it would be impossibleto specify a CA-type rule table for an �-Universe. As an example, the \copy" operator would beactivated if the sequence -0:e1e2 � � � el- formed (ei being one of the three elements), and it wouldcause elements to be reshu�ed so that a codon-encoded copy of the string e1e2 � � � el would beassembled.
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Figure 2.9: An example of a few cells from an �-UniverseHolland parameterizes important aspects of the �-Universes and then uses these to deriveformulas that predict structure lifespans, population densities, and certain event probabilities. Oneof those predictions is an expression for the expected time required for emergence of a self-replicatingsystem. Substituting reasonable values for the parameters, a waiting time of 1:4� 1043 time-stepsis computed [Holland76, pg. 399]. Since this is a tremendous number (there are roughly 1017seconds in 10 billion years), it can be said to never produce self-replicating entities. Relaxing therequirement from fully self-replicating to partially self-replicating, a similar expression is derived.Again substituting reasonable parameter values, this time a waiting period of 4:4� 108 time-steps(4:4�108 seconds is about 14 years) is the result. Since this is a reasonable amount, it lends credenceto spontaneous emergence of self-replicating structures in general, given that Holland's model andderivations are accurate. No computer simulations of Holland's model were published until veryrecently, even though such simulations were quite feasible (as the 4:4 � 108 time-step experiment23



shows). In [McMullin92a], an empirical investigation into Holland's work is reported. There itis claimed that some of the conjectures in Holland's model were 
awed since experimental resultsshowed that the self-replicating structures would go extinct after modest time periods. Regardlessof whether the original analysis is valid, it remains one of the only studies of its kind reported todate and raises important theoretical questions regarding emergence of self-replicating structures.2.2.4 Summary of Self-Replicating AutomataAs a summary of work done thus far and for comparison purposes, Table 2.2 lists the models andrelevant data concerning self-replicating automata research. Rotational symmetry is listed since itis a signi�cant variation of the models shown. The neighborhood sizes 5 and 9 correspond to thevon Neumann andMoore neighborhoods, respectively. The sizes of the self-replicating structures aremeasured in cells, and are frequently rough estimates since many systems were never implemented.Year ModelType Dim. Rot.Sym-metry Statespercell Neigh-borhoodsize(s) Struc-turesize(s)a Reference1951 CA 2D weak 29 5 > 104 [von Neumann66]1965 CA 2D strong 8 5 > 104 [Codd68]1966 CT-Mach. 2D weak � 10100 5 � 102 [Arbib66]1973 CA 2D strong 8 5 > 104 [Vit�anyi73]1976 �-Univ. 1D strong 5 -b (60)c [Holland76]1984 CA 2D strong 8 5 86 [Langton84]1989 CA 2D strong 6 5 12 [Byl89]1993 CA 2D both 6,8 5,9 5{48 [Reggia93]aMany systems were never implemented, so some values are broad approximations.bNo �xed neighborhood size.cTheorized, neither proven nor implemented.Table 2.2: Summary of self-replicating automata research.It is important to remember that all of these self-replicating structures were hand designed.Although Holland's model could potentially automatically identify self-replicating structures, noproof of this has been given.2.3 Genetic AlgorithmsA genetic algorithm (GA) is a stochastic search and optimization technique based on ideas from nat-ural genetics and evolution. Genetic algorithms were originally introduced by John Holland [Holland75].In recent years GAs have become increasingly popular in engineering design, machine learning,and other areas because they perform well in a wide range of applications [Davis91]. For ex-ample, GAs have been applied to circuit design [Shahookar90], neural network design [Harp91],robot control [Davidor91], DNA sequence assembly [Parsons93], and protein-structure predic-tion [Dandekar92]. 24



The solution space or search space for a given problem is a set of points representing all possiblesolutions. For each potential solution we can imagine a \�tness landscape" where valleys markthe location of poor solutions and the highest point corresponds to the best possible solution.For complex problems, solution spaces are usually enormous5, and contain convoluted topologicalfeatures. GAs e�ectively comb the solution space and home-in on promising regions by combiningpartial solutions in ways analogous to how biological genes have evolved. However, like otherstochastic techniques, there is no assurance that the GA will converge to the global optimum.When applied properly, GAs are robust and generally good at �nding \acceptably good" solutions,especially when dealing with extremely large search spaces.A GA works by manipulating a pool or population of candidate solutions called chromosomes.Each chromosome is assigned a �tness value using a �tness function according to how well it solvesthe problem at hand. Highly �t chromosomes are given the opportunities to cross-breed with othermembers of the pool. Thus o�spring are produced, and a new population of candidate solutionsis formed with generally a higher proportion of good characteristics than the previous population.Each successive population is called a generation, and the GA continues in this fashion until aspeci�ed convergence criteria is satis�ed. This process is summarized in Figure 2.10.initialize population of chromosomesevaluate �tness of each chromosomewhile (termination criterion not reached) doselect parent chromosomes for matingapply crossover and mutation to produce childrenevaluate �tness of each chromosomeendFigure 2.10: Traditional genetic algorithm.2.3.1 Genetic OperatorsThe key mechanisms in the GA are the genetic operators: �tness-based reproduction, crossover, andmutation6. To illustrate their use, consider designing a GA to �nd the global maximum of a functionf(x; y). Since chromosomes are frequently encoded as binary strings, x and y are represented as10-bit numbers giving a chromosome of 20 bits as shown in Figure 2.11(a). A population ofsuch chromosomes is generated randomly and seen in Figure 2.11(b). Then for each chromosome�tness values are computed using the �tness function f . These values are shown adjacent to thechromosomes in Figure 2.11(c). Based on these �tness values, pairs of chromosomes are selected toundergo crossover and mutation to produce the next generation.It has been argued that the GA derives most of its strength from recombination of partialsolutions through the action of crossover. Crossover takes two chromosomes and cuts them into5For example, in a typical chess game, there are about 1060 strategies possible [Holland92].6Other operators are known, however only those used in this thesis are discussed here.25



f(x,y) 101 1 1 110 0 00 0 0 0 111 0 01

x y(a)
101 1 1 110 0 00 0 0 0 111 0 01

111 1 1 110 1 01 0 1 1 001 0 00

000 1 1 111 0 01 0 0 1 100 0 11

0.41 101 1 1 110 0 00 0 0 0 111 0 01

111 1 1 110 1 01 0 1 1 001 0 00

000 1 1 111 0 01 0 0 1 100 0 11

0.32

0.53(b) (c)Figure 2.11: Examples of 20-bit chromosomes: (a) single chromosome encoding x and y;(b) randomized initial population before computing �tness function for eachchromosome; (c) same population with �tness values.two pieces at some randomly chosen point, producing two head and two tail segments. The tailsegments are then interchanged to produce two new chromosomes (Figure 2.12(a)). After crossing-over, mutation is applied to each child chromosome by complementing randomly selected bits (Fig-ure 2.12(b)). Crossover and mutation are applied probabilistically so that, for example, crossovermay not be applied to a given pair of chromosomes7. Typical values for crossover and mutationprobabilities are 0:6{1:0 and 0:001{0:2, respectively.
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options include many-character, real-valued, and tree encodings. In addition, the natural encoding(i.e., how the problem is presented to the computer before the GA is applied) of a problem hasmay also work well. At present there is no one method of representation that performs best for allproblems.2.3.2 GA TheoryThe fundamental mechanism of a GA is its manipulation of a special class of building blocks calledschemas. A schema [Holland75] is a template that describes a subset of strings with similaritiesat certain string positions. For a problem encoded with the binary alphabet 0,1, a schema isrepresented as a string containing the symbols f0; 1; �g, where the asterisk represents a \don'tcare". A schema matches and thus represents a particular string if in each position the schemacontains a 0, the string contains a 0, and in each position that the schema contains a 1, the stringcontains a 1. For example, for strings of length 4, the schema *101 matches the two strings f0101,1101g. As another example, the schema 0***1 represents the set of all bit strings of length �vethat start with a 0 and end with a 1.The bene�t of schemata is that they provide a compact way to represent important similaritiesamong strings with high �tnesses. A string of length l is a member of 2l di�erent schemata sinceeach position may contain its actual value or a don't care symbol. Therefore, a population of size ncontains between 2l and n�2l schemata. The GA works to increase the growth of important schematathrough reproduction, crossover, and mutation. Since strings with higher �tness functions have ahigher probability of being selected, as the genetic algorithm progresses, on average an increasingnumber of samples contain schema with high �tness. Since crossover may disrupt schemas of largelength, genetic algorithms have the result of propagating short schemata of high �tness.There are many variations on the way in which crossover may be performed. Two-point,multiple-point, and uniform crossover operators have been devised and met with success. Thesetechniques essentially add more crossover points at which to swap segments. The reasoning be-hind this has to do with the fact that single-point crossover cannot combine certain schemas. Forexample, an instances of schemas 1********111 and ****1******* cannot be combined to form1***1****111.2.3.3 Rule Discovery Using GAsIn this section two studies involving rule discovery using genetic algorithms in CA are brie
ydescribed. A third important research study can be found in [Je�erson91]. These are brie
ymentioned since they are evidence that genetic algorithms can be used successfully in �nding high-performance CA rules that yield a desirable emergent phenomena.The �rst study describes a method where CA rules are extracted directly from experimental datausing a genetic algorithm [Richards90]. The idea was to evolve a CA whose resulting space-timepatterns closely reproduced the solidi�cation of NH4Br from a supersaturated aqueous solution.The model used was a 2-dimensional, 2-state, probabilistic CA with an interesting neighborhoodtemplate: in addition to the 5-neighbor von Neumann neighborhood, the authors used an elaborateneighborhood template consisting of additional neighborhood sites as well as previous neighbor-hood sites. A genetic algorithm was used to search for CA rules. To calculate �tness of a givenrule, sequences of digitized images photographed during solidi�cation were compared to candidaterules based on how well the CA's next values correlated to past and present values. The authors27



reported encouraging results: the genetic algorithm was able to discover CA rules that qualitativelyreproduced the dynamical patterns of the solidi�cation process.The second study involved using a genetic algorithm to discover CA rules for emergent globalcomputation [Mitchell93]. The speci�c task chosen (called the �c = 1=2 task) concerned densityclassi�cation: given a 149-cell, 2-state, radius 3 neighborhood, 1-dimensional CA model with arandom initial con�guration (IC), the CA should become all 1s as quickly as possible if the IC iscomprised of more than half 1s (analogously for 0s). This problem is trivial for a computing systemwith global information available, but quite di�cult when only local information is available. Theauthors use a genetic algorithm to discover CA rules that excel at this task, and report �ndingrules that are 65%-77% accurate8. Some of the evolved strategies relied on the presence of largeblocks of 1s or 0s as predictors. The innovative strategies focused on large space-time distances todo the computation since communication throughput among cells is limited by locality.

8During the writing of this thesis, a genetically evolved rule with 82% accuracy was reported in [Andre96].28



Chapter 3E�ector AutomataThis chapter presents a new cellular space automata model called E�ector Automata (EA) [Lohn95].The EA model was created in order to have a model whose behaviors would more closely resemblephysical systems and characteristics of mass-preservation physics as compared to cellular automata,while retaining many of the desirable properties of cellular automata, such as strictly local inter-actions among simple rule-based automata, emergent behavior, and massive parallelism. The EAmodel retains many of the desirable properties of cellular automata models, such as strictly lo-cal interactions among simple rule-based automata, emergent behavior, and massive parallelism.However, it more closely resembles physical systems by directly incorporating movement and char-acteristics of mass-preservation physics. It is shown that the EA model has the following advantagesover conventional cellular automata models, especially regarding the development of self-replicatingstructures. First, because the EA model can incorporate aspects of mass-preservation physics, emer-gent structures in EA simulations have a higher degree of realism than those of other models. Ineach EA cell, a new state can only be created as a result of cell division, whereas other models gen-erally allow spontaneous creation of arbitrary cell states. Second, by incorporating movement andautomaton division, the EA model is better suited to studying self-replicating systems. This willbe discussed further in Chapter 4. Third, simulation of the EA model is shown to be signi�cantlyless resource intensive, and hence more computationally feasible, especially as the number of statesincreases. This is of great signi�cance when evolving behavior through simulated evolution in suchmodels since the computational requirements far exceed resources typically available, including theuse of present-day supercomputers.The E�ector Automaton model derives its name from the fact that each automaton can e�ectchanges to neighboring cells (primarily through cell movement), whereas in most cellular spacemodels, a given automaton simply changes its own state at each time step. This property isillustrated in Figure 3.1 where a single active cell is seen moving one cell to the right. The cell'soriginal neighborhood consisting of �ve cells is shown outlined. At t+1 the rightmost neighborhoodcell is changed as a result of the center cell moving to the right. If this were a cellular automaton,the center cell could only change its own state, and not that of neighboring cells. Note howeverthat the behavior illustrated in Figure 3.1 can also be produced by a cellular automaton with adi�erent mechanism (the right neighbor changes its state). In the general case, it is always possibleto construct a CA that can simulate a given EA. However, as shown later, the CA will typicallyrequire a rule table that is much larger than that of the EA. This is a signi�cant drawback from acomputational perspective.The EA model was inspired from observing the fundamental mechanisms employed by self-29
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Figure 3.1: Example of a single active EA cell at time t in
uencing a neighboring cell att+ 1 by moving to the right.replicating structures in previous CA models. The key mechanisms observed were that of automatamovement, automata division, and automata self-destruction. By codifying these primitives directlyinto condition-action rules, the automata execute actions instead of state transitions. Thus, EAautomata are thought of as being closer to physical machines than to information processors.Although the EA model was not speci�cally designed to be biologically realistic, it is interesting tonote that the actions mentioned above all have biological counterparts. Cell division (mitosis), celllocomotion, and programmed cell death (apoptosis) are processes that biological cells are capableof performing.Movable AutomataAn alternate way of viewing the EA model is from the perspective of movable automata. Fromthis perspective, active EA cells contain �nite state machines capable of moving, and inactive EAcells are empty space. In contrast, each cell of a CA model contains a �xed �nite state machine:active cells are those automata in non-quiescent states, and inactive cells are in the quiescentstate. Cellular space automata models emphasizing actions, especially movement actions, havebeen investigated previously, and are brie
y discussed next.The �rst models that included movable automata were the kinetic automaton of von Neu-mann [Burks70] and the CT machines of Arbib [Arbib66]. These models included �nite stateautomata capable of movement and other actions such as joining (called fusing or welding) anddis-joining. The Movable Finite Automata (MFA) model [Goel89] attempts to model biochemicalprocesses such as self-assembly of bacteriophages and polypeptide chain growth in protein biosyn-thesis. MFA automata are characterized by their ability to move and allow bond formation anddisocciation. The Computational Metabolism (ComMet) class of models [Lugowski89] consists ofautomata called \tiles" that move about on a 2-D grid. Tiles are grouped into di�erent species, inwhich tiles of the same species execute the same rules. A tile is capable of sensing and acting uponneighboring tiles. For example, two neighboring tiles may both agree to swap places. The Crea-tures model [Stephenson92] consists of automata occupying a 2-D cellular array. Each automatais capable of moving, producing o�spring, self-destruction, and changing its rules. A distinguish-ing property of Creatures is that multiple automata are permitted to occupy the same cell. Also,automata cannot sense their surrounding neighbors { they can only sense other automata that areco-located. The Creatures model has been used to model ideal gases and disease transmission.30



Lastly, a model of movable automata for use in simulating biochemical reactions of oligonucleotideshas been reported [Chou94]. In this model, automata represent molecules and are governed by rulesderived from chemical reactions. The automata are capable of movement, rotation, and bonding,which permits aggregate structures to form. Using this model, self-replicating oligonucleotide sys-tems were simulated and found to compare favorably with laboratory experiments.Cellular automata models are capable of simulating movement of single cells or of aggregatestructures. The famous game of Life rule table [Gardner70] is one such example where multi-cellpropagating structures may be seen. The concept of hierarchies of structures (called virtual statemachines) forming, moving, constructing, etc., in CA models has also been investigated [Langton86].Automata ComplexityAs described in the previous chapter, Arbib created a new cellular space model with more complexcells than that of cellular automata [Arbib66]. His rationale for doing so was twofold. First, hewanted to adopt a hierarchical approach where his automata would be analogous to higher-orderstructures than in CA. Second, by adding complexity to each automaton, he felt that the complexityof the self-replicating structure could be greatly reduced. He was successful in designing a muchsimpler self-replicating structure using less cells and a more straightforward design than that ofvon Neumann. However, his automata each have on the order of 10100 states, which is signi�cantlylarger than previous models. Presumably some of this complexity is due to his requirement ofuniversal computation and construction.The EA model, like Arbib's, adds complexity to individual automata. However, rather thanusing an automaton having on the order of 10100 states, EA cells typically have 10{20 states, arange comparable to previous CA-based self-replicating structures. Thus on the scale of automatacomplexity for cellular space models, the EA model is positioned close to traditional CA models ascompared to Arbib's model.OutlineThe remainder of this chapter is organized as follows. The EA model is �rst formally de�ned.Its theory is then developed, including a set of axioms that guarantee self-replication. Growththeorems are presented as well as a comparison to the standard cellular automata model.3.1 Model De�nitionThe EA model is formally de�ned in this section. Of particular interest is the model's abilityto support self-replicating structures, and the limits on the growth of such structures. Since theEA model shares many of the same properties as the CA model, much of the same terminologyand de�nitions can be applied to both models1. Speci�cally, the notation of [Codd68] is usedwhere appropriate, and the notation in [Lohn95] has been modi�ed slightly for consistency. Thegeneralized EA model is described in this section, and the speci�c form of it used to study self-replicating structures is described in section 4.1.1The CA model is described in Section 2.1 on page 15.31



3.1.1 Cellular SpaceThe EA model is a spatially-distributed, deterministic dynamical system which iterates in discretetime. Space is an in�nite, isotropic N -dimensional lattice of cells. Cells are either empty oroccupied by at most one automaton. The position of a cell with respect to an arbitrarily chosenorigin is denoted �. Automata are �nite control automata capable of executing one action from aset of actions A at each time-step. Automata receive input from a �xed set of local cells called theneighborhood. The set A allows any �nite number of designer-speci�ed actions, provided that eacha�ects only neighborhood-local cells as a result of its execution.Individual automata are classi�ed according to their component type, v̂, a notation adapted fromthe CA cell state v. A component represents the set of weakly symmetric cell states obtained undersuccessive orientations of the cell. For example, in a 2-D model, an A component type representsthe four cell states A, A , A, and A. The set of all component types de�ned for an EA model isV̂ = fv̂1; v̂2; : : : ; v̂cg, containing c distinct component types. The component type of a cell locatedat position � is denoted v̂(�). Since the EA model also allows for strongly rotation symmetric cellstates, the set Vs = fv0; v1; : : : ; vks�1g denotes such cell states, where ks is the number of cell stateswith strong rotational symmetry, and cell state v0 is distinguished as the quiescent state as is donein [Codd68]. In the same manner, Vw is the set of kw weakly rotation symmetric cell states. As inthe CA literature, k denotes the total number of cell states in the EA model (i.e., cell states withboth strong and weak rotational symmetries), such thatk = ks + kw (3.1)In keeping with CA notation, the set V contains all k cell states (jV j = k) and is given byV = Vs [ Vw (3.2)Calculation of the number of cell states in an EA model when the number of components is knownis given by k = �c+ ks (ks � 1) (3.3)where � represents the number of coordinate system rotations permitted in the space (for example,� = 4 for a 2-D model having 4 90� rotations). Typically ks = 1 since the empty cell is equivalentto quiescent cell state in computing k. Although it is generally more useful to speak of componentswith respect to the EA model, it is sometimes convenient to use states instead, and so both termsmay be used keeping in mind Equation 3.3. To illustrate these sets, consider an example EAmodel having � = 4, two component types (c = 2) and two strongly rotation symmetric cell states(ks = 2). The automata in such a model could be writtenV̂ = fL; "g (jV̂ j = c = 2)Vw = fL, L , L, L; ";!; #; g (jVwj = kw = 8)Vs = f�; �g (jVsj = ks = 2)V = f�; �; L, L , L, L; ";!; #; g (jV j = k = 10)where the � is strongly rotation symmetric and � represents the empty/quiescent cell state.32



3.1.2 Con�gurationsDe�nition 3.1 A con�guration C is an allowable assignment of states to cells in the cellular space.A sequence of con�gurations (sometime called a simulation or propagation) is generated as thespace iterates over time: C0; C1; : : : ; Ct; : : : (3.4)with C0 denoting the initial or seed con�guration. The set of all non-empty cells in a con�gurationC is known as the support, denoted supC, and is de�ned assupC = f� 2 C j v(�) 6= v0g (3.5)Two con�gurations C and C 0 are disjoint ifsupC \ supC 0 = ; (3.6)C 0 is a subcon�guration of C if supC \ supC 0 = supC 0. The number of components of type v̂ attime t in con�guration Ct is called the multiplicity of v̂, and is denoted M t̂v. Summing multiplicitiesover all c component types, the total number of component-occupied cells isj supCtj = X̂v2V̂ M t̂v (3.7)Calculation of the multiplicity M t̂v plays a critical role in deriving the genetic algorithm �tnessfunctions discussed in the next chapter.De�nition 3.2 A con�guration S is a structure if the following are satis�ed:1. All cells in S are non-quiescent, i.e. S = supS (3.8)2. It is possible to reach any cell in supS from any other cell in supS by traversing neighborhood-adjacent supS cells.In this manner a structure is seen as a set of contiguous non-empty cells. Figure 3.2 shows fourexamples illustrating this de�nition. If the initial con�guration is a structure, then it is called aseed structure, S0. A given structure at time t, St, may not retain the properties of a structureat a later time t0, however it may be desirable to associate its original cells, which now form asubcon�guration, with St. Such a subcon�guration is called a metamorphosing structure and isdenoted by ~St.De�nition 3.3 A metamorphosing structure ~St is a set of cell states that forms a structure St attime t, potentially changes shape from t+1 through t0, and is identi�able as the original structureat t0+1, i.e. St = St0+1.This de�nition is used in de�ning a self-replicating structure in Section 4.3, and is useful sincemany structures may temporarily change size or shape while moving or evolving, and re-form theoriginal structure at a later time. 33
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Figure 3.2: Examples illustrating the de�nition of structure: three structures in theVon Neumann neighborhood and one structure in the Moore neighborhood.3.1.3 RulesEach automaton in the EA model is governed by a rule table � which induces a mapping ofneighborhood states onto itself. Each entry in � corresponds to a condition-action rule of thefollowing format: neighborhood pattern ! actionThe set of actions A is comprised of any set of instructions which modify the local neighborhoodupon the next time step. The NULL action, which does not change any cells, may also be included inA. As an example, A may contain actions to move, rotate, duplicate, and/or create new automata.The number of distinct actions in A is computed as follows for a k-state, n-neighbor EA. Since eachcell may be occupied by one of k cell states, the number of possible actions isjAjmax = kn (3.9)Equation 3.9 gives an upper bound on the number of allowed actions. In practice, however, the setof actions is typically far less than the upper bound. For example, in the main EA model studiedin this thesis, jAj = 210, whereas the upper bound for this model is jAjmax ' 400; 000.
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Figure 3.3: Examples of six actions in a 2-D EA model using the 9-cell Moore neighbor-hood.
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To give an overview of the range of actions that A could contain, Figure 3.3 contains examplesof six representative actions. The names of the actions appear below each diagram, and in somecase directional parameters are implied. For example, the MOVE action requires a relative directionparameter specifying the direction in which to move. Also note that the ROTATE action is combinedin some cases for convenience (actions may be composite actions the EA model de�nition).3.1.4 Cell Contention ResolutionBecause automata actions can modify neighboring cells, the situation arises in which more than oneautomata may attempt to co-locate at the same cell, causing contention for that cell. As illustratedin Figure 3.4, components A and B are separated by one cell and arrows indicate that both haverules directing them to move into the same cell. Since the EA model, like the CA, prohibits cellsfrom having more than one automata, a cell contention policy is required. An example of such apolicy is mutual annihilation (as termed in [Codd68]) which results in all automata moving intothe same cell being destroyed. Another policy could be de�ned in which one of the contentiousautomata is randomly selected to occupy the cell in question. Biases toward certain componenttypes could also be enforced.
A B

Figure 3.4: Cell contention occurs when two automata whose neighborhoods overlap at-tempt to occupy the same cell in a 2-D 5-neighbor EA model.A cell contention policy is a global property of the space similar to other properties such as�xed propagation velocity and the limit on the actions allowed. Collectively, such properties areanalogous to physical laws of nature. The important point is that although these properties areglobal, they are static, and thus the dynamics of the model are based solely on local interactions.In contrast, some previous models of movable automata [Goel89], have relied on dynamic globally-available information, which violates having strictly local interactions.3.1.5 Summary of EA NotationA summary of the notation used in the de�nition of the EA model is shown in Table 3.1. Forclarity, CA and EA designations are parenthetically noted when symbols are primarily used in aparticular model. 36



Symbol DescriptionA set of actions (EA)� position of cell� number of coordinate system rotationsn neighborhood sizev; v̂ state (CA), component type (EA)V set of cell states fv1; v2; : : : vkgV̂ set of component types fv̂1; v̂2; : : : v̂cgk number of cell states (CA)c number of component types (EA)ks number of strongly rotation symmetric cell stateskw number of weakly rotation symmetric cell statesCt con�guration at time tM t̂v multiplicity of component v̂ at time tSt structure at time tS0 seed structure~St metamorphosing structure� rule table functionj�j number of entries in rule tableTable 3.1: Summary of EA model notation.3.2 Component-Sensitive InputA rule table compression method which has not been studied in the cellular space modeling lit-erature is the technique of component sensitivity. For models that incorporate weakly rotation-symmetric cell-states, it is possible to simplify the rule table function by modifying the way au-tomata receive input.In cellular space models to date, an automaton is sensitive to the states of its neighboringcells, and uses this input to make a transition. This method of cell input is called state-sensitiveinput (SSI). An alternative input technique is one in which an automaton receives only componentinformation from the cells in its local neighborhood. This is called component-sensitive input(CSI). In SSI, the center cell senses both the component type and orientation of cell states in itsneighborhood, whereas in CSI, the center cell senses only the component types. Figure 3.5 showsan example of a cell's input patterns under both SSI and CSI. There it is seen that the cell-state "senses an L component having a �90� orientation below it (SSI case), and an L component withoutorientation (CSI case).Rule tables are reduced under component-sensitive input since there are far fewer permutationsof neighborhood patterns. This is a signi�cant advantage for reasons of increased computationaltractability and decreased search space sizes. In section 3.3.2 expressions for rule table sizes using37



Cell-states: f�; �; L, L , L, L; ";!; #; gComponents: fL; "g
O

LInput pattern under SSI:! � L# Input pattern under CSI:" �L"Figure 3.5: Example illustrating automata input sensitivity.both CSI and SSI will be derived and compared. There it will be shown that SSI rule tables are�n�1 larger than the equivalent CSI rule tables.It should be remembered that component-sensitive input is only possible in cellular space modelshaving weak rotational symmetry. Since the EA model is de�ned to have weak rotational symmetry,CSI may be used with any EA model. Cellular automata models with weak rotational symmetrymay also be speci�ed using this input method.3.3 Comparison of CA and EA ModelsIn this thesis, both cellular automata and e�ector automata models are studied in the context ofsupporting self-replicating structures. In this section certain comparisons are made between thetwo models which are required to understand later results.3.3.1 Model EquivalenceIn comparing the EA and CA models to each other, it is useful to ask whether one model is moregeneral and can simulate the behavior of the other, and under what conditions this can occur.In the generalized EA model, automata are a�orded a wide range of complexity and thus it isnot surprising that an EA model can be derived to simulate the behavior of any weakly rotation-symmetric CA. Conversely, EA behavior can be designed into a CA provided that the complexityof the transition function is increased su�ciently. These points are made in the following theorems.Theorem 3.1 An e�ector automata model with a single BECOME action can simulate the behaviorof any weakly rotation-symmetric n-neighbor cellular automata model using an n-neighbor e�ectorautomata model having a rule table of equal size.38



Proof: By inclusion of a BECOME action, the condition-action rule of an EA is equivalent to a statetransition of a �nite state machine. The BECOME action changes the automaton's current state toany state in V . In a CA, the state transition rules are of the format: CTRBL ! C0. If each C0is replaced by the BECOME C0 action, an equivalent transition rule of is formed in the EA model.Since empty EA cells do not contain automata, CA quiescent cells are simulated by inclusion of acell-state having strong rotational symmetry. �Before presenting the next theorem, some background on neighborhood functions [Codd68] isnecessary. The function g(�) generates the set of cells comprising the neighborhood of cell �g(�) = f�; � + �1; : : : ; �+ �n�1g (3.10)where �i(i = 1; ::; n � 1) are coordinates relative to � and n is the neighborhood size as de�nedpreviously. As an example, the von Neumann neighborhood is expressed asg(�) = f�; � + (1; 0); � + (�1; 0); � + (0; 1); � + (0;�1)g (3.11)which generates the set of �ve cells: center, top, left, bottom, right.In comparing the CA and EA models to each other, the concept of a second-order neighborhoodfunction is required. The second-order neighborhood of a cell � is the set of cells comprising theneighborhood of � as well as the cells in those neighboring cells' neighborhood. This is expressedas g0(�) = g(g(�)j1) [ g(g(�)j2) [ � � � [ g(g(�)jn) (3.12)where g(�)ji denotes the position of the ith cell of g(�). Figure 3.6 illustrates how the second-orderneighborhood is obtained from the von Neumann neighborhood.

original neighborhood addition of new cells union of cells forms
second-order neighborhoodFigure 3.6: Obtaining a second-order neighborhood from the von Neumann neighbor-hood.The second-order neighborhood function is required because, from a CA perspective, automatalocated in a second-order neighborhood cell can a�ect the automata located in the center cell of the39



EA. In addition to actions, the cell contention policy (section 3.1.4) of the EA model can a�ect thecontents of a cell at each time step. For example, consider the cell shown highlighted in Figure 3.7.In case 1, a B component moves left as governed by rule 2 and occupies the highlighted cell. Theother components execute NULL actions. In case 2, a C component is added which changes the Dcomponent's behavior (it now uses rule 5 instead of rule 4). Because D and B attempt to occupy thesame cell, causing cell contention, they are both removed under the policy of mutual annihilation.Thus the highlighted cell remains empty in this case, in contrast to the �rst case. This simpleexample underscores the in
uence of components located in the second-order neighborhood.
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Partial Rule Table1. A�D�� ! NULL2. B���� ! MV LEFT3. C��D� ! NULL4. D���A ! NULL5. DC��A ! MV RIGHTFigure 3.7: Example behavior of the EA model illustrates how the addition of a C com-ponent in case 2 in
uences the contents of the highlighted cell.Theorem 3.2 In 2-D square tessellations, a cellular automata model with weak rotational sym-metry can simulate the behavior of a 2-D n-neighbor e�ector automata using a neighborhood ofsize n0 � 2n� 1 for integers n > 0.Proof: The next state v(�) of an EA cell � is in
uenced by the cells in its second-order neighborhood,g0(�). The number of cells generated by g0(�) is jg0(�)j, which is the size of the CA neighborhood n0.The value n0 varies depending on the EA neighborhood size n and pattern of the EA neighborhood40



as follows: jg0(�)j = 8>>>><>>>>: 2n� 1 pattern p13n� 3 pattern p2... ...(z + 1)n� z(z � 1)� 1 pattern pz (3.13)where z is a positive integer which enumerates di�erent neighborhood patterns, and Equation 3.13 issubject to the condition jg0(�)j > jg(�)j (this states that the second-order neighborhood may not besmaller than the original neighborhood). From the set of functions generated by (z+1)n�z(z�1)�1,the function that is bounded by all others (subject to the restrictions above), and hence minimal,occurs at z=1 where the neighborhood size is 2n � 1. The pattern p1 corresponds to the linearcontiguous set of cells, examples of which are shown in Figure 3.8. Thus the lower bound on CAneighborhood size is 2n� 1. �
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n'=7Figure 3.8: Examples of linear neighborhood patterns for various n, corresponding to p1in Equation 3.13. All patterns which have minimal second-order neighbor-hood sizes jg0(�)j. Second-order neighborhood patterns are shown hatched.The rule table sizes of comparable n-neighbor k-state EA and CA models are both O(kn).Applying Theorem 3.2 yields the ratioO(j�jCA)O(j�jEA) = O(kn0)O(kn) = O(k2n�1)O(kn) ' kn (3.14)which implies that the rule table of a CA must be approximately kn times larger than that of theEA, demonstrating a signi�cant increase in CA complexity is required.3.3.2 CA Rule Tables and Search SpacesThe rule table size of a CA, j�j, is the number of individual state transitions in the rule tablefunction, and plays an important role in this thesis. A k-state, n-neighbor non-isotropic CA willhave a rule table containing j�j = kn state transition rules, corresponding to the the number oflength-n sequences of k unique objects, when each may be repeated any number of times. The set41



of all possible rule tables for a CA is denoted Dkn. Since there are k possibilities for the next statein each transition in a rule table, the number of possible rule tables is:jDknj = kj�j (3.15)Equation 3.15 is an expression for the size of the CA search space when trying to learn a rule table,and is an important parameter when genetic algorithms are applied as a search technique. A searchspace is a collection of candidate solutions to a given problem. In the context of designing a CA toexhibit a certain behavior, Dkn represents all possible candidate solutions and hence comprises theentire search space. A related term, �tness landscape, refers to the quality of each of the candidatesolutions, where better performing solutions correspond to higher points. As an example, in a6-state, 5-neighbor non-isotropic CA, there are j�j = 65 = 7776 rules and jD65 j = 67776 ' 106050possible rule tables, an extremely large number. The size of this search space indicates it would beimpossible to exhaustively explore the space of all such D65 CAs.As mentioned in Section 2.1, a given CA rule table can have weak or strong rotational symmetrywhen the underlying space is isotropic. For isotropic spaces, jDknj becomes signi�cantly smaller ascompared to that of non-isotropic spaces. A reduction in rule table size occurs because redundanttransition rules may be removed due to symmetry conditions. This results from the removal ofredundant permutations. Under strong and weak rotational symmetries, in an n-neighbor CA onlyn � 1 positions are relevant since the center cell has no de�ned symmetry relative to itself. Thusfor cell states with weak rotational symmetry, distinct permutations are counted using kn�1. Forstrongly rotation symmetric cell states circular permutations are used to count distinct neighbor-hood patterns, denoted kCPn�1. Recall that ks and kw represent the number of strongly andweakly rotation symmetric cell states (k = ks + kw). Let j�sj be the number of strongly symmetrictransition rules, and j�wj be the number of weakly symmetric transition rules. Then,j�sj = ks � kCPn�1 (3.16)and j�wj = k � ks� � kn�1 (3.17)where � represents the number of coordinate system rotations permitted in the space (for example,� = 4 for a 2-D model having 4 90� rotations). For a CA model to have strong rotational symmetry,all k states must have strong rotational symmetry. Thus k = ks, and the total rule table size is:j�j = k � kCPn�1 (3.18)In a weakly rotation symmetric model, at least one state (the quiescent state) has strong rotationalsymmetry. With k = kw + ks and ks � 1, then the total rule table size is:j�j = j�sj+ j�wj= (ks � kCPn�1) + �k � ks� � kn�1� (3.19)Combining equations 3.15, 3.18, and 3.19 yields expressions for the search space size under bothweak and strong rotational symmetries:jDknj = k(ks � kCPn�1)+� k�ks� �kn�1� (weak rot. symm.) (3.20)jDknj = k(k � kCPn�1) (strong rot. symm.) (3.21)42



The calculation of circular permutations involves more advanced combinatorics and is outlinedin Appendix A. Comparing circular permutations to kn as a function of k analytically is di�cultdue to the complex nature of the circular permutation function. However, for small values of k,these functions can be compared empirically. Figure 3.9 shows curves for both functions when ann = 5 neighborhood size is assumed. By doing a simple regression, it is found that these functionsdi�er by a factor of approximately four for a given value of k. This agrees with intuition sincea strongly symmetric transition rule is \rotated four times" for each transition rule in the non-isotropic model. Also this implies that rule table sizes for an isotropic CA with strong rotationalsymmetry will be approximately four times smaller than that of a non-isotropic CA:j�jnon-iso ' 4 � j�jstrong (3.22)Substituting Equation 3.22 into Equation 3.15, we can determine the relationship between thesetwo search space sizes as follows: jDknjnon-iso = k(j�jnon-iso)' k4(j�jstrong)' (jDknjstrong)4 (3.23)Equation 3.23 shows that search spaces for CA models with strong rotational symmetry are roughlyfour orders of magnitude smaller than comparable non-isotropic spaces.
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Figure 3.9: Number of permutations as a function of k for an n = 5 neighborhood.As an example, the parity rule table in Table 2.1 (page 16) contains all 25 transition rules sinceit assumes a non-isotropic space. If an isotropic space is assumed, each �nite state automaton ineach cell is strongly rotation symmetric. Since 2CP4 = 6, j�j = 12, as compared to 32 for the43



original table. The reduced rule table is shown in Table 3.2, where C�c(TRBL) is used to denotethe circular permutations of the four neighborhood positions.C�c(TRBL) C000000 000001 100011 000101 000111 101111 0
C�c(TRBL) C010000 110001 010011 110101 110111 011111 1Table 3.2: Reduced rule table for the parity function when assuming strong rotationalsymmetry for each of the two cell states.Table 3.3 shows computed values for jDknj for small numbers of states under di�erent symmetries.For k=2, 4096 rule tables are possible with strong symmetry (the parity table above is one suchtable). It can be seen that the rule table space is reduced many orders of magnitude when isotropicspaces are used. However, for k > 2, jDknj values are nonetheless astronomically large. Valuesfor rule table sizes j�j are the exponent for the base k in this table. For k=5 it is seen that anisotropic space can reduce rule table size by a factor of four (3125=825 ' 4) which was borne outby Equation 3.23. This will later become an important factor from a computational perspectivewhen evolving such models using a genetic algorithm. Also note that �ve states are needed forweak symmetry since one state is quiescent and four states comprise a single rotated component.jDknjk Non-isotropic Strong Rot. Symm. Weak Rot. Symm. (c)2 232 ' 1010 212 = 4096 { {3 3243 ' 10116 372 ' 1034 { {4 41024 ' 10617 4280 ' 10169 { {5 53125 ' 102184 5825 ' 10577 5790 ' 10552 (1)6 67776 ' 106051 62016 ' 101569 61968 ' 101531 (1)7 716807 ' 1014203 74312 ' 103644 74249 ' 103591 (1)8 832768 ' 1029592 88352 ' 107543 88272 ' 107470 (1)9 959049 ' 1056347 914985 ' 1014299 914787 ' 1014110 (2)Table 3.3: Values of search space sizes jDknj for various k-state, n=5 neighbor cellularautomata with di�erent symmetries.3.3.3 EA Rule Tables and Search SpacesIn this section the rule table and search space sizes are calculated for the EA model. For purposesof comparison, notation and symbols germane to CAs are used as appropriate. Analyses for both44



component sensitive input (CSI) and state sensitive input (SSI) EA models are given. For thosemodels, the notations j�jCSI and j�jSSI are used to distinguish the rule table sizes under the di�erentinput sensitivities. The same notation applies to search space sizes as well. As with CA models,the set of all possible rule tables for a k-state, n-neighbor EA is denoted Dkn. Since there are jAjpossible actions for each entry in a rule table, the number of possible rule tables under each inputsensitivity is jDknjCSI = jAjj�jCSI (3.24)jDknjSSI = jAjj�jSSI (3.25)3.3.3.1 EA Rule Tables Under CSIAs de�ned in section 3.1, EA models have weak rotational symmetry. This condition does notexclude having strongly rotation symmetric cell states in an EA model. Rather it means that atleast one weakly rotation symmetric cell state must be present. With k = ks + c� these conditionsimply that c > 0, ks > 0, and k � 1 + �, meaning that at least one component and one stronglyrotation symmetric cell state (empty/quiescent cell state) are required. Since the quiescent cellstate does not require any condition action rules, there are ks � 1 strongly rotation symmetric cellstates. Thus, the number of strongly rotation symmetric rules isj�sjCSI = (ks � 1) � c+ksCPn�1 (3.26)Under component sensitive input, the number of weakly rotation symmetric rules is the number ofcomponents c times the number of possible neighborhood arrangements:j�wjCSI = c(c+ ks)n�1 (3.27)The overall rule table size, j�j, is the number of condition-action rules in the rule table function.Combining equations 3.26, 3.27, and j�j = j�sj+ j�wj,j�jCSI = (ks � 1) � c+ksCPn�1 + c(c+ ks)n�1 (3.28)From 3.24, the search space size in the EA model under CSI is thus expressedjDknjCSI = jAj(ks�1)� c+ksCPn�1+c(c+ks)n�1 (3.29)Is is clear from Equation 3.29, that search space sizes are very sensitive to the neighborhood sizen and number of components c. Table 3.4 lists rule space sizes for small values of c for various2-D EA models having one strongly rotation symmetric state, � = 4, and using the von Neumannneighborhood.3.3.3.2 EA Rule Tables Under SSIUsing state-sensitive input, the derivation of the rule table size is similar to that of componentsensitive input. For SSI, the permutations for the neighborhood patterns are for k states as opposedto c+ ks in CSI. Thus the c+ ks terms in equations 3.26 through 3.29 are replaced by k to givej�sjSSI = (ks � 1) � kCPn�1 (3.30)j�wjSSI = ckn�1 (3.31)j�jSSI = (ks � 1) � kCPn�1 + ckn�1 (3.32)jDknjSSI = jAj(ks�1)� kCPn�1+ckn�1 (3.33)45



c k jDknjCSI1 5 jAj162 9 jAj1623 13 jAj7684 17 jAj25005 21 jAj6480Table 3.4: Values of search space sizes jDknjCSI for various k-state, n=5 neighbor e�ectorautomata with ks = 1 and � = 4.Equation 3.33 again shows the search space size to be very sensitive to neighborhood size n andnumber of states k. Table 3.5 lists rule space sizes for small values of c for various 2-D EA modelshaving one strongly rotation symmetric state, � = 4, and using the von Neumann neighborhood.c k jDknjSSI1 5 jAj6252 9 jAj131223 13 jAj856834 17 jAj3340845 21 jAj972405Table 3.5: Values of search space sizes jDknjSSI for various k-state, n=5 neighbor e�ectorautomata with ks = 1 and � = 4.3.3.4 E�ect of Input Sensitivity on EA and CA ModelsIn this section a comparison is made of rule table and search space sizes under di�erent inputsensitivities in the EA and CA models. Using the expressions for rule table sizes under both CSIand SSI, their magnitudes can be compared as follows. First assume there is only one stronglyrotation symmetric state so that ks = 1. This is a reasonable assumption since it is common forweakly rotation symmetric models to have only one strongly symmetric state which represents theempty/quiescent cell state. The ratio for the rule table sizes isj�jSSIj�jCSI (3.34)For cellular automata this ratio is �c+1CPn�1 + c(�c + 1)n�1c+1CPn�1 + c(c+ 1)n�146



and for e�ector automata the ratio is c(�c + 1)n�1c(c + 1)n�1Both of these ratios converge to the same constant as the number of components c is increased.The circular permutation functions in the CA ratio are insigni�cant compared to the other termsas c increases. Thus in the limit we havelimc!1 �c+1CPn�1 + c(�c+ 1)n�1c+1CPn�1 + c(c + 1)n�1 = limc!1 c(�c + 1)n�1c(c+ 1)n�1 = �n�1 (3.35)Equation 3.35 states that as c increases, models (EA or CA) using component sensitive input haverule tables that are approximately �n�1 smaller than models (EA or CA) using state sensitive input.For a typical coordinate system with � = 4, and using the von Neumann and Moore neighborhoods,it is seen that the j�j values will di�er by a factors of 256 and 65536, respectively, as the numberof components increases. This multiplicative increase translates into orders of magnitude increasesin search space sizes. From Equation 3.25 which expresses the EA rule table size:jDknjSSI = jAj(j�jSSI )' jAj�n�1(j�jCSI )' (jDknjCSI)�n�1 (3.36)From Equation 3.36 it can be seen that by using component sensitive input, the search space isdecreased approximately �n�1 orders of magnitude. As an example, the models used in this workhave � = 4 and n = 5, giving a di�erence of 256 orders of magnitude.3.3.5 Summary of Rule Table SizesA summary of expressions for rule table sizes is shown in Table 3.6. An entry of \{" denotes \notapplicable". Figure 3.10 shows these functions graphically for small values of k, with Figure 3.11showing the lower portions of the curves in detail. The curves for models using CSI have a sawtooth-like appearance because � = 4: every fourth k the curve diminishes since four cell states areconverted into a single component. For example, at k = 12, ks = 3 and c = 2, but at the nextk (k = 13), ks = 1 and c = 3. It is clear from these curves that using component sensitive inputsigni�cantly reduces the rule table sizes as compared to the other model parameters.3.4 Growth of Self-Replicating StructuresIn this section we analytically investigate the growth of self-replicating structures in 2-D, 5-neighborEA models. It appears reasonable to assume that a self-replicating structure could produce apopulation of replicants that grow exponentially with time (for example, the population mightdouble in size every generation). However, as the following theorem indicates, this cannot occur.A similar conclusion is reached in [Moore62] for speci�c 2-D cellular automata models.Theorem 3.3 If a self-replicating seed structure S0 is capable of producing 
(t) replicants by timet, then there exists a constant K > 0 such that 
(t) � Kt2.47



CA EAStateSensitiveInput Non-isotropic kn {Strong Rot. Symm. k � kCPn�1 {Weak Rot. Symm. ks � kCPn�1 (ks � 1) � kCPn�1+ ckn�1 + ckn�1ComponentSensitiveInput Non-isotropic { {Strong Rot. Symm. { {Weak Rot. Symm. ks � c+ksCPn�1 (ks � 1) � c+ksCPn�1+ c(c+ ks)n�1 + c(c+ ks)n�1Table 3.6: Summary of rule table sizes j�j for n-neighbor CA and EA models under dif-ferent rotational symmetries. \{" denotes \not applicable".Proof: Let the smallest rectangle enclosing S0 be of dimensions l � w. Then at each time t, thelargest number of non-empty cells in the con�guration Ct is given byj supCtjmax = lw + 2lt+ 2wt+ 2(t2 � t)Dividing by the size of each replicant, the number of replicants at time t is at mostlw + 2lt+ 2wt+ 2(t2 � t)lwwhich is O(t2). Therefore 
(t) is bounded by Kt2. �The limit on the population size results from the �nite \velocity" in which automata maypropagate into the empty region of space: using the von Neumann neighborhood, EA automatamay move one cell at each time step. This restriction has been called analogous to the physicallimitation imposed by the speed of light.
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Figure 3.10: Rule Table Size j�j as a function of k for various n=5 neighborhood EA andCA models.

0200040006000800010000

2 4 6 8 10 12 14 16 18 20
RuleTableSiz
ej�j

k

EA, WRS, CSIEA, WRS, SSICA, WRS, CSICA, WRS, SSICA, SRS, SSICA, Non-Iso
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Chapter 4Designing GAs for Automatic Discovery ofSelf-Replicating StructuresOver the decades since von Neumann �rst demonstrated that structures in cellular automata canself-replicate [von Neumann66], a substantial body of theoretical and modeling studies have led toprogressively simpler and smaller models [Codd68, Langton84, Reggia93]. However, all such pastmodels have been manually designed, a process that is very di�cult and time-consuming, and isprone to subjective biases of the implementor. With ever smaller hand-designed self-replicatingstructures being reported, and ever increasing computational resources available, the hypothe-sis that it would be possible to generate self-replicating structures automatically appeared to betestable. Since this problem had never been attempted, it was of great interest to show that theautomatic discovery of self-replicating structures was even possible.As noted in Section 2.3.3 of Chapter 2, relatively few studies have reported using geneticalgorithms to automatically produce rule tables for cellular space automata models. However, un-til [Lohn95] there were no reports of using GAs to produce cellular space automata models forself-replicating structures, and self-replicating structures were the very subject cellular automatawere �rst invented to study. Such research was most likely not undertaken for at least two reasons.Firstly, the computational load can become enormous. As shown in Chapter 3, the rule tables formodest CA systems can quickly grow extremely large (e.g., 25,000 for a k=10 states strongly rota-tion symmetric CA), and manipulating numerous such large \chromosomes" in a GA can quicklyexhaust the memory capacity and processing capabilities on many computer systems. Secondly,and most importantly, identi�cation of e�ective �tness functions is a di�cult task. Apparentlyobvious �tness functions such as those that count the number of replicants are useless early on asthere will typically be none. In general, assigning small values of �tness to behaviors that do notresemble self-replication yet have potential to evolve into such a process is a very di�cult problem.The solution to this problem is one of the key contributions of this chapter.The novel �tness functions reported in this chapter are general in three senses: they may beapplied to a large number of 2-D cellular space automata models, any size and shape seed structurecontaining unique components may be used, and they may be used in conjunction with a variety ofsearch techniques. Evidence of this generality is presented in Chapter 5 where the �tness functionsare used in both CA and EA models, and under four search techniques. In addition, the �tnessfunctions do not impose undue biases towards any particular process of self-replication. That is, intheir de�nitions, the �tness functions do not assign credit based on aspects such as: the contentsof speci�c cell locations at speci�c instants, whether/how the structure should translate or rotate50



itself over time, the quantity/timing of replicant production, or the extent to which con�gurationsmatch a prede�ned con�guration.Since the primary search technique for the rule discovery system here is the genetic algorithm,areas speci�cally concerning the use of the GA are also presented. This includes the choice of geneticoperators, associated parameters, penalty functions, and multiobjective optimization issues.4.1 Models Used in ExperimentsLike CA models, the range of potential EA models is vast. For the purpose of studying self-replicating structures, a small set of speci�c EA models are adapted from the general EA modeldescribed in Chapter 3. In selecting these models, several criteria were of great importance:� For comparison purposes, fundamental model parameters should be kept the same as orclosely parallel to previous work in hand-designed, self-replicating structures. For example,parameters such as the dimensionality of the cellular space, neighborhood size and shape, andthe number of coordinate system rotations were kept the same as in several previous studies(for example [Reggia93]).� The set of actions A should include the fundamental operations observed in previous models ofself-replicating structures. An exception to this is the omission of the BECOME action. Becausethe BECOME action changes an automaton's component type, and thus the manner in which itbehaves, it compromises the physical relevance of the automata. An analogy using biologicalcells is �tting. An amoeba cell may be capable of movement, but is not capable of becominga blue-green algae cell.� Seed structures should be similar in size to those of the smallest known self-replicating struc-tures.� The model should allow computational feasibility when used in conjunction with a geneticalgorithm.The EA model used in the experiments reported in this thesis is as follows. A 2-D cellularspace is chosen since it has been used almost exclusively to study self-replicating structures1. Theneighborhood template is the von Neumann neighborhood which consists of �ve neighbors includingthe center cell. All automata are weakly rotation-symmetric so that each distinguishes the relativelocations of its four neighboring cells as top, right, bottom, and left. Each automaton is representedby a symbol in fA; B; C; Dg indicating its component type. The set of actions used are described inTable 4.1.Automata may move (both translation and rotation are included in the same action for conve-nience), divide into two copies (again movement is included for convenience), self-destruct, orremain inactive. Note that the DV-ROT action directly enables replication at the level of individualautomata, not the self-replication of multi-automata (aggregate) structures. Although the divideaction may appear to be \too powerful" (in the sense of making self-replication less di�cult), wenote that all previous self-replicating structures use a similar mechanism in their self-replication1See Table 2.2 on page 24 for a summary of previous research.51



Action DescriptionMV-ROT <dir> <rot> move one cell in the speci�ed direction and ro-tate the speci�ed number of degreesDV-ROT <dir> <rot> <dir> <rot> divide into two daughter automata accordingto the speci�ed directions and rotationsDESTR cease to existNULL no actionTable 4.1: Set of actions A used in the EA model.processes. For example, it is a simple matter to program a CA to have two quiescent cells becomethe same state of a shared neighboring cell. Again, the di�culty lies in achieving the self-replicationof an entire structure. With �=4, values for the direction parameter (shown as <dir>) are eithertop, right, bottom, or left, and the rotation parameter (shown as <rot>) can be either 0, 90, -90,or 180 degrees. The key EA model parameters chosen are summarized in Figure 4.1.4.2 Rule DiscoveryThe problem to be solved in this chapter is that of automatically �nding rule tables that yieldself-replicating structures in cellular space automata models. Problems of this kind are called rulediscovery problems since the goal is to search a large search space composed of sets of simple rulesand discover rules that have high performance. The rule discovery technique used here is the geneticalgorithm. The application of GAs to rule discovery problems is most well-known in the study ofclassi�er systems[Holland80, Booker90], which are massively parallel, rule-based machine learningsystems that learn rules through the use of credit-assignment and rule discovery.An overview of the speci�c rule discovery system used is illustrated in Figure 4.2. The maincomponent of the system is the technique called the rule discovery process. Techniques other thanthe GA may be used instead, and these are discussed in Chapter 5. Inputs to the rule discoveryprocess are as follows. The description of the cellular space model may be either the EA or CAmodels2. This description informs the rule discovery process of the relevant de�nitions concerningthe cellular space model being investigated, including: the manner in which rules are processed,the type of space de�ned in the particular model, and how the space iterates over time. Theevaluation criteria specify the manner in which discovered rule tables are judged. In the contextof the genetic algorithm, these criteria are called �tness functions. This is the most di�cult partof the system to design since it is not obvious how to apportion �tness to encourage and sustainself-replicating behaviors. This subject is described later in this chapter and is a key innovationof this thesis. The initial conditions specify the con�guration of cells at t = 0 (the seed structureS0), and parameters associated with the rule discovery process. In the case of a GA as the rulediscovery process, such parameters would include mutations and crossover rates, population size,the number of generations, and convergence criteria. Also shown in Figure 4.2 (lower right) is2Other cellular space models may be used, such as stochastic automata, however they are beyond the scope ofthis work. 52



Parameter Value(s)N 2 dimensional space� 4 coordinate system rotations (90�)n 5 cell von Neumann neighborhoodA fMV/ROT(d; r); DV/ROT(d1; r1; d2; r2); DESTR; NULLgks 1 strongly rotation symmetric cell state (quiescent)(a)Parameter SetsSet 1 Set 2 Set 3S0 v̂1 v̂2 v̂1 v̂2v̂3 v̂1 v̂2 v̂3v̂4c 2 3 4k 5 13 17kw 4 12 16V̂ fv̂1; v̂2g fv̂1; v̂2; v̂3g fv̂1; v̂2; v̂3; v̂4g(b)Figure 4.1: CA and EA model parameters used in the genetic algorithm: (a) parametervalues used for every GA; (b) sets of parameters for varying seed structures.the �nal step in the rule discovery system. Because the rule discovery processes examined heredo not guarantee �nding a rule table that promotes self-replicating behavior, the discovered ruletable requires simulation and subsequent analysis to determine if the structure self-replicates. Thecriteria for such determination is described next, where a de�nition of a self-replicating structureis presented.4.3 Self-replicating StructuresA structure S and a metamorphosing structure ~S were formally de�ned in Section 3.1.2. Brie
y,a structure is a set of contiguous non-empty (non-quiescent) cell states, and a metamorphosingstructure is a set of cell states that forms a structure at time t, changes shape from t+1 throught0, and is identi�able as the original structure at t0+1. A self-replicating structure Sr builds uponthose de�nitions, and understanding the de�nition of a self-replicating structure is a prerequisiteto understanding the �tness functions presented in subsequent sections.In de�ning a self-replicating structure the notion of separation between structures needs to be53



Description of Cellular
Space Model

(CA, EA)

Rule Discovery Process
(GA or other technique)

Evaluation Criteria
(fitness functions)

Initial Conditions
(seed structure,

parameters)

rule
table

produces

rule
table

space
iterates

over time

simulate

Examine ResultsFigure 4.2: Overview of the rule discovery system showing the major components, pro-duction of a discovered rule table, and the manner in which the discoveredset of rules is analyzed.made precise. The three degrees of separation among two structures (or in general, con�gurations),are noted. Recall that the set of all non-empty cells in a con�guration C is the support function,supC. Two con�gurations C and C 0 are distinct3 ifsupC 6= supC 0 (4.1)C and C 0 are disjoint (Equation 3.6 repeated for convenience) ifsupC \ supC 0 = ; (4.2)The third and strongest form of separation is called isolation. Recall Equation 3.11 which de�nesthe neighborhood function of a cell � as g(�). Let the neighborhood function of a con�gurationC be de�ned as the set of all cells that are in the neighborhood of C's non-quiescent cells. Thisfunction is denoted G(C) and is expressed asG(C) = [�2supC g(�) (4.3)3Term used in [Moore62, pg. 22] 54



A con�guration C is isolated from con�guration C 0, denoted C a` C 0, if the set of cells common toboth con�guration's neighborhoods is not in supC. This is expressed assupC \ (G(C) \G(C 0)) = ; (4.4)Figure 4.3 illustrates with an example the di�erences between the degrees of separation amongcon�gurations.
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such that replicant Sr1 becomes isolated from the parent structure:Sr a` Sr1 (4.7)The above de�nition, taken as a whole, is more precise than previously reported de�nitions inwhich construction universality was not required4. This is de�nition used for the self-replicatingstructures presented in this thesis, and we note here its bene�ts. Firstly, it encompasses themore recently reported models of self-replication (those starting with [Langton84]). Secondly, itprecludes many trivial self-replication processes, discussed in more detail below. And lastly, itprecludes \artifact" replicants { structures that form the appropriate size and shape, for example,from a supply of unused components without being directed to do so. Such \artifact" replicantsare constructed in a random fashion, and are more likely to appear as the seed size (number ofcomponents in the seed) becomes smaller.An important issue that arises from any de�nition of a self-replicating structure concerns trivialself-replicating structures. Such structures are seen as not requiring a stored instruction sequencethat is interpreted during the replication process. For example, a 1-D, 3-neighbor CA can easilybe made to give the behaviors shown in Figure 4.4. In both examples shown, the seed struc-tures are shown at t=0 and at t=3 replicants can be seen isolated. Note that in the de�nition ofself-replicating structure Figure 4.4(a) would not be included because of the requirement that thestructure size be greater than one (jSj > 1). Also the de�nition above states that self-replicationprocesses must have a duration of at least one time step as speci�ed in Equation 4.6. This pre-cludes many structures having a trivial self-replication process. While Figure 4.4(b) does meet thisrequirement, it is considered trivial because all of its components simultaneously split at t=1.
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is, responsibility for the production of the o�spring should reside primarily within thesequences of actions undertaken by the parent structure. Note that we want to requirethat responsibility reside primarily with the parent structure itself, but not totally. Thismeans that the structure may take advantage of certain properties of the transitionfunction... ...but not to the extent that the structure is merely passively copied bymechanisms built into the transition function....the con�guration must treat its stored information in two di�erent manners... in-terpreted, as instructions to be executed (translation), and uninterpreted as data to becopied (transcription).Thus, we distinguish between trivial and non-trivial self-replication by insisting that the struc-ture actively directs the construction of o�spring, as opposed to trivial cases where all componentautomata simultaneously split to form two copies.With De�nition 4.1, the goal of the genetic algorithm, or, more generally, any rule discoveryprocess, can be stated as follows. Given an initial seed structure S0 such that C0 = S0, �nd therule table function � Ct = �(Ct�1) (t > 0) (4.8)which generates the sequence of con�gurationsC = fC1; C2; : : : g (4.9)such that S0 satis�es the requirements of a self-replicating structure as speci�ed in De�nition 4.1during the propagation C.4.4 The Choice of Genetic AlgorithmsBefore describing the genetic algorithm as it is used in this thesis, the motivations for choosing thegenetic algorithms as the rule discovery technique are as follows. As described in Chapter 3, thesize of the search spaces for both EA and CA cellular space models can be incredibly large. GAsare a well-known strategy for searching such extremely large search spaces quickly [Mitchell96]. Inaddition to its size, the search space landscape is not well understood. Except for reports examiningsmall (k=2) cellular space models [Wolfram94], apparently no studies have been reported whichattempt to understand the larger search spaces (k > 2). Such search spaces are very unlikely to besmooth and unimodal, which would suggest gradient-ascent algorithms such as steepest-ascent hillclimbing.In this work, the goal of automatically �nding self-replicating structures is not directly concernedwith �nding the optimal self-replicating structure, the de�nition of which would subjective. Rather,�nding a diverse set of such structures is of greater importance and more interesting. Thus �ndingsu�ciently good solutions instead of the global optimum is required. GAs are well-suited to suchgoals.Experimental results from other search techniques are presented in Chapter 5 for purposesof comparison to the GA. The techniques used are multiple restart stochastic hillclimbing andpopulation-based incremental learning. The results show that these techniques were not as e�ectiveas the genetic algorithm for the problem examined. In most cases the other search techniques failedto discover any self-replicating structures. 57



4.5 Genetic Algorithm DesignThe theory of genetic algorithms was brie
y reviewed in Section 2.3 (page 24). In this section thegenetic algorithms employed in this thesis are described, with special emphasis on the derivationof the �tness functions used. Two genetic algorithms were designed in the course of this research.The primary GA was used to discover many self-replicating structures, and is the main focus of thissection. An auxiliary GA, called a meta-level GA [Grefenstette86], was used to optimize certainparameters for the primary GA. This use of a second GA for multiobjective optimization is discussedin Section 4.7. Both genetic algorithms are variants of the traditional genetic algorithm [Davis91].Accepted notation found in the genetic algorithm literature is used when appropriate. However, toavoid clashes with the notation used for cellular space models presented in Chapter 3, some GAsymbols were modi�ed slightly. The notation is shown in Table 4.2.Symbol Meaningg generation numberP population: set of chromosomesa population member: a chromosomeaig ith population member of generation gna population size: number of chromosomesTable 4.2: Notation used for genetic algorithms.An overview of the primary genetic algorithm as it is used in this thesis is depicted in Figure 4.5.Each area of the GA is discussed in detail in the sections below. Here some general remarks aboutthe GA are made. The GA begins by assembling a population of randomly initialized rule tables,also called chromosomes in this context, which are on the order of 1000 elements long for themodels studied. The GA then proceeds to iterate in a loop until a speci�c convergence criterionis satis�ed. In Figure 4.5 the two overall phases of processing are seen: an evaluation of thepopulation, and creation of a new population. Evaluating the population of chromosomes is themost time consuming operation since 100 simulations are executed and complex �tness calculationsare made for each simulation. The creation of a new population of chromosomes is where geneticoperators are applied with the intention of creating a new set of chromosomes with higher �tnessvalues.
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4.5.1 EncodingsAs discussed in Section 2.3, an arti�cial chromosome refers to a candidate solution for a givenproblem. In genetic algorithms, chromosomes are often encoded as binary strings, although otherencodings, such as real-valued and tree encoding schemes are possible [Mitchell96]. The followingdiscussion concerns the choice of encoding system for rule tables, and the speci�c encodings forrule tables used in this thesis. However, it is noted here that a binary encoding was chosen for usein an auxiliary genetic algorithm to be discussed in Section 4.7.In addition to the encoding schemes mentioned above, another choice for representing candidatesolutions to the GA is to use the natural encoding of the problem at hand. This approach is statedas part of the \principle of minimal alphabets" [Goldberg89, pg. 80]. The natural encoding forchromosomes in cellular space automata models is the rule table itself. This is the encoding strategyapproach taken for the genetic algorithm described in this thesis. In [Davis91] it is argued thatusing the natural encoding of a problem confers two advantages over arti�cial encodings. Firstly,it allows the researcher to work with the GA in a more natural way given that he or she is alreadyfamiliar with candidate solutions to the problem. Secondly, a natural encoding guarantees thatdomain expertise embodied in the encoding will be preserved.Two additional motivating factors for using the natural encoding of a problem are as follows.In transforming the problem into an arti�cial encoding, a second step of decoding it back to theoriginal form is required. This process incurs overhead to the GA, and given that the cellularspace models are quite large and require large amounts of memory and CPU time, saving thisencode/decode overhead reduces the computational load. A second factor concerns the fact thatother encodings can be unwieldy for the large chromosomes required for representing rule tables.As mentioned, the chromosomes in the GA are comprised of rule tables. As an example, therepresentation chosen to encode CA and EA rule tables for two and three component systems isdepicted in Figure 4.6. In both example chromosomes, the rule tables are shown indexed implicitlyby the neighborhood pattern CTRBL (center, top, right, bottom, left). From the derived equationsin Chapter 3, the size of these chromosomes are computed as 838 (CA) and 768 (EA). As shownin Figure 4.6, rules for each component are grouped together within the chromosome. Note thatbecause of rotational symmetry some groups will be larger than others. In GA terminology, suchblocks of related adjacent elements in the chromosome are called genes. Grouping rules together asgenes allows the GA to optimize rules for individual components separately. This can be thoughtof as programming A type \machines" separately from B type, etc. This grouping presumably aidsin GA performance in light of the building block hypothesis of GA theory (reviewed in section 2.3).Partitioning the chromosome into such genes also allows for 
exibility in applying the crossoveroperator (discussed in section 4.5.3).The size of the chromosomes corresponds to j�j, the rule table size as de�ned in Chapter 3. Thisimplies that the complete rule table is used as the chromosome, which is important for two reasons.Firstly, for larger models (k > 5) it is likely that during a �tness evaluation, some rules may neverbe activated. That being the case, because all possible are represented in the chromosome, the GAstill manipulates these inactive rules. This is analogous to the introns (\junk DNA") in biologicalchromosomes. Note however, that due to the genetic operators in the GA, rules that are inactive inone generation, may be recombined and/or mutated and become active in the next. Thus segmentsof inactive loci on the chromosome may still contain valuable genetic information. Secondly, havingthe complete rule table in the chromosome implies that rules that are active (executed by the60
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with GAs have been reported in the literature [Goldberg89, pg. 121]. Selection of chromosomes tomate is based on the �tness of the chromosomes, and the goal is to give more reproductive chances,overall, to �tter chromosomes so that their o�spring will in turn garner even higher �tness. Iftoo many higher-performing chromosomes are selected, the GA may converge prematurely witha suboptimal group of high-performing chromosomes dominating the population. Conversely, ifnot enough high-performing chromosomes are chosen, the evolution will proceed slowly. There isno single selection technique that stands out as always being the best. For the GA experimentsreported here, the selection technique involves three methods described below: linear normalizationof �tnesses, roulette wheel selection, and elitism.Linear Normalization of FitnessesAfter a population has been evaluated and the �tnesses for each of the chromosomes is known,the �rst step in selecting parents to mate is to apply linear normalization of the �tnesses. Linearnormalization, a variant of rank selection, involves ordering the chromosomes linearly based on their�tness scores. For example, �ve chromosomes could have their �tnesses normalized and ordered as30, 25, 20, 15, 10, with 30 representing the highest-performing chromosome. The distance between�tnesses (�ve in this example), is called the decrement and can be chosen as desired. A decrementvalue of 1 was chosen, and using a population size of 100 chromosomes, the normalized �tnessesare thus ordered 100; 99; : : : ; 1. An ordering using a decrement value of 1 is a ranking method witha rank of 1 denoting the least �t chromosome.Roulette Wheel SamplingAfter the linear normalization of �tnesses, stochastic sampling of the ordered chromosomes isused to randomly select parents, with each parent's chance of being selected directly proportionalto its �tness. This technique is referred to as roulette wheel sampling since it may be thought of asallocating sectors of a circular roulette wheel with each sector sized according to a chromosome's�tness. Using linear normalization of �tnesses as described above, the probability of selectingchromosome ai from a population of nc chromosomes is given byprob(selecting ai) = incXj=1 j (4.10)The population size nc used in the GA experiments herein was 100. For illustration purposes,Figure 4.7 shows how the sampling probabilities breakdown for a population size of nc = 5. In thiscase, the value of the denominator in Equation 4.10 is 15. Thus the chromosome ranked highest in�tness (number 5), will be selected to mate 515 or 33.3% of the time.ElitismThe number of times roulette wheel sampling is performed in each generation depends onthe generational replacement policy used. Given a population at generation g, Pg, the questionbecomes, how many new chromosomes will be created for the next population Pg+1, and how manyexisting chromosomes will simply be copied over. The fraction of new chromosomes placed intoPg+1 is called the generation gap [Goldberg89, pg. 111]. For the GAs in this thesis, a generationgap of 98% was used. 62
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replaced by randomly choosing one state from the k states speci�ed in the model. Similarly, for anEA rule table, a randomly selected action from the set of actions A is chosen to replace the originalrule. An example of this is shown in Figure 4.9.
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MV-ROT DESTRFigure 4.9: Example of an EA rule undergoing mutation. A movement/rotation rule ismutated into a destruct rule.4.5.4 Fitness FunctionsThe purpose of a GA �tness function is to assign a measure of performance to each chromosomein the population, depending on how well each chromosome (rule table) encodes rules that resultin an initially-speci�ed structure exhibiting self-replicating behavior. Designing a �tness functionto evaluate self-replication is di�cult because self-replication is a dynamic and complex process.Naive measurement of the number of replicants is not useful early on as none of the initial ran-dom chromosomes produce replicants. This has been borne out in extensive testing of randomlyinitialized chromosomes, and agrees with intuition, given the immense search space sizes discussedin Chapter 3. Further, comparing an evolving structure to a prede�ned template of seed structurecopies by way of pattern matches fails to give partial credit during the replication cycle itself, whenthe structure has changed shape as it directs its self-replication. Having a prede�ned template alsoimposes a strong bias on the self-replication process, which is undesirable since it severely limitsthe types of self-replicating behaviors that could possibly emerge.Another di�culty is that, since the length of the desired self-replication cycle is unknown, usingdata from a single time-step would require knowing a priori which con�guration replicants appearedin and assumes that replicants appear all at once rather than at di�erent time-steps. Clearly, datafrom multiple time-steps are needed so as to identify replicants as they are produced. This leads tothis problem of deciding which con�guration to start with, and how many subsequent con�gurationsto examine for self-replicating behavior.Since the GA begins with a population of randomized rule tables (Figure 4.5), it is extremelyunlikely that such rule tables will lead to self-replicating behavior. If the �tness functions of theGA assign positive �tness values only to rule tables that lead to self-replicating behavior, then allrule tables will have �tnesses of zero, and the GA will not be able to apply its genetic operatorse�ectively. In such cases the GA degenerates into an ine�cient random search process. Assigningsmall values of �tness to behaviors that do not resemble self-replication yet have potential to evolveinto such a process is needed to allow the GA to search e�ectively. It is noted here that no otherresearch to date5 has reported techniques that attempt to cope with this problem.5With the exception of [Lohn95] where preliminary advances are reported.65



The issues raised above can be summarized as two questions: which simulation con�gurationsshould be used and what criteria should be applied for an e�ective evaluation of self-replicatingprocesses. The following sections present novel solutions to these questions. The �tness functionsderived are general in three senses. Firstly, they may be applied to a large number of 2-D cellularspace automata models (both EA and CA models of varying sizes). Secondly, any size and shapeseed structure containing unique components may be used. Thirdly, the �tness functions are notspeci�c to GAs, and may be used in conjunction with a variety of search techniques. Evidence ofthese points is presented in Chapter 5 where the �tness functions are used in both CA and EAmodels, with varying seed structures, and under di�erent search techniques. In addition, the �tnessfunctions do not impose a strong bias toward any particular process of self-replication. That is,in their de�nitions, the �tness functions do not assign �tness based aspects such as: the contentsof speci�c cell locations at speci�c instants, whether/how the structure should translate or rotateitself over time, the quantity/timing of replicant production, or to what extent do con�gurationsmatch a prede�ned con�guration.4.5.4.1 EvaluationsPrerequisite to understanding how the �tness functions are derived is to recognize the manner inwhich they are used. As mentioned previously, �tness functions associate �tness values to eachrule table (chromosome) in the population of a GA. This section discusses how each rule table isevaluated, and the reasoning behind how the evaluations were set up. Speci�cally, details concerninginitial conditions and progress of the simulation are presented. Figure 4.10 depicts the evaluationphase starting with the selection of one rule table from the population at generation g.The evaluation of each chromosome requires that a complete EA (or CA) simulation be executed(Figure 4.10, middle). As in other dynamical systems, initial conditions play a critical role indetermining the cellular space's behavior. The initial conditions for each evaluation are comprisedof a rule table, �, and seed structure S0. While it is possible to have the GA evolve both � and S0simultaneously, the results of preliminary experiments in this direction were disappointing. Thus,the decision was made to keep S0 �xed { every evaluation that a single GA performs uses thesame S0. The seed structures were comprised of the two, three, and four unique components asshown in Figure 4.11. The choice to use small structures was based on research showing that self-replicating structures as small as �ve and six components existed [Reggia93]. When using smallseed structures such as these, the nature of the self-replication process concerns the self-in
uencingforces/behavior that di�erent interacting components have on each other. For example, becauseindividual components generally move at each time step, their inputs (the automata located inneighboring cells) change regularly. With each new set of inputs, the component can execute a newrule. Thus when a seed structure moves or rotates as a whole, components of the seed structurecan in
uence other components, creating a self-in
uencing, self-directing process. The analogy ofepistatic interactions in biological genes is appropriate here: like genes at di�erent locations on thechromosome which can suppress the expression of other genes, the components of a self-replicatingstructure can a�ect the behavior of other components in the same structure. As in previouslyreported unsheathed self-replicating structures, the components are thought of in two ways: as theinstruction sequence, and as the machinery to read the instructions.
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Calculate Overall Fitness, FFigure 4.10: Evaluation phase of genetic algorithm.Con�gurations Used in Fitness FunctionsAs seen in the block labelled \Run Simulation" in Figure 4.10, the set of con�gurations to be usedby the �tness functions is shown as C1; C2; : : : ; C15. The choice of which con�gurations to use inthe evaluation of a self-replication process is an important design parameter and is discussed now.Letting t0 and �t denote the �rst time-step and the duration of time which will be examinedfor �tness calculations, respectively, the tradeo�s can be stated as follows. If �t is too small,this may not give enough time for a self-replicating process to emerge. If �t is too large, twoundesirable situations will arise. First, the e�ciency of the GA will go down since the GA willbe spending more time examining behaviors that, in general, do not exhibit self-replication. Asseen earlier in Figure 4.5 on page 59, the simulations are inside two loops of the GA: one for eachpopulation member, and one for each generation. The product of these two numbers is on theorder of 200,000 for our experiments. Thus the expression 200; 000�t represents the total number67



A B A BC A B DC(a) (b) (c)Figure 4.11: Seed structures: (a) 2-component; (b) 3-component; (c) 4-component.of simulation time-steps executed during the GA. Later, in Chapter 5, it will be seen that 100 GAsare required for statistical sampling purposes. Therefore each increment to �t adds 20,000,000more time-steps to the overall GA, which becomes a signi�cant computational burden. Second,as �t increases, the likelihood of spurious seed structure copies appearing increases, which couldpotentially disrupt �tness function calculations. Such spurious copies could then in
ate the �tnessvalues and steer the GA in the wrong direction. Based on previous studies of hand-designed self-replicating structures [Reggia93] and considering these tradeo�s, a value of �t < 10 was determinedtoo restrictive and �t > 20 too large for the reasons cited above. Thus a value of 15 time stepswas chosen.The �rst time step at which �tness calculations begin (t0) is also very important, however aneasier choice to make. Since the seed structures that we deal with are very small, fast replicationcycles are very likely [Reggia93]. Such cycles are generally less than 10 time-steps, with criticalsteps of the self-replication process occurring very early on, generally in the �rst �ve time steps.Therefore, choosing a value t0 > 5 runs the risk of excluding valuable information from the �tnessfunction. So as not to exclude any useful information that could occur early on, t0 was chosen asthe �rst time-step. Summarizing these parameters, we havet0 = 1; �t = 15 (4.11)which implies that the following set of con�gurations are to be used in conjunction with �tnesscalculations: C1; C2; : : : ; C15 (4.12)This set of con�gurations is called the set of critical con�gurations, and is de�ned as, in general,Ct0 ; Ct0+1; : : : ; C� (4.13)where � = t0 +�t� 1.Outline of Fitness CalculationAn overview of the �tness function calculation is seen in the lower three blocks of Figure 4.10. Run-ning a simulation generates 15 con�gurations, from which statistics are collected. These statisticsare described in more detail in later sections, but brie
y, they can be classi�ed as time-averagedcomponent counts (multiplicities), adjacency information, and replicant counts. Multiplicity val-ues M t̂v record the quantity of each component type v̂ over time. Adjacency information includesrelative positioning data regarding each component type over time. Continuing downward in Fig-ure 4.10, after collection of these statistics, �tness measures are computed and then combined inthe �tness function F to give the overall �tness value of each simulation.68



After carefully studying the behaviors of previously reported hand-designed self-replicatingstructures [Reggia93], and performing experiments with an initial set of simple �tness functions,it became obvious that a sophisticated �tness function was required to properly evaluate potentialself-replicating structures. It was concluded that the problem of �tness function design involvedmultiple, independent, criteria that would need to be combined into a single �tness value. Problemsof this type are called multiobjective optimization problems.Three independent criteria, called �tness measures here, were hypothesized and later tested.The �rst is a growth measure, denoted fg, which correlates growth of individual component typeswith high performance. The second criteria is called the relative position measure, denoted fp.This measure is concerned with awarding �tness to component types that have a high percentageof neighboring-cells positioned in the same manner as is seen in the seed structure. The thirdcriteria is one that measures isolated replicants, denoted fr. This function scans con�gurationslooking for isolated6 replicants and awarding proportionate amounts of �tness depending upon thenumber of replicants seen over time.As mentioned previously, components of the same component type have identical behavior, anddi�ering component types will generally behave in di�erently. In other words, all component of typev̂, when presented with identical neighborhood-adjacent cells, will execute the same rule. Thus it isappropriate to treat components within the same component type as a group that can be evolvedseparately. Because of this property, two out of the three �tness measures introduced above judgeand assign �tness based on component type properties.A surprising insight learned during the design process was that, in general, one needs to keeprelaxing �tness function criteria, instead of making it more stringent. It might be thought that bytightening the requirements, the GA would home-in on the appropriate rule tables faster. Quite theopposite was found to be true. By imposing less on requirements (encoded in the �tness function),partial �tness credit is gained faster, and the GA is more free to explore the search space, resultingin less restrictions placed on the self-replication process. For example, in calculating the relativeposition measure fp, rather than using both position and orientation information, which yieldedpoor results, using position-based statistics alone gave much better results. Of course, relaxingthe �tness measures too much will result in less positive reinforcement to the GA and thus isdetrimental too.The �tness measures described above are combined to give the overall performance of the simu-lation (Figure 4.10, bottom). This function F calculates the overall �tness value of the chromosomebeing evaluated, which then is used in the selection process of the GA. Since the relative impor-tance of each �tness measure is unknown, rather than always apportioning equal weight to each,we de�ne the �tness measure vector as f = (fg; fp; fr) (4.14)and a weight vector w = (wg; wp; wr) (4.15)The overall �tness is the dot product of these vectors:F = f �w (4.16)6Isolation has a precise meaning and is de�ned in Equation 4.4 on page 55.69



For convenience, the �tness measure functions in f are each normalized to values in [0; 1], andweights are such that wg + wp + wr = 1. Two approaches were used to set the weight values inw: manual settings guided by experimental results, and by using a meta-level GA as described inSection 4.7. Both approaches were successful, and experimental results are shown in Chapter 5.Given an appropriate weight vector w, we next turn to the design of the �tness measures in f .4.5.4.2 Growth MeasureIn order for a self-replicating process to emerge, one would expect to observe, over time, increasingquantities of the individual components. Such behavior can be seen in any of the reported hand-designed self-replicating structures, for example in Figure 2.7 on page 21. In analyzing past self-replicating structures it was seen that individual component counts, or multiplicities, generallyincrease over time, punctuated by periods of plateaus and small decreases in value. Again usingthe self-replicating structure in Figure 2.7, the graph in Figure 4.12 shows the multiplicity pro�leover the �rst 50 time-steps. Note that the multiplicities generally increase over time. One exceptionis the # component, which is not technically part of the structure, although it is used during the self-replication process. Its multiplicity remains at zero much of the time since it appears approximatelyevery 10 time-steps.
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Figure 4.12: Multiplicity pro�le for self-replicating structure of Figure 2.7.From observations like these described above, a growth measure function based on the pro-duction of individual components was designed. It measures to what degree each component typemaintains an increasing supply of components from one time-step to the next. Recall that thequantity called multiplicity represents the number of components of type v̂i at time t, and is de-noted M t̂vi . The multiplicity data forms a � � c table, since � time-steps are used and c components70



are present in the simulation: M 1̂v1 M 1̂v2 � � � M 1̂vcM 2̂v2 M 2̂v2 � � � M 2̂vc... ... . . . ...M �̂v1 M �̂v2 � � � M �̂vcIn order to distill these values into into a single meaningful value, multiplicities are �rst convertedvia a production function �v̂, which assigns �tness based on whether a given component typeincreased its production or stayed the same, and no �tness if it decreased:�v̂(t) = 8><>: 1 if M t̂v > M t�1v̂0:5 if M t̂v =M t�1v̂0 if M t̂v < M t�1v̂ 0 < t � � (4.17)Equation 4.17 shows that �v̂(t) is a function that assigns relative-worth values on the basis ofgrowth. For example, if there were 12 Y components at t = 5 and 14 at t = 6, then �Y(t = 6) wouldbe assigned a value of 1. Note how � encourages increased quantities of components from one time-step to the next. However, it does not harshly penalize when production declines. Equation 4.17can be thought of as awarding twice as much �tness to components that divide versus componentsthat do not divide, yet remain active.The growth measure fg is then calculated by summing all �v̂ values (i.e., over all times and allcomponents) and then dividing by the total attainable �tness as followsfg = 1�c X̂v2V̂ �Xt=1 �v̂(t) (4.18)The summations in the function fg total the �v̂ values earned for each component type over eachof the � = 15 time-steps. Thus fg calculates a measure of how well the supply of componentsincreased. One might propose simply using a function that assigns high �tness when the totalcomponent count increases over time. However, since this does not distinguish among individualcomponent types, such a function will encourage growth of only one or possibly two components,as this will satisfy such a function.4.5.4.3 Relative Position MeasureThe relative position measure is the most critical �tness measure of the three presented in thischapter. Again, the overall goal of the three �tness measures is to encourage self-replicating be-haviors. The growth measure approaches this goal from the perspective of supplying componentsfor the self-replicating process. Assuming it is successful, it is desired to position this increasingsupply of components in such a way that they in
uence each other, and that such in
uences pro-duce self-replication. In order to encourage such positioning, it was hypothesized that over time, anindividual component should, quite frequently, �nd itself surrounded by the same components thatsurrounded it in the seed structure. In other words, if components v̂i and v̂j are neighbor-adjacentand part of a self-replicating structure S0, v̂i should regularly have v̂j positioned in the same rela-tive manner found in S0. The function fp measures the degree to which such relative positions aresatis�ed over time. 71



It is important to realize that correct relative positions do not necessarily have to occur si-multaneously (i.e., during the same time-step) among the components of the structure in order forpartial �tness to be awarded by fp. The ability of fp to give partial �tness in this manner is criticalto providing the GA with the initial positive reinforcement needed to search e�ectively.The seed structure S0 plays a critical role in deriving the function fp since it contains the relativepositioning information. The adjacencies contained in S0 are formulated in terms of an adjacencyvector, s which contains c elements representing the number of neighborhood-adjacent componentsfor each component type: s = (sv̂1 ; sv̂2 ; : : : ; sv̂c) (4.19)where sv̂i represents the number of components that are neighborhood-adjacent to component v̂i.Examples of s are shown in Figure 4.13.(a) A B s = (1; 1)(b) A BC s = (1; 2; 1)(c) A BC D s = (2; 2; 2; 2)(d) A B CD s = (1; 3; 1; 1)Figure 4.13: Examples illustrating the adjacency vector of various seed structures.The function mv̂(t) represents the number of neighbors of component v̂ at time t that were thesame type and in the same relative position as in the seed. The function �v̂(t) represents to whatdegree, at time t, all the components of component type v̂ have the same neighbors as in the seedand is de�ned as: �v̂(t) = ( 0 if M t̂v � 1mv̂(t)M t̂v � sv̂i if M t̂v > 1 (4.20)When M t̂v � 1, component v̂ is extinct or is presumably part of the seed. When M t̂v > 1, �v̂(t) isthe ratio of mv̂(t) to the maximum possible. As in the growth �tness measure, a � � c table ofvalues is generated by �: �v̂1(1) �v̂2(1) � � � �v̂c(1)�v̂1(2) �v̂2(2) � � � �v̂c(2)... ... . . . ...�v̂1(�) �v̂2(�) � � � �v̂c(�)We then de�ne fp to be the mean of �v̂(t) over all component types and all time-steps. Columns72



of the above table are summed and these c sums are then weighted by s as follows:fp = 1�Pv̂2V̂ sv̂ X̂v2V̂ �Xt=1 sv̂�v̂(t) (4.21)The adjacency vector s as used in 4.21 gives higher priority to components that have moreneighbors in the seed structure. For example, the B component in Figure 4.13(d) receives a weightof 36 or 50% and the other components each receive 16 or 17% weight.4.5.4.4 Isolated Replicant MeasureThe isolated replicant �tness measure fr correlates �tness with increasing numbers of isolatedreplicants formed during the course of a simulation. In contrast to the relative position �tnessmeasure, fr provides little if any positive reinforcement to the GA during the beginning of thediscovery process. Its main purpose is to guide the GA toward �tter and �tter self-replicatingstructures once nascent ones have been discovered. Experimental data con�rming that this occursis presented in Chapter 5.Letting rt represent the number of detached replicants in con�guration Ct. We calculate themaximum number of isolated replicants that have appeared during the entire simulation, from t = 1to t = � . This is then scaled by a sigmoid function centered at � as follows:fr = 11 + exp(�(max(rt)� �)) 0 < t � � (4.22)The constant � represents the number of isolated replicants at which the rate of increasing �tnessdecreases (i.e., the in
ection point of the sigmoid). As an example, Figure 4.14 shows the scaling for� = 4. Thus �tness is assigned at a faster rate during periods when two or three isolated replicantsare seen. The production of small quantities of such replicants is a great importance since it isusually a sign that a viable self-replicating process has been initiated.4.6 Convergence Criteria and Parameter ValuesThis last description concerning the GA design concerns the criteria for convergence and the pa-rameter values used. Regarding convergence, the GA continues to iterate over many generationsuntil one of the following criteria are satis�ed.� If the best-of-generation chromosome achieves a �tness greater than 0.9, the GA is consideredto have converged.� Otherwise the GA continues until it reaches generation gmax.The GA parameters used are shown in Table 4.3. Ranges of parameters denote that duringthe course of experimentation, parameters were varied slightly. It has been argued in the GAliterature that using large population sizes and small numbers of generations produce better re-sults [Goldberg89]. In Table 4.3, it can be seen that the chosen parameters do not align with thisargument. The reason for this is a practical one involving computer system resources. To be ableto compare GA performance across numerous experiments, the largest population size feasible was73
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max(rt)Figure 4.14: Sigmoid scaling function for isolated replicant �tness measure.100 (keep in mind the large rule table sizes derived in Chapter 3). The main limitation was thememory capacity and of the computers used and the enormous run times required. Given thisconstraint, the number of generations gmax to run was arrived at experimentally, where it was seenthat most GAs were converging between generation 200 and 800. A value of 2000 was chosen toallow for the rare cases in which the GA converged late.Parameter Value(s)nc 100pc 0.6{0.8pm 0.08{0.10gmax 2000Table 4.3: GA parameter values used in experiments.4.7 Multiobjective OptimizationMultiobjective optimization involves the optimization of two or more independent criteria that mustbe combined into a single value. In the context of the �tness calculation of F (Equation 4.16), itis desired to optimize F by �nding an ideal weight vector w to weight the independent �tnessmeasures fg, fp, and fr. A second GA, called a meta-level GA [Grefenstette86], was used to �nd74



this weight vector. Thus, under the control of the meta-GA, the primary GA (as described in thischapter) was executed repeatedly. Being that the primary GA was extremely resource intensive byitself, to experiment with the meta-GA required that smaller GA parameters be used.The meta-GA is a variant of the traditional GA [Davis91], and here we present a brief summaryof it. The encoding choice for the chromosomes used was 7-bit Gray-coded binary strings. The �rstseven bits represent w1 and the subsequent seven bits encode weights w2 and w3 as follows. Let drepresent the decimal value of the latter seven bits of the chromosome. Weight w2 is expressed asw2 = (1� w1) � d (4.23)Then to obtain the third weight, we havew3 = 1� (w1 + w2) (4.24)Given the above encoding method, a population size of 20 7-bit chromosomes was chosen. Asmentioned earlier, computer resources limited the size of the populations that were feasible to run.After decoding each chromosome into a weight vector w, the \primary" GA is run using the decodedweight vector. The �tness function employed for the meta-GA was the fr �tness measure describedin section 4.5.4.4. Thus if a \primary" GA run was able to �nd isolated replicants, this would givehigh �tness to a speci�c weight vector, which would then be bred into the next population of themeta-GA.
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Chapter 5Automated Discovery of Self-Replicating StructuresThis chapter presents the results and analysis of the experiments involving automatic discovery ofself-replicating structures in both cellular automata and e�ector automata models. Using the ge-netic algorithm designed in Chapter 4, experiments were conducted which show, for the �rst time,that self-replicating structures can be automatically produced. Representative samples of discov-ered self-replicating structures are shown using varying seed sizes, The amount of self-replicatingstructures discovered through the experiments described in this chapter, is shown to be statisticallysigni�cant. Performance graphs showing the behavior of the genetic algorithm are presented andgive further insight into how the �tness measures work e�ectively in searching the space of ruletables. Since this is the �rst work to produce hundreds of self-replicating structures, a new quali-tative classi�cation system is devised to categorize the behavior of self-replicating structures. Theexperiments themselves are discussed in Section 5.1 and the results are presented in Section 5.2.The chapter concludes in Section 5.3 with a discussion of the software system that was used toconduct the experiments.5.1 ExperimentsIn order to understand the results presented in this chapter, the goals of the experiments and theexperimental method are brie
y described. The primary goals are as follows:1. The fundamental goal is to show that it is possible to automate the process of creating self-replicating structures in three cellular space automata models. To accomplish this, it mustbe shown that statistically signi�cant quantities of such structures were produced. If such agoal is achieved, the experiments should allow investigation into how to increase the numbersof discovered self-replicating structures.2. Given the vast search spaces and unknown �tness landscapes of the cellular space modelsstudied, another goal is to gain an understanding of what impediments exist when searchingfor self-replicating structures. This involves issues concerning the genetic algorithm design,choice of seed structure, and cellular space model.3. With su�cient quantities of self-replicating structures discovered, a third goal is to analyzethe underlying processes of self-replication from quantitative and qualitative perspectives.76



An overview of the technique that was used in performing the experiments reported in thischapter is depicted in Figure 5.1. As mentioned earlier in Section 2.3, the genetic algorithm is astochastic search method that is not guaranteed to converge to the global optimum. Therefore,the approach taken here is to execute numerous independent GAs, and use statistical methods toanalyze the results of the set of GAs. As it is used here, one \experiment" is taken to be a setof 100 trials, with each trial being an identical GA except that the stream of random numbersdi�ers from one instance to the next. The top box of Figure 5.1 depicts the common inputs toall of the independent GAs. While executing, each GA stores the highest-�tness rule table it hasever evaluated, and stops when the convergence criteria (see Section 4.6 on page 73) is met. Atthat point, the highest-�tness rule table is its output (Figure 5.1, middle). The outcome of eachtrial is either success (a self-replicating structure found) or failure. Such a decision must be madeby human examination of a subsequent simulation based on each rule table, since the rule tablewith the highest �tness value may not always conform to the requirements of De�nition 4.1. Thequantity of self-replicating structures found divided by 100 (trials) is called the yield. The goalof a given experiment is to maximize the yield. The computational load of a single experimentis enormous since 100 instances of the GA must be run. Since each GA processes up to 200,000�tness evaluations, this equates to a total of 20,000,000 possible �tness evaluations needed for asingle experiment. To reduce the total execution time needed to run one experiment from weeks todays, software that runs on a parallel architecture was designed and implemented, and is discussedin Section 5.3.The experiments conducted can be classi�ed according to the size of the seed structure used.With the computational resources available, structures having two, three, and four componentswere feasible to use in the experimental method described above (running 100 genetic algorithmseach with a population of 100 large rule tables presents an enormous computational load). Exper-iments using four-component structures required approximately one week of dedicated time on a40-node Alpha-processor farm supercomputer. The limitations on this resource allowed for onlythree experiments to be conducted using four-component seed structures.For each seed structure, three cellular space models were used: the E�ector Automata (EA)model (introduced in Chapter 3), and two variations of the Cellular Automata (CA) model. We callthe CA model using state-sensitive input the \standard" CA model, since it is identical to what hasbeen used in research to date. We include it in our experiments because it is has been studied themost with respect to self-replicating structures and it is desirable to see how it performs comparedto the other models introduced in this thesis. The other CA model uses the paradigm of component-sensitive input (a new technique introduced in Section 3.2) which is a method for reducing ruletable size by having automata ignore orientations of any neighboring weakly rotation-symmetriccell states. The speci�c EA model used in the experiments, which uses component-sensitive input,is described in Section 4.1. An experiment using the state-sensitive version of the EA model wouldhave nearly the same computational load as a CA model with state-sensitive input. Given thelimitations of the computing facilities available, it was decided to conduct the state-sensitive CAexperiments instead of the state-sensitive EA experiments, since the state-sensitive CA is the mostresearched model for self-replicating systems.
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Calculate YieldFigure 5.1: Overview of experimental method.5.2 Experimental ResultsWith the goal of consistently discovering self-replicating structures in an automatic manner, themost important metric to be taken from the experimental results is the yield { the percentage ofself-replicating structures found during an experiment. In this section, we present and analyze theyields found. We �nd that by using the new technique of component-sensitive input, the highestyields are obtained in the CA model. It is also seen that the \standard" CA model (i.e., havingstate-sensitive input) is not the best choice for evolving self-replicating structures. The correlationcoe�cients between the yields and the search space sizes are calculated and suggest a potentialcorrelation between decreasing search space sizes and increasing yields.5.2.1 Results from ExperimentsIn Table 5.1, the yield of self-replicating structures found during 100 trials are presented for thecellular space models and seed structures studied. The names \CACSI" and \CASSI" denote thecellular automata model using component-sensitive input and state-sensitive input, respectively.Beginning with the 2-component structures, it is seen that high yields were produced. The78



YieldsSeed ModelStructure EA CACSI CASSIA B 0.43 0.93 0.49A BC 0.08 0.22 0.03A B CD 0.00 0.02 0.00Table 5.1: Experimental results showing the highest numerical yields found from each ofthe experiment conducted.CA model with component-sensitive input had the most successful results with 93 discovered self-replicating structures. While each of the 93 rule tables are distinct, many of the self-replicationprocesses were qualitatively similar. The other two models show comparable yields of 0.43 and0.49, however the qualitative behavior of the EA structures is more diverse than that of the CASSIstructures. The reason this occurs is due to the fact that each CA rule in this model can transitionto one of k = 3 states, while each EA rule can transition to one of jAj = 210 possible actions,allowing for a more diverse rule table.For the 3-component experiments, it is seen that the CA model with component-sensitive inputagain had the highest yields, followed by the EA model. The state-sensitive input CA model had ayield of 3%, which is shown, in Section 5.2.4, to not be considered statistically signi�cant at the 95%level of signi�cance. Three-component yields were lower than that for 2-components, suggestingthat the discovery process is more di�cult for larger structures. This agrees with the intuition thatself-replication process for 3-component structures is more complex than for structures having twocomponents.In the 4-component experiments, the CACSI model had the only non-zero yield. Although notconsidered statistically signi�cant at the 95% signi�cance level, it is of interest that the GA wasable to discover 2 self-replicating behaviors in only the CACSI model, the model which gave thebest results in the other experiments.These results suggest that by using the component-sensitive input paradigm, higher yields ofself-replicating structures are discovered. For 3-component structures, it is also seen that the EAmodel produced more self-replicating structures than that of the \standard" CA model, CASSI (thesame model commonly used in the CA literature). Such a result implies that the EA model isadvantageous with respect to the automatic discovery of self-replicating structures.One of the potential reasons why the highest yields occurred in the CACSI model is that ithas the smallest search space size of the three models, and thus the GA may have a slightlyeasier search task. Table 5.2 presents the search space sizes jDknj derived in Chapter 3 for theexperiments conducted. The search space sizes are enormous in all instances, however we note the79



that relative size di�erences are also extremely large. To quantify the correlation between increasingyields and decreasing search space sizes, we calculate the sample correlation coe�cient r betweencorresponding rows of Tables 5.1 and 5.2. Values of r are shown in Table 5.3, and all are seen to benegative, indicating that as the search space search increases, the yields decrease. However a valueof r = �1 would be needed to show a strong correlation of this type. With values of r rangingbetween �0:2 and �0:5 we can posit that there is some degree of correlation, but not strongly so.Search Space Size, jDknjSeed ModelStructure EA CACSI CASSIA B 10376 10177 1014110A BC 101783 10933 10103454A B CD 105806 103279 10436864Table 5.2: Approximate search space sizes for the experimental results.SeedStructure rA B -0.237A BC -0.406A B CD -0.499Table 5.3: Values for the sample correlation coe�cient r used to measure the correlationbetween search space size and experimental yields. Negative values indicatethat as the search space search increases, the yields decrease.5.2.2 Discovered StructuresThis section presents representative samples of the automatically discovered self-replicating struc-tures. A naming convention is established so that each structure can be given a unique name and80



the underlying cellular space model can be easily identi�ed. Structures are then presented dividedaccording to the underlying cellular space model used. Self-replicating structures in cellular au-tomata models are presented �rst, followed by structures in e�ector automata. For convenience,discussion of the behaviors of the self-replicating structures is placed in �gure captions. Appendix Ccontains a small archive of further self-replicating structures.5.2.2.1 Naming ConventionIn order to identify the self-replicating structures presented here, a naming system from the lit-erature is adopted. In [Reggia93], self-replicating structures in cellular automata are uniquelyidenti�ed using the following convention. Names begin with the type of loop the structure forms(SL, sheathed loop; UL, unsheathed loop) followed by the number of components that comprise thestructure, the rotational symmetry of the individual cell states (S, strong; W, weak), the number ofpossible states in which a cell may be, and the type of neighborhood (V, von Neumann; M, Moore).For example the structure named UL06W8V1, which appears asO OL > O Ois an unsheathed loop comprised of six components, has weakly symmetric cell states with eachassuming one of 8 possible states, and its transition function is based on the von Neumann neigh-borhood. This notation may appear somewhat cumbersome, however it is systematic and quiteconvenient when identifying structures. In Appendix C where numerous self-replicating structuresare cataloged, the naming system makes it easy to identify many properties of the cellular spacequickly.The above notation is augmented to allow for the structures studied in this thesis. To distinguishbetween the techniques of state-sensitive input and component-sensitive input, the letter \C" isadded prior to the number of states �eld to denote the type of input. Because state-sensitive inputhas been the standard model for studying cellular automata, the notation only changes for thecomponent-sensitive case. The following examples illustrate the di�erenceUL3W13V state-sensitive input, CAUL3WC13V component-sensitive input, CAThe above examples were for the CA model. To accommodate EA models, which, by de�nitionhave weak rotational symmetry, we allow the rotational symmetry �eld to contain an \E" to denotee�ector automata. To illustrate:UL3WC13V CA, weak rotational symmetryUL3EC13V EA, (weak rotational symmetry by de�nition)The last modi�cation needed is the manner in which identical structures having di�erent rule tablesmay be distinguished. The convention we adopt is to subscript the name with a number, wherethe number is arbitrary and only for identi�cation purposes. For example, multiple 3-componentself-replicating structures in the EA model may be distinguished,UL3EC13V1; UL3EC13V2; : : :1A simulation of UL06W8V is shown in Figure 2.7 on page 21 of this dissertation.81



The experiments reported in this chapter, were performed using three models and three seedstructures. The reasons for the choices of particular of seed structures were discussed in Sec-tion 4.5.4.1. Table 5.4 shows the structure names along with the seed structures and models.SeedStructure EA CACSI CASSIA B UL2EC9V UL2WC9V UL2W9VA BC UL3EC13V UL3WC13V UL3W13VA B CD UL4EC17V UL4WC17V UL4W17VTable 5.4: Naming convention as it applies to the seed structures used in experiments.5.2.2.2 Representative Self-replicating StructuresRepresentative examples of the self-replicating structures discovered during the experiments appearon the following pages.
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5.2.3 Other Search TechniquesExperiments have shown that search techniques such as multiple-restart stochastic hillclimbing(MRSH), population-based incremental learning (PBIL) and simulated annealing (SA) are e�ectivein searching large solution spaces using function optimization [Baluja95, Ginsberg93]. This sectionpresents the results of applying two of these algorithms, MRSH and SA, to the task of automaticdiscovery of self-replicating structures in the EA cellular space model.MRSH is a method of iterative optimization of static functions which has been successfullyapplied to standard problems solved by genetic algorithms [Baluja95]. The MRSH algorithm asapplied to the task of discovering self-replicating structures is shown in Figure 5.10. Three variationsof this algorithm were tried. In the �rst experiment, a list of rule changes attempted withoutimprovement is maintained. These rule changes are not attempted again until a better solution isfound. Recall from Chapter 3 that j�j is the rule table size. If 10 � j�j rules have been tried withoutimprovement, a completely new rule table is randomly generated and the search is continued fromthere. The second experiment is the same as the �rst except restart (the process of randomlygenerating a completely new rule table) is forced 5 times during the search at equally spacedintervals. The third experiment is the same as the second except that if the rule table beingtried is better than "or equal to" the best, it is adopted. To be consistent with the experimentsusing genetic algorithms the number of iterations was set to the population size multiplied by thenumber of generations (200 � 100 = 200; 000). One hundred experiments were run each with adi�erent random number seed, for each of the variations of MRSH. One self-replicating structure,shown in Figure 5.12 on page 93, was discovered using the second variation of MRSH.R  RandomlyGenerateRuleTableBest  evaluate (R)loop NumIterationsN  ChangeRandomRule(R)if (evaluate(R) > Best)Best  evaluate(R)R  NendFigure 5.10: Overview of the MRSH algorithm.The simulated annealing algorithm is similar to MRSH except that at the beginning of thesearch, new rule tables are adopted almost randomly regardless of whether they are better. As thesearch proceeds the probability of accepting worse rule tables drops and the probability of acceptingbetter rule tables rises. Simulated annealing derives its name from metal-casting techniques wheremolten metal is slowly cooled to produce a less brittle product. Likewise, in the simulated annealingalgorithm the parameter T is slowly changed so that towards the beginning of the algorithm, thesearch can proceed in ways that allow it to break away from local maxima by taking steps towardsrule tables with lower �tnesses. Figure 5.11 shows the algorithm for simulated annealing. To beconsistent with the genetic algorithm experiments, 100 experiments were run using the followingparameters: 200,000 iterations, Tmax = 0:2, Tmin = 0.02, r = temperature decay rate = 0.8, k =91



time per temperature = 768 (rule table size, j�j). No self-replicating structures were found usingthese parameters in the simulated annealing algorithm.1. (Restart) Set T  Tmax. Select a rule table R at random andevaluate it.2. (Stochastic hillclimb) Create a new rule table N by randomlychanging one rule in the current rule table. Select the new ruletable N with probability:1:0� (1:0 + exp((new�tness� �tness)=T )))Repeat this step k times.3. (Anneal/Convergence Test) Set T  rT . If T � Tmin, go tostep 2. Otherwise go to step 1.Figure 5.11: Overview of the simulated annealing algorithm.For the parameters discussed above, these results give an indication that genetic algorithmsoutperform MRSH and SA for the task of discovering self-replicating structures. One di�cultyhowever in comparing these algorithms is that each is de�ned by control parameters, and it isprohibitively expensive to thoroughly explore the parameters. Most of the work in this thesisconcentrates on using genetic algorithms for the automatic discovery of self-replicating structures,since genetic algorithms have been shown to be particularly adept at �nding su�ciently goodsolutions instead of a global optimum [Mitchell96].
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5.2.4 Statistical Testing of ResultsSections 5.2.1 and 5.2.2 demonstrate for the �rst time that it is possible to automatically discoverself-replicating structures in cellular space automata models. In this section a statistical signi�cancetest is presented regarding the yields obtained from the experiments conducted. First, a test toestablish that the results from the genetic algorithm are statistically independent from other searchtechniques is described. Then we use the same test to show that statistically signi�cant yields ofself-replicating structures were found in comparison to random search.In comparing the results from two search algorithms X and Y , it is desired to calculate the sig-ni�cance of the di�erences in the results. Using the tests described below, we can determine, at the95% con�dence level, when the di�erence in performance between the two algorithms is signi�cant(the better-performing algorithm is signi�cantly better), or that there is no signi�cant di�erencebetween X and Y . Statistics are calculated from the performance data, which are organized into2� 2 tables arranged as shown in Table 5.5.# successes # failuresX a bY c dTable 5.5: 2� 2 table for statistics calculation.The well{known Chi-Square statistic can be used to check for e�ectiveness only when each cellof the table is greater than three. In other cases, we employ Fisher's Exact Test [Kanji93] with prepresenting the signi�cance level, and a, b, c, and d are values shown in Table 5.5. The signi�cancelevel is calculated as follows:p = (a+ b)!(c+ d)!(a + c)!(b+ d)!(a+ b+ c+ d)! � 1a!b!c!d! (5.1)The statistical test is set up using the null hypothesis H0 which states that X did not in
uence theresults of the experiment. In other words, the number of successes produced by X could have comefrom either X or Y . The alternative hypothesis H1 states that there is a statistically signi�cantdi�erence between X and Y . In comparing the genetic algorithm to the MRSH algorithm inSection 5.2.3 we have the following table:# successes # failuresGA 8 92MRSH 1 99Using Equation 5.1, we calculate p to be 0.017. Since 0:017 < 0:05 at the 95% signi�cance level,we reject H0 and conclude there is a statistically signi�cant di�erence between applying GA versusMRSH.One of the results of each experiment is the yield of discovered self-replicating structures. Animportant analytical measure of these results is the statistical signi�cance of the yields obtained. Inother words, comparing the yield found using the genetic algorithm in an experiment to the yieldfound by chance via random search. For every experiment that was run, comparable trials using94



random search was also tried. In each trial of random search, zero self-replicating structures wereproduced2. Thus we employ Fisher's Exact test (presented above) in the following manner. Let drepresent the number of replicants discovered by the GA. Thus the 2� 2 table can be written:# successes # failuresGA d 100 � dRandom Search 0 100It is relatively easy to show that when d = 4 successes (4 self-replicating structures discovered in100 trials), p=0.061, and with d = 5 successes, p=0.029. Thus a yield of 5 or more self-replicatingstructures is considered statistically signi�cant at the 95% signi�cance level. For the experimentalresults presented in Table 5.1 (page 79), it is seen that some yields are not statistically signi�cantat the 95% signi�cance level. For example, in the 3-component experiments, while the 8% yieldfrom the EA model is statistically signi�cant, the 3% yield from the CASSI model is not. Also,all of the 2-component experiments and none of the 4-component experiments gave statisticallysigni�cant results at the 95% signi�cance level.5.2.5 Classi�cation of Self-replication ProcessesIn this section we introduce a qualitative classi�cation system for the self-replicating structuresproduced by the experiments described in this chapter. This system is thought to be widelyapplicable to other 2-D cellular space models using the von Neumann neighborhood and havingsquare tessellations. Such a classi�cation is useful since it draws attention to the many classes ofself-replicating behavior that emerged in the experiments, and because it provides evidence thatthe �tness measures derived in Chapter 4 were not strongly biased towards a single, speci�c self-replication process. Prior to this research, it would have been di�cult, if not impossible to identifya classi�cation system mainly due to the fact that the number of manually-designed self-replicatingstructures reported in the literature totals less than 30.The classes of behavior became apparent during observations of animated sequences of the self-replicating structures. Table 5.6 lists the names of the classes and an example structure of each class.The classes shown are divided into two sections: one for processes and one for colonies. Processclasses are distinguished by process of self-replication that the structure exhibits. Colony classesrefer to the shape of the formed colony. These classi�cations are not exclusive { certain structurescan be classi�ed into more than one class. The Process classes of behavior for self-replicatingstructures are described as follows:� Trivial { characterized by simultaneous splitting of all components to form two distinct copiesof the seed structure during the �rst step in the replication process. A more detailed discussionof this is found in Section 4.3.� Proli�c { a structure produces replicants every 2 time steps.2This is not surprising. For example, assume that there are 106 rule tables that promote self-replication in acertain EA model with a search space size of 102000 . Then the probability of �nding such a rule table by randomsearch is 10�1994 which can be approximated as zero. 95



� Mass-preserving { the individual components that comprise the parent structure and replicantremain active at each time step in the self-replication process.� Complex { the self-replication process requires at least 2�(number of components comprisingthe structure) time steps to self-replicate.� In-place { during the self-replication process, the structure remains in place, possibly rotating,� High Density { numerous replicants are produced from the seed structure, but these replicantsare unable to self-replicate themselves due to a high density (crowding) of components.The Colony classes are concerned with the shape the colony forms and are described as follows:� Linear { the colony forms along a line, expanding outwards in opposite directions.� Rectangular { the colony forms a rectangular shape.� Irregular { the colony does not form an identi�able geometric shape.Process Classes Example Page No.Trivial UL3W13V25 97Proli�c UL2EC9V3 98Mass-preserving UL3EC13V7 99(Non-Mass-preserving) UL4WC17V1 100Complex UL3EC13V15 101In-place UL3EC13V8 102High Density UL3WC13V5 103Colony Classes Example Page No.Linear UL3EC13V21 104Rectangular UL2E13V21 105Irregular UL3EC13V5 106Table 5.6: Classes of self-replicating structure behavior.
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5.2.6 GA PerformanceIn the context of genetic algorithms, a performance graph [Davis91] is a plot of �tness versusgenerations. To gain a deeper understanding into the behavior of the genetic algorithm over timeand speci�cally how the �tness function F behaves, GA performance graphs of the behavior ofindividual �tness measures are shown in Figures 5.23{5.28 (pages 108{111). The six GA runschosen are identical with the exception of the stream of random numbers employed. Out of the100 GA runs that comprise an experiment, these six were chosen since all of them resulted in thediscovery of 3-component EA self-replicating structures of the form UL3EC13V. The overall �tnessfunction that was used (for all GA runs) in the experiment wasF = 0:05fg + 0:75fp + 0:20fr (5.2)where, as described in Section 4.5.4.1, fg is the �tness measure for growth, fp is for relative po-sitions, and fr is for isolated replicants. The weights chosen in Equation 5.2 were arrived at byexperimentation in this case3. A reasonable interpretation of Equation 5.2 is that the overall �tnessvalue for a chromosome (i.e., rule table) should mainly come from the relative positions of compo-nents. Less important are the isolated replicants and growth of components. However, there is adeeper interpretation. What actually happens, as we shall see, is that the presumably insigni�cantgrowth measure plays a key role in getting the GA primed, the relative position maintains a steadyincrease in F , and the isolated replicant measure serves to lock-in a newly discovered self-replicatingstructure. These behaviors suggest that the three parts of the �tness function support each otherin complex and unanticipated ways.The GA performance graphs of Figures 5.23{5.28 plot values of F , fg, fp, and fr (Equation 5.2)for the highest ranking chromosome of each generation (also called the \best-of-generation" chro-mosome). As discussed in Section 4.5.2, elitism is used whereby the best two chromosomes arecopied directly from generation g to generation g+1. Thus plateaus can be seen on the GA perfor-mance graphs indicating that an elite chromosome went \unchallenged" for a certain period of time.Inspecting the six performance graphs for general trends, we make some general observations. Thegrowth measure fg is generally the most volatile, and this agrees with intuition: since it contributesthe least in guiding F , large 
uctuations are easily tolerated and have a lessened e�ect on F . Therelative position measure fp remains the highest contributor in most cases, which is not surprisingsince it has 75% weight in F , and thus the overall search, to some degree, is spent optimizingfp. The isolated replicant measure fr, being the hardest �tness measure to satisfy, generally stayse�ectively at zero for, in general, hundreds of generations until the other measures discover a ruletable that promotes elements of a self-replicating process.During roughly the �rst 50 generations, which we call epoch I, the growth measure increasesrapidly, albeit sporadically, to help get the GA \boot-strapped." The growth measure is thought tobe the easiest way of gaining �tness value since it is only concerned with quantities of componentsand not positioning. Thus, even at only 5% weight, it contributes to the early stages of the GA. Itis hypothesized that such action seeds the population of rule tables in the GA with a large quantityof DIV (divide) actions, so that component production is encouraged. Between generations 50 and500 (epoch II), the growth measure becomes less volatile, and a clear trend is seen in the ordering3Other times the meta-level GA was used to adapt these weights.107



of the curves: fp > fg > fr (5.3)Near the end of epoch II, it can be seen that many of the overall �tness values F are at their�rst plateau. This suggests that a strong chromosome has emerged that has good growth andpositioning of components, yet it does not self-replicate. The last epoch (epoch III) occurs aftergeneration 500 when the isolated replicant measure sharply increases indicating isolated replicantshave appeared, and the seed structure may have exhibited self-replication.We also note that our justi�cation for choosing 2000 as the maximum number of generations torun is again supported by these curves. There is typically a sharp increase in the isolated replicantmeasure fr upon discovery of a self-replicating structure. As seen from the performance graphs,such increases occur between generations 500 and 1500.Iz}|{ IIz }| { IIIz }| {
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Figure 5.23: Individual �tness measure values for the best-of-generation chromosomeduring GA discovery of UL3EC13V71. The overall �tness function is F =0:05fg + 0:75fp + 0:20fr.
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Figure 5.24: Individual �tness measure values for the best-of-generation chromosomeduring GA discovery of UL3EC13V72. The overall �tness function is F =0:05fg + 0:75fp + 0:20fr.
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Figure 5.25: Individual �tness measure values for the best-of-generation chromosomeduring GA discovery of UL3EC13V73. The overall �tness function is F =0:05fg + 0:75fp + 0:20fr. 109
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Figure 5.26: Individual �tness measure values for the best-of-generation chromosomeduring GA discovery of UL3EC13V74. The overall �tness function is F =0:05fg + 0:75fp + 0:20fr.
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Figure 5.27: Individual �tness measure values for the best-of-generation chromosomeduring GA discovery of UL3EC13V75. The overall �tness function is F =0:05fg + 0:75fp + 0:20fr. 110
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Figure 5.28: Individual �tness measure values for the best-of-generation chromosomeduring GA discovery of UL3EC13V76. The overall �tness function is F =0:05fg + 0:75fp + 0:20fr.Fitness Measure InteractionA simple experiment was constructed to determine if each of the three �tness measures, by them-selves, can promote development of a self-replicating structure. If none of the individual �tnessmeasures are able to produce such a structure, this suggests that the measures are dependent oneach other. The three experiments involve setting the weight vector w = (wg; wp; wr) as follows:w = (1; 0; 0) Experiment 1w = (0; 1; 0) Experiment 2w = (0; 0; 1) Experiment 3Experiments were conducted in the same manner as described in Section 5.1 using both EAand CA models with 3-component structures. The results were that zero self-replicating structureswere discovered, suggesting that �tness measures interact and depend on each other to promoteself-replicating behaviors.5.3 Software SystemThe experimental method described in Section 5.1 was implemented in a software system designedby the author. The system was developed to be 
exible, e�cient, robust, and easy to use. Speci�cemphasis was placed on making the system general enough to allow a wide range of both CA andEA models to be simulated in a standalone manner as well as under a genetic algorithm. The mainlimitation in running genetic algorithm experiments is imposed by the resources available, sincelarger models require more memory and CPU time. For a typical present-day workstation having111



a RISC CPU and 64 megabytes of main memory, a genetic algorithm together with an EA modelhaving k = 17 states will require approximately 15 hours to compute 200,000 �tness evaluations.A block diagram showing the major components of the system is shown in Figure 5.29. Thesimulation engine is the core component of the system. It processes and stores the rule tableinput and iterates the cellular space over time. The statistics collection subprogram runs a singlesimulation using the simulation engine and collects relevant statistics at each time step. Thevisualization subprogram allows viewing of both CA and EA simulations. A simulation may beviewed in both forward and backward time directions (moving in the backward time directionsimply displays previously generated images, and does not mean the cellular space can be iteratedin this direction). In addition, graphics �les may be saved at each time step and later printed out forhardcopy output (examples of which are the diagrams showing evolving structures in this thesis).The sources of input for the system are labelled \GA parameters" and \rule table and parameters".These input sources con�gure the system. Note that the output from the \Sequential GeneticAlgorithm" subprogram is a rule table that is suitable for statistics collection and visualization.
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Figure 5.29: System block diagram shows the major components of the system in whichexperiments were performed. The simulation engine forms the core of thesystem since it is used by all components either directly or indirectly. Boxesindicate subprograms of the system, and ovals represent parameter sets thatcon�gure the system.The genetic algorithm subprograms provide sequential and parallel implementations, and ameta-level GA for multiobjective optimization. The parallel genetic algorithm is depicted in Fig-ure 5.30. In a technique called semi-synchronous master slave [Goldberg89], chromosomes aredistributed to individual processing nodes via message-passing, EA/CA simulations are run locally,112



�tnesses calculated, and then �tnesses are sent back to the host node which maintains the popu-lations. The name semi-synchronous is used since the host will asynchronously send chromosomesto the processing elements (PEs) during a single generation, however, it must wait (synchronize)until all PEs have �nished before proceeding to the next generation. This form of parallelism ise�cient as long as there is a low variance among simulation execution times, which is the case forthese simulations.
PE1 PE2 PEn

HOST

chromosomes fitness values

Each PE executes a complete
EA/CA Simulation

GA Processing

Figure 5.30: Semi-synchronous master/slave GA parallelism. Host processor executesthe GA. In parallel, processing elements receive chromosomes, execute anEA or CA simulation, then send �tness values to the host.Parallelism is also obtained when performing statistical trials, or experiments. As shown inFigure 5.31, each of the processing elements runs an entire genetic algorithm in parallel, and uponcompletion sends the highest-�tness chromosome to the host for storage. The host also scans foridle PEs and launches GAs as appropriate until the experiment is complete. The host operatesasynchronously since it has no dependencies to wait for, and thus it does not need to synchronizeat any point during the experiment.The third form of parallel processing implemented in the software system is the system for exe-cuting the meta-level GA. As shown in Figure 5.32, the parallelism is similar to that of Figure 5.31.In this case, however, the host processor is running a separate (smaller and less computationallyintensive) GA to optimize �tness measure weights of Equation 4.16. The PEs each execute acomplete primary (i.e., rule discovery) GA and send �tness values to the host.The system was implemented in the C++ programming language and is comprised of over10,000 lines of source code. It was developed on Sun workstations and has successfully run onother computer systems including DEC Alpha, RS/6000, and PCs running UNIX. The parallelversions supported run on the following supercomputers: DEC Alpha processor farm clusters,Thinking Machines Connection Machine 5, and the IBM SP2. A set of UNIX shell scripts is alsopart of the system, and it allows for load balancing on processor farm clusters.The system has been released into the public domain so that other researchers may use thissystem as a research tool. This and other details concerning the simulation system may be foundin Appendix B.
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Figure 5.31: Asynchronous master/slave parallelism for running an experiment. Hostprocessor oversees experiment by asynchronously starting GAs when idlePEs are seen. Each processing element executes, in parallel, a complete GA,then sends the highest-�tness chromosome found to the host for storage.
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Figure 5.32: Parallelism in meta-level GA. Host processor executes meta-level GA anddistributes �tness measure weights to PEs. Each PE executes, in parallel,a complete GA, then sends the overall �tness to the host.
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Chapter 6Conclusions and Future WorkThe research presented in this dissertation focuses on the automatic design and analysis of self-replicating structures in cellular space automata models. In conclusion, we summarize the maincontributions of this work and discuss open problems and areas where further study would bebene�cial.6.1 ConclusionsThe research results in this dissertation contain several important contributions towards the the-ory of self-replicating automata that began with the work of John von Neumann. Automaticcreation of self-replicating structures in cellular space models was shown to be possible and meth-ods for improving the e�ciency of the discovery process were presented. These include the use ofcomponent-sensitive input and use of the e�ector automata model introduced in Chapter 3. Centralto the rule discovery process was the design of e�ective �tness measures to promote self-replicatingbehaviors. Results presented showed that these �tness measures:� did not impose a strong bias towards a particular process of self-replication as evidenced bythe large variety of structures found,� are not speci�c to any one cellular space model,� are computationally feasible,� and resulted in a statistically signi�cant quantity of discovered self-replicating structures.Building on the success of automatically discovering self-replicating structures, an analysis of alarge collection of such structures was undertaken, a task that was never before possible due to thelack of specimens to study. Representative samples of these structures were presented and analyzedboth quantitatively and qualitatively.The self-replicating structures presented in this dissertation compare favorably in terms ofsimplicity with those generated manually in the past [Reggia93]. However, more interesting is thatthese replicating structures di�ered in unexpected ways from those developed in previous automatamodels. For example, they all were moving during replication, and all generated debris (unusedextra components). In some simulations, the replicant was not the initial seed structure but alarger structure built from it. Such unanticipated results suggest that genetic algorithms can bepowerful tools for exploring the space of possible self-replicating structures. Furthermore, if the115



basic physical processes can be identi�ed and represented e�ectively, such an approach might evenbe modi�ed and applied to discover new self-replicating molecular structures [Hong92].6.2 Future WorkThe paradigm of component-sensitive input introduced in this thesis is a general technique thatcould be further exploited in other cellular space models, especially those models that have proventoo computationally burdensome to simulate in the past. The e�ector automata model providesmany of the same advantages of the standard cellular automata model, yet with more physical re-alism, smaller rule tables and search spaces, and more complex automata. As in CA applications, avast range of potential behaviors are possible with EA models. Future work on automatic discoveryof self-replicating structures that would be useful includes:Investigation of Minimal Structure Size An open problem related to this research concernsthe question of minimal self-replicating structure size, in terms of the rule table size. The resultsof this dissertation provide intuition into solving such a problem since two and three componentstructures were used which had small numbers of rules used in the replication process.Use of the Moore Neighborhood The studies in this thesis concentrated on automata usingthe von Neumann neighborhood. Using the larger Moore neighborhood (Figure 2.1) would pre-sumably allow more complex self-replicating structures to develop due to greater interaction amongcomponents.Investigation of Other Automata Models In addition to the cellular automata and e�ectorautomata models studied in this thesis, other cellular space models such as stochastic automataand inhomogeneous cellular automata [Hartman86] can be used with the rule discovery techniquespresented herein. Also, properties of the models researched could be varied in the following ways:hexagonal space tessellation, other cell contention policies and varying sets of actions (for EAmodels).Increased Complexity of Seed Structures The seed structures used were limited to a maxi-mum of four components due to computational limitations. As more powerful computers becomeavailable, it would be of interest to discover rule tables for larger structures, some having uniquecomponents, and others having repeated components. One would hypothesize that a GA wouldmore easily discover rule tables for seed structures having unique components because in the case ofrepeated components, a speci�c repeated component has to be trained to facilitate self-replicationin many more situations. Also of interest are cases in which not all of the component types arerepresented in the seed structure.Self-organization of Seed Structure Another avenue of pursuit is to begin with a randomcon�guration of components distributed throughout the cellular space. Through the use of e�ective�tness functions, it might be possible to encourage the self-organization of seed structures whichhave the ability to self-replicate. Such an experiment could be constructed so that if self-replicationdoes not emerge within a given timeframe, the space becomes completely quiescent.116



Co-evolution of the Seed Structure Co-evolving the seed structure and the rule table simul-taneously might yield interesting results. Although such an approach was brie
y tried, with morepowerful computers such an approach would be worthwhile.Re�nement of Fitness Measures Assigning partial �tness to nascent self-replicating structuresis a non-trivial problem, and it would be di�cult, if not impossible to de�ne an optimal �tnessfunction. However, further re�nement of the �tness measures could result in techniques that yieldeven larger quantities of self-replicating structures.Biochemical Simulation The EA model and research software used in this thesis could beadapted to simulate, at a low level, basic biochemical nucleotide interactions. The goal of such anexperiment could be to see what underlying cellular space rules are needed to promote template-directed replication. For example, EA components named A, C, G, and T could be used to representthe four nucleotide bases of DNA.
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Appendix ACalculation of Circular PermutationsCertain calculations of search space sizes presented in the main text rely on advanced combinatorics.Circular permutations are needed in calculations involving isotropic neighborhood patterns. Herewe present below the main points from this theory. For a full treatment, see a text on combinatorialtheory such as [Hall67, pg. 12].In order to derive an expression for the number of circular permutations, the M�obius functionfrom number theory, denoted �(n), is de�ned as follows. First, we note that every positive integern > 1 has a unique factorization as a product of prime powersn = pi11 pi22 � � � pirr (A.1)where each p is a unique prime and each i is a positive integer. �(n) is then de�ned as:�(n) = 8>><>>: 1 if n = 10 if any ik > 1 in Eq. A.1(�1)r if i1 = i2 = � � � = ir = 1 in Eq. A.1 (A.2)The number of circular permutations of length n, using k distinct symbols is denoted kCPn,and is calculated by summing the function M(n) over djn (the notation djn (d,n positive integers)represents each integer in f1; : : : ; dg that evenly divides n for d � n). M(n) is the number ofcircular permutations of period n, and is expressed asM(n) = 1nXdjn �(d)k nd (A.3)Thus the total number of distinct circular permutations of length n iskCPn =Xdjn M(d) (A.4)As an example, consider UL06W8V, a 2-D cellular automata model having 4 strongly symmetriccell states f�;#;L;Og, and 1 weakly symmetric symbol fAg which can be rotated in any of 4directions fA, A , A, Ag. Using the von Neumann neighborhood, we have n = 4, and k = 8 cellstates. The calculation of circular permutations begins by calculating values forM in Equation A.3118



as follows: M(n) = 1nPdjn �(d)k ndM(1) = 11 [(1)8 11 ]= 8M(2) = 12 [(1)8 21 + (�1)8 22 ]= 28M(4) = 14 [(1)8 41 + (�1)8 42 ]= 1008and then substituting into Equation A.4:8CP4 = M(1) +M(2) +M(4)= 1008 + 28 + 8= 1044Thus, there are 1044 state transitions for each of the four strongly symmetric components, giving atotal of 4176. For the weakly symmetric component, there are 84 = 4096 transition rules. Summingthese we get 8272 total transition rules.For reference purposes, Table A.1 compiles values of kCP4 for small k. The function k4 repre-sents the number of length four permutations of k unlike objects, when each may be repeated anynumber of times, and is tabulated for use when comparing isotropic to non-isotropic cellular spacemodels. k k4 kCP41 1 12 16 63 81 244 256 705 625 1656 1296 3367 2401 6168 4096 10449 6561 166510 10000 2530

k k4 kCP411 14641 369612 20736 522613 28561 718914 38416 966015 50625 1272016 65536 1645617 83521 2096118 104976 2633419 130321 3268020 160000 40110Table A.1: Tabulation of permutation values for n=d=4.
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Appendix BSoftware System DetailsB.1 IntroductionThe software environment consists of 12 programs which are divided into two groups of six: one forsimulating the EA model, and the other for the CA model. For each model there is an simulationengine, an X-window viewer, and a genetic algorithm. Additionally, there are two versions of eachprogram: one in which the input paradigm is component-sensitive input (CSI) and the other isfor state-sensitive input (SSI). The names of all the programs and their associated properties aresummarized in Table B.1 below. CA EASSI CSI SSI CSISimulation engine ca1 ca2 ea1 ea2X-Windows viewer xca1 xca2 xea1 xea2Genetic algorithm caga1 caga2 eaga1 eaga2Table B.1: Software system program names.The software has been tested and successfully runs on �ve computing platforms: Sun SPARCworkstations running SunOS/Solaris, DEC Alpha workstations running Digital UNIX, IBM RS/6000workstations running AIX, and IBM PC compatibles running Linux and BSD/OS UNIX. All ofthese computers need to have C and C++ compilers, lex, and X-Windows installed. In additionparallel versions of the genetic algorithm will run on Thinking Machines CM5, DEC Alpha farmclusters, and IBM SP2 systems.B.2 Installing the SystemInstallation of the software involves two steps: unpackaging the software and building the programs.The distribution �le will be called ea.tar.gz or ea.tgz. To unpackage this �le, enter the followingcommands:gunzip ea.tar.gz or gunzip ea.tgztar -xvf ea.tar 120



Building the programs is accomplished by using the make utility. For example, the create thexea2 program, one enters the command make xea2. The make system is con�gured by default forSun workstations. To install the programs on non-Sun workstations, users should read the READMEand Makefile �les for assistance.Once installed, each program is con�gured for a particular run by using con�g �les. Con�g �lesall have names that end in \.cfg". A number of demonstration con�g �les are included, and areuseful for testing that the system is working properly. For example, one can enter the command,xea2 -c srs3a.cfgwhich will allow the user to view an EA simulation based on the con�guration information in thesrs3a.cfg �le. The \-c" option speci�es that a con�g �le should be loaded.B.3 Using the ViewerThe viewer programs allow the user to observe cellular and e�ector automata models over time.The user is presented with a square space, 80 cells long on each side. Figure B.1 shows the viewerwith the major areas outlined. After loading the con�g �le, the user may begin by advancing thesimulation one time step at a time by pressing the forward button -> . A fast-forward button -->permits viewing of a rapid succession of con�gurations, and a stop button Stop halts this process.The reverse button <- allows the user to iterate backwards in time (previously displayed imagesare shown { the cellular does not actually iterate in reverse). Figure B.2 shows the simulationcontrols as they appear at the top of the window.In the center of the viewer a square, called a frame, is displayed for two purposes: to provide aframe a reference (with respect to moving automata); and for selecting the area of the screen tosave to a �le. The following list demonstrates the capabilities of the viewer program.� To change the number of cells in the frame, click on any button in the top row of thePreferences dialog box (Figure B.3).� To toggle the display of the frame, click on the View menu and select \Toggle frame."� To toggle the display of the grid, click on the View menu and select \Toggle grid."� To generate PostScript output of a single frame, click on the File menu and select \Save 1frame as PostScript."� To generate PostScript output of a series of frames, click on the File menu and select \Saven frames as PostScript."� To change the PostScript font size click on any button in the bottom row of the Preferencesdialog box (Figure B.3).� To generate a bitmap image of a single frame, click on the File menu and select \Save 1frame as bitmap."
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ShortcutsFor convenience, single keystroke commands can be entered to accomplish certain functions. Theseare summarized in Table B.3. A window containing similar information is available by choosingShortcuts... from the File menu.Key Commandn load next con�g �ler reload current con�g �lespace forward 1 time-stepb backward 1 time-stepq quit programTable B.2: Commands using one keystroke.B.4 Using the Simulation EngineThe simulation programs give the user a convenient way to quickly collect statistics regarding CAor EA rulesets. The statistics are written to an output �le which the user can examine. The�lename given to the output �le is the same as the con�g �le, except \stats" is prepended to thename.After setting up the appropriate con�g �le, the simulation engine can be invoked, for example,as follows: ea2 -n 15 -c ea2.cfgwhere -n denotes the number of time steps to simulate, and -c denotes the con�g �le. The statistics�le is a text �le containing data regarding the run. This data are arranged as tables where rowscorrespond to time{steps. Also in this �le are the computed values for all the available �tnessfunctions.B.5 Using the Genetic AlgorithmThe genetic algorithm programs allow the user to experiment with having a GA search for high-performing CA or EA rule tables. GA-related parameters are stored in a con�g �le which is read bythe program. An example con�g �le is shown in Figure B.6. The parameters shown in Figure B.6are, for the most part, self-explanatory. The format of the �le must adhere to what is seen in thisexample, with the exception that multiple space characters are equivalent to one. There must notbe any blank lines in this �le, and the ordering of lines must remain as shown. The �tness functionsection selects which functions should be used by the GA. There are currently about twenty suchfunctions and users may write their own (in C/C++) which can be added to the source code �lefitness.cc. Adding new �tness functions requires knowledge of the source code, and more detailedinstructions regarding this can be found in the documentation that accompanies the software.As an example of running the GA, one could issue the command:eaga2 -c eaga2.cfg 122



which will run a GA on the CSI version of the EA model. During a GA run, the GA will save thebest-of-generation (also called \best-yet") rule table in a �lename that begins with by and whichincludes a time-stamp. This �le may then be used as input to run a standalone simulation.
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Figure B.1: xea viewing program showing main areas. Dashed ovals indicate menus,control buttons, and status information areas. Italicized text is also overlayedto show the frame and cells.
Figure B.2: Simulation controls located at top of main window.124



Figure B.3: Preferences dialog box.

Figure B.4: The File pull-down menu.

Figure B.5: The View pull-down menu.
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population_size = 100max_number_of_generations = 2000stop_if_constant_for_X_generations = 2000crossover_probability = 0.8mutation_probability = 0.1seed = 6030number_of_simulator_iterations = 10stats_collection_begin = 1stats_collection_end = 10stop_if_fitness_above = 0.99neighbor_orientation = insensitivefitness_functions = 3ff = 600 wt = 0.3ff = 853 wt = 0.6ff = 910 wt = 0.1automata = 3 types:A is directedB is directedC is directedIC = 3 components:A (40, 40) at 0B (40, 41) at 0C (41, 41) at 0Figure B.6: Example con�g �le for use with genetic algorithm.
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Appendix CDiscovered Self-replicating StructuresA small archive of the discovered self-replicating structures appears on the following pages.
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