
The Loading Time Scheduling Problem 1Randeep Bhatia 2 Samir Khuller 3 Joseph (Se�) Naor 4
1An extended abstract of this paper appeared in the Proceedings of the 36th IEEE Conference on Foun-dations of Computer Science, Milwaukee, Wisconsin, (1995), pp. 72-81.2Computer Science Department, University of Maryland, College Park, MD 20742 and LCC Inc., 2300Clarendon Blvd, Suite 800, Arlington, VA 22201. Email: randeep@cs.umd.edu.3Computer Science Department and Institute for Advanced Computer Studies, University of Maryland,College Park, MD 20742. Research supported by an NSF Research Initiation Award CCR-9307462 and anNSF CAREER Award CCR-9501355. E-mail : samir@cs.umd.edu.4Department of Computer Science, Technion, Haifa 32000, Israel. Research supported in part by GrantNo. 92-00225 from the United States-Israel Binational Science Foundation (BSF), Jerusalem. Research alsosupported by the Technion V.P.R. fund No. 120-882. Israel. E-mail : naor@cs.technion.ac.il.

AbstractIn this paper we study precedence constrained scheduling problems, where the tasks can only beexecuted on a speci�ed subset of the machines. Each machine has a loading time that is incurredonly for the �rst task that is scheduled on the machine in a particular run. This basic schedulingproblem arises in the context of machining on numerically controlled machines, query optimiza-tion in databases, and in other arti�cial intelligence applications. We give the �rst non-trivialapproximation algorithm for this problem. We also prove non-trivial lower bounds on best possibleapproximation ratios for these problems. These improve on the non-approximability results thatare implied by the non-approximability results for the shortest common supersequence problem.We use the same algorithmic technique to obtain approximation algorithms for a problem arisingin the context of code generation for parallel machines, and for the weighted shortest commonsupersequence problem.

1 IntroductionIn this paper we study precedence constrained scheduling problems. The tasks are denoted by thevertex set of an acyclic graph. Precedence constraints are denoted by directed edges in the usualway; an edge from i to j indicates that task i should be completed before task j can be started.Each task needs to be scheduled on one of a speci�ed subset of machines (for example, the machinesmay have di�erent capabilities).The cost of executing a task can be decomposed into two components. One component is theinherent execution time of the task itself. The other component is a loading time, which is thesetup time of the machine we choose to perform the task on. When we perform a set of tasksconsecutively on a particular machine, we incur the loading time only for the �rst task performedon the machine.A schedule which is a feasible sequence of tasks, represents the order of execution of tasks. Atany time at most one task is executed, and the schedule speci�es the machine on which each taskis executed. Every time the next task in the sequence is executed on a di�erent machine than thecurrent one, the loading time of the new machine is incurred.We call this basic problem the Loading Time Scheduling Problem (LTSP). A special case of thisproblem was �rst mentioned by Hayes [8] in the context of machining metal parts. The objective isto start with a block of metal, and to use a numerically controlled machining center to cut a varietyof features into the block. Each geometric feature is a task, and there are precedence constraintson the order in which certain tasks can be performed. Di�erent methods may be used to performthe tasks. Each method can be performed on the machining center, which can accomplish a varietyof di�erent operations (drilling, end-milling, etc.), but can only perform one operation at a time.When we are able to overlap the machining operations, we do not incur the loading time delay forthe machine repeatedly. (For example, when we do two drilling operations consecutively, we onlyhave to load the block of metal on the drilling machine once.) According to Hayes [8], this set-uptime is a large fraction of the time for each operation, sometimes as much as 90% of the time isspent in setting up for one machining operation. All other times are relatively small compared tothe set-up time.A second motivation given by Hayes [8] is shown in Fig. 1. (We are not solving the same problem,but this explains some of the intuition behind the loading time scheduling problem.) Suppose wehave to run a few errands. The time to do each errand can be decomposed into the time to get tothe place where the errand is to be done, together with the time to actually do the task. The timefor performing the errand depends on whether we need to go to the location where the errand isto be performed, or, whether we are already there. The optimal solution is to �rst go home, thento the grocery store, and �nally to the post-o�ce. This is a more general problem where there isa \switching" cost between machines. We handle the special case when the switching cost is thesum of the loading and unloading costs.An extensive survey of \operator overlap" problems in Arti�cial Intelligence appears in the workby Foulser, Li and Yang [5]. In particular, they discuss a variety of heuristics, with an average caseanalysis for them, as well as empirical results. Other applications of overlapping operators arise indatabases when we try to do multiple query optimization [16].A problem related to the Loading Time Scheduling Problem is the Shortest Common Superse-quence problem [6, problem SR8]. Here, a collection of sequences over a �xed alphabet is given, andthe goal is to �nd a shortest common supersequence (SCS), such that all given sequences appearas a subsequence in the common supersequence.The previous results shown for the SCS problem by Jiang and Li [9] are hardness results for1

get cash (grocery store)(post-o�ce)(grocery store) (home) (grocery store)get coupon(post-o�ce) recycle bagsbuy ice-creambuy stampspost lettersFigure 1: Motivation for the problem.approximation, and a �-approximation algorithm, where � is the size of the alphabet. Let ndenote the number of sequences. Speci�cally, Jiang and Li [9] show that (i) SCS does not havea polynomial time constant factor approximation algorithm, unless P = NP ; (ii) there exists aconstant � such that if SCS has a polynomial time approximation algorithm with ratio log� n thenNP � DTIME(2poly logn). They also give algorithms that produce solutions close to the optimalwhen the supersequences are random (see [9] for more details).A generalization is the weighted shortest common supersequence(WSCS), where each letterof the alphabet has a weight, and the weight of the supersequence is the sum of the weightsof its constituent letters. The WSCS problem is closely related to the LTSP by viewing thealphabet letters as machines, loading times as weights on the alphabets and each sequence asde�ning precedence constraints between tasks (the precedence graph is a path). The objectivefunctions of the two problems di�er in how they treat the case when the same letter appearsconsecutively in a sequence. As an application of our results we show that we can obtain a �-approximation algorithm for the WSCS problem.The literature concerning scheduling problems is very extensive (see e.g., [10]). However, itappears that the speci�c constraints on the Loading Time Scheduling Problem are very di�erentfrom the kinds of problems that have been previously considered in the scheduling literature.A di�erent motivation for our work stems from the design of compilers for multiprocessor ar-chitectures that use the fork-join model of parallelism. In a fork-join model, the only operationsavailable for expressing parallelism are fork (spawn a vertex's execution as a new thread of con-trol), and join (wait for all previously forked threads to complete). The input is a DAG whosevertices represent tasks and whose edges re
ect all the control and data dependencies among theseinstructions. The objective is to generate fork-join parallel code for the DAG, with minimum over-all execution time. It is assumed that the parallel code would be executed on a machine withunbounded number of processors and no communication overhead.Sarkar [15] investigated this problem of generating maximally parallel code using only forkand join operations to correctly satisfy all the control and data dependences in the program.This problem is of interest when compiling for multiprocessor architectures and runtime systemswhere fork-join is the only mechanism, or the most e�cient mechanism, available for satisfyingdependences. In Section 1.2 we provide a detailed description of the problem, and its connectionto the Loading Time Scheduling Problem.1.1 The Loading Time Scheduling ProblemLet the tasks be denoted by the vertex set of a directed acyclic graph G = (V;E), where V =f1; 2; : : : ; ng. The precedence constraints are denoted in the usual way by directed edges; if there2

is an edge from i to j then i needs to be done before j.Suppose there are � machines m1; : : : ; m�. Each task i can be performed only on a subset M(i)of the machines (the machines have di�erent capabilities). Each machine mj has a loading time`(mj). Any task i that can be performed on mj , (mj 2 M(i)), and which satis�es the precedenceconstraints, may be scheduled with an execution time of e(i). When we perform a set of tasksconsecutively on a particular machine, we pay the loading time only once. With these constraints,we wish to minimize the total makespan. The execution times for all tasks are �xed (the choice ofmachine does not a�ect the execution time), so we can assume that the execution times are zero,and concentrate on minimizing the loading time. More formally,1. The problem is to partition V into k subsets V1 [V2 : : :[Vk such that8p = 1 : : :k; M(Vp) 6= ;:where M(Vp) = \i2VpM(i). In other words, all tasks assigned to set Vp share at least onemachine in common.2. For each edge x! y in E, if x 2 Vi and y 2 Vj we require that i � j.3. The goal is to minimize Pkp=1 `(Vp), where `(Vp) = minmk2M(Vp) `(mk).In many manufacturing applications [8, 3], typically, jM(i)j = 1. The tasks, for example, couldbe drilling, end-milling, etc. Let the term job denote the block of metal mentioned earlier. Thefollowing simple heuristic is commonly used in such applications. After constructing the task graph,load the job on a machine, and perform the set of tasks that can be done on this machine, suchthat they have no un�nished pre-requisites. When there is a choice of machine, pick the machineon which the largest set of jobs can be performed consecutively. Stop when all the tasks that areready to be performed cannot be done on the current machine the job is on. Now move the jobto a di�erent machine (this incurs a loading time) and continue. Notice that, in general, the jobcould be loaded on the same machine many times.1.2 Fork-Join Parallelism ProblemLet G = (V;E) be a DAG representing the fork-join model. There is a non-negative cost functionw, denoting the execution time associated with each vertex. Let W denote the ratio between themaximum and minimum costs of vertices in V . The cost of a set of vertices B, denoted by w(B),is de�ned as the maximum cost of a vertex belonging to B.The problem is de�ned as follows: Partition the vertices of the DAG into a set of blocksB1; B2 : : :Bk such that� If i! j is an edge, and if i 2 Bi0 and j 2 Bj0 then i0 < j 0� Minimize Pki=1w(Bi)An antichain in a DAG is a set of incomparable elements, i.e., there is no directed path betweenany pair of elements in an antichain. In the context of the fork-join model, an antichain denotes aset of fork operations followed by a join operation. Essentially, we are asking for a partitioning ofthe DAG into a set of antichains (each block is an antichain), such that we minimize the sum ofthe costs of the antichains. We also require that for each edge i! j, the block that i belongs to is\before" the block j belongs to (in other words, the antichains cannot \cross").Notice that a greedy algorithm may perform very poorly for the fork-join problem, since it mayspread high cost vertices between several blocks, instead of grouping them in the same one.3

1.3 Our ResultsIt is easy to show that the Loading Time Scheduling Problem is NP-complete for arbitrary M(i),even when there are no precedence constraints, by a reduction from the set-cover problem [6]. (Theelements correspond to tasks, and each subset corresponds to a machine. A task can be done ona machine if the corresponding element belongs to the set corresponding to the machine.) WhenjM(i)j = 1, and � � 4, the problem can be shown to be NP-complete (and MAX SNP-hard) bya reduction from the shortest common supersequence problem [6, problem SR8]. Moreover, thereduction proves the hardness results even for the case of unit loading times. A recent result of [13]implies that LTSP is NP-complete for � = 3.Hardness Results: Furthermore, we show that when � is a constant, then there exists an � suchthat no polynomial time approximation algorithm with a factor �� is possible unless P = NP .We also show that for any constant �, no polynomial time approximation algorithm with a factorof log� n is possible unless NP � DTIME(nO(log logn)). (This for the case when the number ofmachines is not restricted to a constant.)Greedy Algorithm: First we show that the greedy algorithm performs poorly for LTSP. Thegreedy algorithm is a very natural algorithm for this problem: at each step it schedules the ma-chine on which the maximum number of tasks can be performed. We give an example where theapproximation ratio of the greedy algorithm is
(pn), even when � = 4. When � = log n, then theapproximation ratio can be as bad as
(nlogn).Approximation Algorithm: Our main contribution is an approximation algorithm to solveLTSP approximately. This algorithm achieves a worst case approximation of �, where � is the totalnumber of machines. The idea is to compute for each task i a function which is a lower bound onthe total loading time needed to schedule i. We sort the set of tasks according to this function,and then schedule the tasks in a greedy manner. The proof of the approximation factor for thisalgorithm is quite delicate. We also show that the algorithm can be implemented in O(n logn+�e)time and O(�n+e) space, where n and e are the number of vertices and number of edges respectivelyin the graph.From the practical point of view, an approximation factor of � is much better than an approx-imation factor that is a function of n, since � is typically very small (4 or 5), compared to the sizeof the task graph that can have, for example, over 1000 features for an engine block [7].We also give a second approach that gives a simpler � approximation for LTSP. However, webelieve that the previous method will produce better solutions in practice. In any case, bothapproaches are described as they use very di�erent techniques.Finally, we discuss a natural linear programming approach to LTSP and show that the integralitygap of the integer program derived is (��1)=4, meaning that this approach is not useful for obtainingimproved approximation factors.Fork-Join Problem: Sarkar [15] presents a heuristic for solving the fork-join problem, with noanalysis, and conjectures that his heuristic has a constant worst case guarantee. We have beenable to construct an example for which Sarkar's algorithm has a performance of
(logn) timesthe optimal cost, disproving his conjecture. However, no proof is known that this is also an upperbound for the algorithm's performance. It should be noted that Sarkar reports that the heuristicworks very well in practice. We show that an instance of the fork-join problem can be mapped to aninstance of LTSP. We use the same technique to obtain an algorithm with an approximation ratioof O(min(logW; logn)) can be designed for this problem. This is the �rst worst case approximationalgorithm for this problem.Weighted SCS Problem: For the SCS problem where each letter of the alphabet has an arbitraryweight, we are able to obtain an algorithm with an approximation factor of �. Here � is the size of4

the alphabet.2 Greedy AlgorithmThe most obvious algorithm for the Loading Time Scheduling Problem is the greedy algorithm.This algorithm schedules at each step the machine on which the largest number of tasks can beperformed on a single run. We show that this algorithm can perform very poorly, i.e., it mayachieve an approximation factor of
(n= logn).We �rst show an example where the approximation factor is
(pn). (See Fig. 2). The �rst rowcontains pn tasks. All these tasks can be performed on machine 3. They can also be performedon machines 1 and 2 (alternately). The second row contains n tasks, all of which can be performedon machine 4, as well as on either 1 or 2 (depending on the machine their parent can be done on).Clearly, the maximum number of tasks that can be done on any single machine initially is 1 +pnon machine 1, pn on machine 3, and 0 on machines 2 and 4. The greedy algorithm will schedulemachine 1. After performing 1+pn tasks, the greedy algorithm schedules machine 2 and performsanother 1+pn tasks. Since there are n+pn tasks in all, the greedy algorithm will obtain a solutionof length pn that alternates between the 1's and the 2's. The optimum solution is to schedule allthe tasks on machines 3 and 4. First do pn tasks on machine 3, then do the remaining n tasks onmachine 4. : : :(1,3)(1,4) (2,3) (2,3)(1,3)(2,4) (1,4) (1,4) (2,4)(1,4) (2,4) (2,4)Figure 2: Bad example for the greedy algorithm.We now show how to modify this instance so as to obtain an instance for which the performanceratio of the greedy algorithm can be as bad as
(n= logn). The idea is to extend the instancedepicted in Fig. 2 to an instance containing k (to be de�ned later) replicas of this instance, connectedin \levels".Our basic building block has the same structure as the instance depicted in Fig. 2. It has twolayers, where each layer induces a chain. The �rst layer contains r (to be de�ned later) tasks, andeach task in the �rst layer has 2 successors in the second layer. Let u and v be two tasks in the�rst layer: the sets induced by the successors of u and v in the second layer are disjoint.We will now connect k instances of our basic building block in levels. Let the building blocks bedenoted by B1; : : : ; Bk, where the indices are ordered according to levels. For 1 � i � k, in blockBi, the value of r is equal to 2i. For 1 � i < k: there is a single outgoing edge from the jth taskin the second layer of block Bi to the jth task in the �rst layer of block Bi+1, for 1 � j � 2i.In block Bi, for 1 � i � k:1. All tasks in the �rst layer can be performed on machine `i, and all tasks in the second layercan be performed on machine `0i. 5

2. In the �rst layer: (i) all tasks such that their distance from the beginning of the layer is odd,and their successors in the second layer, can be performed on the same machine, denoted byoi. (ii) all tasks such that their distance from the beginning of the layer is even, and theirsuccessors in the second layer, can be performed on the same machine, denoted by ei.This construction can be thought of as a tree, where all edges are directed towards the leaves.The optimal algorithm will traverse the tree in a BFS fashion. In other words, it will performthe tasks block-by-block, where the cost of each block is 2, since each layer has to be scheduledseparately. Thus, the cost of an optimal algorithm is 2k. In contrast, the greedy algorithm willtraverse the tree in a DFS fashion. This follows since, at each step, there is a greedy choice thatcomplies with a DFS traversal of the tree. The cost of the greedy algorithm is Pki=1 2i, yieldingthat the performance ratio of the greedy algorithm is Pki=1 2i=(2k). The number of tasks that needto be processed is denoted by n. We choose k = �(logn), yielding that the approximation factorof the greedy algorithm can be as bad as
(n= logn).3 Approximation AlgorithmsThe main idea behind the algorithm is to compute a function T �(i) that represents the lower boundon the total loading time incurred to schedule task i on any machine. For each task i, let Pred(i)denote the set of predecessors of i in G.We �rst compute the function T (i; j) which is a lower bound on the time incurred if task i isscheduled on machine mj . T �(i) is the time for scheduling task i as quickly as possible on anymachine mj 2M(i). T �(i) = minmj2M(i)T (i; j) where m�(i) = mj ; such that T (i; j) = T �(i).We now de�ne T (i; j).T (i; j) = 8><>: 1 if mj =2M(i)`(mj) if Pred(i) = ;maxip2Pred(i)fmin(T (ip; j); T �(ip) + `(mj))g otherwiseFor each task we create a vertical interval of length `(m�(i)), with the lower end of the intervalat distance T �(i) from the x � axis (see Fig. 3). Two intervals are said to overlap, if there is ahorizontal line that cuts both the intervals. The following two propositions are immediate.Proposition 1 To compute T (i; j) we only need to consider the immediate predecessors of i.Proposition 2 If ip 2 Pred(i) then T �(ip) � T �(i).We now give a high level description of the algorithm. Assume that S is the set of tasks thatstill needs to be scheduled (initially S is the entire set of tasks). The algorithm sweeps a horizontalline from top to bottom. When the sweep-line crosses the lower end of the vertical interval, weschedule the task. Assume that task x is the �rst task to be scheduled on m�(x). At this point wealso schedule other tasks that can be done on m�(x) (R will denote the set of these tasks).Algorithm:Step 1. The set S is sorted by increasing T �(i) value (the lower end of the intervals). If T �(i) =T �(j), and i 2 Pred(j), then i occurs before j in S.Step 2. Pick the �rst task from S and call it x.Step 3. Pick as many tasks from S as can be performed on m�(x). Formally, let R = fyj (m�(x) 26

`(m�(i))Task i Task j`(m�(j))
x� axisT �(i) T �(j)

Figure 3: Example to show two non-overlapping intervals.M(y)) ^ [(8z 2 S \ Pred(y)); m�(x) 2M(z)]g.Step 4. Schedule R on m�(x).Step 5. Remove R from S and return to Step 2.Notice that for any two tasks i and i0, if i0 2 Pred(i), then T �(i0) � T �(i), and i0 precedes i in theset S. Hence, the solution produced by the above algorithm is feasible. Let OPT be the cost of theoptimal solution (with minimum loading time to complete all the tasks).Lemma 3 For any i, OPT � T �(i).Proof: We show that T (i; j) is a lower bound on the time elapsed if task i is scheduled on machinemj . In other words, we show that in any feasible solution, in which task i is scheduled on machinemj , the sum of the loading times of all the machines which are scheduled before, or, at the sametime when task i is scheduled, is at least T (i; j). Note that this would imply, for any i, OPT� T �(i).The proof is by induction on the levels in the DAG. For tasks at level 0, (de�ned by Pred(i) = ;),it is obviously true, since T (i; j) = `(mj) if mj 2 M(i). Assume it is true for tasks in the �rst klevels. Consider now a task i at level k + 1. Let mj 2 M(i), and let ip be a predecessor of i. Inany feasible solution, ip is scheduled before, or, at the same time as i. Assume that ip is scheduledon machine mjp .By the induction hypothesis, the sum of the loading times of all the machines which are sched-uled before, or, with task ip, is at least T (ip; jp). There are two cases to be considered:(a) j = jp: then, at best, task i can be scheduled with task ip, and hence the sum of the loadingtimes of all the machines which are scheduled before, or, with i, is at least T (ip; j) .(b) j 6= jp: in this case, i is scheduled strictly later than ip, and hence the sum of the loadingtimes of all the machines which are scheduled before, or, with i, is at least T (ip; jp)+ `(mj) �T �(ip) + `(mj). 7

The above implies that the sum of the loading times of all the machines which are scheduledbefore, or, with i, is at least maxip2Pred(i)fmin(T (ip; j); T �(ip) + `(mj))g = T (i; j)Lemma 4 Let x be a task picked in Step 2. Let y 2 S such that m�(x) = m�(y). If the intervalsof x and y overlap, then y 2 R.Proof: Suppose that there exists a task z 2 S \ Pred(y), such that m�(x) =2 M(z), andT �(x) � T �(z) � T �(y). This implies that T (z;m�(x)) = 1, and T (z;m�(y)) = 1. Sincez 2 Pred(y), T �(y) = T (y;m�(y)) = T (y;m�(x)) � min(T (z;m�(y)); T �(z) + `(m�(y))). Thisproves that T �(y) � T �(z) + `(m�(y)) � T �(x) + `(m�(y)), contradicting the assumption that theintervals of x and y overlap.Theorem 5 The total loading time incurred for any particular machine mj in a schedule outputby the algorithm is at most maxi T �(i).Proof: Consider any particular machine mj . This machine may occur in the schedule many times.Each time the loading time is incurred for the �rst task (in particular, the task picked in Step 2).We \charge" this task for the loading time. By Lemma 4 the intervals for the tasks that get chargedfor loading machine mj do not overlap. Hence, the total charge on the loading times for machinemj is T �(L(j)) where L(j) is the last task to be charged for machine mj .We conclude with the following theorem.Theorem 6 If the total number of machines is �, the total loading time is at most � �maxi T �(i) �� �OPT.3.1 ImplementationTheorem 7 The algorithm can be implemented in O(n logn+�e) time and O(�n+e) space, wheren and e are the number of vertices and number of edges respectively in the DAG.Proof: Note that the computation of T (i; j) and T �(i) can be done in O(�e) time, by topologicallysorting the DAG, and then doing a local computation at every task, according to the order in whichthe tasks appear in the topological sort. As mentioned before, the value of T (i; j) can be computedby just looking at the immediate predecessors of task i, and therefore the local computation fortask i takes O(� � indeg(i)) time, where indeg(i) is the in-degree of task i. For each task we needto store � values, so the total space requirement is O(�n).The rest of the algorithm is implemented as follows: For each task we maintain its in-degreein the current DAG (the tasks that are already scheduled are not in the current DAG). For eachof the � machines, we store a doubly linked list of pointers to tasks in the current DAG withthe following property. Let m and i be a machine and task respectively, with m 2 M(i). If thein-degree of i in the current DAG is 0, then the linked list for m contains task i. We also storeback pointers (at most �) from i to facilitate deletion in constant time. The sorted list S of tasksis implemented as a doubly linked list with back pointers from the tasks in the DAG. Note thatall this requires O(�n) space.Call the following one phase of the algorithm. Let x be the �rst task in the current set S. Usingthe linked list for m�(x) �nd set R. Remove all tasks in R from the DAG, update all the doublylinked lists and the in-degree of the tasks.We will now show that a phase of the algorithm can be implemented in O(�Pr2R outdeg(r))time, where outdeg(r) is the out-degree of task r in the original DAG. Since every node is in8

R once, the time bound follows. We use an additional Queue of size O(n) to do this. R is alsoimplemented as a linked list.Put all the tasks in the list for machine m�(x) in the Queue. Repeatedly do the following untilthe Queue is empty. Remove a task from the Queue, delete it from S and the linked lists for all themachines and add it to R. For all its immediate successors, if i is an immediate successor, decreaseindeg(i) by 1. If indeg(i) becomes 0 then if(a) m�(x) 2M(i), then add i to the Queue,(b) m�(x) =2M(i), then add i to the linked list for every machine m such that m 2M(i).When the Queue is empty we use the back pointers to delete every task in R from S. Note that ina phase of the algorithm, every task i that is added to the Queue, ends up in R. Since i is addedat most once to the Queue, and for i we do O(� � outdeg(i)) work, the bound follows.3.2 Universal SequencesA universal sequence is an in�nite list of machines such that if the machines are scheduled accordingto the list, then any set of tasks can be performed on them, independent of the DAG. This conceptwas recently suggested by Yishay Mansour [12] in the context of randomized approximation algo-rithms which can be shown to achieve an expected approximation factor of � � 1. The di�cultywith this approach is that it may generate a universal sequence of exponential length. Yossi Azar[1] suggested a way to make it deterministic, but this increased the approximation ratio by a factorof 2. Here we show how to get a � approximation in polynomial time deterministically. We describea deterministic � approximation algorithm that also generates a universal sequence.Recall that `(mj) is the loading time of machine mj . Let set Sj = fk � `(mj)jk = 1; 2; : : :g bean in�nite set. De�ne S = [�j=1Sj .Sort the elements of set S in non-decreasing order and output the machines in that order (incase of a tie the machine with lower index comes �rst) This is an (in�nite) universal sequence.Example: Suppose we have 3 machines with loading times of 2, 3 and 7 respectively. S1 =f2; 4; 6; 8; 10; 12; : : :g; S2 = f3; 6; 9; 12; : : :g and S3 = f7; 14; : : :g.If we sort S in non-decreasing order, the sequence that we obtain is: 2; 3; 4; 6; 6; 7; 8; 9; 10; 12; 12; 14; 14 : : :The corresponding sequence of machines is m1; m2; m1; m1; m2; m3; m1; m2; m1; m1; m2; m1; m3 : : :To obtain the actual schedule of machines, we will scan the universal sequence (from left toright) and output a machine if it can do one or more ready jobs from the DAG. The completedjobs will then be deleted from the DAG. A potential problem with this scheme is that the portionof the universal sequence that we need to generate may be exponential in length. One way toaddress this is to keep track of the set of \ready" machines at each step by examining the DAG,i.e., machines that can do one or more ready jobs. We then need to output the next such machinefrom the universal sequence. This can easily be done very e�ciently.We now prove that the total loading time of the machines in the pre�x of the universal sequencethat was generated, does not exceed � � OPT. Let the loading time of a sequence of machines bethe total loading time of all the machines in the sequence.Theorem 8 Any sequence of machines (over m1; m2; : : :m�) with total loading time l occurs as asubsequence of a pre�x of the universal sequence of total loading time at most � � l.Proof: First of all note that, in the construction of the universal sequence, if we restrict the largestelement in set S to l (call this �nite set Sl), then we get a pre�x of the universal sequence of total9

loading time at most � � l. This follows from the de�nition of universal sequence and the fact that,for any machine, the total loading time of all of its instances outputted for Sl, is upper bounded byl. Let U l be the pre�x of the universal sequence thus generated. Let M = m�1 ; m�2; m�3 : : :m�kbe a sequence of machines of total loading time Pkj=1 `(m�j) = l. We now show that M is asubsequence of U l thus proving the theorem. Let f be a function that assigns numbers to the kmachines in the sequence M de�ned as:(a) f(m�1) = `(m�1)(b) f(m�i) = smallest integer in S�i > f(m�i�1) if �i � �i�1; i > 1(c) f(m�i) = smallest integer in S�i � f(m�i�1) if �i > �i�1; i > 1Note that f(m�i) � f(m�i�1) � `(m�i); i > 1 and f(m�1) = `(m�1). Therefore f(m�k) �Pkj=1 `(m�j) = l. Also note that the numbers assigned by f to the machines in the sequence Mform a nondecreasing sequence with ties only when the earlier machine has lower index. Finallynote that the number assigned to any machine mi is from the set Si. Therefore the sequence ofnumbers f(m�1); f(m�2) : : :f(m�k) forms a subsequence of the sorted elements of the set Sl andthe sequence M forms a subsequence of U l.3.3 Integrality gapIn this section we discuss a natural linear programming approach to the loading time schedulingproblem. We prove that the integrality gap for the integer program that we will construct is(�� 1)=4, meaning that this approach cannot yield improved approximation factors. In fact, theintegrality gap holds for the shortest common supersequence problem as well. Recall that theshortest common supersequence problem is a special case of the loading time scheduling problemby viewing alphabet letters as machines, and each sequence as de�ning precedence constraintsbetween tasks. For example, a sequence a1; : : : ; ak corresponds to tasks t1; : : : ; tk such that: (i)tasks t1; : : : ; ti�1 must be executed before task ti, for all 2 � i � k; (ii) task ti can only be executedon the machine corresponding to letter ai, for all 1 � i � k.Our instance of the loading time scheduling problem is a DAG consisting of chains, whereeach task can be performed on a single machine. Suppose there are � machines, m1; : : : ; m�. Themachines on which the tasks can be performed in each chain induce a permutation of 1; : : : ; �, andthere are �! chains altogether.A fractional schedule is de�ned as follows. At each time slot we allow a fraction of a machine tobe scheduled with the following constraints: (i) the sum of the fractions of the machines scheduledtogether at a time slot cannot exceed 1, and (ii) a fraction � of a task can be performed in timeslot t, only if an � fraction of all of its predecessors has already been completed up to time slot t0,where t0 < t. (We omit the details of de�ning a fractional solution for arbitrary instances of theloading time scheduling problem, since our goal here is proving a lower bound).Let the length of our fractional schedule for the above instance be 2�� 1. At each time slot, afraction of 1=� of each machine is scheduled. It is easy to verify that all �! chains of tasks can beperformed using this schedule.In contrast, we claim that the length (number of time slots) of any integral solution S is at least
(�2). This is proved as follows. Scan S from left to right, and stop when all machines are recorded.Without loss of generality, suppose that m� is the last machine recorded. Let j� be the place inthe list where m� appears. Clearly, j� � �. Resume the scanning of the list and stop again whenall machines m1; : : : ; m��1 are recorded. Without loss of generality, suppose that m��1 is the last10

machine recorded. Let j��1 be the place in the list where m��1 appears. Clearly, j��1 � 2�� 1.Repeat the scanning, and let j��2; :::; j1 be de�ned similarly. There are two cases. If the list S isexhausted before ji is de�ned, (for some i � 1), then the chain of tasks that corresponds to thepermutation m�; m��1; : : : ; m1 cannot be performed by S. Otherwise, the length of S is at leastj1, which is �(�� 1)=2, yielding that the integrality gap is at least (�� 1)=4.4 Hardness ResultsWe prove the following two theorems regarding the Loading Time Scheduling Problem. These holdeven for the restricted case, when each job can be done only on a single machine.Theorem 9 For any constant �, there does not exist a polynomial time algorithm that has anapproximation factor of (logn)�, unless NP � DTIME(nO(log logn)).Theorem 10 There does not exist a polynomial time ��-approximation algorithm for some con-stant �, unless P = NP .The main idea is to take an instance X of a restricted version of the SCS problem, and to convertit into a \large" instance of the LTSP problem. This is done by modifying the construction in [9].Using an approximation algorithm for the LTSP problem, we are able to obtain a c-approximationalgorithm for the restricted SCS problem, for any c. We then use the fact that the restrictedSCS problem is MAX SNP-hard, so a c-approximation algorithm would imply the existence of analgorithm to �nd the optimal solution with the same running time.4.1 PreliminariesDe�nition 1 An LDAG is an acyclic digraph for which each vertex is labeled by a single letter(from a given alphabet).De�nition 2 A minimal supersequence z of an LDAG is de�ned as follows:� If the LDAG is empty, then z = ;� Let a be the �rst letter of z, i.e., z = a � z1, then some indegree 0 node in the LDAG is labeledwith a; and z1 is a minimal supersequence of the LDAG obtained by deleting all indegree 0nodes that have label a.Note that a supersequence of an LDAG is any sequence that contains a minimal supersequenceof the LDAG as a subsequence.De�nition 3 Let X1; X2; : : : ; Xk be a collection of LDAG's. Let X = X1 �X2 � � �Xk denote theLDAG that is obtained by connecting each Xi to Xi+1 by a set of directed edges that go from eachvertex of out-degree 0 in Xi, to each vertex of in-degree 0 in Xi+1.The following de�nitions from [9] are extended to LDAG's.De�nition 4 Let � and �0 be two alphabets. Let a 2 � and b 2 �0 be two letters. The producta� b is the composite letter (a; b) 2 �� �0. 11

De�nition 5 The product of an LDAG X and a letter b is the LDAG (X � b) obtained by takingthe product of the label of each vertex of X with b. (The structure of the LDAG stays the same,only the labels change.)De�nition 6 The product of an LDAG X and a sequence y = b1 : : : bk is the LDAG (X � y) =(X � b1) � (X � b2) � � �(X � bk).De�nition 7 The product of an LDAG X with a set Y = fy1; : : : ; yng of sequences is denoted by(X � Y) = [ni=1(X � yi).De�nition 8 Let X be a set of sequences, where each sequence is also viewed as a chain. Then,Xk = Xk�1 �X, where k > 1.The size of Xk is nk, where n is the size of X . The alphabet size of Xk is mk, where m is thealphabet size of X .De�nition 9 By z[a : : :b], we denote the substring of z from position a to position b.Proposition 11 Let X = X1 �X2 � � �Xk where each Xi is an LDAG. Let zi be a minimal superse-quence for Xi. Then, z = z1 � z2 � : : : � zk is a minimal supersequence for X.Proposition 12 Let X = X1 �X2 � � �Xk where each Xi is an LDAG. Let z be a minimal superse-quence for X. We can write z as z1 � z0, where z1 is a minimal supersequence for X1 and z0 is aminimal supersequence for X2 � � �Xk.Observe that we can obtain the unique decomposition of z in time O(jzj), by scanning z. Let Xbe an LDAG and z be a supersequence of X . Let the length of the smallest pre�x z0 of z which isa supersequence of X be denoted by the function g(X; z) = jz0j. The pre�x z0 can be computed inpolynomial time by scanning z and X . Let z00 be a subsequence of z0 such that z00 is also a minimalsupersequence of X . Let the function h(X; z) = z00. Note that z00 is unique for a �xed (X; z) pairand can be computed and extracted from z in polynomial time.4.2 Main LemmasLemma 13 Let X be a set of sequences, and z a supersequence of Xk. We can �nd k minimalsupersequences z1; z2 : : : zk of X such that the product of the length of these sequences is at mostthe length of z, i.e., jz1j � jz2j � � � jzkj � jzj. Hence we can �nd a supersequence of X of size at mostjzj1=k. This can be done in time which is polynomial in jXkj.Proof: The proof is by induction on k. The lemma is clearly true for k = 1. We prove theinduction step separately, in Lemma 14.Consider Xk, where X is a set of sequences and consider a sequence a1:a2: : : : :a` in X . Corre-sponding to this sequence, there is an LDAG in Xk of the form (Xk�1�a1) �(Xk�1�a2) � � �(Xk�1�a`).Lemma 14 Let X be a set of sequences and let z be a supersequence for Xk. In time polynomial injXkj we can �nd z0 such that jz0j = jzj and a decomposition z0 = (z1�x1)�(z2�x2) � � �(zr�xr), whereeach zi is a minimal supersequence of Xk�1, xi is a letter of the alphabet of X, and x = x1 �x2 � � �xris a minimal supersequence of X. This implies that for some j; jzjj � jxj � jz0j = jzj.12

Proof: We give a constructive proof. Let S = fxijxi appears as the �rst letter in some sequenceof Xg and let xp be a letter in S for which minxi2S g((Xk�1 � xi); z) is attained. Delete z00 =h((Xk�1 � xp); z) from z, yielding sequence z0. Output z00, which is a minimal supersequence for(Xk�1 � xp). Replace Xk by Xk�1 �X1 where X1 is obtained by replacing every sequence of theform xp � Y (in X) with Y .Note that jz0j + jz00j = jzj. We claim that z00 � z0 is a supersequence for Xk for the followingreasons.� For an LDAG in Xk of the form R = (Xk�1 � xp) � T we have by the previous propositionsthat h(R; z) = z00 � t , where t is a minimal supersequence of T and is a subsequence ofz[g((Xk�1�xp); z)+1 : : : jzj]. Hence t is a subsequence of z0. Thus z00 � z0 contains a minimalsupersequence of R.� For any LDAG in Xk of the form R = (Xk�1 � xi) � T , where xi 6= xp we have by thepropositions and by the fact g((Xk�1�xi); z) � g((Xk�1�xp); z) that h(R; z) = h(R; z00 �z0).Thus z00 � z0 contains a minimal supersequence of RTherefore z0 is a supersequence for the modi�ed Xk. We iteratively apply this procedure to z0 withthe modi�ed Xk given byXk�1�X1 until X1 is empty. It is easy to see that if this algorithm outputsL1; L2; : : : ; Lr sequences in that order then each Li is a minimal supersequence of (Xk�1 � xi) forsome xi letter in the alphabet of X and x1 � x2 � : : : � � �xr is a minimal supersequence of X . Therunning time of the algorithm is polynomial in jXkj.Lemma 15 Given a supersequence z of Xk, we can compute a supersequence z0 of X of sizejz0j = jzj1=k in time polynomial in jXkj. Hence, given a polynomial time approximation algorithmthat achieves an approximation factor of f(N) (where N is the input size) whose instance is Xk,we can construct an f1=k(N)-approximation algorithm for the problem whose instance is X thatruns in time polynomial in jXkj.Proof: Let OPTk be the size of the optimal solution for the problem whose instance is Xk.The optimal solution for the problem whose instance is X is exactly OPT = OPT 1=kk . Thisfollows from the previous proposition and the fact that if Y is a supersequence for X then Y k isa supersequence for Xk. Assume there exists a polynomial time f(N)-approximation algorithmfor the LTSP problem. This means that in polynomial time we can �nd a supersequence for theinstance of Xk, which is of size at most f(N) �OPTk . But this implies the size of the solution forthe problem whose instance is X is at most (f(N) �OPTk)1=k = f1=k(N) �OPT .4.3 Proofs of TheoremsIn the following proofs we use a restricted version of the SCS problem, where there are no consecutiverun of the same alphabet in the sequences. Note that an instance of this restricted version of theSCS problem is also an instance of LTSP, with unit loading time. This problem is MAX SNP-hard(see Section 6), for alphabet size four or more. This implies that there is a constant c, such thatif there exists a polynomial time c-approximation algorithm for the restricted SCS problem, thenP = NP . In other words, there is a constant c, such that if there exists a DTIME(nO(log logn))time c-approximation algorithm for the restricted SCS problem, then NP � DTIME(nO(loglogn)).Let X be an instance of size n, of the restricted SCS problem, over an alphabet of size four.We �rst prove Theorem 9.Proof: Let c be the constant such that for the problem with instance X , there does not exist13

a DTIME(nO(log logn)) time c-approximation algorithm, unless NP � DTIME(nO(loglogn)). Wewill show that if there is a polynomial time (logn)� approximation algorithm for LTSP (for any �),then we can construct a c-approximation algorithm for the restricted SCS problem, that runs inDTIME(nO(loglogn)) time. This would imply that NP � DTIME(nO(log logn)).Suppose we are given a polynomial time approximation algorithm that achieves an approxima-tion factor of f(N) (where N is the input size), for LTSP. Since X and hence Xk is an instance ofLTSP, by Lemma 15, applying this algorithm to instance Xk, would imply an approximation factorof f1=k(nk) for instance X . We would like to choose k such that f1=k(nk) � c. Hence, we requiref(nk) < ck. Let f(n) = log� n, and thus (k log n)� < ck. We now pickk = 2 logc log� n + 2� logc �and this yields a c-approximation algorithm for X that runs in time O(poly(N)), where N = nk isO(nO(log logn)).We now prove Theorem 10.Proof: The idea is the same as the previous proof. The only di�erence is that k will be chosen to bea constant. Let c be the constant such that there does not exist a polynomial time c-approximationalgorithm for instance X unless P = NP . Let us choose k = log4 �. Since the alphabet size of Xfour, the problem whose instance is Xk has alphabet size 4log4 � = �. Let � = log4 c. If there existsa polynomial time ��-approximation algorithm for LTSP, for constant �machines, then there existsa polynomial time ��=k = 4�-approximation algorithm for the problem whose instance is X . But,4� = c, so we get a contradiction. Finally, note that c < 3, since there exists a polynomial time3-approximation algorithm.5 Fork-Join ProblemsGiven an instance of the Fork-Join problem, we show how to create an instance of the LTSP suchthat the ratio of the cost of their optimal solutions is a constant. If W is the highest execution timeinstruction, (assuming that the lowest execution time is 1), in the Fork-Join problem, then for theinstance of the LTSP, � = logW . We then use our approximation algorithm to solve the instanceof LTSP within a factor logW . We �nally show that any solution for the LTSP instance can bemapped back to a solution for the Fork-Join problem instance without any cost increase. Thisyields an algorithm with approximation ratio O(logW) for the Fork-Join problem. We would alsolike to mention that a slight modi�cation of this technique yields an algorithm with approximationratio O(logn) where n is the number of nodes.5.1 Mapping a Fork-Join instance to an LTSP instanceThe instance of the Fork-Join problem is given as a DAG (V; U). V is the set of nodes and U isthe set of edges. Every node is labeled with an execution cost. Assume all the execution costs inthe Fork-Join problem are between 1 and W . This can be achieved by a proper scaling. Increaseany cost that lies in the range (2i; 2i+1] to 2i+1 . Note that now we have � dlogW e distinct costsand the cost of any solution of the original problem gets increased by at most a factor of 2.We now create a new DAG (V 0; U 0) by introducing jU j new nodes, each with execution cost 0and by replacing the ith edge (x; y) by two edges (x; ri) and (ri; y), where ri is the ith new node.Note that this changes neither the set of feasible solutions nor the cost associated with them.We map this new instance of the Fork-Join problem to an instance of the LTSP as follows. Theunderlying DAG for the LTSP is the same, i.e., V 0 is mapped to the set of tasks and U 0 is the set14

of edges. For every distinct execution cost wi we introduce a machine mi with loading cost wi,thus w0 = 0 and wj = 2j ; j � 1 and � � dlogW e + 1. For every node j 2 V 0 , M(j) = fmijwi �execution cost of node jg.Lemma 16 If OPTLTSP is the size of the optimal solution for the instance of LTSP and OPTFJthe size of the optimal solution for the original instance of the Fork-Join problem then OPTLTSP �4 �OPTFJ .Proof: Let OPT 0FJ be the size of the optimal solution for the instance of the Fork-Join problemcreated by our mapping scheme. We have already argued OPT 0FJ � 2�OPTFJ . Also note that anyparallel execution of instructions with execution costs in the set (2k1 ; 2k2 : : :2kl) where (k1 > k2 : : : >kl) can be replaced by exactly one execution of each of the machines in the set (mk1 ; mk2 : : :mkl)in any order, with at most a doubling of the cost. This is because 2k1 + 2k2 : : : + 2kl � 2 � 2k1 .Therefore OPTLTSP � 2 �OPT 0FJ � 4 �OPTFJProposition 17 Any feasible solution for the LTSP is a feasible solution for the instance of theFork-Join problem, obtained by mapping tasks to instructions.Theorem 18 An algorithm with an approximation ratio of O(min(logW; logn)) can be designedfor the problem of generating code for a parallel machine.5.2 Sarkar's algorithmLet pred(v) be the cost of the heaviest weight path from some node of indegree 0 to v, and let succ(v)be the cost of the most expensive path from v to some node of outdegree 0. Note that they do notinclude the cost of v itself. Sarkar calls pred(v) the Earliest Starting Time and DAGCP � succ(v)the Latest Completion Time of node v, where DAGCP is the weight of the heaviest weight pathin the DAG.The algorithm works in phases. Each phase has 5 steps:(1) Set k to the node with largest execution cost. The set CurBlock is initialized to k.(2) Compute pred(v) and succ(v) for every node v. Let TPRED = pred(k), TSUCC = succ(k) .(3) Compute ParallelSet, the set of nodes that can execute concurrently with k.(4) Repeatedly do:choose a NODE j from ParallelSet so as to minimizemax(TPRED; pred(j))+ max(TSUCC ; succ(j)):Put j in CurBlock. ParallelSet is updated to contain nodes which can be done in parallelwith nodes in CurBlock and TPRED = max(TPRED; pred(j)), TSUCC = max(TSUCC ; succ(j))(5) If ParallelSet = ; then collapse all nodes in CurBlock to node k, i.e., all the nodes inCurBlock will be done with node k in the �nal schedule. Go back to step (1) with thereduced DAG, and we mark k to be a vertex that cannot be picked by step (1).15

5.3 Bad example for Sarkar's algorithmLet G = (V;E) be a DAG representing the fork-join model, where there is a non-negative costfunction w, denoting the execution time, associated with each vertex. We will denote each vertexin V by a rectangle whose vertical length is proportional to its cost. Consider an instance of thefork-join problem where the DAG is a collection of logn chains each of unit total cost. Vertices ineach chain have the same cost. The �rst chain has one vertex, the second chain has two vertices, thethird chain has four vertices, the �fth chain has eight vertices etc. The last chain has n=2 vertices.We claim that any solution to this fork-join instance has cost at least 12 log n. Consider any solutionfor this instance, it is a set of blocks B1; B2 : : :Bk as de�ned before. Note that there must be oneblock of cost 1, one other block of cost at least 1=2 (because there are two vertices of cost 1=2 whichcannot be in the same block), two other blocks of cost 1=4 (because there are four vertices of cost1=4 and only two of them can be in the previous blocks), four other blocks of cost 1=8 and so on.So the total cost of the blocks must be at least 1 + 1=2 + 2 � 1=4 + 4 � 1=8 : : : n4 2n = 1=2 + 12 log n3 nodes merged inPhase 1
Chain S. Chain 1Chain 2Chain 3n = 8, m = 2

3 nodes merged inPhase 23 nodes merged in3 nodes merged inPhase 3Phase 4are "seperators"Solid rectangles
Figure 4: Bad example for Sarkars algorithmWe now construct a bad example for Sarkar's algorithm. Consider chain X constructed byconcatenating the chains of the previous example in order. That is, chain i + 1 is placed directlyafter chain i. Between chain i and i+1 we introduce a vertex of unit cost, and a new vertex of unitcost is placed on top of this chain. We call these newly introduced unit cost vertices \separator"vertices. Now concatenate m copies of X to obtain a new chain S. From S we create logn chains,where the ith chain is obtained by removing from S all the vertices strictly before the ith (fromtop) \separator" vertex. An example for n = 8; m = 2 is shown in Fig. 4. Note that the edges inthe chain go from top to bottom.Sarkar's algorithm when applied to our example does the following. In the ith phase it merges16

the ith (from top) \separator" vertices of the chains, for the �rst �(m logn) phases. This is becauseeach \separator" vertex has unit cost (the largest cost for any vertex), and the merging leads tono increase in TPRED or TSUCC if the �rst vertex to be picked (vertex k in the algorithm) for thephase is the \separator" vertex in the longest chain. Note also that the vertices between the ithand (i + 1)th merged \separator" vertices are an instance of the fork-join problem, mentioned atthe beginning of the section for which the cost of any solution is at least 12 logn. So the solutionproduced by Sarkar's algorithm would have cost at least �(m log2 n), but the optimal solution isjust the length of the longest chain, which is 2m logn. Therefore (for large m) Sarkar's algorithmgives a
(logn) approximation.6 NP-completeness ProofWe prove that the Loading Time Scheduling Problem is NP-complete even for the case of a constantnumber of machines, and M(i) = 1, by a polynomial time reduction from the Shortest CommonSupersequence problem [6, problem SR8]).Shortest Common Supersequence: Given a �nite alphabet �, �nite set R of sequences from��, and a positive integer K. Is there a string X 2 �� with jX j � K such that each sequenceSi 2 R is a subsequence of X , i.e., X = x0si1x1si2 : : :sipxp where each xj 2 �� and Si = si1si2 : : :sip?This problem is known to be NP-complete even when j�j = 5 [11] as well as when j�j = 2 [14].Recently, it has been show to be MAX SNP-hard over a binary alphabet as well [2].Theorem 19 LTSP is NP-complete and MAX SNP-hard for � � 4.Proof: It is easy to see that the problem is in NP since we can verify a given partitioning of Veasily. We will prove that it is NP-hard by a reduction from the Shortest Common Supersequenceproblem (SCS). Assume that R contains sequences S1; : : : ; S`, and that Pì=1 jSij = n.We will prove the problem NP-complete and MAX SNP-hard for the case when each task canbe done only on a single machine, i.e., jM(i)j = 1, and � = 4. A sequence x1x2 : : : simply denotes aset of tasks, such that task i can be done on machine xi, and that xi needs to be done before xi+1.The set of machines is � [�0 , where �0 = fa0ja 2 �g. We are assuming that for every a 2 �; a0 isa new letter not already in �. So the number of machines is twice the alphabet size. The loadingtime for all the machines is the same (unit loading time).For the reduction, we create a set R0 of chains C1; : : : ; C`.R0 = fs1s01s2s02s3s03 : : :sps0pjs1 : : :sp 2 Rg. In other words, we replace every letter sj by sjs0j .We claim that the optimal schedule for the LTSP has loading time 2K if and only if the shortestsupersequence of the SCS is of length K.We �rst prove that if the shortest supersequence is of size K then there is a schedule withloading time 2K. Let the shortest supersequence be X = X1X2 : : :XK, where Xi 2 �. We leave itto the reader to verify that X1X 01 : : :XKX 0K is a valid schedule for all the chains.We now prove that if the shortest supersequence is of length K, then any schedule must havelength � 2K. Let the schedule have length L. We can view this schedule as a sequence X from thealphabet �[�0 of length L. From this sequence we obtain 2 sequences X 0 and X 00. X 0 is obtainedfrom X by removing all the letters from �0. X 00 is obtained from X by removing all the lettersfrom �, and then substituting every letter by its corresponding letter in � (i.e., replace s0j by sj).Note that both X 0 and X 00 are supersequences for the SCS. Therefore jX 0j � K and jX 00j � K.Thus, L = jX 0j+ jX 00j � 2K.The following theorem is obvious. 17

Theorem 20 The Loading Time Scheduling Problem can be solved in polynomial time for � = 2.A recent result of [13] implies that LTSP is NP-complete for � = 3.7 Weighted Shortest Common Supersequence problemAs an application of our result we give a � approximation algorithm for the WSCS problem. WSCSis a generalization of the SCS problem where the letters in the alphabet have weights associatedwith them and we want to compute a common supersequence with minimum weight. Note that,if with every letter of the alphabet, we associate a machine, with loading time equal to the weightof the letter, then the sequence of machines that correspond to the optimal solution to the WSCSinstance, would occur as a subsequence of a pre�x of the universal sequence of total loading time atmost � �OPT. Here OPT is the weight of the optimal solution of the WSCS instance. This followsfrom the fact that Theorem 8 holds even for those schedules where consecutive schedules of thesame machine are allowed. So the algorithm presented in Subsection 3.2 gives a � approximationfor the WSCS problem.AcknowledgementsWe are extremely grateful to Satyandra Gupta for telling us about this scheduling problem. Wewould like to thank Yossi Azar and Yishay Mansour for letting us include their suggestions regardinguniversal sequences (Subsection 3.2). We thank Amos Fiat and Uzi Vishkin for helpful discussions.We thank Tao Jiang and Ming Li for pointers to references [2, 14].References[1] Y. Azar. personal communication (1995).[2] P. Bonizzoni, M. Duella and G. Mauri. Approximation complexity of longest common sub-sequence and shortest common supersequence over �xed alphabet. Technical Report 117/94,Universita degli Studi di Milano, (1994).[3] D. Das, S. Gupta and D. Nau. Reducing setup cost by automated generation of redesign sugges-tions. Proc. ASME Computers in Engineering Conference, pages 159{170, (1994).[4] J. Ferannte, K. Ottenstein and J. Warren. The program dependence graph and its uses inoptimization. ACM Transactions of Programming Languages and Systems, pages 319{349,(1987).[5] D. Foulser, M. Li and Q. Yang. Theory and algorithms for plan merging. Arti�cial IntelligenceVol 57:143{181, (1992).[6] M. R. Garey and D. S. Johnson. Computers and intractability: a guide to the theory of NP-completeness, Freeman, San Francisco, (1979).[7] S. Gupta. personal communication.[8] C. C. Hayes. A model of planning for plan e�ciency: Taking advantage of operator overlap.Proc. of the 11th International Joint Conference of Arti�cial Intelligence, pages 949{953 (1989).18

[9] T. Jiang and M. Li. On the approximation of shortest common supersequences and longest com-mon subsequences. Proc. of 21st International Colloq. on Automata Langs. and Programming,pages 191{202, (1994).[10] E. Lawler, J. Lenstra, A. Rinnooy-Kan, D. Shmoys. Sequencing and scheduling: algorithmsand complexity. Handbooks in Operations Research and Management Science, Vol 4: Logisticsof Production and Inventory, (Eds: S. C. Graves, A. H. G. Rinnooy Kan and P. Zipkin).[11] D. Maier. The complexity of some problems on subsequences and supersequences. Journal ofthe ACM, Vol 25:322{336, (1978).[12] Y. Mansour. personal communication (1995).[13] M. Middendorf. Supersequences, Runs, and CD Grammar Systems. Developments in Theo-retical Computer Science, 101-114, Topics in Computer Science, Vol. 6, (Eds: J. Dassow, A.Kelemenova).[14] K. J. Raiha and E. Ukkonen. The shortest common supersequence problem over a binaryalphabet is NP-complete. Theoretical Computer Science Vol 16(2):187{198, (1981).[15] V. Sarkar. Instruction reordering for fork-join parallelism. Proc. of ACM SIGPLAN-PLDIConf., pages 322{336 (1990).[16] T. Sellis. Multiple-query optimization. Transactions on Database Systems, Vol 13(1): 23{52,(1988).

19

