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Abstract

We propose a hybrid method for synthesis of hierarchical structured Petri nets. In a top-
down manner, we decompose a system into a set of subsystems at each level of abstraction, each
of these is specified as a blackbox Petri net that has multiple inputs and outputs. We stipulate
that each subsystem satisfies the following I/O constraints: (1) At any instance of time, at
most one of the inputs can be activated; and (2) If one input is activated, then the subsystem
must consume the input and produce exactly one output within a finite length of time. We
give a stepwise refinement procedure which starts from the initial high-level abstraction of the
system and expands an internal place of a blackbox Petri net into a more detailed subnet at
each step. By enforcing the I/O constraints of each subsystem in each intermediate abstraction,
our refinement maintains the sequencing of transitions prescribed by the initial abstraction of
the system. Next, for the bottom-up synthesis, we present interconnection rules for sequential,
parallel, and loop structures and prove that each rule maintains the 1/O constraints. Thus, by
incorporating these interconnection rules into our refinement formulation, our approach can be
regarded as a hybrid Petri net synthesis technique that employs both top-down and bottom-up
methods. The major advantage of the method is that the modeling details can be introduced
incrementally and naturally, while the important logical properties of the resulting Petri net are

guaranteed.

*This research was supported by NASA Grant No. NAG 5-2648.



1 Introduction

Petri nets have been proposed for modeling and analyzing concurrent systems [3, 4, 6]. But, most
systems that arise from practical applications are very complex and practically unmanageable.
For this reason, modular construction methods provide a mechanism to manage the complexities
of a large system that can be built out of well understood smaller subsystems. One way to do
this is through Petri net synthesis based on some prescribed construction rules which preserve
certain logical properties as the construction progresses. Petri nets can be constructed in either
a top-down or a bottom-up manner. Top-down synthesis [7, 8, 10] usually begins with an initial
model of the system. Then, by expanding places or transitions, refinement is done in a stepwise
manner to incorporate a more detailed description of the system into the model. In the bottom-up
approaches [1, 2, 5, 9], a system is treated as the composition of independent subsystems which
satisfy certain properties. Each subsystem is modeled separately while ignoring interactions with
other subsystems. These subsystems are then combined through common places and/or transitions
into a larger subsystem at each synthesis step. The reader may refer to [11] for a detailed summary
with synthesis examples for such methods.

In this paper, a (sub)system at the current abstraction level is viewed as a blackbox with
multiple inputs and outputs that transforms input data into output data. For this purpose the set
of places of a net is divided into input places, output places, and internal places. The internal places
and the transitions are hidden from the outside. The only requirements for a net with multiple
inputs and outputs are the following I/O constraints: (1) At any instance of time, at most one of
the inputs can be activated; and (2) If one input is activated, then the subsystem must consume the
input and produce exactly one output within a finite length of time. Another implicit assumption
involves the initial state of a subsystem or module in which an input satisfying condition (1) is
applied. We call this condition (0): A subsystem is said to be in its quiescent state iff no inputs are
activated, no outputs are produced, and no internal actions are enabled. The inputs to a subsystem
can be activated only when the subsystem is in its quiescent state. What we assume, then, is that
the subsystem is in a quiescent state initially. Then an input is applied. This causes some internal
actions in the subsystem which produces an output and a return of the subsystem to a quiescent
state.

We propose a hierarchical structuring technique for hybrid synthesis of Petri nets which model
subsystems with the above system behavior. The synthesis process is divided into two major phases
: (1) the top-down phase where designers decompose a system by using stepwise refinement of an
internal place at each step to introduce more detail until the desired level is reached, and (2) the

bottom-up phase where the appropriate interconnection among the decomposed subnets is added



to the net at each decomposition step. Starting from the initial high-level abstraction of the system,
we show how stepwise refinement can be made so that the I/O constraints are enforced in a lower
level abstraction of the system. Using this approach, each intermediate abstraction maintains the
sequencing of transitions with respect to(w.r.t for short) the initial high-level description. For the
bottom-up synthesis, we propose a set of interconnection rules for the subsystems so that the 1/0
constraints can be guaranteed when they are interconnected into a Petri net to represent sequence,
fork-join, and loop structures. As a result, our hybrid approach preserves logical properties such
as deadlock freedom, liveness, and boundedness while making it possible to represent several useful
structures among the subnets.

The paper is organized as follows. Section 2 briefly describes Petri net models, including some
basic definitions and notation. Section 3 formalizes the stepwise refinement process and provides
properties of the Petri net for a given level of abstraction of the system. In section 4, we show how
incremental analysis can be performed and why logical properties are preserved during the stepwise
refinement process. In section 5, we present a set of interconnection rules with which we can
maintain the I/O constraints. In section 6, we present our hybrid procedure for Petri net synthesis.
In section 7, we give an automated manufacturing system to demonstrate the applicability of our
synthesis method. Section 8 gives a conclusion and future direction. The proofs of most lemmas

and theorems in section 4 are given in the appendix.

2 The Petri Net Model

We give the basic definitions and notation to be used throughout the paper. The reader may refer
to [6] for a complete treatment of the subject.

A Petri net structure is a 3-tuple N = (P, T, F'), where P is a finite set of places, T is a finite
set of transitions, and F' C (P x T)U (T x P) is a set of arcs (flow relations). Throughout the
paper, we assume that N is ordinary, i.e., the weight associated with each arc is one. The number
of places (transitions) in N is denoted as |P| (|7'|). When N is given and F' is known, we also
denote N = (P,T). As a convention, we use p for a place and t for a transition. We denote
*t = {p|(p,t) € F} as the set of input places of transition t and t* = {p|(t,p) € F} as the set of
output places of transition t. Let *t®* = *t U ¢°.

Let T* be the reflexive, transitive closure of 7" under concatenation. Given o € T™, denote |o]
as the length of sequence 0. When o is empty, 0 = ¢ and |o| = 0. Given 7' C T, we use o|r’ for
the projection of ¢ onto T”.

A marking M for N is a |P|-tuple which is an assignment of non-negative integers to places in

P. Given p € P and M, M(p) denotes the value assigned to p in M, meaning the number of tokens



in place p in marking M. There is a special marking called the initial marking of N, denoted as
M,, indicating the initial assignment of tokens in each place. A Petri net N with the given initial
marking is denoted as PN = (N, M,). Given P’ C P, we also use M(P’) to denote the sub-vector
where each of its elements is the token count for a place in P’.

A Petri net can be drawn as a directed graph in which a place is represented by a circle, a
transition by a bar, and a token in a place as a bullet e in the corresponding circle.

Given a marking M, a transition ¢ is enabled in M iff M(p) # 0 for each p € *t. ¢ is fired in
M iff it is enabled in M and M is transformed into M’ such that (i) Yp € *t: M'(p) = M(p) — 1,
(ii) Vp € t* « M'(p) = M(p)+ 1, and (iii)) Vp € *t* : M'(p) = M(p). In this case, M’ is
directly reachable from M via t, denoted as M[t > M'. M’ is directly reachable from M, denoted
as M[ > M', iff M[t > M’ for some t € T'. Given o € T*, M’ is reachable from M via o, denoted
as M[o >M’, iff (i) M' = M when |o] = 0, or (ii) 0 = t,t,...4;,k > 0 and there exists a
sequence M°[t, > M'[t, > --- M* '[t, > M* such that M° = M and M* = M’. In this case,
o is called a firing sequence from M to M’'. M’ is reachable from M, denoted as M[>* M’', iff
JoeT*: M[o >M'. When M = M,, M’ is reachable and is said to be a reachable marking in
(N, M,), and o is called a firing sequence of M. The set of reachable markings in (N, M, ) is denoted
as RM(N, M,). The corresponding reachability graph is denoted as RG(N, M,). In the following,
we will use a reachable marking M and the node labeled as M in RG(N, M,) interchangeably.

Given a Petri net PN = (N, M,), PN is bounded iff RG(N, M,) is finite, i.e., 3K > 0 such
that VM € RG(N,My)Vp € P: M(p) < K. In this case, we also say PN is K-bounded. PN is
safe iff it is 1-bounded. PN is live (or M, is a live marking) iff VM € RM(N,My,)Vte T3IM' €
RM(N,M,): M[>* M’ and t is enabled in M’. A reachable marking M is a deadlock marking iff

no transitions are enabled in M.

3 Modeling Systems via Petri Nets

In this section, we discuss a top-down decomposition approach where the behavior of a subsystem is
regarded as a black box with certain inputs and outputs. The notions of abstraction and refinement
are formalized. Then we show how Petri nets can be used to model the system at each abstraction

level.

3.1 System Decomposition

A system can be modeled from top-down: the system is decomposed into subsystems; then each
subsystem is further decomposed into sub-subsystems, etc. Depending on the complexity of the

system under study and the level of detail desired for the analysis, this process may continue for



several iterations until no further decompositions are necessary. The hierarchical structure of the
system can be depicted by a tree, called a structure tree of the system, denoted as S7T. Fach node
in ST has a label J, standing for a subsystem of the system. In particular, the root of ST (labeled
as R) represents the whole system, while a leaf node in S7" stands for a subsystem without further
decompositions. Figure 1 shows a hierarchical decomposition of a system and the corresponding
structure tree. For each nonleaf node in 57, its children are its component subsystems through one
step decomposition. Depending on how a system is decomposed during the modeling process, the
corresponding 57" might not be unique. In the following discussion, we assume one such tree has
been constructed. For simplicity, when we talk about a structure tree, we mean it is a structure

tree of the system under study, unless otherwise explicitly specified.
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Figure 1: A Hierarchical Decomposition of a System and its Structure Tree

The set of leaf nodes in ST, denoted as LN, represents the level of abstraction at which we view
the system under study. Hence, LN is called an abstraction of the system. Each J € LN stands for
a subsystem at the current level of abstraction. We start modeling the system at a relatively high
level of abstraction, i.e., the system consists of only a few subsystems. Then we specify the set of
properties the overall system is supposed to have as the specification of the system’s behavior. The
set of properties includes deadlock freedom, liveness, observational equivalence, and finite duration.
The initial structure tree is denoted as ST°. The corresponding set of leaf nodes is called the initial
abstraction of the system, denoted as L N°. From now on, we will be working with abstractions
only. It should be clear, however, when we refer to an abstraction LN, we mean that it is the set
of leaf nodes w.r.t some structure tree for the system under study.

Given two abstractions LN and LN’, LN’ is called a one-step refinement of LN, denoted as
LN < LN' iff LN = (LN\{J}) U{J, Jo,..., ]}, k > 2, where {J,, J5,..., Ji} is the set of
component subsystems of J via one step decomposition. In other words, let ST and ST’ be the

corresponding structure trees of LN and LN', respectively. ST is expanded into ST’ by appending



to a leaf node J in ST with k£ > 2 new leaf nodes J;,J,,...,J,. Denote <* as the reflexive,
transitive closure of <. LN’ is a refinement of LN iff LN <* LN’. When LN = LN°, we
simply say LN’ is a refinement. Denote RF as the set of abstractions that are refinements, i.e.,
RF = {LN|LN°® <* LN}. In the rest of the paper, we will be working with abstractions in
RF only. Unless otherwise specified, when we refer to an abstraction LN, we mean that it is a
refinement of the initial abstraction LN°.

Note that the high level of sequencing that exists among the leaf nodes in LN° is an essential
part of the system specification that we are interested in. As refinements are made, we desire, in
some sense, to maintain this basic sequencing as specified in LN®, even though more details unfold
and considerable parallelism may arise in a lower level of abstraction represented as LN.

Given an abstraction LN, a subsystem J in LN is specified as a black box with m > 1 inputs and
n > 1 outputs, as depicted in Figure 2. We stipulate that J satisfies the following 1/O conditions:

A1: At any instance of time, at most one of the m inputs can be activated.
A2: At any instance of time, at most one of the n outputs can be produced.

A3: Given an input, J must produce exactly one of the n outputs within a finite length of time.

Since we assume the quiescent state of J as the prerequisite before an input satisfying A1 is applied,

we say that J satisfies the I/O conditions A1 through A3 if A7 implies A2 and AS3.

m inputs
Subsystem J
n outputs Py P2y P out

Figure 2: Subsystem I/O Interface and Blackbox Petri Net Model

3.2 Petri Nets for Abstractions

We model the system behavior w.r.t abstraction LN by a Petrinet N = (P, T') as follows. Each sub-
system J € LN is modeled as a subnet BN, = (BP;, BT,) of N, called the blackbox Petri net of .J.

See Figure 2. Suppose J has m inputs and n outputs, the corresponding BN ; consists of five parts:



(1) m input places BP = {p ,p? .....,p"}, (2) m input transitions BT% = {t! ¢ ,...,t"}, (3)

in? Lins
one internal place p**, (4) n output transitions BT = {t} ,,t,,,...,1"..}, and (5) n output places
BPs ={p. ., Pouis- P} Hence BP, = BP» U{py"} U BP¢*" and BT, = BT} U BT$*'. The
interactions among subsystems in LN are modeled by interconnecting the blackbox Petri nets of
the subsystems via additional places and transitions in N, denoted as X P and X7, respectively.
As a result, for Petri net NV, we have P = (U, .,y BP,)UXPand T = (U, .,y BT,;)UXT. When
J is known and no confusion arises, we drop J from the above notations.

Specifically, the Petri net for LN® is denoted as N° = (P°,1°), called the initial Petri net of
the system under study. A marking in N° is denoted as M0. The initial marking of N° is denoted
as MO,.

Note that since we are modeling a subsystem as a Petri net, the phrase “at any instance of
time” in A1-A2 becomes “in each reachable marking”, while the phrase “within a finite length of
time” in A3 becomes “within a finite number of steps” (from the current marking).

Given an abstraction LN, let N be the corresponding Petri net. We conduct reachability
analysis for N based on some initial marking M,. Denote RG(N, M,) as the resulting reachability

graph. We check that the following conditions hold for RG(N, M,):

B1: RG(N,M,) is finite.

B2: My(p™) =0 for each BN in N.

B3: For each reachable marking M, for each blackbox Petri net BN in N with m inputs
and n outputs, the following two conditions hold: (1) Vi € [1.m] : M(p,,) < 1. (2) If
Jie[l.m]: M(p,,)=1,thenVje[l.m],j#1: M(pl)=0.

In the analysis of N, by enforcing B2-B3, we make sure that the precondition A7 is satisfied for
each subsystem J € LN. By construction of BN, it is straightforward that conditions 42-A48 hold
for J at abstraction level LN provided that B2-B3 hold in RG(N, M,).

In the rest of this section, we study the properties of RG(N, M,). Unless otherwise specified,

we assume that RG(N, M,) satisfies conditions BI-B3 in the rest of this paper.

Lemma 3.1 Suppose M,[c > M, in RG(N, M,). The following statements are true: (1) If |o|sr| =
0, then M,(p™*) = M,(p™"). (2) Suppose o = ti o', where |o/|sr| = 0. Then each transition in o’
is independent of t! . (3) If |o|srevt| = 0, then |o|srin| < 1. (4) If |o|srout| = 0, then |alsrin| = 0 iff
Mo(p™) = Mi(p™)-

Lemma 3.2 Suppose M, is reachable from M, via ¢ in RG(N,M,), where M,(p™) = 0. Let
k = |olsreut|. Then k < |olsrin| < k + 1. Furthermore, M, is reachable from M, in RG(N, M,) via
7= Mo - - MMky1 such that the following four conditions hold: (1) |nlsr| = 0. (2) VI € [1..k] :

n = nix,y,, where z, is the [-th transition from BT in o, y, is the [-th transition from BT°* in o,



and |njlsr| = 0. (3) |Meyolerowt| = 0. (4) alir\sm) = nlir\B1).

An execution sequence ¢ from M, to M, is called a canonical execution sequence w.r.t BN iff
it satisfies conditions (1)~(4) in Lemma 3.2. When M, = M,, it is called a canonical execution
sequence for reachable marking M, w.r.t BN. Since M,(p'*) = 0, any execution sequence for a
reachable marking M can be rewritten into its canonical form w.r.t BN. As a result, we have the

following theorem:

Theorem 3.1 Let M be a marking in RG(N, M,). The following statements are true for each
JE€LN:

1) M is reachable in RG(N,M,) via a canonical execution sequence w.r.t BN .

2) For each execution sequence o of M, |o|sreut| < |o|prin| < |o|srewt| + 1.

)
)
)
)
)
)

3) M(p") = 0 iff there is an execution sequence o for M such that |o|srin| = |o|srut].
4) M(p7*) = 1 iff there is an execution sequence o for M such that |o|sry| = |o|srewt| + 1.
5 ( znt) < 1.

(
(
(
(
(
(6) Vpe BP :M(p) < 1. If Ipe BP :M(p) =1, then Vp' € BP p' £ p: M(p') = 0.

In fact, we can prove the following more general result.

Lemma 3.3 Suppose M,[c > M, in RG(N, M,). Then the following statements are true:
(1) Assume M,(p™") = 0. M,(p™*) = 0 iff |o|prin| = |o|srent].
(2) Assume M,(p) = 0. My(p*) = 1 iff |olsrin| = |o|provt| + 1.
(3) My(p™) = My(p™) iff |olprin| = |olprow].

4 Incremental Analysis of Petri Nets

Given two abstractions LN and LN'. Let N = (P,T) and N’ = (P’,T') be the Petri nets of
N and N’, respectively. Suppose LN < LN’ by decomposing J € LN into k > 2 components
JiyJoy ooy Je. Assume that J has m inputs and n outputs, and J;,1 € [1..k], has m, input and n,
output. Let BN be the blackbox Petri net for J, and BN, be the blackbox Petri net for .J,. We
show how N’ can be constructed from N so that the properties that hold for N will be preserved
in N'. The construction of N’ from N takes two steps. We first construct a detailed Petri net for

J, then we expand N into N’ by replacing p'™ of BN in N with the detailed Petri net for .J.

4.1 Petri Net Expansion

The detailed Petri net for J is called the whitebox Petri net for .J, denoted as WN, = (WP,, WT,).
Specifically, W N consists of three parts: (1) m input places, denoted as WP = {q¢! . ¢,,....q7}.



(2) An internal Petri net IN, = (I P,,IT,) constructed by interconnecting the blackbox Petri nets
BN, ,BN,,...,BN, via some additional places and transitions. (3) n output places, denoted
as WP ={¢ .. @Corr--->q" }- Denote EP; and ET; as the set of additional places and the set
of additional transitions in IN,, respectively. For IN,, we have IP, = (U_, BPJZ) U FP; and
IT; = (U;_, BT,))UET;. For WN,, we have WP; = WP UIP,UWPs** and WT,; = IT;. When
J is known and no confusion arises, we drop J from the above notations.

Given the whitebox Petri net WN of J, a quiescent marking 1) of IN is an assigment of
tokens to I P such that no transition in I7T is enabled in I(). Given a quiescent marking 10,
the null marking of WN, denoted as WM?[IQ)] is an assignment of tokens to WP such that
Vp € WP UWP™: WMJ(p) = 0 and WMP[IQ](IP) = IQ, and the i-th initial marking of
WN w.a.t 1Q), denoted as WM[IQ],7 € [1..m], is an assignment of tokens to W P satisfying the
following three conditions: (1) VI € [l.m] : WM IQ](¢,) = 1 if I = ¢ WMIQ](¢,) = 0
otherwise. (2) WM[IQ](IP) =1Q. (3) VI € [1..n] : WMIQ](¢',,) = 0. A j-th exit marking of
WN w.a.t IQ, denoted as WM? [IQ], is an assignment of tokens to W P satisfying the following
three conditions: (1) VI € [1l.m]: WM? [IQ](¢;,) = 0. (2) VI € [1l.n] : WM?_[IQ](¢,,) = 1 if
l=j; WM? [IQ](4.,,) = 0 otherwise. (3) WM? [IQ](IP) = 1Q’, where IQ' is also a quiescent
state of IN. Note that there might be more than one exit marking satisfying condition (1)—(3),
each of which has a different 1Q)’.

Let S be a nonempty set of quiescent markings of IN. S is closed ifft VIQ) € 5 : Vi€ [l.m]:
Vje[l.n]:3IQ" € S WMIIQ)>* WM? ,[IQ']. A quiescent marking IQ is closed iff it belongs
to some closed quiescent marking set.

Gniven a closed quiescent marking 1¢) of I N, the analysis for W N takes m phases. In the ¢-th
phase, we construct the reachability graph RG(W N, W M;) based on the i-th initial marking W M;
w.r.t 1Q). (In the rest of this section, we omit /() from the notation when no confusion arises, for

the sake of brevity.) We check that the following properties hold in RG(W N, W M;):

W1: ¥j € [l..n]: there exists at least one reachable j-th exit marking of W N, and for each exit
marking WM? , WM,

W2: RG(WN,WM;) is finite and there is no reachable marking that is not an exit marking
and has no outgoing transitions in RG(W N, W M¢).

W3: Each reachable marking WM in RG(WN,WM;) satisfies the following two conditions
for each BN, € [1.k], in WM: (1) Vi € [L.m] : WM(p,) < 1. (2) if 37 € [1.m] :
WM(p,,) =1, thenVj€[l.m],j#t: WM(pl,,)=0.

(IP) is also a closed quiescent marking of I N.

By definition, we have W M;(p'*) = 0 for each [ € [L..k]. By W2, RG(WN,W M) is finite.
W3 ensures that A1is preserved in each subsystem BN ;. Therefore, RG(W N, W M;) also satisfies
properties BI-B3. As a result, properties in Theorem 3.1 also hold for RG(W N, W M;). For ease



of reference, we list them as a theorem below:

Theorem 4.1 For each ¢ € [1..m], let WM" be a marking in RG(WN,WM;). The following
statements are true for each BN, [ € [1..k]:

(1) WM is reachable in RG(W N, W M;) via a canonical firing sequence w.r.t BN .

(2) For each firing sequence o of WM", |olsrs«t| < |olprip| < |olsrse| + 1.

(3) WM*(p) = 0 iff there is a firing sequence o for WM* such that |o]sry| = [o]srg:|.

(4) WM'(p5') = 1iff there is a firing sequence o for WM" such that |olsrir| = |olsrse| + 1.

(5) WM (p) < 1.

(6) Vp e BPy : WM'(p) < 1. If 3p € BP3* : WM'(p) = 1, then Vp' € BPy.,p' # p:
WM(p')=0.

We remark that the setting of IQ) for IN in W N is not as simple as just setting all the places
in I N to have zero tokens. Rather, it depends on the interconnections of the k£ blackbox Petri nets
in I'N, where the real test is to check that whether I'Q) is a closed quiescent marking of I N. Note
that IQ) being a closed quiescent marking of I N implies that WM? (I P) is also a closed quiescent
marking of I N for each exit marking WM? , in RG(WN,WAM;). Note also that there might exist
a cycle in RG(WN,WM;). To preserve A3in WN, we also need to assume that the system will
not stay in a cycle indefinitely.

Once W N is built and analyzed, we plug in W N for p'* of BN in N to construct N/ via the

following steps:

Step 1: Initially, set N as N.

Step 2: Delete p'™* and all its input and output transitions from N’.

Step 3: For each input place ¢ ,¢ € [1..m], of WN, direct an edge from ¢! to ¢ .
Step 4: For each output place ¢’ ,,i € [1..n], of WN, direct an edge from ¢’ , to t,,.
Step 5: Output N’. End of procedure.

Figure 3 shows the portion of N’ resulting from substituting W N for p'"* in BN of Figure 2.

By construction, we have P’ = (P\ {p"™})UWP and T" = TUWT in N'. The initial marking
of N, denoted as M/, is an assignment of tokens to P’ such that (1) M{(P\{p™}) = M,(P\{p"}),
(2)Vie[l.m]: M!(q,)=0,(3) M/(IP)is a closed quiescent marking in /N, and (4)Vj € [1..n]:
M;(¢},.) =0. Hence VJ' € LN’ : M(p';*) = 0. Hence no transition of WT is enabled in M,. The
reachability graph for N and M/ is denoted as RG(N', M}).

N'is called the one-step refinement of N (via the expansion of J in N), denoted as N < N'.
N"is a refinement of N iff N <* N”. The set of Petri nets that are refinements of N, is denoted
as PN, i.e., PN = {N|N, <* N}. As for abstractions, we are only interested in Petri nets that

10
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| (detailed PN for J)

|

Figure 3: One-Step Decomposition of J and its corresponding Petri Net Expansion

are refinements of NV,. From now on, when we refer to a Petri net NV, we mean N € PN, unless
otherwise specified.

In the following subsection, we are going to study the set of properties in RG(N, M,) that are
preserved in RG(N', M}). Unless otherwise specified, we assume RG(W N, W M) satisfies W1-W3
for each i € [1..m] and WM/(IP) is a closed quiescent marking of IN.

4.2 Property Preservation

Lemma 4.1 Suppose M/[oc > M]in RG(N', M) and |o|sr vwr)|=0. Then M}(W P) = M](W P).
If AM, € RG(N, M) : My(P\{p™}) = M/(P\{p™}), then I M, € RG(N,M,) : M,[oc > M, such
that My(P\{p™})=M;(P\{p™}) and My(p™)=M,(p™).

Lemma 4.2 Suppose M/[c > M! in RG(N', M) such that |olsrevt| = 0. If 3 M, € RG(N, M,) :
M, (P\{p™})= M](P\{p™}), then 3 M, € RG(N, M,)such that M, [o|lr > M, and M,(P\{p™}) =
MI(P\{p™}). Hence |o|srin| < 1.

Lemma 4.3 Suppose M|[c > M, in RG(N', M]) such that the following conditions hold: (a)
M/ (WP) = WM. (b) 3M, € RG(N,M,) : M,(P\{p™}) = M/(P\{p™}). (¢c) o =t o't

out?

where ! € BT, ¢/ € BT, and |o'|srevt| = 0. Then the following statements are true: (1)

out

11



|o’|srin] = 0. (2) M][nt, 6t > M]in RG(N', M!), where § = ¢'|wr is a firing sequence from W M;
to WM?, and n = o'\ 6§ = o'’ \(srowr). (3) MJ(WP)=WM. (4) 3M, € RG(N,M,) such

that M, [olr > My, My(P\{p™}) = M,(P\{p"™}), and M,(p™) = M, (p"™).

We show that each firing sequence in RG(N', M]) has a corresponding canonical sequence similar

to the one in Lemma 3.2.

Lemma 4.4 Suppose M/ is reachable from M) via o in RG(N', M) such that M](WP) = WM.
Suppose also that 3 M, € RG(N, M,) such that M,(P\{p"}) = M/(P\{p™}). Let k = |o|srout].
Then k& < |olpr»| < k4 1. Furthermore, M/ is reachable from M| in RG(N', M]) via n =
ToT *+ - MMeyr such that the following four conditions are satisfied: (1) |plisruwn| = 0. (2)
1€
[1..m]; (b) y, is the [-th transition from BT°* in o, denoted as y, = ¢ ,,j € [1..n]; (¢) §, is a firing
sequence from WM} to WM? , in RG(WN,M;); and (d) |nle' \sruwry| = 0. (3) nqqlpront = €.

ext

Vie[l.k]:n = z,6ymn, where (a) z, is the [-th transition from BT*" in ¢, denoted as z, = ¢!

in?

(4) nler’ \(sTuwT)) = Ol \(BT UWT)).

Lemma 4.5 Suppose M/[c > M/ in RG(N', M}), where M/(WP)=WM?. Then M/(WP) =
WM iff |o|prin| = |o|prout|.

A firing sequence o from M| to M} in RG(N', M]) is called a canonical firing sequence w.r.t

WN iff M{(WP) = WM and conditions (1)~(4) in Lemma 4.4 hold for ¢. When M/ = M{,
o is called a canonical firing sequence for reachable marking M]. Since M/(WP) = WM}, the
above Lemma 4.4 and Lemma 4.5 hold for any firing sequence for any reachable marking M’ in

RG(N', M]). As a result, we have the following theorem:

Theorem 4.2 Let M’ be a marking in RG(N', M}). The following statements are true:

(1) M’ is reachable in RG(N', M) via a canonical firing sequence w.r.t WN.
(2) |olprout| < |olprin| < |o|sreut| + 1 for each firing sequence o of M.
(3) M'(P\{p™}) = WM iff there is a firing sequence o of M’ such that |o'|srin| = |o'|prout]

We first show that RG(N', M!) does not introduce any “extra” firing sequences whose projec-

tions onto 1" are not in RG(N, M,).

Lemma 4.6 Suppose M/[¢" > M, in RG(N', M), where M](WP)= WM. If 3 M, € RG(N, M,)
such that M,(P\{p™}) = M/(P\{p™'}) and M,(p™") =0, then I M, € RG(N,M,) : M,[c > M,
such that M,(P\{p™}) = MJ(P\{p"*}) and o = o’|r.

Next, we show RG(N', M]) preserves all the firing sequences in RG(N, M,).

12



Lemma 4.7 Suppose M,[c > M, in RG(N,M,), where M,(p™") = 0. If 3 M€ RG(N', M) such
that M/(P\{p"}) = M, (P\{p"*}) and M](WP)=WM?, then 3 M€ RG(N', M) : M][o' > M]
such that MJ(P\{p™}) = M,(P\{p"'}) and o'|r = 0.

Notice that M,(P\{p""'}) = M (P\{p"™'}), M,(p""*) = 0, and M({P) = IM,. Denote ES =
{e|3M € RG(N,M,) : Mylo >M}, ES' = {o/|IM’ € RG(N',M]) : M![o' >M'}, and ES|r =
{d'|r|c’ € ES’}. By Lemma 4.6 and Lemma 4.7, we obtain the most important result of the

refinement process : the Sequence Preservation Theorem.

Theorem 4.3 (Sequence Preservation) Suppose M is reachable in RG(N, M,) via o, then there
is an M’ reachable via ¢’ in RG(N', M]) such that M'(P\{p™}) = M(P\{p™'}) and o'|r = 0.
Conversely, suppose M’ is reachable via o’ in RG(N’, M), then there is an M reachable via o in
RG(N, M,) such that M(P\{p"'}) = M'(P\{p™}) and 0 = o’|r. As a result, ES = ES’|r.

By this powerful theorem, we can show that RG(N’, M!) maintains the set of properties in
RG(N, M,) as stated in the following theorem:

Theorem 4.4 Given Petri nets N < N'. Let RG(N, M,) and RG(N’', M) be the corresponding
reachability graphs of N and N’, respectively. The following statements are true:

o Deadlock: RG(N,M,) is deadlock free iff RG(N', M) is deadlock free.

o Liveness: A transition t € T is live in RG(N, M,) iff it is live in RG(N', M!).
o Input Constraint: RG(N', M]) satisfies B3.

o Boundedness: RG(N', M}) is bounded iff RG(N, M,) is bounded.

Since RG(N, M,) satisfies B1-B3, by definition of M, RG(N', M}) satisfies B2. From the above
theorem, we know that B2-B3 are also true for RG(N', M!). As a result, RG(N', M!) maintains
conditions BI1-B3 of RG(N, M,) after the refinement of N into N’. Therefore, Theorem 3.1 is also
true for RG(N', M}).

Theorem 4.5 Let M be a marking in RG(N', M]). The following statements are true for each
J' € LN":

2) For each firing sequence o of M’ |alsrot| < |alsriz| < |olsrost| + 1.

J! J!
'(pii') = 0 iff there is a firing sequence o for M’ such that |o|srin| = |o|srop

gt

M
M'(p%it) = 1iff there is a firing sequence o for M’ such that |olsrin| = |alsrex| 4 1.
M'(pt) < 1.

peBP :M(p) < 1. If 3pe BPy: M'(p)=1, then Vp' € BP3*, p' # p: M(p')=0.

<C
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Recall that N° is the initial Petri net for the system under study and M0, is the initial marking
of N°. Assume RG(N°, MO,) satisfies BI1-B3. Based on the results established so far, by induction
on the number of refinement steps, we are able to show that VN € PN : RG(N, M,) preserves the
set of properties of RG(N°, MO0,) as stated by the following theorem.

Theorem 4.6 VN : N° <* N the following statements are true:

o Firing Sequence: ES, = ES|r,.
Deadlock: RG(N, M,) is deadlock free iff RG(N°, M0,) is deadlock free.
Liveness: A transition t € T} is live in RG(N, M,) iff it is live in RG(N°, M0,).
Input Constraint: RG(N, M,) satisfies B3.
o Boundedness: RG(N, M,) is bounded iff RG(N°, M0,) is bounded.

Therefore, RG(N, M,) also satisfies conditions B1-B3. As a result, Theorem 4.5 also hold for
RG(N, M,).

Theorem 4.7 VN : N° <* N, let M be a marking in RG(N', M!). The following statements are
true for each J € LN:

(1) M is reachable in RG(N, M) via a canonical firing sequence w.r.t BN .

(2) For each firing sequence o of M, |o|srest| < |o|srin| < |o|prowt| + 1.

(3) M(p'7*) = 0iff there is a firing sequence o for M such that |o|srin| = |o]prout|.

(4) M(p*) = 1 iff there is a firing sequence o for M such that |o|srir| = |o|ret| + 1.
(5) M(py*) < 1.

(6) VpeBP :M(p) < 1. If 3pe BP:M'(p)=1, then Vp' € BP p # p:M(p')=0.

5 Interconnection Rules

We discuss a set of interconnection rules with which we can provide substantial parallelism while
maintaining the I/O constraints Al through A3. These are for sequential, parallel, and loop
structures. For each structure, we provide or specify the inputs and outputs of the interconnected
system and a procedure to connect the subsystems. Note that each structure is also a subsystem
itself in the sense that it has multiple inputs and outputs and can be used as a building block when

we construct a larger structure.

Definition 5.1 Given an interconnected system J = {Jy,...,J i}, k > 1, each input or output of
Jm € J is said to be either bounded w.r.t J iff it is connected to some input or output of J, € J or
free w.r.t J iff it is not bounded w.r.t J, i.e., it is not connected to any input or output of J. Note

that each place in a Petri net N; can be classified as either bounded or free with respect to N, since

14



we are modeling a subsystem J; as a Petri net N;. Let P be the set of free input places of N;

and PZ»XO“t be the set of free output places of ;.

5.1 Sequential Structure

Assume there are k > 2 subsystems J;, modeled by N; = (P;,T;) , 1 < i <k, with m; inputs and
n; outputs, respectively. We interconnect these subsystems in sequential order such that the firing
sequence for the interconnected system J = Jy0Jy0...0.J; should be of the form Ji;...; J,,, where
1 <1< m < k. Let a Petri net modeling the system be N = (P, T), where P = (U%_, P;)|J X P and
T = (UL, T;) U XT. The firing sequence for J = J; 0 Jy0...0.Jy should be of the form Jj;...; J,,
where 1 <[ < m < k. For example, the possible firing sequences for the execution flow diagrams
in Figure 4 are J;_1,(Ji—1;J), (Jiz1; Jis Jig1), Ji, and (Ji; Jipq) for (a) and (J;—1, Ji, Jiy1) for (b),

respectively.

@ (b)

Figure 4: Sequential Iixecution Flow Diagrams

Let ¢} be the nonempty set of bounded output places in N; and R be the nonempty set of
bounded input places in N;4q1. To associate () with R, we need a set of transitions 7. The arcs

from @ to T and from T to R are generated by the following two mappings:

Definition 5.2 A pair of mappings (f,¢) is C(concatenation)-applicable with respect to (Q, R) iff
there exists a nonempty set of transitions 7" such that f : @ — T and g : T — R satisfy the

properties : (i) domain(f) = @, range(g) = R, (ii) if f(¢;) =t and f(g;) = t, then ¢; = ¢;, and
(i) if g(¢) = p; and g(t) = p;, then p; = p;.

15
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Figure 5: A Concatenation using a C-applicable pair and a Sequential Structure

Now, we give a sequential construction procedure based on C-applicable pairs:

Sequential(Jy,..., J;) ¢
1. (Input) Let the input places of N be P{™ [J(UE, PX™").
2. For each ¢,1 < ¢ < k, do the following:

o Devise a set of transitions 7; ;41 such that there exists a C-applicable pair (f;, g;) with
respect to (P2uH\ pXovt pin \ pXin),
o Generate arcs from P\ PX°"" to T ;41 and from Tj;q1 to P\ P according to

(fir9:)-

3. (Output) Let the output places of N be PZut [ J(uFZ! pXout),

Definition 5.3 A set of places P’ = {p1,--sPnt, P’ C P, is singly-activatedin a reachable marking
M in N = (P,T) iff there exists a place p; € P’ such that M(p;) = 1 and M(p;) = 0 for all

p; # pipj € P

Lemma 5.1 Let J = J; o J;41, where the bounded output places of N; are associated with the
bounded input places of N;y1 by a transition set 7" and a C-applicable pair (f,¢). If the bounded
output places of N;, @ = {q1,...,¢,},is singly-activated in a reachable marking M in N = N;oN;1q,
then there exists one and only one enabled transition ¢ in T, and furthermore, by firing ¢, the
bounded input places of N;y1, P = {p1,...,pm}, becomes a singly-activated set of places in M,
where M[t > M.
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Proof. Let t = f(¢;), where M(q;) = 1. Note that f(g;) should be defined by (i). Then, by our
construction, there is an arc from ¢; to ¢ and no arc goes to ¢ from other than ¢; in Q by (ii). Since
¢; is the only input place to the transition ¢ and M(¢;) = 1, t is the only enabled transition in T in
M. By firing t, we have the marking M, ie., Mt > M'. Now, by (iii), we can guarantee that P
is singly-activated in M.

Theorem 5.1 Any sequential structure J = Jy o...0 J; resulting from the procedure Sequential

preserves Al through A3 provided that each of the subsystems Jy, ..., J; satisfies A1 through A3.

Proof. It suffices to show that two subsystems J; and J;4q are interconnected into J = J; o J;4q
by Sequential(.J;, J;+1) while preserving the properties Al through A3. Then the theorem easily
follows from the induction on k. By our construction, the inputs and the outputs of J would be
Py P and PRovT Y P2 respectively. Assume that at most one of the input places P/ U P
can be activated at any instance of time. We deal with A2 first. Suppose Pﬁﬁ” and P4 are
empty, then J preserves the property since J; 4 satisfies A2 under the assumption that J;1q guar-
antees Al, which is clear from Lemma 5.1. If PZ»XO“t is nonempty, then either (i) at most one of the
P{ places is produced by the same argument as above or (ii) at most one of the PXowt places is
produced. By A2 of J;, it is clear that (i) and (ii) are exhaustive and mutually exclusive. Suppose
Pﬁﬁ” is nonempty. Then, by Al of J and Lemma 5.1, Al of J;4q is preserved. Thus A2 of J;1q
establish A2 of J. For A3, we know that J should produce an output within at most |o;|+ |o;41]+ 1
steps, where |ok|, k = ¢,7 + 1 is the maximum number of steps required for Nj to reach a marking

in which one and only one output of Ny is produced from an initial marking in which one of the

inputs of V; is activated.

5.2 Parallel Structure

Assume there are k > 2 subsystems J;, modeled by N; = (P,,T;) , 1 <1i < k, with m; inputs and n;
outputs, respectively. We interconnect these subsystems in parallel such that J;’s can be executed
concurrently. Denote the interconnected system J = Ji||Js]|...||Jx and a Petri net modeling the
system N = (P,T), where P = (U_, PYUXP and T = (U, 7)) UXT. It should be clear that
a parallel structure can be regarded as a set of subsystems whose inputs and outputs are all free.
Therefore we only have to provide selectors for inputs and outputs to enforce A1, A2, and A3 of
the interconnected system.

We give a parallel construction procedure with which we can preserve A1l through A3.

Parallel(.Jy,...,Ji) :
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1. (Input/Output) Generate input places @ = {q1, .. .,qnm.} of N. Also, generate corresponding

transitions 77 = {t! ..., gm’} and arcs A = {(¢;, 1)1 < i < [, m;} connecting Q
to T"". Generate output places Q' = {ql,.. ,an} of N. Also, generate corresponding
transitions T°% = {t! ... 10"} and ares A" = {(t',,¢.)|1 < i < [[*, n;} connecting T4
to Q.

7,1 7,7

2. Let (pj;j, oo pt) and (pi’it, .. ,pout) be the input places and the output places of J;, 1 <
1 < k, respectively. Let X = {(pm ),.. ,p )|1 <) <m(i),l <i<k}andV =

m

{(plﬁ(l),...,plzﬁ(k))|l < y(i) < n(i),1 <@ < k} be their input and output combinations,

respectively.

e Devise a bijection f: T — X.

: : 9
o For each i, € T, generate k arcs (t%,,p; " ),(t;n,pmﬁ)
1 k,
(pzna7pznﬁ7 . ‘7pin’y)‘
e Devise a bijection g : Y — T,
o Foreach t',, € T, generate k arcs (pli5, % ,), (pﬁﬁ, 1

0 k, _
pouﬂ“‘?pou’rf)) tlout

PR

Yoo,

. k, .
(tz'n?pin’y) ,Where f(tzn) =

k, 17
(pou?f? out) Where g((pouozlfv

Figure 6: Parallel Structure

Theorem 5.2 Any parallel construction J = Ji||...||Jy resulting from the procedure Parallel

preserves Al through A3 provided that each of the subsystems Jy, ...,

18

Ji satisfies A1 through A3.



Proof. Suppose two input places of NV are activated at a certain marking of N. Then, by our
construction step 2, there exists at least one subnet, say IV;, which has more than one activated
thread by firing the two transitions associated with the two input places of N. For A2, J preserves
it by our construction of ¢ and the assumption that Jy,-- -, J satisfy A2. For A3, we know that J
should produce an output within S35, |0y +2 steps, where |oy], 1 < i < k, is the maximum number
of steps required for N; to reach a marking in which one and only one output of N; is produced

from an initial marking in which one of the inputs of N, is activated.

5.3 Loop Structure

Assume there are k& > 2 subsystems J;, modeled by N; = (P;,T;) , 1 < i < k, with m; inputs
and n; outputs, respectively. We interconnect these subsystems to generate a loop which simulates
the repeated executions of the subsystem(s). Denote the interconnected system J = (J; o Jy 0

.o Jp)* and a Petri net modeling the system N = (P,T), where P = (U, P)UXP and
T= (U THUXT.

Definition 5.4 Given a set of subsystems J = {Jy,...,Ji},k > 1, and a subsystem J; in J, J; is
said to be an exit w.r.t J iff some outputs of .J; are free w.r.t J. Note that a Petri net N; is an exit
w.r.t N iff there are some free output places in P; w.r.t N, since we are modeling a subsystem as

a Petri net.

Since an infinite looping does not make sense, we assume that a loop has the following property

to enforce a finite number of repetitions of it.

Proposition 5.1 A loop structure J is said to have the fairness property iff it has at least one

exit J; such that after a finite number of transition firings, J; produces a free output w.r.t. .J.

We give a loop construction procedure with which we can preserve A1l through A3. The con-

struction is based on the sequential construction in section 5.1.

Loop(Jy,...,J;) ¢

1. (Input) Generate input places ) = {ql,...,q|P1m U(Uk—szmﬂ} of N. Also, generate cor-
: " in _ (41 [P (Ui P — o :
responding transitions 7' = {t; ,....t;, }and ares A = {(¢,t,)]1 < i<

|Pi" J(Uk_, PX7)|} connecting @ to T™. To trigger the execution of N initially, we need the

arcs Agrigger connecting T to the places le U(UfZQPZ»Xm) in one-to-one manner.

2. Call Sequential(Jy, ..., Ji).
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Figure 7: Loop Structure

3. Generate arcs connecting some of the outputs of J; o...0 J; to Ny as follow:

o Let the output places of the sequential structure Jy o ... o Ji resulting from the step 2
be P2, Choose a set of places P**°* ¢ P2 Note that the places in P"*°* if any, will

seq * seq *

be connected to the input places of J;.

o if Pb?* is empty, then goto step 4.

o Devise a set of transitions T} 1 such that there exists a C-applicable pair (fz, gx) with
respect to (P*F, Pin).

e Generate arcs from PY* to Ty and from T} 1 to le according to (fx, gk)-

4. (Output) Let the output places of N be PZut\ pback,

seq

Theorem 5.3 Assume that Proposition 5.1 holds. Then any loop construction J = (Jy o Jz 0
...0 Jg)* resulting from the procedure Loop preserves Al through A3 provided that each of the
subsystems Jq, ..., Ji satisfies A1 through A3.

Proof. By our construction, the inputs J would be @ = {¢1,.. "q|Pf"U(Uf=2PiXi")|}' Assume that
at most one of the input places can be activated at any instance of time. Then, by the arcs A¢igger,
there are at most one activated place in Pi" U(UfZQPZ»Xm) at any instance of time. Suppose the
system produces a certain output in a reachable marking of N. Then the output must be from a

certain exit, say, N,.. Since the procedure Loop is based on the procedure Sequential, no concurrent
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execution of more than one stream is possible. Thus, we know that J satisfies A2 provided .J, does.
It should be clear that any exit with the fairness property can be used as the real exit through
which J escapes the loop. For A3, it is straightforward that J will eventually produce an output
within a finite length of time by Proposition 5.1.

6 Procedure for Petri Net Synthesis

A method for constructing a Petri in a top-down manner is given using the proposed hierarchical
structuring technique in the initial stages of construction and in a bottom-up manner by intercon-

necting the blackbox Petri nets according to the rules in section 5.

Synthesis Procedure

1. Decompose a Petri net model of a system into several subsystems. According to the method

in section 3 and 4, decompose each subsystem until further refinement is not necessary.

2. Appropriately interconnect the blackbox Petri nets at each stage of decomposition according

to the rules in section 5.

It should be noted that each decomposition and the interconnection among the subcomponents can

be applied alternately.

7 An Example

The system consists of a raw material storage, two robots, four machines, and an assembly cell.
It first generates two parts A and B from common raw material, and then assembles these parts
pair by pair to produce a final product. An A(B) part is first processed by machine 1(2), then
it moves to and is processed by machine 3(4). Loading from the raw material storage to machine
1(2) is automatically executed. Machine unloading and transfer operations are done by robot 1(2).
Finally, the assembly process is conducted with the help of robot 1 and robot 2.

We assume that 1) the supply of raw material is limited and the availability of the raw material
can be determined at any time during the system execution; 2) the finished product will be taken
away immediately.

The net in Figure 9(a) is chosen as the initial abstraction of the system. It is easy to show that
the net satisfies the I/O constraints and is bounded and deadlock-free. Figure 9(b), (¢), (d), and (e)
describe the subsequent refinements for the generation of parts A and B, and then a final product.

After removing meaningless places and transitions introduced during the decomposition processes,
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Figure 8: A Simple Automated Manufacturing System

we have the final Petri net model of the system in Figure 10 ,which is bounded and deadlock-free

and preserves the liveness of the transitions in the initial net.

8 Conclusion

We presented a hybrid Petri net synthesis method combining top-down and bottom-up techniques.
The proposed method uses a top-down method to expand an internal place of a blackbox Petri net
at each step of abstraction, then, at each abstraction level, uses a bottom-up method to interconnect
the resulting blackbox subnets into sequential, parallel, or loop structures. Using this approach, the
resulting Petri net preserves logical properties of the initial Petri net in terms of deadlock freedom,
liveness, and boundedness. By this approach, the usual necessary costly reachability analysis for
the final Petri net can be avoided and replaced by a much simpler reachability analysis of only the
highest level Petri net.

We are considering applications to space mission operations, where the Petri net would be used
to analyze the overall correctness of sequencing operations. A simple example of this approach,
along with an object oriented technology is given in [12]. The example in section 7 illustrates how
the approach might be useful for manufacturing systems.

We believe that this approach allows many behaviors to be modeled naturally by introducing
multiple inputs/outputs along with the 1/O constraints. A generalization of the I/O constraints,
however, might be necessary to manage large and complex systems that come from practical ap-

plications.
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Appendix: Proofs of Lemmas and Theorems

Lemma 3.1 Suppose M,[c > M, in RG(N,M,). The following statements are true:
(1) If |olsr| = 0, then M,(p™*) = M, (p™*).
(2) Suppose ¢ = ti o', where |o'|sr| = 0. Then each transition in ¢’ is independent of ¢ .
(3) If |alsrewt| = 0, then |o|srin| < 1.
(4) If |olsrowt| = 0, then |olsrin| = 0 iff M,(p™") = M,(p™).

Proof: (1): |olsr| = 0 implies that no transition in ¢ can affect place p™* during the execution.
Thus M,(p™) = M,(p'™).

(2): We show it by induction on k = |¢’| > 1. Denote ¢, =t .

Basis: k = 1. Let o/ = t,. Suppose ¢, and ¢, are not independent, then *t? N*t3 # (). There are

four cases to consider:

e *t, N, # 0. In this case, we have ¢, = t,. This implies that M,(p},) > 1, which violates
property B3 of RG(N, M,).

o 2Nt # (. In this case, we have t, = t* . If k = i, then M,(pi ) > 1; otherwise M,(pi, ) # 0
and M,(p* ) # 0. Either case violates property B3 of RG(N, M,).

k
in

e *t, Nt # (. In this case, t, is also executable in M;. Executing ¢, in M; will result in a

marking M, in which M,(p;,) > 1. This will violate property B3 of RG(N, M,).

o 12N °*t, # 0. In this case, we have t, = t*  which is impossible since |o'|sr| = 0.

out?

Therefore, we must have *¢* N *t$ = (), i.e., ¢, and ¢, are independent.

Induction: Suppose (2) is true for k = k£’ > 1. We want to show for k = '+ 1. Denote ¢’ = ¢,0"
and Mi[t, > M,[t, > M,[¢"” > M,. Then from the proof of the base case, we know that ¢, and t,
are independent, i.e., M,[t, > M.[t, > M,. Hence M,[t,0” > M,. By induction hypothesis, each
transition in o’ is independent of ¢,. Hence (2) also holds for & = k' + 1.

Therefore, (2) holds for all k£ > 1.

(3): By contradiction. Without loss of generality, suppose |o|srin| = 2. Denote o = o,t'_0,t},0,,
where ¢ ,t,, € BT™. Then VI € [0..2] : |osr| = 0. By (2), ¢}, is independent of any tran-
sition in o,. As a result, M, is also reachable from M, via o,0,t 1,0, in RG(N,M,). Denote
M, [ogoy > M,[t: > M,[t},0, > M,. Then t is enabled in M; and ¢, is enabled in M,. On the
other hand, since RG(N, M,) satisfies B3, we have M,(p,) = L and VY1 € [1.m],l # i : M.(p.,) = 0.
No matter ¢ = j or not, we have M,(pl,) = 0. In other words, ¢/, is disabled in M,. A contradiction.

Therefore, |o|srin| < 1.
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(4): Suppose |o|srin| = 0. Then |olsr| = 0. From (1), we have M,(p""*) = M,(p™™"). On the
other hand, suppose |o|srin| # 0. Then from (3), we have |o|srin| = 1. Let ¢, ,i € [1..m], be the
transition from BT in o. Then the execution of ¢! will add one more token to p™*. However, no

other transition in ¢ can delete a token from p™*. As a result, we must have M,(p™*) = M,(p"*)+1,

ie., My(p™) £ My(pt). W

Lemma 3.2 Suppose M, is reachable from M, via o in RG(N,M,), where M,(p"") = 0. Let
k = |olsreut|. Then k < |olsrin| < k + 1. Furthermore, M, is reachable from M, in RG(N, M,) via
7= Mo - - MMky1 such that the following four conditions hold: (1) |nlsr| = 0. (2) VI € [1..k] :

n = nix,y,, where z, is the [-th transition from BT in o, y, is the [-th transition from BT°* in o,

and |mler| = 0. (3) |neyolsrewt| = 0. (4) olir\sr) = plrsr).

Proof:  Since M,(p'"*) = 0, by the structure of BN, there must be at least & input transitions
of BN in o, and for each [ € [1..k], the [-th input transition of BN must occur before the the [-th
output transition of BN in o. By Lemma 3.1 (3), 0 can be written as 7,0, - - - 07,4, such that (17)
|nelar| = 0. (2) VI € [1..k] : 0, = any,, where 2, is the [-th transition from BT in o, y, is the
I-th transition from BT*" in o, and |n/srout| = 0. (3°) |eyalerowt| = 0. Let [ range from [1..k]. B
Lemma 3.1 (3), |nlsr| = 0 and |neyolsrin| < 1. Thus k < |olsrin| < k + 1.

Denote Mi[n, > Msloy > M, - M, .00 > M,y 5[y > M,, where VI € [1..k] : M .o, >
M, ;o Let m,=nlz,y,, then by Lemma 3.1 (2), M, ,[n > M, s in RG(N, M,). Let n=nemy + - - kg1 -
Then M,[n > M, in RG(N, M,). Clearly, n satisfies conditions (1)—(4).

Theorem 3.1 Let M be a marking in RG(N, M,). The following statements are true for each
JE€LN:

(1) M is reachable in RG(N, M) via a canonical firing sequence w.r.t BN .
(2) For each firing sequence o of M, |o|sreut| < |olsri| < |o|prowt| + 1.
(3) M(p'7*) = 0iff there is a firing sequence o for M such that |o|srin| = |o]prout|.
(4) M(p*) = 1 iff there is a firing sequence o for M such that |o|srir| = |o|ret| + 1.
(5) M(py) < 1.
(6) Vpe BP :M(p) < 1. If Ipe BP :M(p) =1, then Vp' € BP p' £ p: M(p') = 0.
Proof:  Let J be any node in LN. For simplicity, we drop the subscript J from the proof below.
Since M,(p*) = 0, (1) and (2) of the theorem are true by Lemma 3.2. We only need to show
(3)-(6) of theorem hold.

We first show (3) and (4) of the theorem. From the proof of Lemma 3.2, any firing sequence

o for M can be written as 0,0, ---0,0,,, such that the following three conditions hold: (17)
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|ooler| = 0. (2°) VI € [1..k] : 0, = x,n/y,, where 2, is the [-th transition from BT"" in o, y, is the
[-th transition from BT*" in o, and |n/|sr| = 0. (3") |o441lsrot| = 0. Denote o’ = 0,0, - --0,. Then
|o’|srin| = |o'|provt| = k and |0y, ]prin] < 1.

Denote My[¢" > M,[o,;, > M. From (1) and (4) of Lemma 3.1, it is not difficult to show, by
induction on k, that M,(p™") = M,(p"™*) = 0. Thus, to show (3) of the theorem, it suffices to
show that M(p™*) = 0 iff |oyy.lerin| = 0. And this is true by (4) of Lemma 3.1. Similarly, since
|orpalprin] < 1, to show (4) of the theorem, it suffices to show that M(p™") = 1 iff |o,4.|srn| = 1.
And this is obvious. As a result, we have M(p™') < 1, i.e., (5) of the theorem also holds. Note
that M, satisfies (6). By induction on the length of a firing sequence for M, it is not difficult to
show that (6) holds for M. B

Lemma 3.3 Suppose M,[c > M, in RG(N,M,). Then the following statements are true:
(1) Assume M,(p™") = 0. M,(p™*) = 0 iff |o|prin| = |o|srent].
(2) Assume M,(p™") = 0. My(p™) = 1 iff |o|prin| = |o|srent| 4 1.
(3) Mz(p™) = My(p™) iff |olsrin| = [olarow).

Proof:  We first show (1) and (2) of the lemma. Suppose My[n > M, in RG(N,M,). Then
by Theorem 3.1, we have |nsrin| = |nlprext|. Let § = no. Then M, is reachable from M, via
6 in RG(N,M,). By Theorem 3.1, M,(p™") = 0 iff |é|srin| = |d|prewt|. Thus, M,(p™) = 0 iff
|olsrin| = |o|sreut|. Similarly, we can show (2) of the lemma also holds.

Now we show (3) of the lemma. From Theorem 3.1, we know that M, (p™") < 1. We have already
shown in (1) of the lemma that (3) holds when M,(p™*) = 0. For the case of M,(p*) = 1, denote
is the first transition from BT°* in ¢. Denote My[n’ > M,[nt? , > M,[6 > M,

out

o =nt! 6, wheret!

out ~ ? out

and 5" = n'nt?,,. Then by (2), we have |n/|srin| = |n/|preut| + 1. Hence we must have |nsrin| = 0,
ie. |nler| = 0. As a result, |n”|sr»| = |n”|srewt|. By (1), we have M,(p™) = 0. From M,, by
(2), we know that M,(p™*) = 1 iff |8|sr'n| = |8]sreut| + 1. Therefore, (3) also holds for the case of

My(pm) =1. B

Lemma 4.1 Suppose M/[oc > M]in RG(N', M}) and |o|sr vwr)|=0. Then MJ(W P)= M/(WP).
If 3M, € RG(N,M,): M,(P\{p"}) = M](P\{p"*}), then I M, € RG(N,M,) : M,[c > M, such
that M(P\{p™'})=M;(P\{p™}) and M,(p™*)= M (p™").

Proof:  Since |ofsruwn)|=0, it is straightforward that M(W P) = M/(W P). We show the rest
of the lemma by induction on k = |o|.

Basis: k = 0. The rest of the lemma holds trivially.

Induction: Suppose the rest of the lemma holds for & = £’ > 0. We want to show for & = &' +1.
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Denote o = to’. Then 3 M, € RG(N', M}): M[[t > M![o' > M]. Sincet ¢ BI'UWT, the execution
of t only affects places in P\ {p™'} in M/. As a result, let M; be the marking of N such that
M,(P\{p™}) = MI(P\{p™'}) and M,(p*) = M,(p""*). Then M, is reachable from M, via t in
RG(N,M,). Note that |¢/| = k’. By induction hypothesis, 3M, € RG(N,M,) : M,[c >'M,
such that M,(P\{p™'}) = MJ(P\{p™}) and M,(p*) = M,(p""). Therefore, M,[oc > M, in
RG(N, M,). The rest of the lemma holds for k = &/ 4 1.

Therefore, the rest of the lemma holds for all & > 0. W

Lemma 4.2 Suppose M/[c > M] in RG(N', M]) such that |o|sre«t| = 0. If 3 M, € RG(N, M,) :
M, (P\{p™}) = M/(P\{p"}), then I M, € RG(N, M,) such that M,[o|lr > M, and M,(P\{p™'}) =
MI(P\{p™}). Hence |o|srin| < 1.

Proof: = We show the lemma by induction on h = |a|.

Basis: h = 0. The lemma trivially holds.

Induction: Suppose the lemma holds for h = A’ > 0. We want to show for h = h'+1. Denote o =
ot. Let M! be the marking in RG(N', M) such that M/[§ > M![t > M]. By induction hypothesis,
there is a marking M, reachable from M, via ¢’ = §|r in RG(N, M,) such that M,(P\{p"}) =
MI(P\{p™}). Note that t ¢ BT*. Let M, be a marking of N such that M,(P\{p™'}) =
MI(P\{p™}). As for M,(p™*), depending on ¢, there are three cases to consider: (i)t € T'\ BT"".
t is also enabled in M,. Set M,(p™*) = M,(p™™*). Then M,[t > M,. (ii) t € BT . t is also enabled
in M,. Set M,(p™*) = My(p™)+ 1. Then M,[t > M,. (ili) t € WT. t has no effect on P. Set
M,(p™) = My(p™*). Then M, = M,. In all cases, we can find a marking M, in RG(N, M,) that is
either reachable from M, via t when t € T, or M, = M, when t € T. As a result, M, is reachable
from M, via o|r in RG(N, M,). Since |(a|r)|srout| = 0, by Lemma 3.1, we have |(o|r)|srin| < 1, i.e.,
|o|prin| < 1. The lemma holds for h = ' + 1.

Therefore, the lemma holds for all 4 > 0. i

Lemma 4.3 Suppose M/[c > M, in RG(N’, M) such that the following conditions hold: (a)
M{(WP) = WM. (b) 3M, € RGN, Mo) : My(P\{p™}) = M{(P\{p™}). (¢) o =0,
where ti € BT™, ), € BT and |o'|pre+t| = 0. Then the following statements are true: (1)
|o’|srin| = 0. (2) M][nt:, 012, > M) in RG(N', M}), where 6 = o'|lwr is a firing sequence from W M;
to WM?  and n = o'\ § = oo/ \(sruwmy. (3) MJ(WP)=WM.. (4) 3M, € RG(N,M,) such
that My[ols > My, My(P\{p™}) = My(P\{p"™}), and My(p™) = M, (5™).

Proof:  Denote M[[t: > M![oc' > M][t,, > M. Let ¢ =t o'. Then M/[c"” > M]in RG(N, M]).

From condition (c¢), |0”|srevt| = 0. By Lemma 4.2, |o”|sprin| < 1. Hence |o'|prn| = 0, and thus
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|o’|sr| = 0. Denote § = o'lwr and n = o’jr'\wr). Then n = o'\ § and |plsrvwr)| = 0. Further-
more, each transition in 7 is independent of each transition in §. Thus M![né > M]. In addition,
t: is also independent of any transition in 7. As a result, M/[nt: 6t' . > M].

Denote M[[n > Mt >M![6 >M![t) > M. By Lemmad.l, M/(WP)=M/(WP)=WM,
and 3M, € RG(N,M,) such that M [nlr > M,, M.(P\{p™}) = M/(P\{p™}), and M,(p"*) =
M, (p™). As aresult, ¢ is also enabled in M,. Since RG(N, M,) satisfies B3, we have M,(p,) =1
and VI € [L.n],l # i : M,(p',) = 0. Thus M!(p;,) = 1 and Y1 € [l.n],l # ¢ : M!(p.,) = 0.
Therefore, M;(WP) =W M;.

Note that 6 = o'|wr and ¢/, is enabled in M!. Since RG(W N, W M;) satisfies W1-W3, we must
have M/(W P) = WM? , and 6§ must be a firing sequence from WM, to WM? , in RG(WN,W M;).
As a result, Mj(WP) = WM.

Let My(P\{p™}) = MI(P\{p}) and My(p™) = M.(p™)+ 1. Then M,[t > M,. Let
M.(P\{p™}) = M.(P\{p™}) and M.(p™") = M(p™™*). Since |[8[z'\(sruwry| = 0, we have
M. = M,. Thus t/ , is also enabled in M,. Now let M,(P\{p™'}) = MI(P\{p"'}) and M,(p™) =
Mq(p™) — 1. Then M2, > M, and M,(p*) = M,(p™"). Hence in RG(N,M,), M,[n > M.
[t > Mt >M,. Let o =nti 2 .. Then o” = o|r. Therefore, 3 M, € RG(N, M,) such that

Mol > My, My(PA{p™) = MUP\{p™}), and M (p) = M, (). B

Lemma 4.4 Suppose M/ is reachable from M/ via o in RG(N', M) such that M/(WP) =
WM. Suppose also that 3 M, € RG(N,M,) such that M,(P\{p™}) = M/(P\{p™"}). Let
k = |olsreuwt|. Then k < |o|srin| < k + 1. Furthermore, M/ is reachable from M) in RG(N', M)
via 17 = NNy -+ MeMeyr such that the following four conditions are satisfied: (1) |nlsruwn| = 0.
(2) VI € [1..k] = 3 = x,6,y,m], where (a) z;, is the [-th transition from BT*" in o, denoted as
z, =1 _,i € [l..m]; (b) y, is the [-th transition from BT in o, denoted as y, =t/ ,,7 € [1l..n]; (¢)
6, is a firing sequence from WM, to WM? , in RG(WN,M;); and (d) |ngllir'\(sruwry| = 0. (3)

77k+1lBTO“t = €. (4) nl(T’ (BT UWT)) = Ul(T’ \(BT U WT)).

t

Proof:  We show the lemma by induction on k.
Basis: k = 0. Let 1, = € and n, = . By Lemma 4.2, |o|srin| < 1. The lemma holds.
Induction: Suppose the lemma holds for & = k' > 0. We want to show for & = £ + 1.
Since M]/(WP) = WM_, by construction of N’ from BN and WN in N, the first transition from

BT must appear before any transition from BT°** U WP in o. Denote o = o,t! o,t! o', where

out

t: i € [1l..m], is the first transition from BT in ¢ and ¢/ ,,j € [1..n], is the first transition from

BT in o. Thus |o,|(sruwn)| = 0 and |oy]srowt| = 0.
Let M/[o, > M![t ot! , > M/[c" >M]. By Lemma 4.1, we have M!(WP) = M/(WP) =

W M?. Furthermore, 3 M, € RG(N, M,) such that M,(P\{p"*}) = MJ(P\{p"™'}). By Lemma 4.3,
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M](WP)= M(WP)=WM_?. Moreover, M, is also reachable from M/ via o/t 6,/ , such that

mn out
o) = o'\ (sruwny), 6 = olwr = o, \ o, and ¢, is a firing sequence from WM} to WM?, in
RG(WN,WM;). Let n, = 0,0, and 0" = o,t}, 0,1 ,,.

from M) via not! 6,1 ,, and M] is reachable from M| via ¢’ in RG(N', M]).

out?

Note that M,(WP) = WM? and |o'|sre+t| = k’. By induction hypothesis, M} is also reachable
from M] via ' = nin, - - - qufegq such that gl \srowry| = 0, |negolsrowt] = 0, and V, 1 € [2..k] 1

Then 1, = o”j(r'\ (87 uwr)), M/ is reachable

satisfies condition (2) of the lemma. Now, let @, = ¢, y, = t,,, 1 = 6,71, and . = nem7’.

Then 7, also satisfies condition (2) of the lemma. As a result, M/[n > M/ in RG(N', M]) and n

satisfies conditions (1)-(3) of the lemma. Since 1, = "' \(Browr), ' = ¢'[iv'\ (BT UuwT), and

o = 0”0, n also satisfies condition (4) of the lemma. In addition, by induction hypothesis, we have

E < |o'lsrin| < '+ 1. Hence k < |olprin| < k+ 1. As a result, the lemma also holds for & = k' + 1.
Therefore, the lemma holds for all & > 0. l

Lemma 4.5 Suppose M/[c >M! in RG(N', M), where M/(WP)= WM. Then M/(WP) =
WM iff |o|prin| = |o|prout|.

Proof: By Lemma 4.4, M, is also reachable from M, via n = non; - - - MMy such that conditions
(1)-(4) of Lemma 4.4 hold. Note that a|srin = 5|sri» and olprest = nlprevt. As a result, we only
need to show the lemma for the case when o = 7.

Let M{[no > Mi[n > ... M] [ > M, . [mg > M, where VI € [1.Ek]: M/, ,[p > M/ ,. By
Lemma 4.1, we have MJ(WP) = M{(WP). By Lemma 4.3, we have M| ,(WP) = M| ,(WP)
for each [ € [1..k]. By induction on k, it is obvious that M, ,(WP) = M/(WP) = WM and
AMyys € RG(N, M) : Mypo(P\{p™}) = M ,(P\{p™}). Let 5 = non, ---7,. Then [n|srin| =
|7'|srout|. In addition, we know that |, sroxt| = 0. Thus to prove the lemma, it suffices to show
that M!(WP) = WM iff |, |arin| = 0.

Suppose |n41lsrin| = 0. By Lemma 4.1, we have MJ(WP) = M/(WP) = WM. Suppose
|k y1l5Tin| £ 0. By Lemma 4.2, we have |7,,,|srn| < 1. Thus |n,,|sri7| = 1. Denote n,,, = 6.t 61,
¢, 1 € [1..m], is the only transition from BT in 1.,,. Then |6o|s7r| = |é|s7| = 0. Moreover,
since M|, ., (WP) = WM, we also have |§|lwr| = 0. Let § = 6lwr and ¢’ = & \ 6. Then

6" = 6,r\ (5T uwr)). Therefore, any transition in ¢ is independent of any transition in 6’ and ¢! is

where t!

independent of any transition in 6’. As a result, M, is also reachable from M), via 6,6t 6. Suppose
M, [6,6" > M, [t:, >M] . [6 >M,. Since |(6,¢")(sruvwn)| = 0, by Lemma 4.1, M]  (WP) =
M| ,(WP)=WDM;. As a result, we have M, . (WP)=WM,. Now that M;(WP) = WM, and
all transitions in é are from WT, there must be a marking WM in RG(W N, W M;) that is not an
exit marking and has no outgoing transitions, contradicting the fact that RG(W N, W M) satisfies
W2. Thus MJ(WP) # WM. Hence MJ(WP) = WM? iff |ny.lprin| = 0. Therefore, the lemma
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holds. H

Theorem 4.2 Let M’ be a marking in RG(N', M}). The following statements are true:

(1) M’ is reachable in RG(N', M) via a canonical firing sequence w.r.t WN.
(2) |olprout| < |olprin| < |o|srest| + 1 for each firing sequence o of M.
(3) M'(P\{p™}) = WM iff there is a firing sequence o of M’ such that |o'|srin| = |o'|prout]

Lemma 4.6 Suppose M/[o’ > M!in RG(N’, M]), where M](WP) = WM. If 3 M, € RG(N, M,)
such that M,(P\{p™}) = M/(P\{p™'}) and M,(p"")=0, then I M, € RG(N,M,) : M,[o > M,
such that M,(P\{p™*}) = MJ(P\{p"*}) and ¢ = o’|r.

Proof: = We show the lemma by induction on h = |o’|.

Basis: h = 0. The lemma holds trivially.

Induction: Suppose the lemma holds for h = A’ > 0. We want to show for h = h’ + 1. Denote
o' = ¢'t and M][§' > M][t > M]. Then |6'| = h’. By induction hypothesis, 3 M, € RG(N,M,) :
M,[6 > M, such that M;(P\{p}) = MI(P\{p™})and 6 = ¢'|r. Let M,(P\{p"'}) = MJ(P\{p™}).
As for M,(p™"), there are four cases to consider:

(i) t € BT"". Then t is also enabled in M,. Set M,(p"™*) = My(p™) + 1. Then M,[t > M,
in RG(N,M,). Note that in this case, M,(p™*) = 0. Otherwise, since M,(p*) = 0, by
Lemma 3.2, |§'|srin| = |6'|srowt| + 1. Then |o’|prin| = |o/|prevt| 4+ 2, contradicting Lemma 4.4.

(ii) t € BT°*. Then t is also enabled in M,. As a result, we have M,(p""*) > 0. By Theo-
rem 3.1 (3), we must have M,(p™) = 1. Set M,(p™*) = 0.

(ii) ¢ € WT. Then the execution of ¢ has no effect on any place in P. Set M,(p™*) = M,(p™).
Then M, = M,.

(iv) t € T"\ (BTUWT). Then the execution of ¢ has no effect on p™*. Set M,(p™*) = M,(p™).

In all cases, 3M, € RG(N,M,) such that M, = M, when t € WT'; or M,[t > M, otherwise. As
a result, let ¢ = o'|r, then M [o > M, and M,(P\{p'}) = MJ(P\{p™}). The lemma holds for
h=h+1.

Therefore, the lemma holds for all 4 > 0. i

Lemma 4.7 Suppose M,[c > M, in RG(N,M,), where M,(p*")= 0 If 3 M) e RG(N', M) such

that M/(P\{p"}) = M, (P\{p"*}) and M](WP)=WM?, then 3 M€ RG(N', M) : M][o' > M]
such that MJ(P\{p™}) = M,(P\{p"'}) and o'|r = 0.
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Proof: = We show the lemma by induction on k = |o|srout|.
Basis: k = 0. We claim, by induction on h = |o|, that 3 M} € RG(N’, M]) such that M/[c > M]
and Mj(P\{p"™}) = Mo(P\{p™}).

Basis: h = 0. The claim holds trivially.

Induction: Suppose the claim holds for & = A’ > 0. We want to show for & = b’/ + 1.
Denote o = 6t and M,[6 > M,[t > M,. By induction hypothesis, 3 M] € RG(N', M)
such that M/[6 > M, and M](P\{p"'}) = M.(P\{p"*}). Thus t is also enabled in
M. Let MJ(P\{p™}) = M,(P\{p™}). There are two cases to consider: (i) t € BT"".
Then |8fsruwn| = 0. By Lemma 4.1, we have MJ(WP) = M/(WP) = WM?. Let
MI(WP)=WM;. (ii) t ¢ BT"". Then t has no effect on places in WP. Let MJ(WP) =
MI(W P). In both cases, M/[c > M/ in RG(N', M!). The claim holds for h = b’ + 1.

Therefore the claim holds for all A > 0.

Let ¢/ = 0. Then ¢’ = g|r. The lemma holds for & = 0.

Induction: Suppose the lemma holds for k¥ = &’ > 0. We want to show for k = &' + 1. From
i € [1..m], is the first
transition from BT in o, (b) #2,,,j € [1..n], is the first transition from BT°* in o, (¢) |nlsrovt| =
|mlsrent| = 0, and (d) |6]srin| = |éprovt| = k' Let n = nott, mt’,,. Denote M,[n > M,[6 > M,. Let

out *

the proof of Lemma 3.2, ¢ can be written as n,t!, nt) .6, where (a) ¢

out ~ ? in?

7' = nemt: 2 ,. Since ¢! is independent of any transition in 7, we also have M;[n’ > M,[6 > M,
in RG(N, M,).

Denote M,[n, > M,[n > M[t;, > Ms[t),, > M,. By the result established in the base case,
IM] € RG(N',M}): M][n, > M, and M](P\{p™}) = M, (P\{p™}). By Lemma 4.5, M/(WP) =
WM. By Theorem 3.1, M,(p™") = 0. Similarly, we have M,(p""*) = 0 and 3 M/ € RG(N', M]) :
M][n > M] such that M/(P\{p™™}) = M,(P\{p™}) and M/(WP)=WM..

Note that ¢! being enabled in M, implies that it is also enabled in M. Let M/ be a marking in N’
such that MJ(P\{p"}) = Ms(P\{p"*}) and M}(W P) = WM;. Then M/[t;, > M.in RG(N', M}).
Let M! be a marking in N’ such that M/(WP) = WM, M/(P\{p™})=M/(P\{p™}), and n,
be a firing sequence from WM{ to WM? , in RG(WN,WAM;). Then M][n, > M in RG(N', M}).
Let M! be a marking in N’ such that MI(P\{p™})=M.(P\{p™™'}) and M (W P) = WM?, then
Mt >M, in RG(N,M]). Moreover, M,(p™") = 0 implies that M,(p*) = 0. As a result,

out

dent of #i , we also have M/[n" > M] in RG(N', M!). Clearly, n"|r = 1.

Now we have M, € RG(N,M,) such that M,[6 > M,, M.(p*) = 0, and |§|srin| = ||srowt| =
E'. In addition, 3M! € RG(N', M]) such that M(P\{p"}) = M,(P\{p™}) and M/(WP) =
WM?. By induction hypothesis, 3M] € RG(N', M!) : M![6'" > M! such that MJ(P\{p™}) =

M][nomt:, mt?,, > M. in RG(N', M!). Let " = noti mmn,t’,,. Since any transition in 7, is indepen-
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M,(P\{p™}) and &'|r = 6. Let o' = 7""8’. Then M][c’" > M} in RG(N', M!) and ¢'|r = 0. Hence
the lemma holds for &k = k' + 1.
Therefore, the lemma holds for all & > 0. l

Theorem 4.4 Given Petri nets N < N'. Let RG(N, M,) and RG(N', M) be the corresponding
reachability graphs of N and N’, respectively. The following statements are true:

o Deadlock: RG(N,M,) is deadlock free iff RG(N', M) is deadlock free.

o Liveness: A transition t € T is live in RG(N, M,) iff it is live in RG(N', M}).
o Input Constraint: RG(N', M]) satisfies B3.

o Boundedness: RG(N', M]) is bounded iff RG(N, M,) is bounded.

Proof:  Deadlock: Suppose M is a deadlock marking in RG(N, M,). Let o be a firing sequence
for M. Then no transition in 7" is enabled in M. In particular, M(p™*) = 0. By Theorem 3.1,
|olsrin| = |o|sreut|. By Theorem 4.3, there is a marking M’ in RG(N', M!) reachable via ¢’ such
that M'(P\{p}) = M(P\{p™}) and o'|r = 0. Thus no transition from 7'\ BT is enabled
in M'. Moreover, |o'|srin| = |o/|prout|. By Lemma 4.5, M/(WP) = WM?. Thus no transition
from BT U WT is enabled in M’ either. Hence, M’ is a deadlock marking in RG(N’, M]). On
the other hand, suppose M’ is a deadlock marking in RG(N’, M!). Let M be a marking of N
such that M(P\{p'}) = M'(P\{p"™'}) and M(p™*) = 0. By similar argument, we can also show
M € RG(N, M,).

Liveness: Suppose a transition ¢ € T is enabled in M € RG(N,M,). Let M[t > M, in
RG(N,M,) and ¢ be a firing sequence for M. Then ot is a firing sequence for M,. By Theo-
rem 4.3, there is a marking M| € RG(N’, M) reachable via ¢’ such that o'|r = 0. As a result, ¢
is also enabled in some marking M’ in RG(N’', M]) in the path ¢’ from M to M/. On the other
hand, suppose t € T' is enabled in M’ € RG(N', M]). By similar argument, we can also show that
t is enabled in some M € RG(N,M,). As a result, a transition ¢ € T is enabled in RG(N, M,) iff
it is enabled in RG(N', M]).

Input Constraint: Note that B3 holds for each J' € LN \ {J} in RG(N’, M]). Otherwise, by
Theorem 4.3, B3 will not hold in RG(N, M,). By the same argument, we observe that B3 is also
true for places in BP™. Hence it is also true for places in WP, By Theorem 4.1, it follows B3
also holds for places in BP'? for each BN, € WN. Therefore, B3 is true for RG(N', M).

Boundedness: Note that although we assume B1-B3 hold for RG(N, M,), the proofs of lemmas
and theorems in Section 3 does not depend on BI being true. Suppose RG(N, M,) is bounded. Then
the token count of each place p € (P \ {p™'}) must be bounded in RG(N’, M) by Theorem 4.3.
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Moreover, B3 being true for places in BP™ implies that it is also true for places in WP™. By
Theorem 4.1, each place in WP is also bounded since RG(W N, W M;) satisfies Wi-W3. Thus,
each place in P’ is bounded in RG(N’, M]). Similarly, we can also show that the boundedness of
RG(N', M) implies the boundedness of RG(N, M,). I
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