
AbstractTitle of Dissertation: Scheduling and Allocation in MultiprocessorSystemsSheng-Tzong Cheng, Doctor of Philosophy, 1995Dissertation directed by: Professor Ashok K. AgrawalaDepartment of Computer ScienceThe problem of allocation has always been one of the fundamental issues of building applica-tions in multiprocessor systems. For real-time applications, the allocation problem should directlyaddress the issues of task and communication scheduling. In this context, the allocation of taskshas to fully utilize the available processors and the scheduling of tasks has to meet the speci�edtiming constraints. Clearly, the execution of tasks under the allocation and schedule has to satisfythe precedence, resources, and synchronization constraints.Traditionally time constraints for real-time tasks have been speci�ed in terms of ready time anddeadlines. Many application tasks have relative timing constraints in which the constraints for theexecution of a task are de�ned in terms of the actual execution instances of prior tasks. In thisdissertation we consider the allocation and scheduling problem of the periodic tasks with relativetiming requirements. We take a time-based scheduling approach to generate a multiprocessorschedule for a set of periodic tasks. A simulated annealing algorithm is developed as the overallsearch algorithm for a feasible solution. Our results show that the algorithm performs well and�nds feasible allocation and scheduling.We also investigate how to exploit the replication technique to increase the schedulability andperformance of the systems. In this dissertation, we adopt the computation model in which each

task may have more than one copy and a task may start its execution after receiving necessary datafrom a copy of each of its predecessors. Based on this model, replication techniques are developedto increase the schedulability of the applications in real-time systems and to reduce the executioncost of the applications in non-real-time systems.

Scheduling and Allocation in MultiprocessorSystemsbySheng-Tzong ChengDissertation submitted to the Faculty of the Graduate Schoolof the University of Maryland in partial ful�llmentof the requirements for the degree ofDoctor of Philosophy1995Advisory Committee:Professor Ashok K. Agrawala, Chairman/AdvisorProfessor Satish TripathiAssociate Professor Joel SaltzAssociate Professor Der-Chen ChangAssistant Professor Je� Hollingsworth

c Copyright bySheng-Tzong Cheng1995

DedicationTo my parents and my wife

ii

ContentsList of Tables viiList of Figures viii1 Introduction 11.1 Motivation : 21.1.1 Pre-run-time versus Run-time Scheduling : 21.1.2 Relative and Absolute Timing Constraints : 31.1.3 Replication or Assignment Problem : 31.2 Our Approach : 41.2.1 Assignment Problem in Real-Time Systems : : : : : : : : : : : : : : : : : : : 41.2.2 Replication Problem in Real-Time Systems : : : : : : : : : : : : : : : : : : : 51.2.3 Replication Problem in Non-Real-Time Systems : : : : : : : : : : : : : : : : 61.3 Summary of Contributions : 71.4 Organization : 82 Related Work 92.1 Real-Time Scheduling : 92.1.1 Time-Based Scheduling : 92.1.2 Static Priority-Based Scheduling : 102.1.3 Dynamic Priority-Based Scheduling : 112.1.4 Interval-Constrainted Scheduling : 112.2 Allocation Problem : 12iii

2.2.1 Performance-Oriented Allocation : 122.2.2 Reliability-Oriented Allocation : 152.2.3 Schedulability-Oriented Allocation : 162.3 Summary : 173 Non-Preemptive Scheduling with Hybrid Timing Constraints on a Single Pro-cessor 183.1 Problem Statement : 183.2 Analysis of Relative Timing Constraints : 193.2.1 Property of Scheduling Windows : 223.3 Bounds of A Scheduling Window with Hybrid Timing Constraints : : : : : : : : : : 253.4 The Time-Based Scheduling of a Task Instance : 253.4.1 Creating a Time Slot for the Task Instance : : : : : : : : : : : : : : : : : : : 263.4.2 Sliding of the Time Slots : 273.4.3 The Algorithm : 283.5 The Priority-Based Scheduling of a Task Set : 293.5.1 SLsF : 293.5.2 SPF : 293.5.3 SJF : 303.5.4 The Solution : 303.6 Experimental Evaluation : 303.6.1 The First Experiment : 303.6.2 The Second Experiment : 313.7 Summary : 334 Multiprocessor Allocation and Scheduling 384.1 Problem Description : 384.1.1 Task Characteristics : 394.1.2 System Model : 42iv

4.1.3 Problem Formulation : 424.2 The Approach : 434.2.1 Cyclic Scheduling Technique : 444.2.2 Pseudo Instances : 464.3 The Simulated Annealing Algorithm : 464.3.1 Evaluation of Energy Value for a Solution Point (�, �m, �c) : : : : : : : : : : 484.3.2 Neighbor Finding Strategy: � : 504.4 Experimental Results : 514.4.1 Discussions : 525 Schedulability-Oriented Replication in Real-Time Systems 585.1 Introduction : 585.1.1 Schedulability-Oriented Replication : 595.1.2 Event-Based Semantics : 615.1.3 Main Results : 615.2 Task and System Models : 635.2.1 The Task Characteristics : 635.2.2 System Assumptions : 635.2.3 Communication Model : 645.2.4 System Model : 645.3 Problem Formulation : 655.4 The Algorithm : 665.4.1 Identifying Bottleneck IPCs : 675.4.2 Elimination of Bottleneck IPCs : 715.4.3 Neighbor Finding Strategy : 725.5 Experimental Results : 735.5.1 An Example Problem : 745.5.2 Discussion : 765.6 Summary : 76v

6 Performance-Oriented Replication in Non-Real-Time Systems 796.1 Introduction : 796.2 De�nitions : 816.2.1 Graph Model : 816.2.2 Computational Model : 816.2.3 Communication Model : 826.3 Problem Formulation and Complexity : 826.3.1 Assignment Graph : 856.3.2 Complexity : 876.4 Optimal Replication for SP Graphs of Type Tand : 946.4.1 A Branch-and-Bound Method for Optimal Replication : : : : : : : : : : : : : 946.4.2 Performance Evaluation : 966.5 Sub-Optimal Replication for SP Graphs of Type Tand : : : : : : : : : : : : : : : : : 976.5.1 Approximation Method : 996.5.2 Performance Evaluation : 996.6 Solution of MCRP-SP for computation-intensive applications : : : : : : : : : : : : : 1006.6.1 The Solution : 1006.6.2 Conclusion Remark : 1017 Conclusion 1097.1 Future Research : 110
vi

List of Tables3.1 An example to show the wrong setting of scheduling windows : : : : : : : : : : : : : 203.2 The correct setting of scheduling windows based on Proposition 3.1. : : : : : : : : : 224.1 The execution times of the AIMS with di�erent number of processors : : : : : : : : 525.1 Experiments Results for SA and SA/R : 746.1 Computation Results for branch-and-bound approach : : : : : : : : : : : : : : : : : 1066.2 Simulation Results for Approximation Method : 107

vii

List of Figures1.1 An illustrative example about how the replication can increase the schedulability : : 41.2 The organization of the dissertation : 83.1 The relations between the task instances : 213.2 The overlapping of two intervals : 233.3 Insertion of a new time slot : 263.4 An illustration of left laxity(wk) and right laxity(wk) : : : : : : : : : : : : : : : : : 273.5 The Scheduling of a Task Instance : 343.6 A schematic owchart for the solution : 353.7 The e�ect of the numbers of tasks on the schedulability : : : : : : : : : : : : : : : : 363.8 The comparison of three algorithms : 374.1 Relative Timing Constraints : 404.2 Possible Communication Patterns : 414.3 Insertion of a new time slot : 444.4 The introduction of a pseudo instance : 454.5 Asynchronous communications : 474.6 The pseudo code for computing the energy value : 544.7 The structure of simulated annealing algorithm. : 554.8 Processor Utilization Ratios for di�erent cases : 564.9 The Allocation Results and Schedules for AIMS with 6 processors : : : : : : : : : : 575.1 An example to show how the replication can increase the degree of schedulability : : 60viii

5.2 The ow charts of a task graph : 625.3 An example of Comprehensive Graph : 655.4 The Structure of SA/R: the Simulated Annealing Algorithm with Replicate(). : : : : 685.5 The Algorithm to �nd
(K; i)'s : 715.6 Graphical Description of the Example Problem : 755.7 The Comprehensive Graph of the Example Problem : : : : : : : : : : : : : : : : : : 775.8 Allocation Result of the Example Problem : 786.1 An SP graph and its parsing tree : 836.2 An example to show how the replication can reduce the total cost : : : : : : : : : : : 846.3 (b): An allocation graph and a replication graph of (a) : : : : : : : : : : : : : : : : : 866.4 An illustration about how to transform a graph to a UCTR instance : : : : : : : : : 916.5 An illustration about how to transform a UCTR instance to a Tand SP graph : : : : 936.6 A Tand SP graph and the graphical interpretation of Cbp;q. : : : : : : : : : : : : : : : 976.7 A combination tree for the case where k = 4 and n = 6 : : : : : : : : : : : : : : : : 986.8 Pseudo code, graphical demonstration, and dynamic programming table for approx-imation methods : 1036.9 A graphical demonstration of how to �nd an optimal solution for MCRP-SP : : : : : 1046.10 Function BB(k; q; ẑ): branch-and-bound algorithm for solving problem Pqk : : : : : 1056.11 Function OPT (Cbp;q0s; es;p0s): the optimal solution of MCRP-SP of type Tand whenCbp;q's and es;p's are given : 1056.12 Algorithm FIND(Sx): the algorithm for �nding the shortest path combinationsfrom the limb which corresponds to the subtree Sx induced by an intermediate nodex and all x's descendant nodes in a parsing tree : 108
ix

Scheduling and Allocation in MultiprocessorSystemsSheng-Tzong ChengApril 24, 1995

This comment page is not part of the dissertation.Typeset by LaTEX using the dissertation style by Pablo A. Straub, University of Maryland.0

Chapter 1IntroductionMultiprocessor systems o�er the computing power that can be brought to bear on the developmentand applications of the embedded and/or controller systems. In these systems, the execution oftasks has to be carried out in a temporally determinate manner in that the timing constraints aswell as the semantics of the speci�cations have to be satis�ed. In order to build applications onthese systems, a crucial problem is the allocation and scheduling of tasks. Primarily, the purposeof task allocation is to distribute the total workload over the available resources and processorsin the system, and the purpose of scheduling is to provide the execution start times for tasks tosatisfy the given timing constraints. The problem addressed in the dissertation is the problem ofnonpreemptive task allocation and scheduling in multiprocessor systems.Various architectures of multiprocessor systems have been proposed and implemented over theyears. A primary distinguishing feature of these architectures is the approach used for memory ac-cess and communications. For example, systems with uniform memory access, non-uniform memoryaccess, shared memory, non-shared memory, or loosely-coupled connection using the communica-tions network, have been built. We consider the processors and communications network as themost important resources for embedded systems. The framework that we are addressing in thisdissertation does not depend on any speci�c architecture. However, as the architecture impactsthe inter-task communications, the scheduling of communications has to be taken into accountas presented in Chapters 4 and 5. Note in this dissertation that we are not considering the al-location problem of multiprocessors to a single task. The allocation problem usually addressedfor high preformance computing applications such as LU decomposition is not considered in thisdissertation.The objectives of the allocation problem depend on the applications which are to be builton the systems. Two di�erent kinds of applications are considered in this dissertation; real-time1

and non-real-time. The tasks of real-time applications are characterized by the activity frequency(e.g. periodic, aperiodic, or sporadic), computation requirement (e.g. worst-case execution time orbounds on the execution time), and the timing constraints (e.g. relative or absolute). On the otherhand, the execution of tasks of non-real-time applications is characterized by the cost function. Weassume the cost function for a task or a communication depends on the execution time of a task,the transit time of the messages transferred between two tasks, the �nancial or billing cost, somemeasure of the resource usage, degree of reliability, failure rate, etc. Informally, the allocation andscheduling problem can be stated as the problem of allocating and scheduling tasks of applicationsamong processors to achieve some objective under de�ned constraints.1.1 MotivationOur research is motivated by the need to develop allocation and scheduling techniques and algo-rithms to improve the schedulability and performance of multiprocessor systems. Furthermore, theemergence of new timing requirements from the real-time applications is generating interest in newscheduling problems that were not addressed in the past. In the following sections, the motivatingfactors behind our research are presented.1.1.1 Pre-run-time versus Run-time SchedulingWhile run-time scheduling has the virtues of dynamic recon�guration and high processor utiliza-tion [SK91], the goal of satisfying the critical timing constraints can not be guaranteed. Xu andParnas [XP91] pointed out that\the problem of satisfying timing constraints in a hard-real-time system is inherently adeterministic problem."One feasible approach to solve such a deterministic problem is to schedule every task a priori.Further, they observed that the bulk of the computations are performed by periodic tasks. In thisdissertation we consider the pre-run-time scheduling discipline. In particular, we concentrate onthe periodic task systems. 11As for the scheduling of aperiodic and sporadic tasks, it can be incorporated into the framework in two possibleways: pre-run-time or run-time. However, no guarantee can be made for the run-time scheduling.2

1.1.2 Relative and Absolute Timing ConstraintsResearch on real-time scheduling has focused on absolute timing constraints on the tasks. Eachtask is associated with a ready time and a deadline. These timing constraints impose a �xedtime interval in which a task may be executed. Neither inter-task dependencies nor temporalrelationships between two instances of a periodic task can be speci�ed.While the absolute timing constraints specify the temporal requirements in terms of the o�setsfrom the period, the relative timing constraints are usually enforced on the task start time and�nish time. For example,1. The consecutive executions of task 1 are separated at least 5 ms and at most 10 ms.2. If task 2 sends a message to task 3, then start task 3 not later than 10ms after the completionof task 2.We examine the contemporary real-time applications and identify a class of relative timingconstraints [CA94, CA95]. In this dissertation we combine the class of relative timing constraintsand the absolute timing constraints into a hybrid timing model. We consider the task system withthe hybrid timing constraints and present a solution to the assignment and scheduling problem.1.1.3 Replication or Assignment ProblemOne way of performing the allocation of tasks to di�erent processors is to retain a single copy of eachtask and run it at one and only one place. The allocation problem, in this case, is referred to as theassignment problem. However, with the availability of resources in multiprocessor systems, it isquite feasible to have multiple copies of a task, which execute concurrently on di�erent processors.This approach to the replication has been used in the literature for the purpose of fault tolerance.We explore the replication to improve the schedulability in the real-time systems and performance inthe non-real-time systems respectively. An example illustrating this point is shown in Figure 1.1 inwhich the number of processors in the system is two and the computation times for tasks are listed.We assume the ready time for the task is 0 and the deadline is 7. The inter-processor communication(IPC) between p1 and p2 for any two tasks takes one unit and the local communication time on thesame processor is zero. If task a is assigned to processor p1 only, then the minimum �nish time is 8as shown in Gantt chart 1. The dark area in Gantt charts indicates the IPC. If task a is replicatedto processors p1 and p2, then we see from Gantt chart 2 that the minimum completion time is 7.As depicted in Figure 1.1, the replication of task a on processor 1 eliminates the IPC between tasks3

a

b c

d

~v vectors
processor 1 processor 2

task a on
1 1

task b on
3 3

task c on
2 2

task d on
3 5

p

1

p

2

a

a

a

8 7

c c

b d b d

(a) A task graph (b) Computation Vectors

(c) Gantt Chart 1 (d) Gantt Chart 2Figure 1.1: An illustrative example about how the replication can increase the schedulabilitya and c. It enables the earlier start of the execution of task c, increases the degree of schedulabilityand makes the task meet its deadline.1.2 Our Approach1.2.1 Assignment Problem in Real-Time SystemsFor the hard real-time applications, such as avionics systems and nuclear power systems, the ap-proach to guarantee the critical timing constraints is to allocate and schedule tasks a priori. We4

take a global view of the system in which the allocation problem directly addresses the schedulingof processors and communications resources. We apply the simulated annealing technique to �nda static allocation and a time-based scheduling approach to �nd a feasible schedule.Even though we assume that the execution of periodic tasks continues inde�nitely, when schedul-ing a set of such tasks we consider the schedule for a scheduling frame which can be repeatedinde�nitely. Typically the length of the scheduling frame will be the least common multiple (LCM)of the periods of the tasks in the set. The LCM period includes several task instances of eachtask depending on the task period. We de�ne the scheduling window for a task instance to bethe time interval in which the instance can start without violating the timing constraints. Unlikethe absolute timing model in which the scheduling window for each instance is a �xed interval, thehybrid timing constraints impose a rather complicated and dynamical restriction on the scheduling.In this dissertation we apply the timing constraints analysis �rst to derive the scheduling windowfor each task instance.We apply the simulated annealing technique as the overall search algorithm for a feasible so-lution. For each solution generated by the simulated annealing technique task instances, based ontheir scheduling windows, are scheduled one by one using the time-based non-preemptive approach.The outcome of the scheduling is a multiprocessor schedule, also called the calendar, which assignseach task to a processor and maintains the start time and �nish time for each task instance. Thecalendar is veri�ed to see if all timing constraints are satis�ed. If yes, the problem is solved andthe calendar can be repeatedly invoked throughout the execution of the applications. Otherwise,another solution point is generated by using a neighbor �nding strategy of the simulated annealingtechnique. The above process repeats again until a feasible calendar is found or a stopping criteriais satis�ed.1.2.2 Replication Problem in Real-Time SystemsTraditionally, the main purpose of replicating a task on multiple processors is to increase the degreeof fault tolerance. If some processors in the system fail, the application may still survive using otherreplicas, or copies. In such a computation model, a task has to communicate with multiple replicasof other tasks. As a consequence, replication of tasks may delay the execution of tasks due to theextra inter-task communications. Such delay may cause a task to miss its deadline, and degradethe schedulability of the system.In the dissertation, we adopt a computation model in which the replication of a task is notfor the sake of fault tolerance but for schedulability-oriented objectives. We call it the 1-out-of-5

n model [CHA94]. In our model, each task may have more than one copy and it may start itsexecution if it receives necessary data from any copy of a preceding task. As a consequence, thereplicas of a task on di�erent processors can be used to reduce the inter-processor communication(IPC), and to fully utilize the available processors in the system. Such replication may lead to animproved schedulability.To solve the schedulability-oriented replication problem, we develop a replication technique andembed the technique in a simulated annealing algorithm. The function of the technique consists oftwo phases, namely (1) identifying bottleneck IPCs and (2) eliminating bottleneck IPCs. We de�nethe bottleneck IPCs to be the communications which delay the execution of the tasks and makethe schedule infeasible. Once the bottleneck IPCs are identi�ed, we replicate the sender tasks toeliminate such IPCs. Experimental results show that such replication leads to a higher degree ofschedulability.1.2.3 Replication Problem in Non-Real-Time SystemsIn the last few years, a signi�cant amount of research e�ort has been directed towards the assignmentproblem [Sto77, AR80a, AR80b, Bok81, Bok87, CHLE80, Lo88, MLT82, MM89, PK84, ST85,Tow86]. Based on the di�erent objectives, the complexity of the problem on various architectureshas been established and some solutions have been proposed. However, in the replication problem,very little work has been done. We note that, in general, the replication problem is much moredi�cult than the assignment problem. In this dissertation we take the minimization of the totalcost of task execution and IPC as the objective of the allocation problem in the non-real-timesystems. We call it the performance-oriented objective.In the performance-oriented assignment problem, polynomial-time algorithms exist for specialcases, such as tree-structure [Bok81] and series-parallel [Tow86] task graphs. Our research [CA93]represents one of the early attempts at �nding special cases for which polynomial time solu-tions exist for performance-oriented replication problems. The class of applications we consideris computation-intensive applications in which the execution cost of a task is greater than its com-munication cost. Such applications can be found in many �elds, such as digital signal processing,weather forecasting, game searching, etc. We take series-parallel task graphs into consideration.We call this special case theMinimum Cost Replication Problem of Series-Parallel graphs(MCRP-SP) for computation-intensive applications.When an application is computation-intensive, and the objective is to minimize the sum ofexecution costs and inter-task communication costs, we �nd that the optimal replication can be6

done by considering only the replication of the forkers in the SP task graph. For all the tasks whichdo not represent forkers in the task graph, the shortest path algorithms or network ow algorithmscan still be applied. Overall, we prove that the MCRP-SP for computation-intensive applications isstill NP-complete by mapping the VERTEX COVER problem [GJ79] to this problem, We presenta branch-and-bound algorithm to solve it. The worst-case complexity of the solution is O(n22nM),where n is the number of processors in the system andM is the number of tasks in the graph. Notethat the complexity of the algorithm is a linear function of M .We also consider an approximation technique to solve the problem in polynomial time. Given aforker task a with K successors in the SP graph, the method tries to allocate a to processors basedon iterative selection. When the near-optimal solution for i successors is obtained, the method�nds the near-optimal solution for i+ 1 successors until all successors are taken into account. Thecomplexity of the approximation algorithm is O(n2K2).1.3 Summary of ContributionsThe major contributions of this dissertation are the following.� We identify a hybrid timing model which combines the absolute and relative timing con-straints. Real example applications which adopt the timing model are described. Algorithmsand techniques are developed to solve the allocation and scheduling problem for the tasksystems with this timing model.� We develop a resource reservation technique for the allocation and scheduling problem inmulti-resource systems. Each resource in the system is represented by a linked list in whichone element of the list corresponds to the scheduling of one task instance. The techniqueconsists of sliding the existent time slots to create a big-enough time slot and scheduling thetask instance to the new time slot.� We consider the schedulability-oriented replication problem of a set of periodic real-timetasks. A replication technique is developed and embedded in a simulated annealing algorithm.Experimental results show that such replication may lead to a higher degree of schedulability.� We consider the performance-oriented replication problem of series-parallel task graphs. Theobjective of the problem is to minimize the total cost of task execution and inter-task com-munication. We present a branch-and-bound method to �nd an optimal solution as well asan approximation approach for suboptimal solutions. The numerical results show that suchreplication may lead to a lower cost than the optimal assignment problem.7

on single processor

Assignment

Problem

Replication

Problem

Hybrid Timing

Constraints

(Chapter 3) (Chapter 5)

Schedulability-oriented

(Chapter 4)

Hybrid Timing

Constraints

(Chapter 6)

Performance-oriented

on multiprocessor

Objective in

non real-time systems

Objective in real-time

systems

Figure 1.2: The organization of the dissertation1.4 OrganizationThe dissertation is organized as follows. Chapter 2 reviews related work. The model of hybridtiming constraints is introduced and analyzed in Chapter3. We �rst consider the assignment andscheduling problem of task systems with the hybrid timing model on single processor in Chapter 3.Then, in Chapter 4, the results obtained from the single-processor case are extended to the multi-processor case. In Chapter 5, we consider the replication problem with the schedulability-orientedobjective on real-time systems. For the non-real-time systems, we consider the replication problemwith the performance-oriented objective in Chapter 6. Finally, concluding remarks are presentedin Chapter 7. A pictorial outline of Chapters 3 to 6 is given in Figure 1.2.
8

Chapter 2Related WorkIn order to put our work in context, in this chapter we review the prior work reported in theliterature. We discuss the real-time scheduling theory and algorithms, and allocation techniques innon-real-time and real-time systems respectively.2.1 Real-Time SchedulingWhile extensive literature exists in the area of scheduling, we discuss here some of the recent rele-vant developments in the areas of time-based scheduling, static priority-based scheduling, dynamicpriority-based scheduling, and interval-constrainted scheduling.2.1.1 Time-Based SchedulingIn time-based scheduling, a schedule is constructed o�-line and is used throughout the executionof the applications. The schedule, also called the calendar, maps each task to time lines. The timeinformation is used at run-time to dispatch the tasks.The problem of �nding an optimal or feasible schedule is basically a combinatorial search prob-lem. Time-based techniques have been proposed and developed to solve the problem with varioustask characteristics. Among these techniques, the branch-and-bound method [XP90] is applied to�nd an optimal schedule while heuristic search [Ram90, ZRS87] is used to �nd a feasible schedule.These techniques organize the search space of the problem as a search tree in which the nodes in thetree represent potential solutions. The complexity of searching through such a search tree to �nd anoptimal or feasible solution is usually enormous. Hence, search space reduction becomes a primaryconcern. While the performance of the branch-and-bound methods depends on estimates of the9

bounds used to prune the useless subtree and avoid unnecessary searching, heuristic approachesusually use ad-hoc search methods.Temporal analysis is another way to reduce the search space. Yuan and Agrawala [YSA94] con-sider a decomposition approach in which the set of tasks is decomposed into several independentsubsets using leading and strongly leading relationships. It has been shown that, when these rela-tionships are used for decomposition, the scheduling of one subset precedes that of other subsets.The complexity involved in scheduling a subset of tasks can be signi�cantly reduced compared tothat for the whole set. Further, Saksena and Agrawala [SA93] consider the search space pruningby using a pair-wise temporal analysis technique. The technique is designed to extract as muchinformation regarding the scheduling of a pair of tasks as can be extracted by examining the tem-poral information about that pair. The information can then be used to reduce the complexity ofthe scheduling problem.2.1.2 Static Priority-Based SchedulingIn the priority-based scheduling, no explicit schedule is constructed. Instead, at the run time,the ready task with the highest priority is executed. If the priority assignment of tasks is donestatically so that it does not change during the execution, the scheduling is called static priority-based scheduling.Rate-monotonic scheduling [LL73](RM), which is known to be the optimal assignment amongthe static priority schemes, assigns the priorities to tasks based on their periods; the smaller theperiod, the higher the priority. RM primarily considers periodic tasks and the schedulability analysisof RM has also been established [LL73].When tasks have synchronization requirements, it has been shown that some problems such aspriority inversion can occur. The priority inversion problem occurs when a high-priority task isblocked by a low-priority task which holds the lock to a critical session. As a consequence, thehigh-priority task may su�er an unbounded blocking time and miss its deadline. Sha et al.[SRL90,RSL89] propose the priority inheritance protocol to solve the problem. The basic idea of priorityinheritance is to allow a low-priority task to inherit the priority of the higher priority task andavoid further preemption from other tasks. Based on the priority inheritance protocol, worst-caseblocking time has been computed and schedulability of the task systems has been established.10

2.1.3 Dynamic Priority-Based SchedulingIn dynamic priority-based scheduling, the priority assignment of tasks changes during the executionof tasks. The Earliest-Deadline-First (EDF) algorithm [LL73], which assigns the priority of tasksbased on their deadlines, has been shown to reach a 100% CPU utilization bound. The Minimum-Laxity-First (MLF) algorithm, which dynamically assigns the highest priority to the task with theminimum laxity, also has a CPU utilization bound of 100% for a set of independent tasks wherethe laxity of a task at time t is de�ned as (deadline � t � et) in which et is the execution time oftask t.Scheduling Schemes which combine static and dynamic priority scheduling include the Maximum-Urgency-First (MUF) algorithm [SK91]. MUF consists of two parts. The �rst part is the assignmentof the criticality and user priority of a task based on the period of a task and the overall CPU uti-lization. This part is done once statically. The second part selects a task dynamically based onthe criticality, laxity, and user priority. This part is activated whenever a task becomes ready torun. It has been shown that the MUF algorithm can be used to predictably schedule dynamicallychanging systems.2.1.4 Interval-Constrainted SchedulingA model of real-time task systems with temporal interval constraints has been proposed by Hanand Lin [HL92b, HL89, HL92a]. In their work, the timing constraints on tasks are expressedby the temporal constraints on consecutive executions of a task and/or executions between twotasks. In the paper [HL92a], the scheduling between two consecutive executions of a task must beseparated by at least a given temporal interval. Han and Lin consider the preemptive schedulingby transferring the scheduling problem to the pin-wheel problem [HMR+89], and apply the knownsolution to the pin-wheel problem to solve the interval-constrainted scheduling problem. Theyfurther consider the interval constraints on the inter-task case in which tasks have unit executiontimes [HL92b].Parametric Scheduling [GPS] is proposed to consider the interval-constrainted scheduling on asingle processor in which the exact execution time of a task is unknown a priori and has lower andupper bounds. Parametric scheduling consists of two components. Given a total order among tasks,the timing constraints are analyzed to produce a parametric calendar by the o�-line component. Theentries in the parametric calendar consist of arithmetic expressions which depend on parameterssuch as the bounds and the actual start and �nish time of tasks. Note that the values of some ofthe parameters are not available until the start or �nish of a preceding task. When these values11

become available, the on-line component computes the value for the expression to determine thetime when a task may be scheduled.2.2 Allocation ProblemThe allocation problem can be stated formally as the problem of allocating tasks of an applica-tion among processors to achieve some objective, under de�ned constraints. For example, theperformance-oriented objective may be to minimize the sum of execution costs and inter-task com-munication costs, while the reliability-oriented objective could be to maximize the system reliability.Based on di�erent objectives, the literature on the allocation problem can be classi�ed intothree categories; performance-oriented allocation, reliability-oriented allocation and schedulability-oriented allocation. In each category, the allocation strategy can be static or dynamic. In staticallocation all tasks are allocated before the application starts to execute. In dynamic allocation thetasks are allocated/reallocated at the run time based on the system conditions. In this section, wepresent signi�cant results in these three categories.2.2.1 Performance-Oriented AllocationThe performance-oriented allocation problem arises when the objective is to minimize (or optimize)a performance-oriented cost function. The strategy chosen to carry out the allocation depends onthe performance-oriented cost function. Any values which are measurable in the system can beused as performance indices. For the static allocation problem, the performance indices mostlyused are [SSA89].� Sum of execution costs and inter-task communication costs: the total cost incurredby executing the application on a multiprocessor system.� Turnaround time: the sum of execution time and inter- task communication time spent ina bottleneck processor. A bottleneck processor is one which has the maximum execution andcommunication time over all processors.� Inter-processor communication cost: the sum of communication costs incurred by thetasks resident at di�erent processors.� Load Balancing: the variance of processor utilizations. The less the variance, the betterthe load balance. 12

For dynamic allocation problems, the commonly used performance-oriented objectives are:� Inter-processor communication cost and� Load Balancing.Static AssignmentSome researchers have considered the static assignment problems in which the objective function isto minimize the sum of execution costs and inter-task communication costs. Stone [Sto77] proposesa solution for task assignment of a system with two processors. The 2-processor task assignmentproblem is transformed into a network ow problem, and then the network ow algorithm is usedto solve the problem in polynomial time. In general, given an application with M tasks and nprocessors, the assignment problem is formally proven to be NP-complete [MM89]. Hence, severalresearchers focus on the special cases of the general assignment problem. Bokhari [Bok81] considersthe particular case where the task graph is a tree structure. A shortest path algorithm [Bok87]is used to solve the problem in O(n2M) time. Towsley [Tow86] considers the series-parallel taskgraph and presents an optimal solution whose complexity is O(n3M). Sagar [SSA89] surveys othersub-optimal techniques which exploit the shortest path approach.Branch-and-bound methods and heuristic algorithms have been proposed for the general allo-cation problem. Ma et al. [MLT82] exploit a branch-and-bound method in which the allocationconstraints are taken into account. When a solution is generated by the method, the solution ischecked �rst to see whether the allocation constraints are satis�ed or not. If yes, the cost of thesolution is evaluated; otherwise, the solution is discarded and further expansion from the solutionis eliminated. The complexity of the method to �nd an optimal solution is in exponential time.Arora and Rana [AR80b] consider a heuristic approach to solve the general task assignment prob-lem. The approach is based on the iterative transformation. The solution is based on repetitivereassignment of tasks, one at a time. The algorithm terminates when it is not possible to do anyfurther improvement over the current solution.Shen and Tsai [ST85] propose a graph matching approach to minimize the task turnaroundtime, where the optimal task assignment problem is transformed into a state space search problem.The state space is de�ned by the task graph and the processor graph. The state space searchproblem is solved by using A� algorithm [HS78]. The graph matching approach needs exponentialtime in the worst case.Kirkpatrick et al. [KGV83] propose a simulated annealing technique as a global optimization13

technique. It is derived from the observation that an optimization problem can be identi�ed witha uid. There exists analogy between minimizing the cost function of a combinatorial optimizationproblem with many variables and the slow cooling of a molten metal until it reaches its low energyground state. Hence, the terms about energy function, temperature, and thermal equilibrium areused. During the searching of an optimal solution, higher probability is assigned to the jumps tothe points with lower energy function, while there is still a small chance of jumps to the pointsof higher energy function. This allows the hill climbing from a local optimal con�guration. If thetemperature remains the same over a number of trials, the thermal equilibrium is reached. Thewhole process terminates when no jumps have been taken over a number of successive steps. Linand Hsu [LH91] apply it to the task assignment problem to minimize the turnaround time. Theyhave designed an annealing schedule in which the rules are given to choose an initial temperature,the number of trials at each temperature, the decision test for decreasing the temperature, and thestopping criterion.Chu et al. [CHLE80] address the issue of tradeo� between interprocessor communication andload balancing. At one end, the tasks of an application should be assigned to a single processorto minimize interprocessor communication cost. And, at the other end, taking load balancinginto account, we should equally distribute the tasks among all the processors in the system. Theoptimal assignment should balance these conicting factors. Sarje and Sagar [SS91] consider theminimization of interprocessor communication cost and load balancing as the objective. A heuristicapproach is proposed to �nd a near optimal solution in polynomial time. Initially, some tasks thatcan only be executed on certain processors are assigned. The algorithm then calculates the averageload, which is used as a reference value. During the assignment, if a processor is under-loaded, itis favored for the target of the next unassigned task. The algorithm terminates when all tasks areassigned.Dynamic AssignmentFor static assignment problems, we assume the execution costs and communication costs for tasksare known a priori. However, a large distributed system may consist of hundreds of processorsand there may be cases in which the assumptions made for static assignment problems may not bevalid. In such cases, dynamic assignment is required.In general, the aim of dynamic assignment is to reduce the di�erence in workload among pro-cessors at the run time. Barmon et al. [BFB91] present algorithms for dynamic load balancing. Atask, input to the system through a processor, can be processed locally or transferred for processingto another processor. Dynamic load balancing algorithms distribute tasks using the current state14

information of the system. If the workload of a processor becomes heavy then the tasks arrivingat the processor are transferred to another processor which is not heavily loaded. In their model,a processor in the system maintains two queues for its tasks: a local queue and a ready queue. Alocal queue holds the tasks that arrive into the system externally. A task waiting in the local queueis either transferred to the ready queue for processing, if the ready queue is not full, or transferredto another processor. Each processor estimates its own load continually, and the estimated valuesare used to perform the load balancing.Chang and Oldham [CO91] also present a dynamic assignment model in which a set of taskclusters is generated according to the current system work load. Each cluster is assigned to aprocessor. The most independent cluster (i.e. the inter-task communication cost among tasks inthis cluster is the smallest) is chosen to be split and reassigned based on a best-�t policy. Thealgorithm also consists of a reclustering algorithm activated at run-time to reassign and grouptasks to accommodate the dynamic change of load in the system.A number of solution methods are presented in this subsection. For the special case of generaltask assignment problems, there exists the polynomial time optimal algorithm. Shortest pathalgorithms and network ow algorithms fall into this category. In general case, branch-and-boundmethods and other heuristic approaches are useful to obtain the optimal or near optimal solutions.Graph matching, iterative transformation, and simulated annealing have also been used. Finally, ifthe objective is to maximize the load balance, we may measure or estimate the processor utilizationand use it as an index to perform task assignment.2.2.2 Reliability-Oriented AllocationThe reliability-oriented allocation problem arises when the objective is to maximize the degree ofsystem reliability. In general, the goal is achieved by replicating the tasks to many processors. Inthis subsection, we present some previous work done in this area.Static ReplicationOne basic issue of static replication for reliability-oriented objectives is how to model and computesystem reliability. Jan et al. [JLT] introduce a reliability measure to model the reliability of theapplication. The measure is de�ned to be the probability that the application can be successfullyexecuted. They consider a pseudo two-terminal series-parallel (TTSP) task graph, which is obtained15

from the TTSP graph by adding k replications1 to each task and adding proper links between twotasks. They have presented a linear time algorithm for computing the reliability of pseudo TTSPgraph. In the cases where tasks are allowed to have di�erent numbers of replications, Liang et al.[LAMS92] consider the fork-join type task graph and present an algorithm for reliability analysis.Shatz and Wang [SW89] consider the reliability-oriented task replication in redundant multi-processor systems. Given a non-redundant system, we can construct a redundant system of levelr by replicating a processor by r identical processors for each site in a non-redundant system, andeach communication link by r identical links. Shatz and Wang present Binary/Triple Modular Re-dundance (B/TMR) (where r = 2 and 3 respectively) models and branch-and-bound algorithms fortask allocation. In the models, a task, once allocated to a site, is replicated to r identical processorsat that site. The objective functions of the models are functions of the system parameters (suchas execution times, inter-site communication costs, and failure rates of hardware units). And thealgorithms �nd optimal solutions using branch-and-bound techniques.Dynamic ReplicationNot much work has been reported in the literature in the area of reliability-oriented dynamicreplication. It may be because the purpose of task replication is to address run-time failures, andit can be ful�lled by static replication. However, Thambidurai and Trivedi [TT89] consider real-time systems where the replications of periodic and aperiodic tasks coexist. They have presenteda technique that allows a system to guarantee the execution of both periodic and aperiodic taskswithin the hard deadlines. The approach is based on dynamically changing the replication factorof periodic tasks in response to aperiodic tasks. It is suitable for handling transient overloads, bydecreasing the reliability of periodic tasks, when a burst of aperiodic tasks arrive in the systemwithin a short time interval.2.2.3 Schedulability-Oriented AllocationThe schedulability-oriented allocation problem arises in real-time systems in which the objective isto �nd an allocation in which the scheduling of the tasks meets the speci�ed timing constraints.1k is a constant. 16

Static AssignmentTo guarantee the timing constraints, the basic approach is to allocate and schedule all tasks apriori. The global view proposed by Ramamritham [Ram90] attempts to solve the allocationproblem in conjunction with the scheduling of processors and communication networks. Given aset of tasks with precedence and communications constraints, a comprehensive graph is generated.The comprehensive graph represents the overall task instances within one scheduling frame. Aclustering policy is then applied to each pair of subtasks to determine whether the subtasks shouldbe assigned to the same processor or not. Finally, a heuristic search technique is exploited to �nda feasible solution.Tindell et al. [TBW92] take the same global view and use a simulated annealing algorithm tosolve the allocation and scheduling problem. In the work, a distributed rate-monotonic algorithmis implemented as the scheduling scheme. A token-ring protocol is used to schedule the communi-cations. The token holding time is pre-determined to make sure that the interval is long enoughfor the transmission of all communications within one period. The overall allocation decision iscontrolled by simulated annealing.2.3 SummaryA brief overview of the related work in allocation problems and real-time scheduling has beenpresented. It is clear that the desire to solve new and practical problems of allocation and schedulinghas always been a driving force for the development of feasible and good techniques in multiprocessorsystems. The next four chapters detail our work in the scheduling and allocation problems.
17

Chapter 3Non-Preemptive Scheduling with Hybrid TimingConstraints on a Single ProcessorTo solve the allocation and scheduling problem in real-time multiprocessor systems, we begin withthe scheduling problem of periodic tasks with hybrid timing constraints on a single processor. Thesolution to the single-processor case can be extended to the multiple-processor case by taking intoaccount the allocation of the tasks and the scheduling of inter-processor communication.In this chapter, hybrid timing constraints imposed on a periodic task are formally introduced. InSection 3.2 timing constraints are analyzed to derive the scheduling window for each task instance.In Sections 3.4 and 3.5, the approaches of scheduling a task instance and a task set respectivelyare presented.3.1 Problem StatementConsider a set of periodic tasks, � = f �i j i = 1, : : : n g, where �i is a 6-tuple < pi, ei, ri, di,�i, �i > denoting the period, computation time, ready time, deadline, low jitter and high jitterrespectively. One instance of a task is executed each period. The execution of a task instance isnon-preemptable. Ready time, ri, and deadline, di, are the constant o�sets from the beginning ofthe period. The start times of two consecutive instances of task �i are at least pi � �i and at mostpi + �i apart.In order to schedule periodic tasks, we consider the least common multiple (LCM) of all periodsof tasks. Let ni be the number of instances for task �i within a schedule of length LCM. Hence, ni= LCMpi . A schedule for a set of tasks is the mapping of each task �i to ni task instances and theassigning of a start time sji to the j-th instance of task �i, � ji , 8 i = 1, : : : n and j = 1, : : :, ni.18

De�ne rji and dji to be the absolute ready time and deadline for task instance � ji . Namely, rji = pi� (j� 1) + ri, and dji = pi � (j� 1) + di. A feasible schedule is a schedule in which the followingconditions are satis�ed for each task �i:f ji = sji + ei (execution time) (3.1)sni+1i = s1i + LCM (periodicity) (3.2)sji � rji (ready time) (3.3)f ji � dji (deadline) (3.4)sji � sj�1i + pi � �i (low jitter) (3.5)sji � sj�1i + pi + �i (high jitter) (3.6)8j = 2; : : : ; ni + 1:The non-preemption scheduling discipline leads to Equation 3.1 where f ji is the �nish time of � ji .Another condition for non-preemption scheduling is that given any i, j, k and `, if sji < sk̀ then f ji� sk̀. It means the schedule for any two instances is non-overlapping. The constructed scheduleof length LCM is invoked repeatedly by wrapping-around the end point of the �rst schedule tothe start point of the next. Hence, as shown in Equation 3.2, the start time of the �rst instancein the next schedule is exactly one LCM away from that of the �rst schedule. And the absolutetiming constraints on each task instance are given as shown in Equations 3.3 and 3.4. Finally,Equations 3.5 and 3.6 specify the relative timing constraints between two consecutive instances ofa task.3.2 Analysis of Relative Timing ConstraintsDe�ne the scheduling window for a task instance as the time interval during which the task canstart. Traditionally, the lower and upper bounds of the scheduling window for a task instance arecalled earliest start time (est) and latest start time (lst) respectively. These values are given andindependent of the start times of the preceding instances.We consider the scheduling of periodic tasks with hybrid timing constraints described in Equa-tions 3.3 through 3.6. The scheduling window for a task instance is derived from the start timesof its preceding instances. A feasible scheduling window for a task instance � ji is a scheduling win-dow in which any start time makes the timing relation between sj�1i and sji satisfy Equations 3.5and 3.6. Formally, given s1i , s2i , : : :, and : : :, sj�1i , the problem is to derive the feasible schedulingwindow for � ji such that a feasible schedule can be obtained if � ji is scheduled within the window.19

ID est = sj�1i + pi � �i lst = sj�1i + pi + �i start time (sji)�1i 0 40 4�2i 39 49 40�3i 75 85 77�4i 112 122 113�5i 148 158 *Table 3.1: An example to show the wrong setting of scheduling windowsFor the sake of simplicity, we assume that ri = 0 and di = pi, 8 i, in this section. Then, simplyassigning est and lst of � ji as sj�1i + pi � �i and sj�1i + pi + �i respectively where i = 1, 2, : : :, nand j = 1, 2, : : :, ni, is not tight enough to guarantee a feasible solution. For example, considerthe case shown in Table 3.1 in which a periodic task �i is to be scheduled. Let LCM, pi, �i, and �ibe 200, 40, 5, and 5 respectively. Hence, there are 5 instances within one LCM (i.e. ni = 5). The�rst column in Table 3.1 indicates the instance IDs. The second and third columns give the est andlst of the scheduling windows for the task instances speci�ed in the �rst column. The last columnshows the actual start times scheduled for the particular task instances. The actual start time isa value between est and lst of each task instance. For instance, the est and lst of �2i are 39 and 49respectively. It means 39 � s2i � 49. The scheduled value for s2i , in the example, is 40. Since s6i= s1i + LCM = 204, we �nd that any value in the interval [148,158] can not satisfy the relativetiming constraints between �5i and �6i . As a consequence, the constructed schedule is infeasible.We draw a picture to depict the relations among the start times of task instances in Figure 3.1.When � ji is taken into account, the scheduling window for sji is obtained by considering its relationwith sj�1i as well as that with snii and sni+1i . We make sure that once sji is determined, the estimatedest and lst of snii , based on sji and sni+1i , specify a feasible scheduling window for snii . Namely, theinterval which is speci�ed by the estimated est and lst of snii , based on sji , overlaps the interval[sni+1i � (pi + �i), sni+1i � (pi � �i)].Proposition 3.1 Let the est and lst of � ji beest(� ji) = maxf(sj�1i + pi � �i); (s1i + (j � 1)� pi �(ni � j + 1)� �i)g; (3.7)and lst(� ji) = minf(sj�1i + pi + �i); (s1i + (j � 1)� pi +(ni � j + 1)� �i)g: (3.8)If sji is in between the est(� ji) and lst(� ji), then the estimated est and lst of snii , based on sji andsni+1i , specify a feasible window. 20

s1i s2i s3isni+1i
sj�1isji

sni+2i sni+3isniiFigure 3.1: The relations between the task instancesProof: Let ` and � be the estimated est and lst of snii , based on sji , respectively.Accordingly, ` = sji + (ni � j)� (pi � �i) (3.9)� = sji + (ni � j)� (pi + �i) (3.10)To guarantee the existence of feasible start time of �nii , the interval [`,�] has to overlap theinterval [sni+1i � (pi + �i), sni+1i � (pi � �i)]. Thus the following conditions have to be satis�ed:sni+1i � ` � pi � �i (3.11)sni+1i � � � pi + �i (3.12)By replacing ` in Equation 3.11 with sji + (ni � j) � (pi � �i), we obtainsji � sni+1i � (ni � j + 1)� (pi � �i)= s1i + LCM� (ni � j + 1)� (pi � �i)= s1i + nj � pi � (ni � j + 1)� (pi � �i)= s1i + (j � 1)� pi + (ni � j + 1)� �i (3.13)21

Instance ID est from Eq. 3.7 lst from Eq. 3.8 actual start time (sji)�1i 0 40 4�2i 39 49 40�3i 75 85 77�4i 114 122 115�5i 159 160 159 � 160Table 3.2: The correct setting of scheduling windows based on Proposition 3.1.Likewise, by replacing � in Equation 3.12 with sji + (ni � j) � (pi + �i), we havesji � sni+1i � (ni � j + 1)� (pi + �i)= s1i + LCM� (ni � j + 1)� (pi + �i)= s1i + (j � 1)� pi � (ni � j + 1)� �i (3.14)So, According to Equations 3.14 and 3.5, we choose the bigger value between (sj�1i + pi � �i)and (s1i + (j � 1)� pi � (ni � j + 1)� �i) as the est of � ji . Similarly, according to Equations 3.13and 3.6, we assign the smaller value of (sj�1i + pi + �i) and (s1i + (j � 1) � pi + (ni � j + 1) ��i) as the lst. 2Example 3.1: To show how Proposition 3.1 gives a tighter bound to �nd feasible schedulingwindows, we consider the case shown in Table 3.1 again. We apply Equations 3.7 and 3.8 tocompute the est and lst of each instance. The results are shown in Table 3.2. Note that thescheduling windows for �4i and �5i are tighter than those in Table 3.1. As a consequence, any starttime in the interval [159,160] for �5i satis�es the relative timing constraints between �5i and �6i .3.2.1 Property of Scheduling WindowsLet us de�ne Pi(x; y; z) as the predicate in which the estimated est and lst of �yi , based on sxi andszi , specify a feasible scheduling window for �yi . In Proposition 3.1 , we prove that for any sji inbetween est(� ji) and lst(� ji) as speci�ed in Equations 3.7 and 3.8, Pi(j; ni; ni + 1) is true.Lemma 3.1 Given s1i , s2i , : : :, and sji , if, 8 k = 2, : : :, j, est(�ki) � ski � lst(�ki) as speci�ed inEquations 3.7 and 3.8, then Pi(j; y; ni+ 1) is true, 8 y = j + 1, j + 2, : : :, ni.Proof: We prove that the estimated est and lst of �yi , based on sji and sni+1i , specify a feasiblescheduling window, by showing that (1) the estimated scheduling window of syi , based on sji , is22

sji sni+1isni+1i � (ni � y + 1)� (pi + �i) sji + (y � j)� (pi + �i)syi sni+1i � (ni � y + 1)� (pi � �i)sji + (y � j)� (pi � �i)Figure 3.2: The overlapping of two intervalsspeci�ed by the interval [sji + (y � j)� (pi � �i); sji + (y � j)� (pi + �i)]; (3.15)(2) the estimated scheduling window of syi , based on sni+1i , is speci�ed by the interval[sni+1i � (ni � y + 1)� (pi + �i); sni+1i � (ni � y + 1)� (pi � �i)]; (3.16)and (3) the intervals in Equations 3.15 and 3.16 overlap.In Figure 3.2, we see that the necessary and su�cient conditions for the overlapping of theintervals speci�ed in Equations 3.15 and 3.16 aresji + (y � j)� (pi � �i) � sni+1i � (ni � y + 1)� (pi � �i) (3.17)and sni+1i � (ni � y + 1)� (pi + �i) � sji + (y � j)� (pi + �i): (3.18)By solving the Equations 3.17 and 3.18, we obtainsji � s1i + (j � 1)� pi + (ni � j + 1)� �iand sji � s1i + (j � 1)� pi � (ni � j + 1)� �i:The above two equations describe the same conditions as Equations 3.13 and 3.14 do. Hence,Pi(j; y; ni + 1) is true, 8 y = j + 1, j + 2, : : :, ni. 2Lemma 3.2 Given s1i , s2i , : : :, sji , and an integer n0, where 1 � n0 � j, if, 8 k = 2, : : :, j, est(�ki)� ski � lst(�ki) are speci�ed as in Equations 3.7 and 3.8, then Pi(j; y; ni+n0) is true, 8 y = j +1,j + 2, : : :, ni. 23

Proof: We use the same method in Lemma 3.1 to prove it. We show that (1) the estimatedscheduling window of syi , based on sji , is speci�ed by the interval[sji + (y � j)� (pi � �i); sji + (y � j)� (pi + �i)]; (3.19)(2) the estimated scheduling window of syi , based on sni+n0i , is speci�ed by the interval[sni+n0i � (ni + n0 � y)� (pi + �i); sni+n0i � (ni + n0 � y)� (pi � �i)]; (3.20)and (3) these two intervals overlap.The following conditions have to be satis�ed to make sure the overlapping of the two intervals.sji � sn0i + (j � 1)� pi + (ni � j + 1)� �i � (pi � �)� n0 � 1 (3.21)and sji � sn0i + (j � 1)� pi � (ni � j + 1)� �i � (pi + �i)� n0 � 1: (3.22)Since s1i � sn0i � (pi��) � (n0�1) and s1i � sn0i � (pi+�i) � (n0�1), we rewrite Equations 3.21and 3.22 sji � sn0i + (j � 1)� pi + (ni � j + 1)� �i�(pi � �)� n0 � 1� s1i + (j � 1)� pi + (ni � j + 1)� �iand sji � sn0i + (j � 1)� pi � (ni � j + 1)� �i�(pi + �i)� n0 � 1:� s1i + (j � 1)� pi � (ni � j + 1)� �iHence Pi(j; y; ni + n0) holds for any 1 � n0 � j. 2Theorem 3.1 Given s1i , s2i , : : :, and sji , if, 8 k = 2, : : :, j, est(�ki) � ski � lst(�ki) as speci�ed inEquations 3.7 and 3.8, then Pi(j; y; z) is true, 8 y = j + 1, j + 2, : : :, ni, and z = ni + 1, ni + 2,: : :, ni + j.By combining the proofs in Lemmas 3.1 and 3.2, it is easy to see that Theorem 3.1 holds. Basedon Theorem 3.1 , we can assign the scheduling window for � ji by using Equations 3.7 and 3.8 onces1i , s2i , : : :, sj�1i . 24

3.3 Bounds of A Scheduling Window with Hybrid Timing Con-straintsIn Section 3.2, the earliest and latest start time for a task instance with relative timing constraintsare derived in Equations 3.7 and 3.8. When the absolute timing constraints are taken into account,the bounds of the scheduling window for � ji are modi�ed as follows.est(� ji) = maxfrji ; (sj�1i + pi � �i); (s1i + (j � 1)� pi �(ni � j + 1)� �i)g; (3.23)lst(� ji) = minf(dji � ei); (sj�1i + pi + �i); (s1i + (j � 1)� pi +(ni � j + 1)� �i)g: (3.24)Before we present the scheduling technique for a task instance, let us consider the followingobjective. Given a set of tasks with the characteristics described in Section 3.1, we schedule thetask instances for each task within one LCM to minimize� = Xi;j �(sji � sj�1i � pi) (3.25)Subject to the constraints speci�ed in Equations 3:1 through 3:6;where �(x) = x; if x � 0; = �x; otherwise:Basically, we try to schedule every instance of a task one period apart from its precedinginstance. An optimal schedule is a feasible schedule with the minimum total deviation value fromone period apart for instances.3.4 The Time-Based Scheduling of a Task InstanceWe consider the time-based solution to the scheduling problem by using a linked list. Each elementin the list represents a time slot assigned to a task instance. A time slot w has the following �elds:(1) task id i and instance id j indicate the identi�er of the time slot. (2) start time st and �nish timeft indicate the start time and completion time of � ji respectively. (3) prev ptr and next ptr are thepointers to the preceding and succeeding time slots respectively. We arrange the time slots in thelist in increasing order by using the start time as the key. Any two time slots are non-overlapping.Since the execution of an instance is non-preemptable, the time di�erence between start time and�nish time equals the execution time of the task.25

LCMf100 f1f1 s2 f2 s3 f3f2s2 s3 f3s2 f2 s3 f3f1 f1 + eAfter:Before: enew arriving instance: [est(� ji), lst(� ji)]
Figure 3.3: Insertion of a new time slot3.4.1 Creating a Time Slot for the Task InstanceConsider a set of n tasks. Given a linked list and a task instance � ji , we schedule the instance byinserting a time slot in the list. According to equations 3.23 and 3.24, we compute the est(� ji) andlst(� ji) �rst. Let S be the set of unoccupied time intervals that overlap the interval [est(� ji), lst(� ji)]in the linked list. The unoccupied time intervals in S are collected by going through the list. Eachtime when a pair of time slots (w;w+ 1) is examined, we compute ` = maxfest(� ji), ft(w)g and �= minflst(� ji), st(w + 1)g, where ft(w) is the �nish time of the time slot w, and st(w + 1) is thestart time of the slot next to w. If ` � �, then we add the interval [`, �] to S.The free intervals in S are the potential time slots which � ji can be assigned to. Since we tryto schedule � ji as close to one period away from the preceding instance � j�1i as possible, we sort S,based on the function of the lower bound of each interval, �(sj�1i + pi � `), in ascending order.Without loss of generality, we assume that S after the sorting is denoted by fint1, int2, : : : , intjSjgThe idea is that if � ji is scheduled to intk, then the value in equation 3.25 will be smaller than thatof the case in which � ji is scheduled to intk+1.The scheduling of � ji can be described as follows. Starting from int1, we check whether thelength of the interval is greater or equal to the execution time of � ji . If yes, then we schedule theinstance to the interval. One new time slot is created in which the start time is the lower bound ofthe interval and the �nish time equals the start time plus the execution time. The created time slotis added to the linked list and the scheduling is done. If the length is smaller than the executiontime, then we check the length of the next interval until all intervals are examined. An example isshown in Figure 3.3 in which the slot with the dark area represents � ji . In this example we assume26

pa + �apa � �aest(sba) wkwk�1 sb+1asb�1a sba � est0
est0 lst0lst(sba)st(wk+1)� f bawk+1lst0 � sbasba � ft(wk�1)

Figure 3.4: An illustration of left laxity(wk) and right laxity(wk)that est(� ji) � f1 and s2 � f1 > e. It means the free slot between the �rst and second occupiedslots can be assigned to � ji .3.4.2 Sliding of the Time SlotsIf none of the intervals in S can accommodate a task instance, the sliding technique is used tocreate a big enough interval by sliding the existing time slots in the list. To make the slidingtechnique work, we maintain two values for each time slot: left laxity and right laxity. The value ofleft laxity indicates the amount of time units by which a time slot can be left-shifted to an earlierstart time. Similarly, the right laxity indicates the amount of time units by which a time slot canbe right-shifted to a later start time.Given the time slots wk�1, wk, and wk+1, where a and b are the task and instance identi�ers ofwk respectively, the laxity values of the time slot wk can be computed by:left laxity(wk) = minfsba � est0; sba � ft(wk�1) +left laxity(wk�1)g (3.26)right laxity(wk) = minflst0 � sba; st(wk+1)� f ba +right laxity(wk+1)g (3.27)where est0 = maxfest(� ba); sb+1a � (pa + �a)gand lst0 = minflst(� ba); sb+1a � (pa � �a)g:Note that the interval [est0, lst0] de�nes the sliding range during which � ba can start without27

shifting � b�1a or � b+1a . A schematic illustration of equations 3.26 and 3.27 is given in Figure 3.4.From equations 3.26 and 3.27, we see that the computing of left laxity(wk) depends on thatof wk�1 and the computing of right laxity(wk) depends on that of wk+1. It implies a two-passcomputation is needed to compute the laxity values for all time slots. The complexity is O(2N)where N is the number of time slots in the linked list.The basic idea of the sliding technique is described as follows. Given a task instance � ji and aset of unoccupied intervals, S = fint1, int2, : : : , intjSjg, we check one interval at a time to see ifthe interval can be enlarged by shifting the existent time slots. Two ways of enlargement are (1)by either shifting the time slots, that precede the interval, to the left or (2) shifting the slots, thatfollow the interval, to the right. The shifting depends on which direction minimizes the objectivefunction in Equation 3.25.3.4.3 The AlgorithmAn algorithmic description about how to schedule a task instance, as described in Sections 3.4.1and 3.4.2, is given in Figure 3.5.The procedures Left Shift(wk,time units) and Right Shift(wk,time units) in Figure 3.5 may in-volve the shifting of more than one time slot recursively. For example, consider the case in Fig-ure 3.4, if Right Shift(wk,lst0 � sba) is invoked (i.e. wk is to be shifted right by lst0 � sba time units),then wk+1 has to be shifted too. It is because the gap between wk and wk+1 is st(wk+1) � f ba whichis smaller than lst0 � sba. In this case, Right Shift(wk+1,lst0 � sba � st(wk+1) + f ba) is invoked.We do not enlarge an interval at both ends. Enlarging an interval at both ends needs to shiftcertain amount of preceding time slots to the left and shift some succeeding slots to the right. It ispossible that some task instance �yx is shifted left, while �y+1x is shifted right. As a consequence, thetiming constraints between syx and sy+1x could be violated. For example, Let syx and sy+1x before theshifting be 10 and 20 respectively. The execution time for �x is 5 time units. Assume the left laxityof �yx is 5 and the right laxity of �y+1x is 5. It implies sy+1x � syx � 15. Consider the scheduling of atask instance � ji with execution time 15. If we enlarge the interval between �yx and �y+1x by shifting�yx left 5 time units and �y+1x right 5 time units, then we get a new interval with 15 time units for� ji . However, it turns out that sy+1x = 25, syx = 5, and the relative timing constraints between �yxand �y+1x is violated. 28

3.5 The Priority-Based Scheduling of a Task SetWe consider the priority-based algorithms for scheduling a set of periodic tasks with hybrid timingconstraints. Given a set of periodic tasks � = f �i j i = 1, : : : , n g with the task characteristicsdescribed in Section 3.1, we compute the LCM of all periods. Each task �i is extended to ni taskinstances: �1i , �2i , : : :, �nii . A scheduling algorithm � for � is to totally order the instances of alltasks within the LCM. Namely, � : task id � instance id ! integer.Three algorithms are considered. They are smallest latest-start-time �rst (SLsF), smallest period�rst (SPF), and smallest jitter �rst (SJF) algorithms.3.5.1 SLsFThe scheduling window for a task instance � ji depends on the scheduling of its preceding instance.Once sj�1i is determined, the scheduling window of the instance can be computed by equations 3.23and 3.24. The scheduling window for the �rst instance of a task �i is de�ned as [ri,di � ei].The idea of the SLsF algorithm is to pick one candidate instance with the minimum lst amongall tasks at a time. One counter for each task is maintained to indicate the candidate instance. Allcounters are initialized to 1. Each time when a task instance with the smallest lst is chosen, thealgorithm in Figure 3.5 is invoked to schedule the instance. After the scheduling of the instance isdone, the counter is increased by one. The counter for �i overows when it reaches ni+1. It meansthat all the instances of �i are scheduled. The algorithm terminates when all counters overow.We can compute the relative deadline for a task instance by adding the execution time to thelst. If the execution times for all tasks are identical, the SLsF algorithm is equivalent to the earliestdeadline �rst (EDF) algorithm.3.5.2 SPFThe task periods determine the LCM of � and the numbers of instances for tasks within the LCM.In most cases, the task with the smaller period has the tighter timing constraints. Namely, (�i +�i) � (�j + �j) if pi � pj . To make the tasks with the smaller periods meet their timing constraints,the SPF algorithm favors the tasks with smaller periods.The SPF algorithm uses the period as the key to arrange all tasks in non-decreasing order. Thetask with the smallest period is selected for scheduling �rst. The instances of a particular task arescheduled one by one by invoking the algorithm in Figure 3.5. After all the instances of a task arescheduled, the next task in the sequence is scheduled.29

3.5.3 SJFWe de�ne the jitter of a task �i as (�i + �i). It is proportional to the range of the schedulingwindow. Hence, the schedulability of a task also depends on the jitter.Instead of using the period as the measurement, the SJF algorithm assigns the higher priorityto the tasks with the smaller jitters. The task with the smallest jitter is scheduled �rst.3.5.4 The SolutionThe composition of the time-based scheduling of a task instance and the priority assignment oftask instances is shown in Figure 3.6. The priority assignment can be done by using SLsF, SPF,or SJF. The function Schedule An Instance() is invoked to schedule a single task instance.3.6 Experimental EvaluationWe conduct two experiments to study and compare the performance of the three algorithms. Thepurpose of the �rst experiment is to study the e�ect of the number of tasks and utilization onthe schedulability of each algorithm. The objective of the second experiment is to compare theperformance of the three algorithms.3.6.1 The First ExperimentThe task generation scheme for the �rst experiment is characterized by the following parameters.� Periods of the tasks: We consider a homogeneous system in which the period of one taskcould be either the same as or multiple of the period of another. We consider a system with40, 80, 160, 320, and 640 as the candidate periods. There may be more than one task withthe same period.� The execution time of a task, ei : It has the uniform distribution over the range [0, pi16], wherepi is the period of the task �i. The execution time could be a real value.� The jitters of a task: �i = �i = 0.1 � pi.We de�ne the utilization of a task system as NXi=1 eipi (3.28)30

In the �rst experiment, the utilization value and the number of tasks in a set are the controlledvariables. Given utilization value U and the number of tasks N the scheme �rst generates a setof raw data by randomly generating a set of N tasks based on the the selected periods, jittervalues, and the execution time distribution. The utilization of the raw data, u, is then computedby Equation 3.28. Finally, the utilization value of the raw data is scaled up or down to U bymultiplying Uu to the execution time of each generated task. As a consequence, we obtain a set oftasks with the speci�ed (U ,N) value.For each combination of (U ,N) in which U = 5%, 10%, 15%, : : : 100% and N = 10, 20, and 30,we apply the scheme to generate 5000 cases of input data and use the three algorithms to schedulethem. The schedulability degree of each (U ,N) combination for an algorithm is obtained by dividingthe number of solved cases by 5000. Since the jitter values is 1/10 of periods, it is observed thatthe SPF and SJF algorithms yield the same results. The results are shown in Figure 3.7.As can be seen in Figures 3.7(a) and (b) the number of tasks has di�erent e�ects on thethree algorithms. For SLsF, given a �xed utilization value, the schedulability degree increasesas the number of tasks in a system becomes bigger. It is because the execution time of a taskbecomes smaller as the number of tasks increases. For a task system with a smaller execution timedistribution, the chance for SLsF to �nd a feasible solution is bigger. The same phenomenon isalso found in Figure 3.7(b) for SPF and SJF in the low-utilization cases (i.e. U � 20%). However,for the high-utilization cases in Figure 3.7(b), the complexity of the number of tasks dominates thealgorithms and the schedulability decreases.3.6.2 The Second ExperimentThe task generation scheme for the second experiment is characterized by the following parameters.� LCM = 300� The number of tasks is 20.� Periods of the tasks: We consider the factors of the LCM as the periods. They are 20, 30,50, 60, 100, 150, and 300. There may be more than one task with the same period.� The execution time of a task, ei : It has the uniform distribution over the range [0, pi15], wherepi is the period of the task �i. The execution time could be a real value.� The jitters of a task: �i = �i = 0.1 � pi + 2 � ei.31

The generation scheme for the second experiment is similar to the �rst one. Given a utilizationvalue U , a set of 20 tasks is randomly generated according to the parameters listed above and thenthe execution time of each task is normalized in order to make the utilization value equal to U .We generate 5000 cases of di�erent task sets for each utilization value ranging from 0.05 to 1.00.The schedulability degree of each algorithm on a particular utilization value is obtained by dividingthe number of solved cases by 5000. We compare the schedulability degrees of the algorithms ondi�erent utilization values. The results are shown in Figure 3.8(a).As can be seen in Figure 3.8(a) the SLsF algorithm outperforms the other two algorithms. Forexample, when the utilization = 50%, the schedulability degree of SLsF is 0.575 while those of SPFand SJF are less than 0.2. It is because the way of assigning the priorities to the task instances inthe SLsF algorithm reects the urgency of task instances by considering the latest start times.We also compare the objective function value � in Equation 3.25 among the three algorithms.We de�ne the normalized objective function for an algorithm asẑ = 5000Xi=1 zi5000 ; (3.29)where zi = 8>>>>>><>>>>>>: 1 if the algorithm can not �nd a feasible solutionto case i.0 if max(i) = min(i):�i�min(i)max(i)�min(i) otherwise.Given case i, the values of min(i) and max(i) are calculated among the objective values obtainedfrom the algorithms which solve the case. For the algorithms which can not �nd a feasible solutionto case i, the objective values are not taken into account when min(i) and max(i) are calculated.The results of the normalized objective functions for each algorithm on di�erent utilization valuesare shown in Figure 3.8(b).It is observed that in the low-utilization cases SJF �nds feasible solutions with smaller objectivevalues. It is because SJF schedules the tasks with the smallest jitters �rst. By scheduling the taskswith the smaller jitter value �rst it is easier to make the instances of a task one period apart.However, in the middle- or high-utilization cases, the schedulability dominates the normalizedobjective function, and SLsF outperforms the other two algorithms in these regions.32

3.7 SummaryIn this chapter we have considered the static non-preemptive scheduling algorithm on a singleprocessor for a set of periodic tasks with hybrid timing constraints. The time-based schedulingalgorithm is used to schedule a task instance once the scheduling window of the instance is given.We have also presented three priority assignment algorithms for the task instances and conductedexperiments to compare the performance. From the simulation results, we see that the SLsFoutperforms the other two algorithms.The techniques presented in this chapter can be applied to multi-processor real-time systems.Communication and synchronization constraints can be also incorporated. In the next chapter, theextension to a distributed computing systems is presented.

33

'

&

$

%

. .Schedule An Instance (� ji):Input: A linked list, a task instance � ji and a sequence of sorted freeintervals, S = f int1, int2, : : : , intjSj g, in which eachinterval overlaps [est(� ji),lst(� ji)].Let the execution time of � ji be e.For n = 1 to jSj doLet intn be [`,�].If � � ` � e thenReturn a new time slot with start time = `and �nish time = ` + e.Compute left laxity and right laxity for each time slot in the linked listby equations 3.26 and 3.27.For n = 1 to jSj doLet intn be [`,�].If ` � sj�1i + pi then /* Try left shift �rst then right shift */Let the time slot that immediately precedes intn be wk.If left laxity(wk) + � � ` � e then /* Left shift */Left Shift(wk ,e � � + `).Return a new time slot with start time = � � eand �nish time = �.Else Let the time slot that immediately follows intn be wk.If right laxity(wk) + � � ` � e then /* Right shift */Right Shift(wk,e � � + `).Return a new time slot with start time = `and �nish time = `+ e.Else /* Try right shift �rst then left shift */Let the time slot that immediately follows intn be wk.If right laxity(wk) + � � ` � e then /* Right shift */Right Shift(wk,e � � + `).Return a new time slot with start time = `and �nish time = `+ e.Else Let the time slot that immediately precedes intn be wk.If left laxity(wk) + � � ` � e then /* Left shift */Left Shift(wk ,e � � + `).Return a new time slot with start time = � � eand �nish time = �.Schedule � ji at the end of linked list.Figure 3.5: The Scheduling of a Task Instance34

By some priority-based assignment,Such as SLsF, SPF, and SJF.Find the next unscheduled task instanceA set of tasks is given
Some instance is unscheduledSchedule An Instance() as shown in Table 3.5All instances are scheduledFigure 3.6: A schematic owchart for the solution

35

(a)

SLsF: N = 10

SLsF: N = 20

SLsF: N = 30

Schedulability

Utilization(%)-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

20.00 40.00 60.00 80.00 100.00

(b)

SPF/SJF: N = 10

SPF/SJF: N = 20

SPF/SJF: N = 30

Schedulability

Utilization(%)-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

20.00 40.00 60.00 80.00 100.00Figure 3.7: The e�ect of the numbers of tasks on the schedulability36

(a)

 SLsF

 SPF

 SJF

Schedulability

Utilization (%)-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

20.00 40.00 60.00 80.00 100.00

(b)

 SLsF

 SPF

 SJF

Normalized Objective Function

Utilization(%)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

20.00 40.00 60.00 80.00 100.00Figure 3.8: The comparison of three algorithms37

Chapter 4Multiprocessor Allocation and SchedulingIn this chapter, we consider the allocation and scheduling of periodic tasks with the hybrid timingconstraints on a real-time multiprocessor system. The task characteristics, obtained from the realexamples of the real-time applications, are described in Section 4.1. We propose the approach tothe allocation and scheduling of these applications in Section 4.2. A simulated annealing algorithmis developed in Section 4.3 to solve the problem in which the solution is based on the results fromChapter 3. In Section 4.4, we evaluate the practicality and show the signi�cance of the algorithm.Instead of randomly generating the ad hoc test cases, we apply the algorithm to a real example.The example is the Boeing 777 Aircraft Information Management System (AIMS) with variousnumbers of processors. The experimental results are shown in Section 4.4.4.1 Problem DescriptionVarious kinds of periodic task models have been proposed to represent real-time system character-istics. One of them models an application as an independent set of tasks, in which each task isexecuted once every period under the ready time and deadline constraints. Synchronization (e.g.precedence and mutual exclusion) and communications are simply ignored. Another model takesthe precedence relationship and communications into account and models the application as a taskgraph. In a task graph, tasks are represented as nodes while communications and precedence rela-tionship between tasks are represented as edges. The absolute timing constraints can be imposedon the tasks. The allocation of tasks, and the scheduling of tasks and communications, have to meettheir timing constraints as well as the synchronization constraints. The de�ciency of task graphmodeling is that one cannot specify the relative constraints across task periods. For example, onecannot specify the minimum separation interval between two consecutive executions of the sametask. 38

In Chapter 3 we augmented the real-time system characteristics by considering the relativeconstraints on the instances of a task. In this chapter we consider the system with inter-taskdependency.4.1.1 Task CharacteristicsThe problem considered in this chapter has the following characteristics.� The Fundamentals: A task is denoted by the 6-tuple < pi, ei, ri, di, �i, �i > as described inSection 3.1. The timing constraints speci�ed in Equations 3.1 through 3.6 must be satis�ed.� Asynchronous Communication: Tasks communicate with each other by sending andreceiving data or messages. The frequencies of sending and receiving tasks of a communicationcan be di�erent. As a consequence, communications between tasks may cross the task periods.When such asynchronous communications occur, the semantics of undersampling is assumed.It means, when two tasks of di�erent frequencies are communicating, the communicationsare scheduled at the lower rate. For example, if task A (of 10HZ) sends a message to taskB (of 5HZ), then in every 200ms, one of two instances of task A has to send a message toone instance of task B. If the sending and receiving tasks are assigned to the same processor,then a local communication occurs. We assume the time taken by a local communication isnegligible. When an interprocessor communication (IPC) occurs, the communication mustbe scheduled on the communications network between the end of the sending task executionand the start of the receiving task execution. The transmission time required to communicatethe message i over the network is denoted by �i.� Communication Latency: Each communication is associated with a communication la-tency which speci�es the maximum separation between the start time of the sending task andthe completion time of the receiving task.� Cyclic Dependency: Research on the allocation problem has usually focused on acyclic taskgraphs [Ram90, HS92]. The use of acyclic task graphs excludes the possibility of specifyingthe cyclic dependency among tasks. For example, consider the following situation in whichone instance of task A can not start its execution until it receives data from the last instanceof task B. At the instance task A �nishes its execution, it sends data to the next instanceof task B. Since tasks A and B are periodic, the communication pattern goes on throughoutthe lifetime of the application. To be able to accommodate this situation, we take cyclicdependency into consideration. 39

B BT < Latency (A to B)
TimeAAProc1:

Proc2: T < Latency (B to A)
A to BNetwork: A to BB to A

pA � �A � T � pA + �ApB � �B � T � pB + �B
Figure 4.1: Relative Timing ConstraintsThe timing constraints described above are shown in Figure 4.1. For periodic tasks A and B,the start times of each and every instance of task execution and communication are pre-scheduledsuch that (1) the execution intervals fall between p�� and p+ � and (2) the time window betweenthe start time of the sending task and the completion time of the receiving task is less than thelatency of the communication. In Figure 4.2, we illustrate examples of all possible communicationpatterns considered in this dissertation. The description of the communications in the task systemis in the form of \From sender-task-id (of frequency) To receiver-task-id (of frequency)". If thesender frequency is n times of the receiver frequency and no cyclic dependency is involved, thenone of every n instances of the sending task has to communicate with one instance of the receivingtask. (Examples of this situation are shown in Figures 4.2.a.1 and 4.2.a.2. Likewise, for the case inwhich the receiver frequency is n times that of the sender frequency and no cyclic dependency ispresent, the patterns are shown in Figures 4.2.b.1 and 4.2.b.2. For an asynchronous communication,the sending (receiving) task in low frequency sends (receives) the message to (from) the nearestreceiving (sending) task as shown in Figure 4.2.a (4.2.b). The cases where cyclic dependency isconsidered are shown in Figures 4.2.c and 4.2.d.40

From A (of 10HZ) to B (of 5HZ) From A (of 5HZ) to B (of 10HZ)BA AFrom A (of 10HZ) to B (of 5HZ)From B (of 5HZ) to A (of 10HZ) From B (of 10HZ) to A (of 10HZ)
BB AA

A AB BAA A BB BBA

From A (of 10HZ) to B (of 10HZ)
200 ms 200 ms

200 ms200 ms

(a.1) (b.1)
(b.2)(a.2)
(d)(c)Figure 4.2: Possible Communication Patterns41

4.1.2 System ModelA real-time multiprocessor system consists of a number of processors connected by a communi-cations network. The execution of an instance on a processor is nonpreemptable. To providepredictable communication and to avoid contention for the communication channel at the runtime, we make the following assumptions. (1) Each IPC occurs at the pre-scheduled time. (2) Atmost one communication can occur at any given time on the network.4.1.3 Problem FormulationWe consider the static assignment and scheduling in which a task is the �nest granularity objectof assignment and an instance is the unit of scheduling. We applied the simulated annealingalgorithm [KGV83] to solve the problem of real-time periodic task assignment and scheduling withhybrid timing constraints. In order to make the execution of instances satisfy the speci�cationsand meet the timing constraints, we consider a scheduling frame whose length is the least commonmultiple (LCM) of all periods of tasks. Given a task set � and its communications C, we constructa set of task instances, I , and a set of communications, M . For each task �i 2 �, the task isextended to ni instances, �1i , �2i , : : : , and �nii , where ni = LCM/pi. These ni instances are includedin I . Each communication �i 7! �j 2 C is extended to min(ni,nj)1 undersampled communicationswhere ni = LCM/pi and nj = LCM/pj . These multiple communications are included in M . Theextension can be stated as follows.� If ni < nj , then �i 7! �j is extended to �1i 7! �?j , �2i 7! �?j , : : : , and �nii 7! �?j .� If ni > nj , then �i 7! �j is extended to �?i 7! �1j , �?i 7! �2j , : : : , and �?i 7! �njj .� If ni = nj , then �i 7! �j is extended to �1i 7! �1j , �2i 7! �2j , : : : , and �nii 7! �njj .A task ID with a superscript of question mark indicates some instance of the task. For example,�1i 7! �?j means that �1i communicates with some instance of �j . We describe how we assign thenearest instance for each communication in Section 4.3.1.The problem can be formulated as follows. Given a set of task instance, I , its communicationsM , we �nd an assignment �, a total ordering �m of all instances, and a total ordering �c of allcommunications to minimize1Due to undersampling, when an asynchronous communication is extended to multiple communications, thenumber of multiple communications is the smaller number of sender and receiver instances.42

E(�; �m; �c) = Xi;j �(pi � �i � sj+1i + sji) +Xi;j �(sj+1i � sji � pi � �i)+ Xi;j �(f ji � dji) + Xi;j;k;l �(F (� ji 7! � lk ; �c)� slk)+ Xi;j;k;l �(f lk � sji � Latency (�i to �k)) (4.1)subject to sji � rji and S(� ji 7! � lk ; �c) � f ji ; 8 � ji 7! � lk;where� sji is the start time of � ji under �m.� f ji is the completion time of � ji under �m.� rji = pi � (j � 1) + ri, and dji = pi � (j � 1) + di.� �(x) = 0, if x � 0; and = x, if x > 0.� �(�i) is the ID of processor which �i is assigned to.� � ji 7! � lk is the communication from � ji to � lk. If �(�i) = �(�k), then � ji 7! � lk is a localcommunication.� S(c; �c) is the start time of communication c on the network under �c.� F (c; �c) is the completion time of communication c on the network under �c.The minimum value of E(�; �m; �c) is zero. It occurs when the executions of all instancesmeet the jitter constraints and all communications meet their latency constraints. A feasiblemultiprocessor schedule can be obtained by collecting the values of sji and f ji , 8 i and j. Likewise,a feasible network schedule can be obtained from S(c; �c)s and F (c; �c)s.Since the task system is asynchronous and the communication pattern could be in the form ofcyclic dependency, we solve the problem of �nding a feasible solution (�; �m; �c) by exploiting thecyclic scheduling technique and embedding the technique into the simulated annealing algorithm.4.2 The ApproachThe basic approach of scheduling a set of synchronous periodic tasks is to consider the executionof all instances within the scheduling frame whose length is the LCM of all periods. The release43

00
After:Before:

LCMFF where F < r < LCM r + e � LCMUnscheduled Instance:LCM rFigure 4.3: Insertion of a new time slottimes of the �rst periods of all tasks are zero. As long as one instance is scheduled in each periodwithin the frame and these executions meet the timing constraints, a feasible schedule is obtained.In a feasible schedule, all instances complete the executions before the LCM.On the other hand, in asynchronous task systems, as depicted in Figure 4.2 in which the LCMis 200ms, the periods of the two tasks are out of phase. It is possible that the completion timeof some instance in a feasible schedule exceeds the LCM. To �nd a feasible schedule for such anasynchronous system, a technique of handling the time value which exceeds the LCM is proposed.4.2.1 Cyclic Scheduling TechniqueThe cyclic scheduling technique uses the linked list structure described in Section 3.4. Withoutloss of generality, we assume the minimum release time among the �rst periods of all tasks is zero.We keep a linked list for each processor and a separated list for the communication network. Eachelement in the list represents a time slot assigned to some instance or communication. The �elds ofa time slot of some processor p: (1) task id i and instance id j indicate the identi�er of the time slot.(2) start time st and �nish time ft indicate the start time and completion time of � ji respectively.(3) prev ptr and next ptr are the pointers to the preceding and succeeding time slots respectively.The list is arranged in an increasing order of start time. Any two time slots are nonoverlapping.44

Pseudo Instancet1x t1y t2y t3yt2x t3xt1x t1y t2yt2x t3xLCMFigure 4.4: The introduction of a pseudo instanceSince the execution of an instance is nonpreemptable, the time di�erence between start time andfinish time equals the execution time of the task.RecurrenceGiven any solution point (�; �m; �c), we construct the schedule by inserting time slots in the linkedlists. Let �m: task id � instance id ! integer. The insertion of a time slot for � ji precedes that for�k̀ if �m(� ji) < �m(�k̀).Recall that Equations 3.23 and 3.24 specify the bounds of the scheduling window for a taskinstance. Due to the communications, est(� ji) in Equation 3.23 may not be the earliest time for � ji .We de�ne the e�ective start time as the time when (1) the hybrid constraints are satis�ed and (2)� ji receives all necessary data or messages from all the senders.Given the e�ective start time r and the assignment of �i (i.e. p = �(�i)), a time slot of processorp is assigned to � ji where start time � r and finish time � start time = ei. Note that we have tomake sure that the new time slot does not overlap existent time slots. Since (1) the executions ofall instances within one scheduling frame recur in the next scheduling frame and (2) it is possiblethat the time slot for some instance is over LCM, we subtract one LCM from the start time orfinish time if it is greater than LCM. It means the time slot for this task instance will be wrappedto the beginning of the schedule. As shown in Figure 4.3 The start time of the new slot is r whilethe completion time is r + e�LCM. 45

4.2.2 Pseudo InstancesAs stated in Section 4.1, we consider the communication pattern in which cyclic dependency existsamong tasks. Given a set of tasks, �, a set of task instances, I , a set of communications, C, andany solution point, (�; �m; �c), we introduce pseudo instances. For any task �x, if there exists atask �y, in which (1) �m(� ix) < �m(� iy), 8 i, (2) nx = ny , and (3) �x 7! �y 2 C and �y 7! �x 2 C,then a pseudo instance �nx+1x is added to I . A pseudo instance is always a receiving instance. Noinsertion of time slots for pseudo instances is needed. For a pseudo instance, only the e�ective starttime is needed. The e�ective start time of a pseudo instance �nx+1x in the constructed schedulebased on (�; �m; �c) is checked to see whether it is less than LCM + s1x or not. If yes, then theexecution of �1x for the next scheduling frame may start at LCM + s1x which is exactly one LCMaway from the execution of �1x for the current scheduling frame. A graphical illustration of theintroduction of pseudo instance to address the synchronous communications of cyclic dependencyis given in Figure 4.4 in which nx = 2.As for the asynchronous communications of cyclic dependency, no pseudo instances are needed.For example, if both �x 7! �y and �y 7! �x exist and nx = ny � n, then for each � jy , where j = 1,2, : : : , ny , we �nd a sending instance � ix 2 I and a receiving instance �kx 2 I such that (1) f ix � sjy ,(2) f jy � skx, and (3) � ix 7! � jy and � jy 7! �kx are the communications. The relationship between i, j,and k can be stated as (j � 1)� n < i < k � j � n: (4.2)A graphical illustration can be found in Figure 4.5. In the example, the values of i, j, k, and n are6, 2, 8, 4 respectively. The communications �6x 7! �2y and �2y 7! �8x are scheduled before and afterthe scheduling of �2y respectively.4.3 The Simulated Annealing AlgorithmKirkpatrick et al. [KGV83] proposed a simulated annealing algorithm for combinatorial optimiza-tion problems. Simulated annealing is a global optimization technique. It is derived from theobservation that an optimization problem can be identi�ed with a uid. There exists an analogybetween �nding an optimal solution of a combinatorial problem with many variables and the slowcooling of a molten metal until it reaches its low energy ground state. Hence, the terms aboutenergy function, temperature, and thermal equilibrium are mostly used. During the search of anoptimal solution, the algorithm always accepts the downward moves from the current solution pointto the points of lower energy values, while there is a small chance of accepting upward moves to46

t5x t7x t8xt6x t2ypy = 4� px (3)(1) (2)Figure 4.5: Asynchronous communicationsthe points of higher energy values. The probability of accepting an uphill move is a function ofcurrent temperature. The purpose of hill climbing is to escape from a local optimal con�guration.If there are no upward or downward moves over a number of iterations, the thermal equilibriumis reached. The temperature then is reduced to a smaller value and the searching continues fromthe current solution point. The whole process terminates when either (1) the lowest energy pointis found or (2) no upward or downward jumps have been taken for a number of successive thermalequilibrium.The structure of the simulated annealing (SA) algorithm is shown in Figure 4.7. The �rst stepof the algorithm is to randomly choose an assignment �, a total ordering of instances within onescheduling frame, �m, and a total ordering of communications for the instances, �c. A solutionpoint in the search space of SA is a 3-tuple (�,�m,�c). The energy of a solution point is computedby equation (4.1). For each solution point P which is infeasible, (i.e. Ep is nonzero), a neighbor�nding strategy is invoked to generate a neighbor of P . As stated before, if the energy of theneighbor is lower than the current value, we accept the neighbor as the current solution; otherwise,a probability function (i.e. exp(Ep�EnT)) is evaluated to determine whether to accept the neighboror not. The parameter of the probability function is the current temperature. As the temperature isdecreasing, the chance of accepting an uphill jump (i.e. a solution point with a higher energy level)is smaller. The inner and outer loops are for thermal equilibrium and termination respectively.The number of iterations for the inner loop is also a function of current temperature. The lowerthe temperature, the bigger the number. Several approaches on how to model the numbers ofiterations and how to assign the number for each temperature have been proposed [LH91]. In thisdissertation, we consider a simple incremental function. Namely, N = N + � where N is thenumber of iterations and � is a constant. The termination condition for the outer loop is Ep =0. After thermal equilibrium is reached at a temperature, the value of T is decreased. Di�erentapproaches of temperature decrease function have been proposed [KGV83]. Here we consider a47

simple multiplication function (i.e. T = T � �, where � < 1).4.3.1 Evaluation of Energy Value for a Solution Point (�, �m, �c)The �rst step to compute the energy value, stated in Equation 4.1, is to construct multi-processorschedules and a network schedule. The start time and completion time information of each taskinstance and communication can be collected from these schedules. The time information is thenused to compute the energy value.The construction of the schedules is characterized by the priority assignment of the task in-stances in the set. The priority assignment algorithm determines the scheduling order among alltask instances. When a task instance is chosen to be scheduled, the incoming communicationsof the instance are scheduled �rst and then the task instance itself. After all the task instanceshave been scheduled, the scheduling of the outgoing communications is performed. An algorithmicdescription about how to compute the energy value for a solution point is given in Figure 4.6. Notethat a communication is an incoming communication to a task instance if the frequency of thereceiving task instance is equal to or less than that of the sending task instance. For example, �?k7! � ji and � jk 7! � ji are incoming communications to � ji . On the other hand, if the sender frequencyis less than the receiver frequency, then the communication is an outgoing communication. (e.g.� jk 7! �?i is the outgoing communication of � jk).Priority Assignment of Task Instances: �mIn Sections 3.5 and 3.6, we presented the SLsF algorithm and the performance evaluation. Theresults showed that SLsF outperforms SPF and SJF. In this chapter we use SLsF as the priorityassignment algorithm for the task instances in I .Formally, if lst(� ji) < lst(�k̀), then �m(� ji) < �m(�k̀). And the insertion of a time slot for � jiprecedes that for �k̀ if �m(� ji) < �m(�k̀). The time-based scheduling algorithm for a task instancein Section 3.4 is used to �nd a time slot for a task instance once the e�ective start time is given.We de�ne the e�ective start time of a task instance as the earliest start time when the incomingcommunications are taken into account. Let t be the maximum completion time among all theincoming communications of a task instance, then the e�ective start time of the task instance is setto the larger value among t and est (as stated in Equation 3.23).48

Scheduling the Incoming CommunicationsThere are two kinds of incoming communications. The �rst kind is called the synchronous commu-nication in which the frequencies of the sender and receiver are identical. The other kind is calledthe asynchronous communication in which the sending task instance is associated with a questionmark. For an asynchronous communication, we have to decide which instance of the sending taskshould communicate with the receiving task instance. The approach we take is to �nd the nearestinstance of the sending task. By �nding the nearest instance, the time di�erence between starttime of the receiving instance and the completion time of the sending instance is the smallest. Thechance of violating the latency constraint of a communication will be the smallest.The nearest instance of a sending task can be found using the following method. Given anincoming communication �?k 7! � ji , and the e�ective start time of � ji , eft we search through thelinked list of processor �(�k) up to time eft. If there is some instance of �k, say �k̀ , whose completiontime is the latest among all scheduled instances of �k, then the nearest instance is found. Otherwise,we continue to search through the linked list until an instance of �k is found. We set the e�ectivestart time of the communication to be the completion time of the found instance. We also erasethe question mark such that �?k 7! � ji is changed to �k̀ 7! � ji . For the synchronous communication,the e�ective start time of the communication is simply assigned as the �nish time of the sendingtask instance.The scheduling of the communication is done by inserting a time slot in the linked list for thecommunications network. The start time of the time slot can not be earlier than the e�ective starttime of the communication. Once the time slot is inserted, we check the e�ective start time of � jito make sure that it is not less than the �nish time of the time slot. If it is, the e�ective start timeof � ji is updated to be the �nish time of the time slot.If a task instance has more than one incoming communication, the scheduling order among thesecommunications is based on their latency constraints. The larger the latency value, the earlier thecommunication is scheduled. The incoming communication with the tightest latency constraint isscheduled last. The e�ective start time of the receiving task instance is constantly updated by thescheduling of the incoming communications. It is possible that the scheduling of the later incomingcommunication increases the e�ective start time of the receiving task instance and makes the earlyscheduled communication violate its latency constraint if the constraint is tight.49

Scheduling the Outgoing CommunicationsScheduling of the outgoing communications for the whole task set is performed after all the taskinstances have been scheduled. The scheduling order among these communications is based onthe �nish times of the sending task instances. The task instance with the smallest �nish time isconsidered �rst. When a task instance is taken into account, all of its outgoing communications arescheduled one by one according to their latency constraints. The communication with the tightestlatency constraint is scheduled �rst.Given an outgoing communication � ji 7! �?k , and the �nish time of � ji , f ji , the e�ective starttime of the communication is set to be f ji . Based on the e�ective start time, a time slot in insertedfor this communication. Then the nearest instance of receiving task can be found based on the�nish time of the time slot.For the example shown in Figure 4.5, the incoming communication marked with \(1)" is sched-uled before the scheduling of �2y . The sixth instance of �x is chosen as the nearest instance. As forthe outgoing communication marked with \(3)", it is scheduled after the scheduling of �5x , �6x , �7x ,and �8x . In this example, �8x is the nearest instance of the outgoing communication.4.3.2 Neighbor Finding Strategy: �The neighbor �nding strategy is used to �nd the next solution point once the current solution pointis evaluated as infeasible (i.e. energy value is nonnegative). The neighbor space of a solution pointis the set of points which can be reached by changing the assignment of one or two tasks. Thereare several modes of neighbor �nding strategy.� Balance Mode: Randomly move a task from the heavily-loaded processor to the lightest-loaded processor. This move tries to balance the workload of the processors. By balancingthe workload, the chance to �nd a neighbor with a lower energy value is higher.� Swap Mode: Randomly choose two tasks �i and �j on processors p and q respectively. Thenchange � by setting �(�i) = q and �(�j) = p.� Merge Mode: Pick two tasks and move them to one processor. By merging two tasks to aprocessor, the workload of the processor is increased. There is an opportunity of increasingthe energy level of the new point by increasing the workload of the processor. The purpose ofthe move is to perturb the system and allow the next move to escape from the local optimum.50

� Direct Mode: When the system is in a low-energy state, only a few tasks violate the jitteror latency constraints. Under such a circumstance, it will be more bene�cial to change theassignment of these tasks instead of randomly moving other tasks. From the conducted ex-periments, we �nd that this mode can accelerate the searching of a feasible solution especiallywhen the system is about to reach the equilibrium.The selection of the appropriate mode to �nd a neighbor is based on the current system state.Given a randomly generated initial state (i.e. solution point), the workload discrepancy between theprocessors may be huge. In the early stage of the simulated annealing, the balance mode is usefulto balance the workload. After the processor workload is balanced, the swap mode and the mergemode are frequently used to �nd a lower energy state until the system reaches near-terminationstate. In the �nal stage of the annealing, the direct mode tries to �nd a feasible solution. Thewhole process terminates when a feasible solution is found in which the energy value is zero, orwhen it is not possible to improve over the current solution.4.4 Experimental ResultsWe implement the algorithm as the framework of the allocator on MARUTI [GMK+91] [MSA92][SdSA94], a real-time operating system developed at the University of Maryland, and conductedextensive experiments under various task characteristics. The tests involve the allocation of real-time tasks on a homogeneous distributed system connected by a communication channel.To test the practicality of the approach and show the signi�cance of the algorithm, we considera simpli�ed and sanitized version of a real problem. This is derived from actual development work,and is therefore representative of the scheduling requirements of an actual avionics system. TheBoeing 777 Aircraft Information Management System (AIMS) is to be running on a multiprocessorsystem connected by a SafeBus (TM) ultra-reliable bus. The problem is to �nd the minimumnumber of processors needed to assign the tasks to these processors and generate the schedule. Theobjective is to develop an o�-line non-preemptable schedule for each processor and one schedule forthe SafeBus.The AIMS consists of 155 tasks and 951 communications between these tasks. The frequenciesof the tasks vary from 5HZ to 40HZ. The execution times of the tasks vary from 0ms to 16.650ms.Both �i and �i of a task �i are 500�s. The smallest-least-start-time-�rst (SLsF) scheduling algorithmis used. Tasks communicate with others asynchronously and in cyclic dependency. The transmissiontimes for communications are in the range from 0�s to 447.733�s. The latency constraints of the51

10 Proc 9 Proc 8 Proc 7 Proc 6 ProcExec Time (Sec) 2369 5572 19774 36218 78647= Hr :Min : Sec 0:39:29 1:32:52 5:29:34 10:03:38 21:50:47Table 4.1: The execution times of the AIMS with di�erent number of processorscommunications vary from 68.993ms to 200ms. The LCM of these 155 tasks is 200ms. Whenthe whole system is extended, the total number of task instances within one scheduling frame is624 and the number of communications is 1580. The speci�cation of the Boeing 777 AIMS islisted in Appendix A. Note that the AIMS system is expressed in the form of \From <sender-id> <frequency> HZ <sender-execution-time> ms to <recv-id> length <transmission-time> uslatency <latency-value> us".For such a real problem size, pre-analysis is necessary. We calculate the resource utilizationindex to estimate the minimum number of processors needed to run AIMS. The index is de�ned asP155i=1(ei � ni)LCMwhere ei is the execution of task �i and ni = LCMpi . The obtained index for AIMS is 5.14. It meansthere exists no feasible solution for the AIMS if the number of processors in the multiprocessorsystem is less than 6.The number of processors which the AIMS is allowed to run on is a parameter to the schedulingproblem. We solve the AIMS scheduling problem by starting with 10 processors. After a feasiblesolution is found, we decrease the number of processors by one and solve the whole problem again.We ran the algorithm on a DECstation 5000. The execution time for the AIMS scheduling problemwith di�erent numbers of processors is summarized in Table 4.1. The algorithm is able to �nda feasible solution of the AIMS with six processors which is the minimum number of processorsaccording to the resource utilization index. The time to �nd such a feasible solution is less thanone day (approximately 22 hours). A complete solution to the AIMS scheduling problem with sixprocessors is shown in Appendix B.4.4.1 DiscussionsFor feasible solutions of the AIMS with various numbers of processors, we calculate the processorutilization ratio (PUR) of each processor. The processor utilization ratio for a processor p is de�nedas P�(�i)=p(ei � ni)LCM :52

The results are shown in Figure 4.8. The ratios are sorted into a non-decreasing order given a �xednumber of processors. The algorithm generates the feasible solutions for the AIMS with 6, 7, 8, 9and 10 processors respectively. For example, for the 6-processor case, the PURs for the heaviest-loaded and lightest-loaded processors are 0.91 and 0.76 respectively. For the 10-processor cases, thePURs are 0.63 and 0.28 respectively. We �nd that the ratio di�erence between the heaviest-loadedprocessor and the lightest-loaded processor in the 6-processor case is smaller than those in othercases. It means the chance for �nding a feasible solution to a more load balanced allocation ishigher when the number of processors is smaller.The detailed schedules for the 6-processor case are shown in Figure 4.9. The results are shownon an interactive graphical interface which is developed for the design of MARUTI. The time scaleshown in Figure 4.9 is 100�s. So the LCM is shown as 2000 in the �gure. (i.e. 2000 � 100�s =200ms.) This solution consists of seven o�-line non-preemptive schedules: one for each processorand one for the SafeBus (TM). Each of these schedules will be one LCM long where an in�niteschedule can be produced by repeating these schedules inde�nitely. Note that the pseudo instancesare introduced to make sure the wrapping around at the end of the LCM-long schedules shouldsatisfy the latency and next-execution-interval requirements across the point of wrap-around. Thepseudo instances are not shown in Figure 4.9.We have presented a general approach for scheduling a set of periodic tasks which communi-cate with each other. The approach can be extended easily to address additional requirements.For example, the inclusion of resource and memory constraints into the problem can be done bymodifying the neighbor-�nding strategy. Once a neighbor of the current point is generated, it ischecked to ascertain that the constraints on memory etc. are met. If not, the neighbor is discardedand another neighbor is evaluated.
53

'

&

$

%

. .Given a solution point P = (�; �m; �c)While there is some unscheduled task instance doFind the next unscheduled instance. /* By the SLsF algorithm */Let the instance be � ji .Sort all the incoming communications of � ji based onthe latency values into a descending order.Schedule each incoming communication starting fromthe biggest-latency one to the tightest-latency one.Schedule the instance � ji .End While.Mark each instance as un-examined.While there is some un-examined task instance doFind the next un-examined task instance. /* By the �nish times */Sort all the outgoing communications of the task instance basedon the latency values into an increasing order.Schedule each outgoing communication starting fromthe tightest-latency one to the biggest-latency one.Mark the task instance examined.End While.Collect the start time and �nish time informations for each taskinstance and communication.Compute the energy value using Equation 4.1.Figure 4.6: The pseudo code for computing the energy value
54

'

&

$

%

. .Choose an initial temperature TChoose randomly a starting point P = (�; �m; �c)Ep := Energy of solution point Pif Ep = 0 thenoutput Ep and exit /* Ep = 0 means a feasible solution */end ifrepeatrepeatChoose N , a neighbor of PEn := Energy of solution point Nif En = 0 thenoutput En and exit/* En = 0 means a feasible solution */end ifif En < Ep thenP := NEp := Enelse x := Ep�EnTif ex � random(0,1) thenP := NEp := Enend ifend ifuntil thermal equilibrium at TT := � � T (where � < 1)until stopping criterionFigure 4.7: The structure of simulated annealing algorithm.55

Processor Utilization

10_Proc

9_Proc

8_Proc

7_Proc

6_Proc

Utilization Ratio

Proc_ID-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

2.00 4.00 6.00 8.00 10.00Figure 4.8: Processor Utilization Ratios for di�erent cases
56

Figure 4.9: The Allocation Results and Schedules for AIMS with 6 processors
57

Chapter 5Schedulability-Oriented Replication in Real-TimeSystemsIn Chapters 3 and 4, we considered the allocation and scheduling of the periodic tasks in real-timesystems, in which we assume that a task is the unit of allocation and scheduling. The inter-task dependency is accomplished via communications. In this chapter, we consider each task as acompound object.A periodic real-time task can be decomposed into several modules and intermodule communi-cations (IMCs), such that modules of tasks communicate with one another via IMCs. In allocatingmodules of tasks, we have the option of restricting ourselves to having only one copy of each module.We call this the assignment problem. If, on the other hand, a module may have multiple copies, wecall this general problem the replication problem. In this chapter, we consider the replication prob-lem and present algorithms to �nd optimally feasible solutions for replicating modules of real-timeperiodic tasks.5.1 IntroductionFor real-time applications, the objective function of the allocation problem can be in terms ofbottleneck processor time [CL87], system hazard [PS89], the degree of reliability [SW89] or thedegree of schedulability, etc. For real-time applications where the degree of schedulability is themost critical concern, the essential solution is to �nd an allocation in which there exists a feasibleschedule for the given task set. Ramamritham [Ram90] proposes a global view where the purposeof allocation should directly address the schedulability of processors and communication network.Taking the same global view, we have developed the allocation and scheduling algorithms based onthe simulated annealing technique in Chapter 4. The primary focus of the work in Chapter 4 is on58

the assignment problem.5.1.1 Schedulability-Oriented ReplicationTraditionally, the objective of reliability-oriented replication problems is to increase the degree offault tolerance [CC90, LAMS92]. If some processors in the distributed system fail, the applicationmay still survive using other copies. In such a model, a module has to communicate with multiplecopies of other modules. As a consequence, the degree of schedulability of a reliability-orientedreplication problem will be smaller than that of the assignment problem and it is harder for the tasksto meet their deadlines. In this chapter, we consider a schedulability-oriented replication problemwhose objective is to maximize the degree of schedulability. We adopt the communication model, inwhich the replication of modules is not for the sake of fault tolerance but for increasing the degreeof schedulability. In our model, each module may have more than one copy and a module may startits execution after receiving necessary data from a copy of each of its predecessors. Clearly, in aheterogeneous environment the computation time of a module depends on the processor on which itexecutes, and the communication time depends on the topology, communication medium, networkscheduling algorithm, etc. When a module m is allowed to have only one copy in the system, thetime taken by the IPC between m and its successors may be too long. Such a long delay postponesthe execution of the successors and causes the task to miss its deadline. Sometimes it will be morebene�cial if we replicate m onto multiple processors to reduce the IPC, and to fully utilize theavailable processors in the system. Such replication may obtain a higher degree of schedulabilitythan an optimal assignment problem. An example illustrating this point is shown in Figure 5.1in which the number of processors in the system is two and the computation times for modulesof a task are listed. We assume the ready time for the task is 0 and the deadline is 7. The IPCbetween p1 and p2 for any two modules takes one unit and the IMC time on the same processoris zero. If module a is assigned to processor p1 only, then the minimum �nish time is 8 as shownin Gantt chart 1. The dark area in the Gantt charts indicates the IPCs. If module a is replicatedto processors p1 and p2, then we see from Gantt chart 2 that the minimum completion time is 7.As depicted in Figure 5.1, the replication of module a on processor 1 eliminates the IPC betweenmodules a and c. It enables the earlier start of the execution of module c, increases the degree ofschedulability and makes the task meet its deadline.59

a

b c

d

~v vectors
processor 1 processor 2

module a on
1 1

module b on
3 3

module c on
2 2

module d on
3 5

p

1

p

2

a

a

a

8 7

c c

b d b d

(a) A task graph (b) Computation Vectors

(c) Gantt Chart 1 (d) Gantt Chart 2Figure 5.1: An example to show how the replication can increase the degree of schedulability
60

5.1.2 Event-Based SemanticsThe speci�cations of real-time applications have traditionally used code-based semantics. In code-based semantics, the timing constraints are established between blocks of code. Modules of tasks areassociated with ready times and deadlines. Recently, Gerber and Hong [GH93] presented a time-constrained event language (TCEL) in which the timing semantics are based on the constraintsrelationships between observable events. In TCEL, the degree of schedulability may be increasedbecause the timing constraints are only imposed by observable events, and the technique of programslicing is used to decompose the unschedulable codes into schedulable modules. In this chapter, weconsider event-based semantics. We assume that `SEND' and `RECEIVE' are observable eventsin the system. Since each IMC is carried out by SEND-RECEIVE, it implies that each IMC isassociated with a ready time and a deadline.Event-based semantics gives a clear separation between scheduling of IMCs and that of mod-ules. Such separation can increase the degree of schedulability. Consider the task graph shown inFigure 5.2, where we contrast the ow chart of a program using code-based semantics with that ofthe same program using event-based semantics. Each Ci represents a piece of code of the program.In Figure 5.2(a), code-based semantics implies that modules are associated with ready times anddeadlines. For this semantics it is usually assumed that the IMC is carried out immediately afterthe execution of the sender module. For example, consider Send1 which is ready to perform rightafter the execution of C1. It is scheduled on the network after the completion of M1.In Figure 5.2(b), instead of imposing timing constraints on each module, event-based semanticsimposes the timing constraints on IMCs. We observe that the scheduling of IMCs on the networknot only has to meet timing constraints of IMCs but also has to be consistent with the execution ofcodes of modules. For example, Send1 can not be performed on the network until the completionof C1. Such a consistency check1 is enforced on each IMC in the event-based semantics. Notethat Send1 can be performed at any time after the ready time and it may be performed before thecompletion time of M1.5.1.3 Main ResultsTo solve the schedulability-oriented replication problem, we develop a replication technique andembed the technique in a simulated annealing algorithm. The function of the technique consists1The programming-language level support for the consistency check could be in the form of \Not until e1 doSend1", where e1 is the execution time for C1. Given an allocation and a schedule, we apply a consistency check tosee if Ts(Send1) � e1 + start time(M1), where Ts(Send1) is the start time of Send1.61

Send1Send2Recv2Send4 Send3Recv3Recv4
C1C2C3 C7

Recv1
M1:M2: M4:(a) Code-Based Semantics

C4C5C6M3: Send1Send2Recv2Send4 Send3
C1
C7C3 C2 C4C5C6

M1:M2: M4:(b) Event-Based SemanticsRecv4 Recv3
M3:Recv1

Figure 5.2: The ow charts of a task graphof two phases, namely (1) identifying bottleneck IPCs and (2) eliminating bottleneck IPCs. Givenan allocation and a schedule for modules and IMCs, we say that the bottleneck IPCs are thecommunications which make the schedule infeasible. Once the bottleneck IPCs are identi�ed, wereplicate the sender modules to eliminate the bottleneck IPCs. Experimental results show thatsuch replication leads to a higher degree of schedulability.In the remainder of this chapter, the task characteristics and the system model are described inSection 5.2. In Section 5.3, the replication problem is mathematically formulated. The replicationtechnique and a simulated annealing algorithm are presented in Section 5.4, and some experimentalresults are given in Section 5.5. 62

5.2 Task and System Models5.2.1 The Task CharacteristicsConsider a set of periodic tasks, � = f �i j i= 1, : : : , n g. The logical structure of task �i is expressedas a directed acyclic graph where the nodes represent the modules and the edges represent IMCs.The speci�cations of tasks and their corresponding graphs include the following:� Task �i is associated with a period pi, ready time ri, and deadline di. All constituent modulesof task �i have the same period pi. The execution of a module can not be preempted. Theearliest start time of task �i is ri and the �nish time can not exceed di. The values of ri anddi are relative to the start time of each period. We assume that each task starts its period attime zero.� For each module mj a computation vector ~vj [1 : n] is given. The value of ~vj [p] denotes thecomputation time needed for mj to be executed on processor p. The computation timesrequired for the same module on two processors can be identical or di�erent depending uponthe architecture of the system (i.e. homogeneous or heterogeneous).� For each edge going from mj to mk (we denote it by cj!k), the amount of data to betransferred is speci�ed as �j!k . The semantics of data transferring implies that if the sendingmodule on one processor sends an amount of data to the receiving module on another processorthen an IPC occurs. A local IMC occurs if the sending and receiving modules are on the sameprocessor. We assume that the time required by a local IMC is negligible compared to thetransit time needed for an IPC. Since IMC �j!k is carried out by SEND-RECEIVE, thetiming constraints are speci�ed where rj!k is the ready time for SEND and dj!k is thedeadline for RECEIVE.5.2.2 System AssumptionsConsider the schedulability-oriented replication problem in which the purpose of replication isdi�erent from that of reliability-oriented replication. Our approach is based on the following as-sumptions:� All the communications are via a message-passing mechanism. There is no shared memoryin the system. 63

� Modules of a task can be assigned to di�erent processors. Multiple copies of a module ondi�erent processors perform the same function and generate the same result as long as theyreceive the identical data through IMC. As a consequence, there is no need for coordinationamong the copies.� The replication process of a module is done before the task starts to execute. There is norun-time overhead for maintaining replicas of a module in the system.5.2.3 Communication ModelThe communication model of schedulability-oriented replication is di�erent from that of reliability-oriented replication. In a reliability-oriented replication problem, the objective is to increase thedegree of fault tolerance. To detect fault and maintain data consistency, each module has to receivemultiple copies of data from several module instances if its predecessor is replicated in more thanone place.The purpose of schedulability-oriented replication is to increase the degree of schedulability.Under such consideration, there is no need to enforce multiple copy communication between anytwo modules. We propose the 1-out-of-n model [CA93] for schedulability-oriented replication. Inthe model, for each IMC cj!k , a module instance mj@q (i.e. the replica of mj on processor q) maystart its execution if it receives the data from any one module instance of its predecessor, modulemk.5.2.4 System ModelThe system architecture can be homogeneous or heterogeneous. Processors are interconnected by acommunications network. The execution of modules on a processor is non-preemptive. To providepredictable communication and avoid the contention for the communication channel at the runtime, we have the following assumptions. (1) Each IPC occurs at the pre-speci�ed time accordingto the schedule. (2) At most, one communication can occur at any time on the network. (3)The network is associated with a nominal delay ND for transmitting one unit of data from oneprocessor to another. When an IPC cj!k occurs, the start time for cj!k is either the ready timerj!k if the network is available at that time, or the �nish time of the preceding IPC scheduled onthe network. The transit time required by an IPC cj!k can be expressed by tj!k where tj!k is thetime for transmitting IMC volume and tj!k = ND� �j!k . When a local IMC occurs, the starttime is the ready time. Each IMC is subject to a consistency check. For the recipient module m of64

Task 1 Task 2
LCM : 120Period of T1: 60Period of T2: 40
m1 m2m3 m4 m5m6 s

t
m11m13 m14 m22 m26

c1!3c3!4 c2!4 c5!6 c11!3 c12!4c21!3 c25!6c35!6
c15!6c11!2c21!2c22!4c23!4

c13!4c1!2
m23 m24m21 m12 m15m16m25m35m36Figure 5.3: An example of Comprehensive Graphan IMC, the earliest start time for m is the �nish time of the data transmission locally or throughthe network.5.3 Problem FormulationWe consider each task as a compound object composed of several modules and IMCs. In order tomake the execution of modules satisfy the speci�cations and meet the deadlines, we consider theleast common multiple (LCM) of all periods of tasks and repeat each task into multiple instances.Two pseudo nodes s and t are added to form a comprehensive graph. We denote the kth instanceof module mj by mkj and the kth instance of ci!j by cki!j . An example is presented in Figure 5.3.The schedulability-oriented module replication problem can be formulated as follows. Given acomprehensive graph G, we �nd an allocation �, a processor schedule �m and a network schedule65

�c for nodes (except the pseudo nodes) in the graph to minimizeE(�; �m; �c) =Xi;j �(f ji � dji) +Xi;j;k �(Tf(cki!j ; �c) � dki!j) (5.1)subject to PXp=1�(mik; p) � 1; 8 i; k;and Ts(cki!j; �c) � rki!j ; 8 cki!j :where� f ji is the �nish time of the jth instance of task �i in G under schedule �m.� dji is the deadline of the jth instance of task �i, i.e. dji = pi � (j � 1) + di.� �(mk; p) = 1, if mk has a copy on processor p under allocation �; and = 0, otherwise.� �(x) = 0, if x � 0; and = x, if x > 0.� Ts(c; �c) is the start time for SEND of IMC c on the network under schedule �c.� Tf(c; �c) is the �nish time for RECEIVE of IMC c on the network under schedule �c.� rki!j is the earliest start time for SEND of cki!j , i.e. rki!j = pi � (k � 1) + ri!j .� dki!j is the deadline for RECEIVE of cki!j , i.e. dki!j = pi � (k � 1) + di!j .The minimum value of E(�; �m; �c) is zero. It occurs when the executions of all tasks meet thedeadlines and all IMCs meet their timing constraints. In Figure 5.1, we show that the replicationof some modules can lead to the minimum E value while the optimal assignment solution fails to�nd even a feasible solution. We solve the schedulability-oriented replication problem by using asimulated annealing algorithm, identifying the bottleneck IPCs and replicating the sender modulesof IPCs to eliminate the IPCs.5.4 The AlgorithmWe exploit the simulated annealing technique to solve the schedulability-oriented replication prob-lem. The structure of the simulated annealing (SA) algorithm is shown in Figure 5.4. The �rst stepof the algorithm is to randomly choose an assignment �, a processor schedule �m and a networkschedule �c. A solution point in the search space of SA is a tuple of (�,�m,�c). The energy (i.e.the reciprocal of the degree of schedulability) of a solution point is computed by equation (5.1).66

For each solution point P which is infeasible, (i.e. Ep is nonzero), we use a dynamic programmingtechnique to optimally identify the bottleneck IPCs in polynomial time. The bottleneck IPCs arethe communications which make P infeasible. Once the bottleneck IPCs are identi�ed, we try toreplicate the sender modules of bottleneck IPCs. If the replication is successfully done, then iteliminates the bottleneck IPCs and the algorithm terminates in a feasible replication. ProcedureReplicate(P) in Figure 5.4 consists of two phases, namely (1) identifying bottleneck IPCs and (2)elimination of bottleneck IPCs.5.4.1 Identifying Bottleneck IPCsGiven an assignment � (i.e. only one copy for each module) and schedules �m and �c, the �rst stepto perform the replication is to identify which modules should be replicated. Since the purposeof replication is to eliminate the bottleneck IPCs, the problem of identifying which modules toreplicate is transformed to the problem of identifying bottleneck IPCs.A processor schedule, �m, is a total ordering of module instances in the comprehensive graphG. A relation m1 m! m2 exists if m1 is scheduled before m2 under schedule �m. Similarly, de�neI(�) to be the set of IPCs in the system under �. A relation c1 c! c2 exists if c1, c2 2 I(�) and c1 isscheduled before c2 under schedule �c on the communication network. The problem of identifyingbottleneck IPCs is to �nd a maximum subset # � I(�), such that for any c 2 I(�)�# if we reduce�c (i.e. the amount of data to be transferred by c) to zero and assign c as a local IMC, then theexecution of all task instances in G meet their deadlines. We call # the optimally feasible set ofIPCs. Formally, given I(�), we �nd # such that� If cki!j 2 I(�)� #, then tki!j = 0. Namely, we change a bottleneck IPC into a local IMC.� X(�; #; �m; �c) is feasible. X(�; #; �m; �c) denotes the multi-resource calendar (including pro-cessors and communications network) generated for the allocation and scheduling of modulesand IPCs under �, #, �m, and �c. An example can be found in Figure 5.8 in Section 5.5.1.X(�; #; �m; �c) is feasible means that (1) the execution of all task instances in G meet theirdeadlines, (2) the scheduling of IMCs does not violate the consistency checks, and (3) allIMCs meet their timing constraints under �, #, �m, and �c.� If X(�; #0; �m; �c) is also feasible for some other #0, then either (1) j#0j < j#j, or (2) j#0j =j#j and Tf(`(#0)) � Tf(`(#)), where Tf (`(I))2 is the �nish time of `(I) (i.e. the last IPC in2Without ambiguity, we drop o� �c from the notation, i.e. Tf (x) = Tf (x; �c)67

'

&

$

%

. .Choose an initial temperature TChoose randomly a starting point P = (�; �m; �c)Ep := Energy of solution point Pif Ep > 0 thenReplicate(P)if the replication of P meets tasks' deadlines thenoutput the result and exitend ifelse output Ep and exit /* Ep = 0 means a feasible solution */end ifrepeatrepeatChoose N , a neighbor of PEn := Energy of solution point Nif En > 0 thenReplicate(N)if the replication of N meets tasks' deadlines thenoutput the result and exitend ifelse output En and exit/* En = 0 means a feasible solution */end ifif En < Ep thenP := NEp := Enelse x := Ep�EnTif ex � random(0,1) thenP := NEp := Enend ifend ifuntil thermal equilibrium at TT := � � T (where � < 1)until stopping criterionFigure 5.4: The Structure of SA/R: the Simulated Annealing Algorithm with Replicate().68

I) on the network. We consider # the maximum subset with the earliest completion time oncommunications network.To solve the problem, we use a dynamic programming technique to �nd #. Given �c and I(�),we can obtain a total ordering of IPCs. Let us assume c1 c! c2 c! : : : c! cK , where K = jI(�)j. Weneed the following notations to facilitate the introduction of the technique.� g(m;n) is any feasible set of n IPCs out of fc1; c2; : : : ; cmg. Namely, (1) X(�; g(m;n); �m; �c)is feasible, (2) g(m;n) � fc1; c2; : : : ; cmg, and (3) jg(m;n)j = n. If there is no feasible set ofcardinality n, then g(m;n) = ;, and Tf(`(g(m;n))) = 1.�
(m;n) is the optimally feasible set out of fc1; c2; : : : ; cmg, where j
(m;n)j = n. If there isno feasible set of cardinality n, then
(m;n) = ;, and Tf(`(
(m;n))) = 1.Lemma 5.1 If X(�; g1(m;n); �m; �c) and X(�; g2(m;n); �m; �c) are feasible, and Tf(`(g1(m;n)))� Tf(`(g2(m;n))), then Tf(`(g1(m;n) [fcqg)) � Tf (`(g2(m;n) [fcqg)), where q > m.Proof: Since we consider event-based semantics, each cq has a ready time rq and a deadline dq.The start time for cq on the network is Ts(cq) = max (Tf(`(g(m;n))), rq).Tf(`(g1(m;n) [fcqg)) = Ts(cq) + �q �ND = max(Tf(`(g1(m;n))); rq) + �q �ND (5.2)Tf(`(g2(m;n) [fcqg)) = Ts(cq) + �q �ND = max(Tf(`(g2(m;n))); rq) + �q �ND (5.3)Since Tf(`(g1(m;n))) � Tf(`(g2(m;n))), we can see that Tf(`(g1(m;n) [fcqg)) � Tf(`(g2(m;n) [fcqg)) by comparing equations (5.2) and (5.3). 2Lemma 5.2 If X(�;
(m;n); �m; �c) and X(�; g(m;n)[fcqg; �m; �c) are feasible, and g(m;n) 6=
(m;n), where q > m, then X(�,
(m;n)[fcqg,�m; �c) is feasible.Proof: We prove the lemma by contradiction. Assume X(�;
(m;n) [fcqg; �m; �c) is infeasi-ble. Since X(�;
(m;n); �m; �c) is feasible, it means that only the inclusion of cq makes X(�,
(m;n) [fcqg, �m, �c) infeasible. There are three cases in which the inclusion of cq makesX(�;
(m;n)[fcqg; �m; �c) infeasible:1. The start time of cq fails the consistency check.2. The �nish time of cq violates its timing constraint. Namely, Tf(cq) > dq.69

3. The data transmission delays the execution of its receiving module mk and causes some taskto miss its deadline. (Note that there is no any IPC after cq in X(�;
(m;n)[fcqg; �m; �c).)Since (1) the start time of cq in X(�;
(m;n); �m; �c) is the same as that in X(� ,
(m;n)[fcqg,�m, �c), and (2) X(�;
(m;n); �m; �c) is feasible, they imply that case 1 is not true.Since j
(m;n)j = jg(m;n)j = n, so Tf (`(
(m;n))) � Tf(`(g(m;n))). From Lemma 5.1 , weobtain that Tf(`(
(m;n)[fcqg)) � Tf(`(g(m;n)[fcqg)). If case 2 is true, the following inequalityholds. Tf (`(g(m;n)[fcqg)) � Tf(`(
(m;n)[fcqg)) = Tf (cq) > dq: (5.4)It means that X(�; g(m;n)[fcqg; �m; �c) is infeasible. It contradicts the given conditions. So,case 2 does not hold.Also, based on equation (5.4), we know that the start time of the receiving module mk underX(�,g(m;n) [fcqg,�m,�c) is not earlier than that under X(�,
(m;n) [fcqg,�m,�c). So, if case3 is true, then X(�,g(m;n)[fcqg,�m,�c) is infeasible; it also contradicts the conditions. So, theassumption is not valid, and X(�,
(m;n)[fcqg,�m,�c) is feasible. 2Theorem 5.1 If
(m � 1; n � 1) and
(m� 1; n) are given, the construction of
(m;n) can bedone by the following equation.
(m;n) = 8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:
(m� 1; n� 1)[fcmg if Tf(`(
(m� 1; n� 1) [fcmg)) �Tf(`(
(m� 1; n)))and X(�;
(m� 1; n� 1) [fcmg;�m; �c) is feasible,
(m� 1; n) if Tf(`(
(m� 1; n� 1) [fcmg)) >Tf(`(
(m� 1; n)))and X(�;
(m� 1; n); �m; �c) is feasible,; otherwise. (5.5)Proof: There are two cases for the relation between cm and
(m;n), i.e, cm 2
(m;n) or cm 62
(m;n).If cm 2
(m;n), then we need to �nd n � 1 IPCs out of fc1,c2,: : : ,cm�1g. Let
(m;n) =g(m�1; n�1) [fcmg, where g(m�1; n�1) 6=
(m�1; n�1). Since
(m�1; n�1) is given, and fromLemma 5.2, we know that if X(�,g(m�1; n�1) [fcmg,�m,�c) is feasible, then X(�,
(m�1; n�1)[fcmg,�m,�c) is also feasible. And since Tf (`(
(m�1; n�1)))� Tf(`(g(m�1; n�1))), we obtain70

'
&

$
%

. .for m = 0 to K do
(m; 0) = ;for n = 0 to K do
(0; n) = ;for m = 1 to K dofor n = 1 to K doif n > m then
(m;n) = ;else Compute
(m;n) by equation (5.5)end ifend forend forFigure 5.5: The Algorithm to �nd
(K; i)'sthat Tf(`(
(m� 1; n� 1)[fcmg)) � Tf(`(g(m� 1; n� 1)[fcmg)) by Lemma 5.1. So, if we replaceg(m � 1; n � 1) with
(m � 1; n � 1) and assign
(m;n) =
(m � 1; n � 1) [fcmg, we obtainanother optimally feasible set.If cm 62
(m;n), then we need to �nd an optimally feasible set with n IPCs out of fc1,c2,: : : ,cm�1g.Namely,
(m;n) =
(m� 1; n).Taking these two cases into consideration, we can choose the one which is feasible with shortercompletion time on the network. And if both
(m�1; n�1) [fcmg and
(m�1; n) are infeasible,then
(m;n) = ;. 2Let K = jI(�)j. The algorithm to �nd
(K; 0),
(K; 1), : : : ,
(K;K) is shown in Figure 5.5.The complexity of the algorithm is O(K2M), where M is the number of modules in the compre-hensive graph. If
(K; 0),
(K; 1), : : : ,
(K;K) are given, the problem of identifying bottleneckIPCs and �nding # can be solved by assigning # =
(K; q), where 8 i > q,
(K; i) = ;. Since
(K; q+1),
(K; q+2), : : : ,
(K;K) are infeasible,
(K; q) is the maximum subset of I(�) whichis feasible. Hence, the set of bottleneck IPCs is I(�) �
(K; q).5.4.2 Elimination of Bottleneck IPCsOnce the bottleneck IPCs are identi�ed, we use a replication technique to eliminate them. For eachcki!j 2 I(�) � #, we identify the sending module instance mki on processor p and the receiving71

module instance mkj on processor q. The approach to eliminate cki!j is to have a copy of modulemki on processor q, i.e. �(mki ; q) = 1. If the outdegree of the sending module instance mki onprocessor p in the comprehensive graph G is 1 (i.e. mki only communicates with mkj), we removethe module instance by setting �(mki ; p) = 0. It means that we can eliminate bottleneck IPCs byeither replication or reassignment of the sender module.Since the allocation � is changed due to the replication or reassignment, the set of IPCs, I(�),is also changed. Formally, 8 cki!j 2 G, 9 p and q, such that if �(mkj ; q) = 1, then there exists a mkiwhere �(mki ; p) = 1 and mki on processor p sends �ki!j units of data to mkj on processor q. If p 6=q then the IPC to perform cki!j should be included in I(�).If X(�; I(�); �m; �c) is feasible, then we have found a feasible allocation �. The algorithmterminates. Otherwise, we use the following strategy to �nd a new solution point.5.4.3 Neighbor Finding StrategyThe neighbor space of a solution point is the set of points which can be reached by changing theassignment of one or two modules, swapping the execution order of two modules in the processorschedule, or swapping the order of two IPCs in the network schedule. In short, there are threemodes of neighbor �nding strategy.� Swap Mode: This mode is applicable to �, �m, or �c. For �, we randomly choose two modulesmki and mlj on processors p and q respectively. These two modules are not necessarily in thesame task. Then we change � by setting �(mki ; p) = 0, �(mlj ; q) = 0, �(mki ; q) = 1, and�(mlj ; p) = 1. Note that the change of � e�ects I(�). For �m or �c, we choose two modules ortwo IPCs and swap their order in the schedules. Since the comprehensive graph itself de�nesa partial order of the schedules, the swapping of modules and IPCs should not violate thepartial order.� Random Mode: This mode is applicable to � only. We move a module to any other processorand obtain a new �. The move is an attempt to try to �nd a new solution point with a lowerenergy level.� Merge Mode: This mode is applicable to � only. We pick two module instances and movethem to one processor. By merging two modules to one processor, we increase the workloadof the processor. There is an opportunity of increasing the energy level of the new point byincreasing the workload of the processor. The purpose of the move is to perturb the systemand allow the next move to escape from the local optimum.72

The scheme to apply the appropriate modes to the current solution point is based on the feedbackfrom the energy function. Instead of randomly choosing a mode, we investigate the current energyvalue E(�; �m; �c) and �nd out which mode is to be applied. For example, if the jth instance oftask �i misses its deadline (i.e. f ji > dji), we can consider any mode which is applicable to �, �m or�c. On the other hand, if some IMC violates the timing constraints, then we can apply swap modeto �c. These three modes are adequate to �nd a feasible solution from a starting point, if feasiblesolutions exist.5.5 Experimental ResultsWe implemented the algorithm (SA/R) as the framework of the allocator on MARUTI [GMK+91,MSA92], a real-time operating system developed at the University of Maryland, and conductedextensive experiments with tasks having di�erent characteristics. The tests involve the allocation ofreal-time tasks on a homogeneous distributed system with seven sites connected by a communicationchannel. The nominal delay ND of the communication channel falls into the range between 1 and6 time units. The computation time of each module is uniformly distributed between 1 and 25 timeunits. The amount of data transfer, �, for each IMC is between 1 and 10 data units.To show how the algorithm �nds a feasible solution, we present an example allocation problemand its solution in Section 5.5.1. The comprehensive graph for the problem and the allocationresult are shown on an interactive graphical display which is developed for the design of MARUTI.There are 50 modules in the comprehensive graph. The allocation result shows that 7 modules arereplicated to increase the schedulability of the whole task system and meet the timing constraints.For this problem, if each module is restricted to only one site, then there is no feasible solutionto the problem. The signi�cance of the schedulability-oriented replication is demonstrated by thisexample.We also compare the performance of the algorithm (SA/R) with that of the simulated annealing(SA) algorithm (i.e. SA/R without Replicate()). For the cases where feasible solutions exist forsingle-copy task assignment, the numbers of iterations needed for SA/R to �nd feasible solutionsare much less than those for SA. For each solution point P , Replicate(P) is able to identify thebottleneck IPCs, use the replication technique to eliminate the IPCs if possible, and meet the tasks'deadlines.To test the practicality of SA/R, we ran experiments on the systems with 10-55 modules, whilevarying task deadlines, module execution times, IMC volumes, and randomly generating precedencerelationships. For each randomly generated problem, the number of trials is 1000. We compare73

Modules (M) 10 20 34 55Best Iter. SA/R (I1) 1 1 23 83ratio Iter. SA (I2) 99 10442 65883 55,133case Ratio (I1/I2) 1.010% 0.001% 0.034% 0.151%Worst Iter. SA/R (I3) 65 522 384 2,211ratio Iter. SA (I4) 66 899 387 2,212case Ratio (I3/I4) 98.48% 58.06% 99.22% 99.95%Avg. Iter. SA/R (I5) 15 152 195 1,924ratio Iter. SA (I6) 148 2060 4532 9,844case Ratio (I5/I6) 10.268% 7.388% 4.305% 19.54%Search Space (> M7) 1 � 107 1.28 � 109 5.25 � 1010 1.52 � 1012Table 5.1: Experiments Results for SA and SA/Rthe number of iterations needed to �nd a feasible solution for SA and SA/R respectively. Thesummarized results of best, average, and worst cases for each problem are given in Table 5.1. Thesize of potential search space for each problem depends on the number of modules in the graph(M), number of processors (p), number of IMCs, and precedence relationships. It is not easy to getan accurate value for that. In Table 5.1, we show the search space for allocation (i.e. �) only. Theactual search space is bigger than Mp. From the results in Table 5.1, we see that SA and SA/Rperform very well and solve the problems with reasonable time complexity. For example, for thecases in which M = 55, the average number of iterations needed to solve the problem by SA is lessthan 9,900, while the search space is greater than 1.52 � 1012. Only 6� 10�7 % of the search spaceis explored to �nd a feasible solution. Furthermore, the number of iterations by SA/R is less thanthat by SA, and SA/R outperforms SA in each case.5.5.1 An Example ProblemLet us consider an example of a task allocation problem. The real-time distributed system in thisexample consists of 7 sites with one processor at each site. The sites are connected by a real-timecommunication channel, for which the nominal delay in this example is 2. The task characteristicsand task graph for each task are shown in Figure 5.6. The entry \(4)! b" indicates 4 units of datasent from modules a to b. Ready time for each task is assumed to be the beginning of each period.The LCM of three periods in this example is 240. The numbers of instances in the comprehensivegraph for tasks 1, 2, and 3 are 3, 2, and 4 respectively. The comprehensive graph is shown inFigure 5.7. There are 50 modules in the graph. The allocation problem is to allocate these 5074

Task pi di Module Exec time IMCa 17 (4)! b, (7)! c,(3)! d, (1)! eb 14 (2)! f1 80 70 c 11 (5)! ed 16 (2)! e, (5)! fe 9 (2)! ff 10g 15 (3)! hh 8 (4)! i, (9)! j,(5)! ki 9 (7)! l, (9)! m2 120 110 j 10 (3)! m, (8)! nk 11 (5)! ml 8m 9 (2)! nn 10o 18 (3)! p, (3)! q3 60 60 p 18 (3)! rq 24 (3)! rr 18Figure 5.6: Graphical Description of the Example Problem75

modules to 7 processors such that the energy value in Equation (1) is zero.The results from SA/R are shown in Figure 5.8, where modules 0, 6, 12, 34, ,38, 42 and 46are replicated. These replications eliminate the bottleneck IPCs. Figure 5.8 is obtained from thegraphical display of MARUTI. For each IPC there are upper and lower IDs. The upper ID indicatesthe sender module while the lower ID indicates the recipient module. This example illustrates theuse of the techniques presented in the chapter.5.5.2 DiscussionThe complexity involved in Replicate() is O(K2N), where K is the number of IPCs and N isthe number of modules in the comprehensive graph. The worst case running time for SA/R isof the order O(K2N) times that for SA if Replicate(P) is invoked in each iteration. To avoidthe unnecessary invocation of Replicate(P) for an infeasible solution point P , we can speed upSA/R by conditionally applying Replicate(P) to the solution point P only when Ep is small. Forthe high-energy point P , the number of tasks violating their deadlines is large. It is di�cult forReplicate(P) to �nd a feasible replication for high-energy point P .From the experiments, we �nd thatReplicate(P) plays a signi�cant part in SA/R. In the originalSA algorithm (i.e. the one without Replicate(P)), when the system is at a low temperature, theenergy level is low and the probability of accepting an uphill move is small. In order to escape fromthe local minimum and �nd a global minimum, the number of iterations needed at a low temperatureis extremely large. The number of iterations has been modeled as a Markov Chain [LH91], wherean upper bound on the number of iterations at low temperatures is enforced to avoid in�nite chains.In SA/R, Replicate(P) is invoked to search for a feasible replication for P if Ep is small. From ourexperiments we �nd that for a local minimum point P , SA/R is able to terminate the searchingprocess as soon as a feasible replication is found. For this reason, SA/R outperforms SA.The inclusion of resource and memory constraints into the replication problem can be solvedby modifying the neighbor-�nding strategy. Once a neighbor of the current point is generated, it ischecked to ascertain that the constraints on memory etc. are met. If not, the neighbor is discardedand another neighbor is evaluated.5.6 SummaryIn this chapter we have focused on a schedulability-oriented replication problem of periodic complextasks in real-time distributed systems. The purpose of replication is to reduce inter-processor76

Figure 5.7: The Comprehensive Graph of the Example Problem77

Figure 5.8: Allocation Result of the Example Problemcommunication, and to increase the degree of schedulability of a task set.We have developed a replication technique and embedded the technique in a simulated annealingalgorithm to solve the problem. We have presented a two phase replication technique. In the �rstphase, the bottleneck IPCs, which delay the execution of the recipient modules and cause the tasksto miss their deadlines, are identi�ed by using a dynamic programming technique. The secondphase is used to replicate the sending modules to eliminate the bottleneck IPCs. The complexityof the technique is O(K2M) where K is the number of IPCs and M is the number of modules inthe system. We have implemented the algorithm as the framework for the allocator of MARUTI.The experimental results show that the algorithm performs well and �nds feasible solutions.Even though the algorithm is primarily concerned with distributed systems with one commu-nication channel in the network, it can be extended to multiple channels.
78

Chapter 6Performance-Oriented Replication in Non-Real-TimeSystemsIn the previous chapters, we focused on the allocation problems in the real-time systems in whichthe allocation problems involve the scheduling of tasks and communications. From the results inChapter 5, we see that the schedulability-oriented replication can lead to higher feasibility in real-time systems. In this chapter, we study how the replication of tasks can reduce the execution costof a task in the non-real-time systems.6.1 IntroductionFor non-real-time applications, the objective of the allocation problem may be the minimum com-pletion time, processor load balancing, or total cost of execution and communication, etc. Forthe assignment problem in which the objective is to minimize the total cost of execution andinterprocessor communication, Stone [Sto77] and Towsley [Tow86] presented O(n3M) algorithmsfor tree-structure and series-parallel graphs, respectively, of M tasks and n processors. For gen-eral task graphs, the assignment problem has been proven [MM89] to be NP-complete. Manypapers [MLT82, MM89, PP82] presented branch-and-bound methods which yielded an optimal re-sult. Other heuristic methods have been considered by Lo [Lo88] and Price and Krishnaprasad[PK84]. All these works focused on the assignment problem.Traditionally, the main purpose of replicating a task on multiple processors is to increase thedegree of fault tolerance [CC90, LAMS92]. If some processors in a system fail, the applicationmay still survive using other copies. In such a model, a task has to communicate with multiplecopies of other tasks. As a consequence, the total cost of execution and communication of thereplication problem is bigger than that of the assignment problem. In this chapter, we adopt79

another communication model in which the replication of a task is not for the sake of fault tolerancebut for decreasing of the total cost. In our model, each task may have more than one copy and itmay start its execution after receiving necessary data from one copy of each preceding task. Clearly,in a heterogeneous environment the cost of execution of a task depends on the processor on which itexecutes, and the communication costs depend on the topology, communication medium, protocolsused, etc. When a task t is allowed to have only one copy in the system, the sum of the interprocessorcommunication costs between t and other tasks may be large. Sometimes it will be more bene�cialif we replicate t onto multiple processors to reduce the inter-processor communication, and to utilizethe available processors in the systems. Such replication may lead to a lower total cost than theoptimal assignment problem. An example illustrating this point is presented in Section 6.3.In the assignment problem, polynomial-time algorithms exist for special cases, such as tree-structure [Sto77] and series-parallel [Tow86] task graphs. This work represents one of the �rstfew attempts at �nding special cases for the replication problem. The class of applications weconsider in this chapter is computation-intensive applications in which the execution cost of a task isgreater than its communication cost. Such applications can be found in many �elds, such as digitalsignal processing, weather forecasting, game searching, etc. We formally de�ne a computation-intensive application in Section 6.2.2. We prove that for the computation-intensive applications,the replication problem is NP-complete, and we present a branch-and-bound algorithm to solve it.The worst-case complexity of the solution is O(n22nM). Note that the algorithm is able to solvethe problem with the complexity of the linear function of M .We also develop an approximation approach to solve the problem in polynomial time. Given aforker task s with K successors in the SP graph, the method tries to allocate s to processors basedon iterative selection. The complexity of the iterative selection for a forker is O(n2K2), while theoverall solution for an SP graph is O(n4M2).In the remainder of this chapter, the series-parallel graph model and the computation model aredescribed in Section 6.2. In Section 6.3, the replication problem is formulated as the minimum cost0-1 integer programming problem and the proof of NP completeness is given. A branch-and-boundalgorithm and numerical results are given in Section 6.4, while the approximation methods andresults are given in Section 6.5. The overall algorithm is presented and conclusion remark is drawnin Section 6.6. 80

6.2 De�nitions6.2.1 Graph ModelA series-parallel (SP) graph, G = (V;E), is a directed graph of type p, where p 2 fTunit, Tchain,Tand, Torg and G has a source node (of indegree 0) and a sink node (of outdegree 0). An SP graphcan be constructed by applying the following rules recursively.1. A graph G = (V;E) = (fvg, �) is an SP graph of type Tunit. (Node v is the source and thesink of G.)2. If G1 = (V1; E1) and G2 = (V2; E2) are SP graphs then G0 = (V 0, E 0) is an SP graph of typeTchain, where V 0 = V1 [V2 and E 0 = E1 [E2 [f<sink of G1, source of G2 >g.3. If each graph Gi = (Vi,Ei) with source-sink pair (si,ti), where si is of outdegree 1, is an SPgraph, 8 i = 1,2,: : : ,n, and new nodes s0 62 Vi and t0 62 Vi, 8 i are given then G0 = (V 0, E 0) isan SP graph of type Tand(or type Tor), where V 0 = V1 [V2 [: : :[Vn [fs0, t0g and E 0 = E1[E2 [: : : [En [f< s0; si > j 8 i = 1,2,: : : ,n g [f< ti; t0 > j 8 i = 1,2,: : : ,n g. The sourceof G0, s0, is called the forker of G0. The sink of G0, t0, is called the joiner of G0. G0 is an SPgraph of type Tand(or type Tor) if there exists a parallel-and (or parallel-or) relation amongGi's.A convenient way of representing the structure of an SP graph is via a parsing tree [JLT]. Thetransformation of an SP graph to a parsing tree can be done in a recursive way. There are fourkinds of internal nodes in a parsing tree: Tunit, Tchain, Tand and Tor nodes. A Tunit node has onlyone child, while a Tchain node has more than one child. Every internal node x, along with all itsdescendant nodes induces a subtree Sx which describes an SP subgraph Gx of G. Each leaf nodein Sx corresponds to an SP graph of type Tunit. A Tand(or Tor) node y consists of its type Tand(orTor) along with the forker and joiner nodes of Gy. We give an example of an SP graph G, and itsparsing tree T (G) in Figure 6.1.6.2.2 Computational ModelAn application program consists of M tasks labeled m = 1, 2, : : : , M . Its behavior is representedby an SP graph where the tasks correspond to the nodes. Each task may be replicated onto morethan one processor. A task instance ti;p is a replication of task i on processor p. A directed edge < i,j > between nodes i and j exists if the execution of task j follows that of task i. Associated with81

each edge < i, j > is the communication cost incurred by the application. We are concerned withtypes of applications where the cost of execution of a task is always greater than the communicationoverhead it needs. The model is stated as follows.Given a system S with n processors connected by a communication network, an application iscomputation-intensive if its associated SP graph G = (V , E) on S satis�es the following conditions:1. �i;j(p; q) � 0,2. Pnq=1 �i;j(p; q) � minp(ei;p), 8 < i; j >2 E, and 1 � p � n, where� �i;j(p; q) is the communication cost between tasks i and j when they are assigned to processorsp and q respectively, and� ei;p is the execution cost when task i is assigned to processor p.The �rst condition states that the communication cost between any two task instances (e.g.ti;p and tj;q) is not negative. The second one depicts that for every edge < i; j >, the worst-casecommunication cost between any task instance ti;p and all its successor task instances (i.e. tj;q's, 8q) is less than the minimum execution cost of task i.6.2.3 Communication ModelThe communication model we considered is di�erent from that of reliability-oriented replication. Inthe reliability-oriented replication problem, the objective is to increase the degree of fault tolerance.To detect fault and maintain data consistency, each task has to receive multiple copies of data fromseveral task instances if its predecessor is replicated in more than one place.The purpose of the replication problem considered in this chapter is to decrease the sum ofexecution and communication costs. Under such consideration, there is no need to enforce pluralcommunication between any two task instances. We propose the 1-out-of-n communication model.In the model, for each edge < i, j > 2 E, a task instance tj;q may start its execution if it receivesthe data from any one task instance of its predecessor, task i.6.3 Problem Formulation and ComplexityBased on the computational model presented in Section 6.2.2, the problem of minimizing the totalsum of execution and communication costs for an SP task graph can be approached by replication82

ab cdef gh
AND
OR

Tchain[Tand, a, d] [Tor, e, h]Tunit Tunit Tunit Tunitb c f gFigure 6.1: An SP graph and its parsing treeof tasks. An example in which the replication may lead to a lower sum of execution costs andcommunication costs is given in Figure 6.2, where the number of processors in the system is two,and the execution costs and communication costs are listed in e table and � table respectively. Ifeach task is allowed to run on at most one processor, then the optimal allocation will be to assigntask a to processor 1, b to 1, c to 1, d to 2, e to 2, and f to 1. The minimum cost is 68. However, ifeach task is allowed to be replicated, (i.e. to replicate task a to processors 1 and 2), then the costis 67.We introduce integer variable Xi;p's, 8 1 � i � M and 1 � p � n, to formulate the problemwhere each Xi;p = 1 if task i is replicated on processor p; and = 0, otherwise. We de�ne a binaryfunction �(x). If x > 0 then �(x) = 1 else �(x) = 0. We also associate an allocated ag F (w)with each node w in the parsing tree, where F (w) = 1 if the allocation for tasks under the subtreeSw is valid; and = 0, otherwise. A valid allocation is one that makes the execution of tasks undersubtree Sw succeed. A valid allocation is not necessarily the allocation in which each task in Sw isallocated to at least one processor. Some tasks in Tor subgraphs may be neglected without e�ectingthe successful execution of an SP graph.Given an SP graph G, its parsing tree T (G) and any internal node w in T (G), allocated agF (w) can be recursively computed: 83

ab c d efANDe table processor 1 processor 2task a on 5 5task b on 7 16task c on 10 20task d on 25 8task e on 14 6task f on 10 13� table tb;1 tb;2 tc;1 tc;2 td;1 td;2 te;1 te;2ta;1 to 1 4 1 4 1 4 1 4ta;2 to 4 1 4 1 4 1 4 1to tf;1 from 3 3 3 3 3 3 3 3to tf;2 from 3 3 3 3 3 3 3 3Optimal Assignment:ea;1 + �a;b(1; 1)+ �a;c(1; 1)+ �a;d(1; 2)+ �a;e(1; 2)+ eb;1 + ec;1+ed;2 + ee;2 + �b;f (1; 1) + �c;f (1; 1)+ �d;f (2; 1)+ �e;f (2; 1)+ ef;1 = 68Optimal Replication:ea;1 + ea;2 + �a;b(1; 1)+ �a;c(1; 1)+ �a;d(2; 2)+ �a;e(2; 2)+ eb;1+ec;1 + ed;2 + ee;2 + �b;f (1; 1)+ �c;f (1; 1)+ �d;f (2; 1)+�e;f (2; 1)+ ef;1 = 67Figure 6.2: An example to show how the replication can reduce the total cost84

1. if w is a Tunit node with a child i, thenF (w) = F (i) = �(nXp=1Xi;p)2. if w is a Tchain node with c children, F (w) = F (child1) � F (child2) � : : :� F (childc).3. if w is a Tand node with forker s, joiner t and c children, then F (w) = F (s) � F (t) � F (child1)� F (child2) � : : :� F (childc).4. if w is a Tor node with forker s, joiner t and c children, then F (w) = F (s) � F (t) � �(F (child1)+ F (child2) + : : :+ F (childc)).The minimum cost replication problem for SP graphs, MCRP-SP, can be formulated as 0-1integer programming problem, i.e:Z = Minimize [Xi;p Xi;p � ei;p + X<i;j>2E; 1�q�n minXi;p=1(�i;j(p; q) �Xj;q)]subject to F (r) = 1; where r is the root of T (G) and Xi;p = 0 or 1; 8i; p: (6.1)The restricted problem which allows each task to run on at most one processor has the followingformulation. Z = Minimize [Xi;p Xi;p � ei;p + X<i;j>2E;p;q�i;j �Xi;p �Xj;q]subject to nXp=1Xi;p � 1 and F (r) = 1;where r is the root of T (G) and Xi;p = 0 or 1; 8i; p: (6.2)The task assignment problem(6.2) for SP graphs ofM tasks onto n processors, has been solvedin O(n3M) time [Tow86]. However,the multiprocessor task assignment for general types of taskgraphs without replication has been reported to be NP-complete [MM89]. As for the MCRP-SPproblem, it can be shown to be NP-complete. In this chapter, we present a linear-time algorithmfor computation-intensive applications with SP graphs, when the number of processors n is given.6.3.1 Assignment GraphBokhari [Bok87] introduced the assignment graph to solve the task assignment problem (6.2). Toprove the NP completeness of problem (6.1) and solve the problem, we also adopt the concept of theassignment graph of an SP graph. The assignment graph of an SP graph can be de�ned similarly.We draw up an assignment graph for an SP graph in Figure 6.3(a).85

AND OR
(a): An SP graph and its assignment graph.

Figure 6.3: (b): An allocation graph and a replication graph of (a)86

1. It is a directed graph with weighted nodes and edges.2. It has M � n nodes. Each weighted node is labeled with a task instance, ti;p.3. A layer i is the collection of n weighted nodes (ti;1, ti;2, : : : , and ti;n). Each layer of thegraph corresponds to a node in the SP graph. The layer corresponding to the source (sink)is called source (sink) layer.4. A part of the assignment graph corresponds to an SP subgraph of type Tchain, Tand or Tor iscalled a Tchain, Tand or Tor limb respectively.5. Communication costs are accounted for by giving the weight �i;j(p; q) to the edge going fromti;p to tj;q .6. Execution costs are assigned to the corresponding weighted nodes.Given an assignment graph, Bokhari [Bok87] solves Problem (6.2) by selecting one weightednode from each layer and including the weighted edges between any two selected nodes. Thisresulting subgraph is called an allocation graph. To solve Problem (6.1), more than one weightednode from each layer may be chosen. Similarly, a replication graph for Problem (6.1) can beconstructed from an assignment graph by including all selected nodes and edges between thesenodes. Examples of an allocation graph and a replication graph are shown in Figure 6.3(b) for anassignment graph shown in Figure 6.3(a). Note that for each node x and each predecessor layer yof x in the replication graph, there is only one edge from y to x.In a replication graph, each layer may have more than one selected node. Let Variable �Xl= (Xl;1, Xl;2, : : : , Xl;n) be a replication vector for layer l in a replication graph. We de�ne theminimum activation cost of vector �Xi for layer i , Ai(�Xi), to be the minimum sum of the weightsof all possible nodes and edges leading to the selected nodes of layer i in a replication graph. Thenthe goal of Problem (6.1) can be achieved by computing the minimal value of fAsink(�Xsink) +Pnp=1Xsink;p � esink;pg over all possible values of �Xsink.6.3.2 ComplexityIn this section, we can show that Problem (6.1) for a computation-intensive application is NP-complete provided we prove the following:Lemma 6.1 For any layer l in the replication graph, the minimum activation cost for two selectednodes tl;p and tl;q will be always greater than that for either node ti;p or tl;q only.87

Proof: The Lemma can be proven by contradiction. Let A1 be the the minimum activation cost fortwo nodes tl;p and tl;q, and A2 and A3 be the minimum costs for tl;p and tl;q respectively. Assumethat A1 < A2 and A1 < A3. Since A1 includes the activation cost of node tl;p, an activation costfor tl;p only can be obtained from A1. The obtained value c is not necessarily the minimum valuefor tl;p, hence A2 � c. The value c is obtained by removing some weighted nodes and edges fromreplication graph. This implies that c < A1. From above, we �nd that A2 < A1, which contradictsthe assumption. The same reasoning can be applied to A3 and reaches a contradiction. Therefore,the assumptions are incorrect and Lemma 6.1 holds. 2Lemma 6.1 can be further extended to the cases where more than two weighted nodes arechosen. The conclusion we can draw is that the more nodes are selected from a layer, the biggerthe activation cost is.Lemma 6.2 Given a computation-intensive application with its SP task graph G = (V , E) andits assignment graph, if node i has outdegree one and edge < i; j > 2 E, then for any vector �Xj,the minimal activation cost Aj(�Xj) can be obtained by choosing only one weighted node from layeri. (i.e. Pnp=1Xi;p = 1)Proof: The Lemma can be proven by contradiction. Since node i has outdegree one and edge< i; j > 2 E, we know thatAj(�Xj) = min�Xi fAi(�Xi) + nXp=1Xi;p � ei;p + nXq=1 minXi;p=1(Xj;q � �i;j(p; q))g:Let us assume that the above equation reaches a minimal value m when more than one nodefrom layer i is selected and the optimal replication vector is �X0i . Since Pnp=1Xi;p > 1 for �X0i , wemay remove one selected node from layer i and obtain a new vector �X 0i. Without loss of generality,let us remove ti;r. By removing node ti;r , a new value m0 is obtained. Since m is the minimumvalue for layer i, it implies that m � m0.From Lemma 6.1, we obtain that Ai(�X 0i) < Ai(�X0i). And for a computation-intensive applica-tion, the following holds that Pnq=1 �i;j(p; q) � minp(ei;p), 8 1 � p � n. Then,m0 = Ai(�X 0i) + nXp=1X 0i;p � ei;p + nXq=1 minX 0i;p=1(Xj;q � �i;j(p; q))88

< Ai(�X0i) + nXp=1X 0i;p � ei;p + nXq=1 minX 0i;p=1(Xj;q � �i;j(p; q))< Ai(�X0i) + (nXp=1X0i;p � ei;p � ei;r) + nXq=1 minX 0i;p=1(Xj;q � �i;j(p; q))= Ai(�X0i) + nXp=1X0i;p � ei;p + [nXq=1 minX 0i;p=1(Xj;q � �i;j(p; q))]� ei;r< Ai(�X0i) + nXp=1X0i;p � ei;p + [nXq=1 minX 0i;p=1(Xj;q � �i;j(p; q))]�minp (ei;p)� Ai(�X0i) + nXp=1X0i;p � ei;p + [nXq=1 minX 0i;p=1(Xj;q � �i;j(p; q))]� nXq=1�i;j(p; q)< Ai(�X0i) + nXp=1X0i;p � ei;p< Ai(�X0i) + nXp=1X0i;p � ei;p + nXq=1 minX0i;p=1(Xj;q � �i;j(p; q)) = m:The result, m0 < m, contradicts our assumption. It means that the assumption is wrong andLemma 6.2 holds. 2Lemma 6.3 Given a computation-intensive application with its SP task graph G, the objective ofthe minimum cost can be achieved by considering only the replication of the forkers.Proof: We proceed to prove the lemma by contradiction. Let the minimum cost for task replicationproblem be z0 if only the forkers(i.e. outdegree > 1) are allowed to run on more than one processor.Assume the total cost can be reduced further by replicating some task i which is not a forker. Thenthere are two possible cases for i:1. i has outdegree 0.2. i has outdegree 1.In case 1, i is the sink of the whole graph. Also i may be the joiner of some SP subgraphs. If i isallowed to run on an extra processor b, which is di�erent from the one which i is initially assignedto (when z0 is obtained), then the new cost will be z0 + ei;b + P<d;i>2E �d;i. Apparently, the newcost is greater than z0. This contradicts our assumption that the total cost can be reduced furtherby replicating task i. 89

In case 2, i has one successor. Let < i; j > 2 E. From the assumption, we know that thereplication of i can reduce the total cost. Hence, the minimum activation cost for task instancesin layer j, Aj(�Xj), is obtained when task i is replicated onto more than one processor. Thiscontradicts Lemma 6.2. Hence, the assumption is incorrect and the objective of the minimum costcan be achieved by considering only the replication of the forkers. 2Lemma 6.3 tells that, given an SP graph, if we can �nd out the optimal replication for theforkers, Problem (6.1) for computation-intensive applications can be solved. Now, we show thatthe problem of �nding an optimal replication for the forkers in an SP graph is NP-complete. First,a special form of the replication problem is introduced.Uni-Cost Task Replication (UCTR) problem is stated as follows:INSTANCE: Graph G0 = (V 0; E 0), V 0 = V 01 [V 02, where j V 01 j = n and j V 02 j = m. If x 2 V 01 andy 2 V 02 then edge < x; y > 2 E0 (i.e. j E 0 j = m� n). For each x 2 V 01, there is an activation costm. Associated with each edge < x; y > 2 E0, there is a communication cost dx;y = n�m or 0. Apositive integer K � n�m is also given.QUESTION: Is there a feasible subset Vk � V 01 such that, we have[Xx2Vkm+ Xy2V 02 minx2Vk(dx;y)] � K? (6.3)Theorem 6.1 Uni-Cost Task Replication problem is NP-Complete.[Proof]: The problem is NP because a subset Vk, if it exists, can be checked to see if the sum ofactivation costs and communication costs is less than or equal to K. We will now transform theVERTEX COVER [GJ79] problem to this problem. Given any graph G = (V ,E) and an integerC � j V j, we shall construct a new graph G0 = (V 0,E 0) and V 0 = V 01 [V 02, such that there existsa VERTEX COVER of size C or less in G if and only if there is a feasible subset of V 01 in G0. Letj V j = n and j E j = m. To construct G0, we create a vertex vi for each node in V and numberthe edges in E and create a vertex bi for each edge < u,v > 2 E where u, v 2 V . We de�ne K =m � C, V 01 = fv1, v2, : : : , vng, V 02 = fb1, b2, : : : , bmg and E 0 = f< vx,by > j vx 2 V 01, by 2 V 02 g.Let dvx;by = 0, if vx is an end point of the corresponding edge of vertex by; and = n�m, otherwise.An illustration, where n = 7 and m = 9, is shown in Figure 6.4.Let us now argue that there exists a vertex cover of size C or less in G if and only if there isa feasible subset of V 01 in G0 to satisfy that the sum of activation cost and communication cost is90

1 v2 v3v1 v4 v5 v6 v7
b1 b2 b3 b4 b5 b6 b7 b8 b9: dvx;by = 0: dvx;by = n �m = 632 3 45 6 7b9

b1 b8b7b4b2b3 b6b5 Legend:Figure 6.4: An illustration about how to transform a graph to a UCTR instancem � C or less. Suppose there is a vertex cover of size C, then for each vertex by (= < u,v >) inV 02, at least one of u and v belongs to the vertex cover. By selecting all the vertices in the vertexcover into the subset of V 01, we know that the sum in equation (6.3) will be m� C. Since C � n,it implies that m� C � n�m.Conversely, for any feasible subset Vk � V 01 such that the total cost is equal to or less than mC,we can see that the second term of equation (6.3) (i.e. the sum of communication cost) must bezero. Suppose, for some gy 2 V 02, the minimum communication cost between gy and vertices in V 0is nonzero, then the communication cost will be at least m�n. Since C � n, it implies that m�n� m � C. The total cost in equation (6.3) will be greater than m � C, which is a contradiction.Thus the minimum communication cost between any vertex in V 02 and any vertex in Vk is zero. Itmeans that at least one of two end points of each edge in E belongs to Vk. Since, there is at mostC vertices in Vk (the activation cost for each vertex is m), and by selecting the vertices in Vk, weobtain a vertex cover of size C or less in G. 2Theorem 6.2 The problem, MCRP-SP for computation-intensive applications, is NP-complete.[Proof]: From Lemma 6.3 , we know that only the forker in an SP graph of type Tand needs torun on more than one processor. Consider the following recognition version of Problem (6.1) forSP graphs of type Tand:Given a system of n processors, an SP graph Ga = (V a,Ea) of type Tand, its assignment graphH and two positive integers m and r. Let r be a multiple of m, V a = fs, t, 1,2,: : : ,rg and Ea91

= f< s,i > j i = 1,2,: : : ,rg [f< i,t > j i = 1,2,: : : ,rg. Task s (t) is the forker (joiner) of Ga.Execution cost ei;p and communication cost �i;j(p; q) are de�ned in H , 8 < i,j > 2 Ea and 8 1 �p,q � n. Integer variable Xi;p = 1 if task i is assigned to processor p; and = 0, otherwise. When apositive integer K � r is given, is there an assignment of Xi;p's, such that[Xi;p Xi;p � ei;p + X<i;j>2E; 1�q�n minXi;p=1(�i;j(p; q) �Xj;q)] � K?where Xi;p Xi;p = 1; 8i 6= s; and Xi;p Xi;p � 1; if i = s: (6.4)We shall transform the UCTR problem to this problem. Given any graph G0 = (V 01 [V 02,E 0)considered in UCTR problem, we construct an SP graph of type Tand, Ga = (V a,Ea), and itsassignment graph H , such that G has a feasible subset of V 01 to allow the sum in equation (6.3) isK or less if and only if there is an assignment of Xi;p's for Ga and H to satisfy equation (6.4). Letj V 01 j = n, j V 02 j = m, then the unit cost f = n�m. Assign r = m�f (= n�m2) and K = n�m.The forker and joiner of Ga are s and t respectively. Then V a = fs, t,1,2,: : : ,rg and Ea = f< s,i >j i = 1,2,: : : ,rg [f< i,t > j i = 1,2,: : : ,rg. We assign the execution costs and communication costsin H as follows. An illustration, where m = 2 and n = 3, is shown in Figure 6.5.� 8 1 � p � n, es;p = m.� 8 1 � i � r, 8 1 � p � n, if p = 1 then ei;p = 0 else ei;p = r.� 8 1 � p � n, if p = 1 then et;p = 0 else et;p = r.� 8 1 � i � r, 8 1 � p � n, let q = (i� 1) div (m � n), where div is the integral division. Ifdvp;bq+1 6= 0 then �s;i(p; 1) = 1 else �s;i(p; 1) = 0.� 8 1 � i � r, 8 1 � p � n, 8 q 6= 1, �s;i(p; q) = 0.� 8 1 � i � r, 8 1 � p,q � n, �i;t(p; q) = 0.It is easy to verify that the SP graph constructed by the above rules is of type Tand and computation-intensive. For each node in V 02 ofG0, we create f nodes in Ga, where the communication cost betweeneach node and source s is either one or zero.Let us now argue that there exists a feasible subset of V 01 for UCTR problem if and only ifthere exists a valid assignment of Xi;p's such that the total sum in equation (6.4) is K or less.Suppose a feasible subset Vk of V 01 exists such that the sum in equation (6.3) is C (� K) . Let V 01be fv1,v2,: : : ,vng Then we can obtain a valid assignment by letting Xi;1 = 1, Xi;2 = 0, : : :, Xi;n =92

v1 v2 v3b1Legend: : dvx;by = 0: dvx;by 6= 0 1 2 3 4 5 6 7 8 9 10 11 12tsb2
e table p=1 p=2 p=3es;p = 2 2 2e1;p = 0 12 12e2;p = 0 12 12e3;p = 0 12 12e4;p = 0 12 12e5;p = 0 12 12e6;p = 0 12 12e7;p = 0 12 12e8;p = 0 12 12e9;p = 0 12 12e10;p = 0 12 12e11;p = 0 12 12e12;p = 0 12 12et;p = 0 12 12

� table p = 1 p = 2 p = 3�s;1(p; 1) = 0 0 1�s;2(p; 1) = 0 0 1�s;3(p; 1) = 0 0 1�s;4(p; 1) = 0 0 1�s;5(p; 1) = 0 0 1�s;6(p; 1) = 0 0 1�s;7(p; 1) = 1 0 0�s;8(p; 1) = 1 0 0�s;9(p; 1) = 1 0 0�s;10(p; 1) = 1 0 0�s;11(p; 1) = 1 0 0�s;12(p; 1) = 1 0 0�s;i(p; q) = 0, 8 1 � i � 12,and for p = 1,2,3 and q = 2,3�i;t(p; q) = 0, 8 1 � i � 12,and 8 1 � p, q � 3Figure 6.5: An illustration about how to transform a UCTR instance to a Tand SP graph93

0, 8 1 � i � r, and Xt;1 = 1, Xt;2 = 0, : : :, Xt;n = 0, and Xs;p = 1, if vp 2 Vk; and Xs;p = 0, ifvp 62 Vk, 8 1 � p � n. Since each node x in V 02 corresponds to f nodes in Ga, it is sure that thecommunication cost between node x and any node (vp) in V 01 is equal to the total communicationcosts between these f nodes and any task instance of source (ts;p) in Ga. By summing up all thecosts, we can obtain that the total sum is C. Since C � K � n�m < r, this is a valid assignment.Conversely, if there exists an assignment of Xi;p's such that the sum in equation (6.4) is K orless, then the following must be true that Xi;1 = 1, Xi;2 = 0, : : :, Xi;n = 0, 8 1 � i � r, and Xt;1= 1, Xt;2 = 0, : : :, Xt;n = 0. It is because for some p 6= 1, if Xi;p = 1 then the sum must be greaterthan r, which causes a conict. Hence the second term in equation (6.4) must be zero. Thus, wemay obtain a subset of V1 for UCTR problem by selecting node x 2 V1 if Xs;x equals 1. Since the�rst term in equation (6.3) is equivalent to the �rst term in equation (6.4), the total sum for UCTRproblem will be also K or less then. 26.4 Optimal Replication for SP Graphs of Type TandIn this section, we develop the branch-and-bound algorithm to �nd an optimal solution for Tandsubgraphs. The non-forker nodes only need to run on one processor. An optimal assignment ofnon-forker nodes can be done after an optimal replication for forkers is obtained.6.4.1 A Branch-and-Bound Method for Optimal ReplicationConsider a Tand SP graph with forker-joiner pair (s,h) shown in Figure 6.6 . There are B subgraphsconnected by s and h. These B subgraphs have a parallel-and relationship. Since the joiner h hasonly one copy in optimal solution (i.e. Pnp=1Xh;p = 1), we decompose the minimum cost replicationproblem P for a Tand SP graph into n subproblems Pq, q = 1, 2, : : : , n, where Pq is to �nd theminimum cost when the joiner is assigned to processor q (i.e. Xh;q = 1).Given a joiner instance th;q, subgraphs Gb's, b = 1, 2, : : : , B, and the minimum costs Cbp;q'sbetween each forker instance ts;p and joiner instance th;q , 8 1 � p � n and 1 � b � B. we furtherdecompose problem Pq into n subproblems Pqk , k = 1, 2, : : : , n, where k is the number of replicatedcopies that the forker s has. Basically, Pqk means the problem of �nding an optimal replication fork copies of forker s where the joiner h is assigned to processor q. Since the problem of �nding anoptimal replication for forker s is NP-complete, we propose a branch-and-bound algorithm for eachsubproblem Pqk . 94

We sort the forker instances according to their execution costs es;p's into non-decreasing order.Without loss of generality, we assume es;1 � es;2 � : : :� es;n. We represent all the possiblecombinations that s may be replicated by a combination tree with (nk) leaf nodes. To make thesolution e�cient, we shall not consider all combinations since it is time-consuming. We apply aleast-cost branch-and-bound algorithm to �nd an optimal solution by traversing a small portion ofthe combination tree.During the search, we maintain a variable ẑ to record the minimum value known so far. Thesearch is done by the expansion of intermediate nodes. Each intermediate node v at level y repre-sents a combination of y out of n forker instances. The expansion of node v generates at most n�ychild nodes, while each child node inherits y forker instances from v and adds one distinct forkerinstance to itself. For example, if node v is represented by � ts;i1 , ts;i2 , : : : , ts;iy �, where i1 < i2 <: : :< iy, then � ts;i1 , ts;i2 , : : : , ts;iy , ts;iy+j � represents a possible child node of v, 8 1 � j � n� iy.A combination tree, where k = 4 and n = 6, is shown in Figure 6.7. At any intermediate node of acombination tree, we apply an estimation function to compute the least cost this node can achieve.If the estimated cost is greater than ẑ, then we prune the node and the further expansion of thenode is not necessary. Otherwise, we insert this node along with its estimated cost into a queue.The nodes in the queue are sorted into non-decreasing order of their estimated costs, where the�rst node of the queue is always the next one to be expanded. When the expansion reaches a leafnode, the actual cost of this leaf is computed. If the cost is less than ẑ, we update ẑ. The algorithmterminates when the queue is empty.The Estimation FunctionThe proposed branch-and-bound algorithm is characterized by the estimation function. Let node vbe at level y of the combination tree associated with subproblem Pqk and be represented by � ts;i1 ,ts;i2 , : : : , ts;iy �, where i1 < i2 < : : :< iy . Any leaf node that can be reached from node v needsk� y more forker instances. Let ` = � j1, j2, : : : , jk�y � be a tuple of k� y instances chosen fromthe remaining n� iy instances, where j1 < j2 < : : :< jk�y . Let L be the set of all possible `'s. Letg(v) be the smallest cost among all leaf nodes that can be reached from node v.g(v) = yXa=1 es;ia + min`2L [Xjx2` es;jx + BXb=1 minp=i1;i2;:::;iy or p2` (Cbp;q)] + eh;q :Since the complexity involved in computing g(v) is (n�iyk�y), we use the following estimation functionest(v) to approximate g(v):est(v) = yXa=1 es;ia + iy+k�yXj=iy+1 es;j + BXb=1 minp=i1 ;i2;:::;iy;iy+1;iy+2;:::;n (Cbp;q) + eh;q : (6.5)95

Since iy+k�yXj=iy+1 es;j � Xjx2` es;jx and BXb=1 minp=iy+1;iy+2;:::;n (Cbp;q) � BXb=1 minp2` (Cbp;q) ;it is easy to see that est(v) � g(v). Hence, we use est(v) as the lower bound of the objectivefunction at node v.The Proposed AlgorithmThree parameters of the branch-and-bound algorithm are joiner instance (th;q), the number ofprocessors that forker s is allowed to run (k), and the up-to-date minimum cost (ẑ). The algorithmBB(k; q; ẑ) is shown in Figure 6.10.The MCRP-SP problem can be solved by invoking BB(k; q; ẑ) n2 times with parameters set todi�erent values. BB(k; q; ẑ) solves the problem Pqk , while the whole procedure, shown in Figure 6.11,solves P .6.4.2 Performance EvaluationThe essence of the branch-and-bound algorithm is the expansion of the intermediate nodes. Uponthe removal of a node from the queue its children are generated and their estimated values arecomputed. If the estimation function performs well and gives a tight lower bound of objectivefunction, the number of expanded nodes should be small. An optimal solution can be found assoon as possible.We conduct two sets of experiments to evaluate the performance of the proposed solution. Theperformance indices we consider are the number of enqueued intermediate nodes (EIM) and thenumber of visited leaf nodes (VLF) during the search. We calculate EIM and VLF by insertingone counter for each index at lines 13 and 8 of Figure 6.10 respectively. Each time the executionreaches line 13 (8), EIM (VLF) is incremented by 1.The �rst set of experiments is on SP graphs of type Tand where the communication cost betweenany two task instances is arbitrary and is generated by random number generator within the range[1,50]. The execution cost for each task instance is also randomly generated within the same range.The second set of experiments is on SP graphs of type Tand with the constrain of computation-intensive applications. We vary the size of the problem by assigning di�erent values to the numberof processors in the system (n) and the number of parallel-and subgraphs connected by forker andjoiner (B). For each size of the problem (n, B), we randomly generate 50 problem instances andsolve them. The results, including the average values of EIM and VLF over the solutions of 5096

G2G1 s
h CbpqGn Gn to tp;q

from ts;p
Figure 6.6: A Tand SP graph and the graphical interpretation of Cbp;q.problem instances, are summarized in Table 6.1.From Table 6.1, we �nd out that the proposed method signi�cantly reduces the number ofexpansions for intermediate nodes and leaf nodes. For example, for problem size (n, B) = (20,40), the total number of leaf nodes is 220 (= 1,048,576) if an exhaustive search is applied. However,our algorithm only generates 16,857 nodes on the average, because we apply est(v), ẑ, and thebranch-and-bound approach.The branch-and-bound approach and the estimation function even perform better for thecomputation-intensive applications. We can see that EIM and VLF values are much smaller inSet II than those in Set I. In computation-intensive applications an optimal number of replicationsfor the forker is smaller than that in general applications. The ẑ value in function OPT () is ableto reect this fact and avoid the unnecessary expansions.6.5 Sub-Optimal Replication for SP Graphs of Type TandThe branch-and-bound algorithm in section 4.1 yields an optimal solution for Tand subgraphs.However, the complexity involved is in exponential time in the worst case. We also attempt to �nda near-optimal solution in polynomial time. 97

5 6 7 9 10 12 15 16 18 21 25 26 28 31 354 8 11 14 17 20 24 27 30 343 13 19 23 29 332 22 321
ts;4 ts;5 ts;6 ts;5 ts;6 ts;6 ts;5 ts;6 ts;6 ts;6 ts;5 ts;6 ts;6 ts;6 ts;6ts;3 ts;4 ts;5 ts;4 ts;5 ts;5 ts;4 ts;5 ts;5 ts;5ts;2 ts;3 ts;4 ts;3 ts;4 ts;4ts;1 ts;2 ts;3

Figure 6.7: A combination tree for the case where k = 4 and n = 6
98

6.5.1 Approximation MethodFor the problem Pqk de�ned in section 4.1, we exploit an approximation approach to solve it inpolynomial time. The approach is based on iterative selection in dynamic programming fashion.Given a joiner instance th;q and subgraphs Gb, b = 1, 2, : : : , B, and minimum costs Cbp;q betweenth;q and ts;p, p = 1, 2, : : : , n, and b = 1, 2, : : : , B. We de�ne Sub(p; b) to be the sub-optimalsolution for replication of forker s where forker instances ts;1, ts;2 , : : : , ts;p and subgraphs G1, G2,: : : , Gb are taken into consideration.Strategy 1:Sub(p; b) can be obtained from Sub(p� 1; b) by considering one more forker instance ts;p. Strategy1 consists of two steps. The �rst step is to initialize Sub(p; b) to be Sub(p� 1; b) and to determineif ts;p is to be included into Sub(p; b) or not. If yes, then add ts;p in. The second step is to examineif any instances in Sub(p� 1; b) should be removed or not. Due to the possible inclusion of ts;p inthe �rst step, we may obtain a lower cost if we remove some instances ts;i's, i < p, and reassign thecommunications for some graphs Gj 's from ts;i's to ts;p.Strategy 2:Sub(p; b) can also be obtained from Sub(p; b� 1) by taking one more subgraph Gb into account.Initially, Sub(p; b) is set to be Sub(p; b�1). The �rst step is to choose the best forker instance fromts;1, ts;2, : : : , ts;p for Gb. Let the best instance be ts;z . The second step is to see if ts;z is in Sub(p; b)or not. If not, a condition is checked to decide whether ts;z should be added in or not. Upon theaddition of ts;z , we may remove some instances and reassign the communications to achieve a lowercost.We compare two possible results obtained from the above two strategies and assign the onewith lower cost to actual Sub(p; b). By computing in a dynamic programming fashion, Sub(n;B)can be obtained. The algorithm and its graphical interpretation are shown in Figure 6.8.6.5.2 Performance EvaluationThe complexity involved in each strategy described in section 5.1 is O(nB). Since the solvingof Sub(n;B) needs to invoke n � B times of strategies 1 and 2, the total complexity of solvingSub(n;B) by the approximation method is O(n2B2).We conduct a set of experiments to evaluate the performance of the approximation method.For each problem size (n;B), we randomly generate 50 instances and solve them by using theapproximation method and exhaustive searching. We compare the minimum cost obtained from99

exhaustive searching (EXHAUST) with those from approximation (APPROX) and single assign-ment solution (SINGLE). The optimal single assignment solution is one in which only one forkerinstance is allowed. The results are summarized in Table 6.2. From the table, we �nd that theapproximation method yields a tight approximation of the minimum cost. On the contrary, theerror range for single copy solution is at least 20%. This again justi�es that the replication canlead to a lower cost than an optimal assignment.6.6 Solution of MCRP-SP for computation-intensive applica-tions6.6.1 The SolutionGiven a computation-intensive application with its SP graph, we generate its parsing tree andassignment graph �rst. The algorithm �nds the minimum weight replication graph from the as-signment graph. The optimal solution is then obtained from the minimum weight replication graph.The algorithm traverses the parsing tree in the post�x order. Namely, during the traversal, anoptimal solution of the subtree Sx, induced by an intermediate node x along with all x's descendantnodes, can be found only after the optimal solutions of x's descendant nodes are found. Given anSP graph G and a system S, we know that there is a one-to-one correspondence between eachsubtree Sx in a parsing tree T (G) and a limb in the assignment graph of G on S. Whenever a childnode b of x is visited, the corresponding limb in the assignment graph will be replaced with a atwo-layer Tchain limb if b is a Tchain- or Tor-type node; and a one-layer Tunit limb if b is a Tand-typenode. The algorithm is shown in Figure 6.12. A graphical demonstration of how the algorithmsolves the problem is shown in Figure 6.9.Before the replacement of a Tchain limb is performed (i.e. x is a Tchain-type node), each con-stituent child limb has been replaced with a Tunit or two-layer Tchain limb. The shortest pathalgorithm [Bok87] can be used to compute the weights of the new edges between each node in thesource layer and each node in the sink layer of the new Tchain limb. The complexity, from lines 05to 08 of Figure 6.12, in transformation of the limb, corresponding to an intermediate node x withM children, into a two-layer Tchain limb is O(Mn3). An example of illustrating the replacement ofa Tchain limb is shown from parts (b) to (c) and parts (d) to (e) in Figure 6.9.For the replacement of a Tand limb, we have to compute Cbp;q's. The values can also be computedby the shortest path algorithm. The complexity involved in lines 16 and 17 is O(Bn3). Accordingto the computational model in section 6.2.2, each task instance s may start its execution if it100

receives the necessary data from any task instance of its predecessor d. From Lemma 2, we knowthat the minimum sum of initialization costs of multiple task instances of s will be always fromonly one task instance of d. Therefore, the initialization of task instance ts;p depends on which taskinstance of d it communicates. That is why ,in line 19, the communication cost �d;s(i; p) is addedto the the execution cost of es;p before OPT () is invoked. And the most signi�cant part of thereplacement is to compute the weights on the new edges from the source layer to sink layer. Thecomplexity is n2 �O(OPT ()), which in the worst case is n22n. However, in the average, our OPTfunction performs pretty well and reduces the complexity signi�cantly. An example of illustratingthe replacement of a Tand limb is shown from parts (c) to (d) in Figure 6.9.We also consider to use the approximation method to �nd the sub-optimal replacement of aTand limb. In that case, function OPT () in line 21 is replaced with Sub(n;B). The total complexityinvolved is O(n4B2).Finally, for the replacement of a Tor limb, if there are B subgraphs connected between the forkerand the joiner, then the complexity will be O(Bn2) for the new edges and O(Bn3) for Cbp;q's. Anexample of illustrating the replacement of a Tor limb is shown from parts (a) to (b) in Figure 6.9.When the traversal reaches the root node of the parsing tree, the result of FIND() will giveus either one single layer or two layers, depending on the type of root node. All we have to dois select the lightest of these n (in single layer) or n2 (in two layers) shortest-path combinations.An optimal replication graph itself is found by combining the shortest paths between the selectednodes that were saved earlier. The whole algorithm has the complexity ofO(An22n) + Xi (Rin3) + Xi (Cin3)where A is the number of Tand limbs, Ri is the number of subgraphs in the ith Tor limb, and Ci isthe number of layers in the ith Tchain limb. This is not greater than O(Mn22n), where M is thetotal number of tasks in the SP graph. The complexity of the algorithm is a linear function of Mif the number of processors, n, is �xed.6.6.2 Conclusion RemarkWe have focused on MCRP-SP, the optimal replication problem of SP task graphs for computation-intensive applications. The purpose of replication is to reduce inter-processor communication, andto fully utilize the processor power in the system. The SP graph model, which is extensively used inmodeling applications in computing systems, is used. The applications considered in this chapterare computation-intensive in which the execution cost of a task is greater than its communica-101

tion cost. We have proved that MCRP-SP is NP-complete and presented branch-and-bound andapproximation methods for SP graphs of type Tand. The numerical results show that the algo-rithm performs very well and avoids a lot of unnecessary searching. Finally, we have presented analgorithm to solve the MCRP-SP problem for computation-intensive applications. The proposedoptimal solution has the complexity of O(n22nM) in the worst case, while the approximation solu-tion is in the complexity of O(n4M2), where n is the number of processors in the system and M isthe number of tasks in the graph.For the applications in which the communication cost between two tasks is greater than theexecution cost of a task, the replication can still be used to reduce the total cost. However, in theextreme case where the execution cost of each task is zero, the optimal allocation will be to assigneach task to one processor.

102

Rep(p� 1; b) ! Rep0(p; b): Rep(p; b� 1) ! Rep00(p; b):If es;p �Pbi=1([minx2Rep(p�1;b)(Cix;q)] Let ts;z be the one satisfys�Cip;q)+ min1�i�p(Cbi;q) .begin If ts;z 2 Rep(p; b� 1) thenRep0(p; b) = Rep(p� 1; b) � ts;p Rep00(p; b) = Rep(p; b� 1)Reassign&Remove(Rep0(p; b)) Elseend if es;z �Pbi=1([minj2Rep(p;b�1)(Cij;q)]Else Rep0(p; b) = Rep(p� 1; b) �Ciz;q)+beginRep00(p; b) = Rep(p� 1; b) � ts;zLegend: Reassign&Remove(Rep00(p; b))(x)+ = x, if x > 0. end(x)+ = 0, if x � 0. Else Rep00(p; b) = Rep(p; b� 1)Sub(p� 1; b)ts;p th;q subgraph Gbsubgraph G1 Sub(p; b� 1)ts;z
th;qG1Gb Gb�111 n32 Sub(p; b� 1)Sub00(p; b)2b #B p ! Sub(p; b)Sub(p� 1; b)Sub0(p; b)Sub(p; b) = Min Cost(Sub0(p; b), Sub00(p; b))Figure 6.8: Pseudo code, graphical demonstration, and dynamic programming table for approxi-mation methods 103

(a) (b)
(c) (d) (e)

ORAND

Figure 6.9: A graphical demonstration of how to �nd an optimal solution for MCRP-SP104

Figure 6.10: Function BB(k; q; ẑ): branch-and-bound algorithm for solving problem Pqk'
&

$
%

. .01 Initialize the queue to be empty;02 Insert root node v0 into the queue;03 While the queue is not empty do begin04 Remove the �rst node u from the queue;05 Generate all child nodes of u ;06 For each generated child node v do begin07 If v is a leaf node (i.e. v is at level k) then08 Compute g(v) by setting L to be � ;09 Set ẑ = min (ẑ, g(v));10 else begin /* v is an intermediate node */11 Compute est(v) by (6.5) ;12 If est(v) < ẑ then13 Insert v into the queue according to est(v) ;14 end;15 end;16 end;17 Return(ẑ).Figure 6.11: Function OPT (Cbp;q0s; es;p0s): the optimal solution of MCRP-SP of type Tand whenCbp;q's and es;p's are given'
&

$
%

. .01 Sort ts;p's into a non-decreasing order by values of es;p's ;02 For q = 1 to n do begin03 Let node v be a leaf node at level 1;04 Set v to be ts;1 and k to be 1;05 Compute g(v) by setting L to be � ;06 Initialize ẑ to be g(v) ;07 For k = 1 to n do08 ẑ = BB(k; q; ẑ) ;09 Set c(q) = ẑ ;10 end;11 Output the combination with the minimum valueamong c(1), c(2), : : : , c(n).105

Table 6.1: Computation Results for branch-and-bound approachSet I Set II Total Number ofn B EIMz VLFz EIMz VLFz leaves (2n)20 2 6 4 7 1624 3 6 3 6 1628 4 7 3 6 164 32 4 7 3 6 1636 4 7 4 7 1640 3 6 3 6 1620 36 74 16 51 25624 40 75 21 62 25628 50 86 26 68 2568 32 63 94 37 78 25636 73 96 47 84 25640 81 97 50 86 25620 186 558 81 340 4,09624 231 639 102 398 4,09628 349 839 167 543 4,09612 32 451 967 204 617 4,09636 454 984 269 720 4,09640 636 1,186 301 780 4,09620 758 3,216 203 1,175 65,53624 1,065 4,161 329 1,711 65,53628 1,335 4,862 546 2,496 65,53616 32 1,884 6,250 726 3,127 65,53636 2,322 7,227 839 3,493 65,53640 2,880 8,511 1,179 4,510 65,53620 2,026 12,042 389 3,079 1,048,57624 3,579 18,866 761 5,280 1,048,57628 5,551 27,018 1,227 7,905 1,048,57620 32 6,405 30,521 1,709 10,357 1,048,57636 9,517 40,767 2,681 15,032 1,048,57640 11,651 48,087 3,086 16,857 1,048,576z: Each value shown is the average value over 50 runs.106

Table 6.2: Simulation Results for Approximation Methodn B SINGLEz APPROXz EXHAUSTz S-error % A-error %20 2876 2407 2400 20 0.2824 3463 2835 2831 22 0.1628 4032 3264 3259 24 0.184 32 4606 3678 3673 25 0.1136 5198 4084 4082 27 0.0540 5790 4514 4514 28 0.0020 2794 2282 2250 24 1.4624 3356 2672 2636 27 1.3828 3931 3060 3028 30 1.058 32 4540 3443 3413 33 0.8836 5127 3831 3800 35 0.8040 5683 4215 4192 36 0.5520 2767 2213 2161 28 2.4224 3359 2592 2542 32 1.9928 3912 2996 2941 33 1.8812 32 4491 3364 3299 36 1.9736 5063 3736 3676 38 1.6240 5610 4101 4043 39 1.4320 2733 2167 2111 29 2.6624 3287 2558 2492 32 2.6628 3844 2932 2865 34 2.3116 32 4393 3315 3240 36 2.3236 4991 3659 3584 39 2.1040 5558 4045 3970 40 1.89z: Each value shown is the average value over 50 runs.S� error% = SINGLE � EXHAUSTEXHAUST � 100%:A� error% = APPROX � EXHAUSTEXHAUST � 100%:107

Figure 6.12: Algorithm FIND(Sx): the algorithm for �nding the shortest path combinationsfrom the limb which corresponds to the subtree Sx induced by an intermediate node x and all x'sdescendant nodes in a parsing tree01 Case of the type of intermediate node x:02 Type Tchain :03 For b = the first child node of x to the last one do04 FIND(Sb); /* Now the limb corresponding to Sb is replaced */05 Replace the limb corresponding to Sx with a two-layer Tchain limb where06 the source (sink) layer of the old limb is the source (sink) layer of new 2-layer limb;07 Put weights on the edges between source and sink layers equal to the shortest path08 between the corresponding nodes;0910 Type Tand : /* Let x = [Tand, forker s, joiner h] */11 Let d be the predecessor of forker s in G (i.e. < d; s > 2 V);12 Let B be the number of child nodes of x in the parsing tree;13 /* I.e. there are B subgraphs connected by s and h */14 For b = the �rst child node of x to the B-th child of x do15 FIND(Sb); /* Now the limb corresponding to Sb is replaced */16 For p = 1 to n, q = 1 to n and b = 1 to B do17 Compute the minimum replication cost Cbp;q from ts;p to th;q w.r.t. child b ;18 For i = 1 to n do begin19 For p = 1 to n do Es;p = �d;s(i; p) + es;p ;20 /* Es;p accounts for initialization by td;i and execution cost itself. */21 For q = 1 to n do �d;h(i; q) = OPT (Cbp;q0s; Es;p0s) ;22 /* Create new edges from td;i's to th;q 's */23 end;24 Replace the Tand limb with a Tunit limb, where source layer = sink layer = layer h,25 and there are new edges from layer d to layer h;2627 Type Tor : /* Let x = [Tor, forker s, joiner h] */28 Use the same method described above from lines 12 to 17 to compute Cbp;q's ;29 Replace the Tor limb with a two-layer Tchain limb, where30 the source (sink) layer of Tor limb is the source (sink) layer of Tchain limb and31 �s;h(p; q) = minb(Cbp;q), 8 p and q ;32 end case;33 Save the shortest paths between any node in source layer and any nodein sink layer for future reference.
108

Chapter 7ConclusionThe allocation problem is one of the fundamental issues of using computing systems. Tasks ofan application are allocated to the available resources in the systems. The execution of the taskshas to meet the speci�ed resource and synchronization constraints. For real-time applications, thetiming constraints add one more dimension to the complexity of the allocation problem.As a consequence of the timing constraints, the allocation problem in real-time systems has toaddress the feasibility and schedulability of the allocation. In Chapters 3 and 4, we address thisproblem by explicitly generating the time-based multiprocessor calendar. A calendar is a time tablewhich maps each task/communication to time lines. The start time and �nish time information areused at run time to dispatch the tasks. If the analysis of the calendar satis�es the given resource,synchronization and timing constraints, then a feasible allocation has been obtained.In general, the speci�cations of the timing constraints are derived from the requirements andproperties of the applications. Traditionally, the absolute timing model is assumed. In the absolutemodel, the timing constraints are expressed in terms of period, ready time and deadline. Manyscheduling techniques are developed under such a model. However, these techniques do not ade-quately handle the inter-task and/or inter-execution temporal dependencies. In this dissertation,we have considered a hybrid timing model which combines the absolute and relative timing con-straints. Solutions to the allocation problem of periodic tasks with the hybrid timing constraintsare presented in Chapters 3 and 4.Another research direction we have taken is to investigate how the replication technique can beapplied to improve the proposed allocation scheme. To achieve our objective, we have considereda di�erent computation model in which the purpose of the replication is not for the sake of faulttolerance but for reducing the total execution cost or increasing the degree of schedulability. InChapters 5 and 6, we have shown how to exploit the replication techniques for real-time and non-109

real-time problems respectively.7.1 Future ResearchThe approach we have taken so far is for the hard-real-time systems in which failure to meet thetiming constraints can result in disastrous consequences. Under such consideration, the way toguarantee the critical timing constraints is to allocate and schedule tasks a priori. However, theallocation of tasks in soft-real-time may take di�erent approaches. Usually the violation of timingconstraints in soft-real-time systems is associated with some penalty function and the objective ofthe allocation is to minimize the value of the penalty function. One issue that we have not exploredis to consider this objective, and algorithms to handle the allocation problem of tasks in soft-real-time systems. We believe that the techniques presented in this dissertation can be extended toincorporate the allocation of tasks in soft-real-time systems.When we consider applications with relative timing constraints, many open problems exist. Inthis dissertation, we considered one model of relative timing constraints and task characteristics.As these change, our techniques have to be extended to address them.

110

Appendix AThe Speci�cation of Boeing 777 AIMS (A sanitized version):From 11:2:3 5 Hz 0.600 ms to 1:0:1 length 11.967 us latency 200000 usFrom 11:2:3 5 Hz 0.600 ms to 2:0:1 length 11.967 us latency 200000 usFrom 11:2:3 5 Hz 0.600 ms to 3:0:1 length 11.967 us latency 200000 usFrom 11:2:3 5 Hz 0.600 ms to 4:0:1 length 11.967 us latency 200000 usFrom 11:2:3 5 Hz 0.600 ms to 5:17:1 length 49.000 us latency 200000 usFrom 11:2:3 5 Hz 0.600 ms to 6:17:1 length 49.000 us latency 200000 usFrom 11:2:3 5 Hz 0.600 ms to 7:17:1 length 49.000 us latency 200000 usFrom 11:2:3 5 Hz 0.600 ms to 8:17:1 length 49.000 us latency 200000 usFrom 12:0:1 5 Hz 0.000 ms to 16:16:3 length 16.300 us latency 68993 usFrom 12:0:1 5 Hz 0.000 ms to 16:16:5 length 36.333 us latency 100000 usFrom 12:0:1 5 Hz 0.000 ms to 17:16:3 length 16.300 us latency 68993 usFrom 12:0:1 5 Hz 0.000 ms to 17:16:5 length 36.333 us latency 100000 usFrom 12:0:1 5 Hz 0.000 ms to 18:16:3 length 16.300 us latency 68993 usFrom 12:0:1 5 Hz 0.000 ms to 18:16:5 length 36.333 us latency 100000 usFrom 12:0:1 5 Hz 0.000 ms to 18:29:9 length 383.333 us latency 200000 usFrom 12:0:1 5 Hz 0.000 ms to 19:16:3 length 16.300 us latency 68993 usFrom 12:0:1 5 Hz 0.000 ms to 19:16:5 length 36.333 us latency 100000 usFrom 12:0:1 5 Hz 0.000 ms to 20:2:3 length 5.633 us latency 200000 usFrom 12:0:1 5 Hz 0.000 ms to 22:2:3 length 5.633 us latency 200000 usFrom 12:0:2 10 Hz 0.000 ms to 18:29:1 length 0.833 us latency 200000 usFrom 12:0:3 40 Hz 0.000 ms to 18:29:1 length 0.833 us latency 200000 usFrom 12:0:3 40 Hz 0.000 ms to 19:26:22 length 1.667 us latency 50000 usFrom 13:0:1 5 Hz 0.000 ms to 16:16:3 length 16.300 us latency 68993 usFrom 13:0:1 5 Hz 0.000 ms to 16:16:5 length 36.333 us latency 100000 usFrom 13:0:1 5 Hz 0.000 ms to 17:16:3 length 16.300 us latency 68993 usFrom 13:0:1 5 Hz 0.000 ms to 17:16:5 length 36.333 us latency 100000 usFrom 13:0:1 5 Hz 0.000 ms to 18:16:3 length 16.300 us latency 68993 usFrom 13:0:1 5 Hz 0.000 ms to 18:16:5 length 36.333 us latency 100000 usFrom 13:0:1 5 Hz 0.000 ms to 18:29:9 length 383.333 us latency 200000 usFrom 13:0:1 5 Hz 0.000 ms to 19:16:3 length 16.300 us latency 68993 usFrom 13:0:1 5 Hz 0.000 ms to 19:16:5 length 36.333 us latency 100000 usFrom 13:0:1 5 Hz 0.000 ms to 20:2:3 length 5.633 us latency 200000 usFrom 13:0:1 5 Hz 0.000 ms to 22:2:3 length 5.633 us latency 200000 usFrom 13:0:2 10 Hz 0.000 ms to 18:29:1 length 1.667 us latency 200000 usFrom 13:0:3 40 Hz 0.000 ms to 18:29:1 length 0.833 us latency 200000 usFrom 13:0:3 40 Hz 0.000 ms to 19:26:22 length 1.667 us latency 50000 usFrom 14:0:1 5 Hz 0.000 ms to 16:16:3 length 16.300 us latency 68993 usFrom 14:0:1 5 Hz 0.000 ms to 16:16:5 length 36.333 us latency 100000 usFrom 14:0:1 5 Hz 0.000 ms to 17:16:3 length 16.300 us latency 68993 usFrom 14:0:1 5 Hz 0.000 ms to 17:16:5 length 36.333 us latency 100000 usFrom 14:0:1 5 Hz 0.000 ms to 18:16:3 length 16.300 us latency 68993 us111

From 14:0:1 5 Hz 0.000 ms to 18:16:5 length 36.333 us latency 100000 usFrom 14:0:1 5 Hz 0.000 ms to 18:29:9 length 383.333 us latency 200000 usFrom 14:0:1 5 Hz 0.000 ms to 19:16:3 length 16.300 us latency 68993 usFrom 14:0:1 5 Hz 0.000 ms to 19:16:5 length 36.333 us latency 100000 usFrom 14:0:1 5 Hz 0.000 ms to 20:2:3 length 5.633 us latency 200000 usFrom 14:0:1 5 Hz 0.000 ms to 22:2:3 length 5.633 us latency 200000 usFrom 14:0:2 10 Hz 0.000 ms to 18:29:1 length 2.500 us latency 200000 usFrom 14:0:3 40 Hz 0.000 ms to 18:29:1 length 0.833 us latency 200000 usFrom 15:0:1 5 Hz 0.000 ms to 16:16:3 length 16.300 us latency 68993 usFrom 15:0:1 5 Hz 0.000 ms to 16:16:5 length 36.333 us latency 100000 usFrom 15:0:1 5 Hz 0.000 ms to 17:16:3 length 16.300 us latency 68993 usFrom 15:0:1 5 Hz 0.000 ms to 17:16:5 length 36.333 us latency 100000 usFrom 15:0:1 5 Hz 0.000 ms to 18:16:3 length 16.300 us latency 68993 usFrom 15:0:1 5 Hz 0.000 ms to 18:16:5 length 36.333 us latency 100000 usFrom 15:0:1 5 Hz 0.000 ms to 18:29:9 length 383.333 us latency 200000 usFrom 15:0:1 5 Hz 0.000 ms to 19:16:3 length 16.300 us latency 68993 usFrom 15:0:1 5 Hz 0.000 ms to 19:16:5 length 36.333 us latency 100000 usFrom 15:0:1 5 Hz 0.000 ms to 20:2:3 length 5.633 us latency 200000 usFrom 15:0:1 5 Hz 0.000 ms to 22:2:3 length 5.633 us latency 200000 usFrom 15:0:2 10 Hz 0.000 ms to 18:29:1 length 2.500 us latency 200000 usFrom 15:0:3 40 Hz 0.000 ms to 18:29:1 length 0.833 us latency 200000 usFrom 16:16:1 5 Hz 0.563 ms to 18:29:1 length 4.567 us latency 200000 usFrom 16:16:2 5 Hz 1.126 ms to 12:0:1 length 0.833 us latency 200000 usFrom 16:16:2 5 Hz 1.126 ms to 13:0:1 length 0.833 us latency 200000 usFrom 16:16:2 5 Hz 1.126 ms to 14:0:1 length 0.833 us latency 200000 usFrom 16:16:2 5 Hz 1.126 ms to 15:0:1 length 0.833 us latency 200000 usFrom 16:16:2 5 Hz 1.126 ms to 16:19:5 length 0.833 us latency 200000 usFrom 16:16:2 5 Hz 1.126 ms to 16:21:5 length 0.833 us latency 200000 usFrom 16:16:2 5 Hz 1.126 ms to 16:22:4 length 6.633 us latency 200000 usFrom 16:16:2 5 Hz 1.126 ms to 17:16:1 length 0.833 us latency 200000 usFrom 16:16:2 5 Hz 1.126 ms to 17:16:2 length 12.467 us latency 200000 usFrom 16:16:2 5 Hz 1.126 ms to 17:16:3 length 21.633 us latency 93918 usFrom 16:16:2 5 Hz 1.126 ms to 17:19:5 length 0.833 us latency 200000 usFrom 16:16:2 5 Hz 1.126 ms to 17:21:5 length 0.833 us latency 200000 usFrom 16:16:2 5 Hz 1.126 ms to 17:22:4 length 6.633 us latency 200000 usFrom 16:16:2 5 Hz 1.126 ms to 18:16:1 length 0.833 us latency 200000 usFrom 16:16:2 5 Hz 1.126 ms to 18:16:2 length 12.467 us latency 200000 usFrom 16:16:2 5 Hz 1.126 ms to 18:16:3 length 21.633 us latency 93918 usFrom 16:16:2 5 Hz 1.126 ms to 18:20:4 length 0.833 us latency 200000 usFrom 16:16:2 5 Hz 1.126 ms to 18:29:2 length 0.833 us latency 200000 usFrom 16:16:2 5 Hz 1.126 ms to 18:32:1 length 0.833 us latency 200000 usFrom 16:16:2 5 Hz 1.126 ms to 18:33:2 length 0.833 us latency 200000 usFrom 16:16:2 5 Hz 1.126 ms to 18:35:1 length 0.833 us latency 200000 usFrom 16:16:2 5 Hz 1.126 ms to 19:16:1 length 0.833 us latency 200000 us112

From 16:16:2 5 Hz 1.126 ms to 19:16:2 length 12.467 us latency 200000 usFrom 16:16:2 5 Hz 1.126 ms to 19:16:3 length 21.633 us latency 93918 usFrom 16:16:2 5 Hz 1.126 ms to 19:20:4 length 0.833 us latency 200000 usFrom 16:16:2 5 Hz 1.126 ms to 19:26:22 length 0.833 us latency 200000 usFrom 16:16:2 5 Hz 1.126 ms to 19:27:1 length 0.833 us latency 200000 usFrom 16:16:2 5 Hz 1.126 ms to 19:28:1 length 0.833 us latency 200000 usFrom 16:16:5 5 Hz 3.041 ms to 12:0:1 length 5.800 us latency 200000 usFrom 16:16:5 5 Hz 3.041 ms to 13:0:1 length 5.800 us latency 200000 usFrom 16:16:5 5 Hz 3.041 ms to 14:0:1 length 5.800 us latency 200000 usFrom 16:16:5 5 Hz 3.041 ms to 15:0:1 length 5.800 us latency 200000 usFrom 16:16:5 5 Hz 3.041 ms to 16:16:5 length 4.200 us latency 200000 usFrom 16:16:5 5 Hz 3.041 ms to 17:16:5 length 39.167 us latency 200000 usFrom 16:16:5 5 Hz 3.041 ms to 18:16:5 length 39.167 us latency 200000 usFrom 16:16:5 5 Hz 3.041 ms to 18:29:10 length 9.300 us latency 200000 usFrom 16:16:5 5 Hz 3.041 ms to 19:16:5 length 39.167 us latency 200000 usFrom 16:17:1 10 Hz 0.980 ms to 17:17:1 length 5.167 us latency 200000 usFrom 16:17:1 10 Hz 0.980 ms to 18:17:1 length 5.167 us latency 200000 usFrom 16:17:1 10 Hz 0.980 ms to 18:29:9 length 94.667 us latency 200000 usFrom 16:17:1 10 Hz 0.980 ms to 19:17:1 length 5.167 us latency 200000 usFrom 16:17:1 10 Hz 0.980 ms to 20:2:3 length 447.733 us latency 200000 usFrom 16:17:1 10 Hz 0.980 ms to 22:2:3 length 447.733 us latency 200000 usFrom 16:19:1 80 Hz 1.180 ms to 16:22:4 length 11.133 us latency 200000 usFrom 16:19:1 80 Hz 1.180 ms to 17:22:4 length 11.133 us latency 200000 usFrom 16:19:1 80 Hz 1.180 ms to 18:32:1 length 2.900 us latency 200000 usFrom 16:19:4 40 Hz 2.000 ms to 16:22:4 length 13.500 us latency 200000 usFrom 16:19:4 40 Hz 2.000 ms to 17:22:4 length 13.500 us latency 200000 usFrom 16:19:5 5 Hz 0.100 ms to 16:22:4 length 9.300 us latency 200000 usFrom 16:19:5 5 Hz 0.100 ms to 17:19:5 length 2.967 us latency 200000 usFrom 16:19:5 5 Hz 0.100 ms to 17:22:4 length 9.300 us latency 200000 usFrom 16:19:5 5 Hz 0.100 ms to 18:29:10 length 9.300 us latency 200000 usFrom 16:21:2 40 Hz 3.150 ms to 16:22:2 length 0.000 us latency 200000 usFrom 16:21:3 20 Hz 2.800 ms to 16:22:2 length 11.967 us latency 200000 usFrom 16:21:3 20 Hz 2.800 ms to 16:22:3 length 5.033 us latency 200000 usFrom 16:21:3 20 Hz 2.800 ms to 17:21:3 length 4.033 us latency 200000 usFrom 16:21:3 20 Hz 2.800 ms to 17:22:2 length 7.933 us latency 200000 usFrom 16:21:3 20 Hz 2.800 ms to 17:22:3 length 5.033 us latency 200000 usFrom 16:21:3 20 Hz 2.800 ms to 18:29:10 length 5.033 us latency 200000 usFrom 16:21:3 20 Hz 2.800 ms to 18:32:1 length 7.933 us latency 200000 usFrom 16:21:3 20 Hz 2.800 ms to 19:26:22 length 14.800 us latency 150000 usFrom 16:21:3 20 Hz 2.800 ms to 19:27:1 length 6.867 us latency 200000 usFrom 16:21:3 20 Hz 2.800 ms to 19:28:1 length 6.867 us latency 200000 usFrom 16:21:4 10 Hz 5.900 ms to 16:22:3 length 0.000 us latency 200000 usFrom 16:21:4 10 Hz 5.900 ms to 16:22:4 length 2.367 us latency 200000 usFrom 16:21:4 10 Hz 5.900 ms to 17:22:4 length 2.367 us latency 200000 us113

From 16:21:5 5 Hz 14.600 ms to 16:22:4 length 0.000 us latency 200000 usFrom 16:21:5 5 Hz 14.600 ms to 17:21:5 length 35.800 us latency 200000 usFrom 16:21:5 5 Hz 14.600 ms to 18:29:10 length 8.300 us latency 200000 usFrom 16:21:5 5 Hz 14.600 ms to 18:32:1 length 16.833 us latency 200000 usFrom 16:21:5 5 Hz 14.600 ms to 18:33:2 length 16.833 us latency 200000 usFrom 16:21:5 5 Hz 14.600 ms to 19:26:22 length 3.967 us latency 200000 usFrom 16:22:2 20 Hz 2.050 ms to 16:21:3 length 0.000 us latency 200000 usFrom 16:22:2 20 Hz 2.050 ms to 17:22:2 length 2.433 us latency 200000 usFrom 16:22:2 20 Hz 2.050 ms to 17:22:4 length 35.033 us latency 200000 usFrom 16:22:2 20 Hz 2.050 ms to 18:33:2 length 3.500 us latency 200000 usFrom 16:22:2 20 Hz 2.050 ms to 19:28:1 length 5.033 us latency 200000 usFrom 16:22:3 10 Hz 7.650 ms to 16:21:4 length 0.000 us latency 200000 usFrom 16:22:3 10 Hz 7.650 ms to 18:29:10 length 33.833 us latency 200000 usFrom 16:22:4 5 Hz 12.000 ms to 16:21:3 length 1.833 us latency 200000 usFrom 16:22:4 5 Hz 12.000 ms to 16:21:5 length 0.000 us latency 200000 usFrom 16:22:4 5 Hz 12.000 ms to 16:22:4 length 3.967 us latency 200000 usFrom 16:22:4 5 Hz 12.000 ms to 17:21:3 length 1.833 us latency 200000 usFrom 16:22:4 5 Hz 12.000 ms to 17:22:4 length 8.000 us latency 200000 usFrom 16:22:4 5 Hz 12.000 ms to 19:28:1 length 6.933 us latency 200000 usFrom 17:16:1 5 Hz 0.563 ms to 18:29:1 length 4.567 us latency 200000 usFrom 17:16:2 5 Hz 1.126 ms to 12:0:1 length 0.833 us latency 200000 usFrom 17:16:2 5 Hz 1.126 ms to 13:0:1 length 0.833 us latency 200000 usFrom 17:16:2 5 Hz 1.126 ms to 14:0:1 length 0.833 us latency 200000 usFrom 17:16:2 5 Hz 1.126 ms to 15:0:1 length 0.833 us latency 200000 usFrom 17:16:2 5 Hz 1.126 ms to 16:16:1 length 0.833 us latency 200000 usFrom 17:16:2 5 Hz 1.126 ms to 16:16:2 length 12.467 us latency 200000 usFrom 17:16:2 5 Hz 1.126 ms to 16:16:3 length 21.633 us latency 93918 usFrom 17:16:2 5 Hz 1.126 ms to 16:19:5 length 0.833 us latency 200000 usFrom 17:16:2 5 Hz 1.126 ms to 16:21:5 length 0.833 us latency 200000 usFrom 17:16:2 5 Hz 1.126 ms to 16:22:4 length 6.633 us latency 200000 usFrom 17:16:2 5 Hz 1.126 ms to 17:19:5 length 0.833 us latency 200000 usFrom 17:16:2 5 Hz 1.126 ms to 17:21:5 length 0.833 us latency 200000 usFrom 17:16:2 5 Hz 1.126 ms to 17:22:4 length 6.633 us latency 200000 usFrom 17:16:2 5 Hz 1.126 ms to 18:16:1 length 0.833 us latency 200000 usFrom 17:16:2 5 Hz 1.126 ms to 18:16:2 length 12.467 us latency 200000 usFrom 17:16:2 5 Hz 1.126 ms to 18:16:3 length 21.633 us latency 93918 usFrom 17:16:2 5 Hz 1.126 ms to 18:20:4 length 0.833 us latency 200000 usFrom 17:16:2 5 Hz 1.126 ms to 18:29:2 length 0.833 us latency 200000 usFrom 17:16:2 5 Hz 1.126 ms to 18:32:1 length 0.833 us latency 200000 usFrom 17:16:2 5 Hz 1.126 ms to 18:33:2 length 0.833 us latency 200000 usFrom 17:16:2 5 Hz 1.126 ms to 18:35:1 length 0.833 us latency 200000 usFrom 17:16:2 5 Hz 1.126 ms to 19:16:1 length 0.833 us latency 200000 usFrom 17:16:2 5 Hz 1.126 ms to 19:16:2 length 12.467 us latency 200000 usFrom 17:16:2 5 Hz 1.126 ms to 19:16:3 length 21.633 us latency 93918 us114

From 17:16:2 5 Hz 1.126 ms to 19:20:4 length 0.833 us latency 200000 usFrom 17:16:2 5 Hz 1.126 ms to 19:26:22 length 0.833 us latency 200000 usFrom 17:16:2 5 Hz 1.126 ms to 19:27:1 length 0.833 us latency 200000 usFrom 17:16:2 5 Hz 1.126 ms to 19:28:1 length 0.833 us latency 200000 usFrom 17:16:5 5 Hz 3.041 ms to 12:0:1 length 5.800 us latency 200000 usFrom 17:16:5 5 Hz 3.041 ms to 13:0:1 length 5.800 us latency 200000 usFrom 17:16:5 5 Hz 3.041 ms to 14:0:1 length 5.800 us latency 200000 usFrom 17:16:5 5 Hz 3.041 ms to 15:0:1 length 5.800 us latency 200000 usFrom 17:16:5 5 Hz 3.041 ms to 16:16:5 length 39.167 us latency 200000 usFrom 17:16:5 5 Hz 3.041 ms to 17:16:5 length 4.200 us latency 200000 usFrom 17:16:5 5 Hz 3.041 ms to 18:16:5 length 39.167 us latency 200000 usFrom 17:16:5 5 Hz 3.041 ms to 18:29:10 length 9.300 us latency 200000 usFrom 17:16:5 5 Hz 3.041 ms to 19:16:5 length 39.167 us latency 200000 usFrom 17:17:1 10 Hz 0.980 ms to 16:17:1 length 5.167 us latency 200000 usFrom 17:17:1 10 Hz 0.980 ms to 18:17:1 length 5.167 us latency 200000 usFrom 17:17:1 10 Hz 0.980 ms to 18:29:9 length 94.667 us latency 200000 usFrom 17:17:1 10 Hz 0.980 ms to 19:17:1 length 5.167 us latency 200000 usFrom 17:17:1 10 Hz 0.980 ms to 20:2:3 length 447.733 us latency 200000 usFrom 17:17:1 10 Hz 0.980 ms to 22:2:3 length 447.733 us latency 200000 usFrom 17:19:1 80 Hz 1.180 ms to 16:22:4 length 11.133 us latency 200000 usFrom 17:19:1 80 Hz 1.180 ms to 17:22:4 length 11.133 us latency 200000 usFrom 17:19:1 80 Hz 1.180 ms to 18:32:1 length 2.900 us latency 200000 usFrom 17:19:4 40 Hz 2.000 ms to 16:22:4 length 13.500 us latency 200000 usFrom 17:19:4 40 Hz 2.000 ms to 17:22:4 length 13.500 us latency 200000 usFrom 17:19:5 5 Hz 0.100 ms to 16:19:5 length 2.967 us latency 200000 usFrom 17:19:5 5 Hz 0.100 ms to 16:22:4 length 9.300 us latency 200000 usFrom 17:19:5 5 Hz 0.100 ms to 17:22:4 length 9.300 us latency 200000 usFrom 17:19:5 5 Hz 0.100 ms to 18:29:10 length 9.300 us latency 200000 usFrom 17:21:2 40 Hz 3.150 ms to 17:22:2 length 0.000 us latency 200000 usFrom 17:21:3 20 Hz 2.800 ms to 16:21:3 length 4.033 us latency 200000 usFrom 17:21:3 20 Hz 2.800 ms to 16:22:2 length 7.933 us latency 200000 usFrom 17:21:3 20 Hz 2.800 ms to 16:22:3 length 5.033 us latency 200000 usFrom 17:21:3 20 Hz 2.800 ms to 17:22:2 length 11.967 us latency 200000 usFrom 17:21:3 20 Hz 2.800 ms to 17:22:3 length 5.033 us latency 200000 usFrom 17:21:3 20 Hz 2.800 ms to 18:29:10 length 5.033 us latency 200000 usFrom 17:21:3 20 Hz 2.800 ms to 18:32:1 length 7.933 us latency 200000 usFrom 17:21:3 20 Hz 2.800 ms to 19:26:22 length 14.800 us latency 150000 usFrom 17:21:3 20 Hz 2.800 ms to 19:27:1 length 6.867 us latency 200000 usFrom 17:21:3 20 Hz 2.800 ms to 19:28:1 length 6.867 us latency 200000 usFrom 17:21:4 10 Hz 5.900 ms to 16:22:4 length 2.367 us latency 200000 usFrom 17:21:4 10 Hz 5.900 ms to 17:22:3 length 0.000 us latency 200000 usFrom 17:21:4 10 Hz 5.900 ms to 17:22:4 length 2.367 us latency 200000 usFrom 17:21:5 5 Hz 14.600 ms to 16:21:5 length 35.800 us latency 200000 usFrom 17:21:5 5 Hz 14.600 ms to 17:22:4 length 0.000 us latency 200000 us115

From 17:21:5 5 Hz 14.600 ms to 18:29:10 length 8.300 us latency 200000 usFrom 17:21:5 5 Hz 14.600 ms to 18:32:1 length 16.833 us latency 200000 usFrom 17:21:5 5 Hz 14.600 ms to 19:26:22 length 3.967 us latency 200000 usFrom 17:22:2 20 Hz 2.050 ms to 16:22:2 length 2.433 us latency 200000 usFrom 17:22:2 20 Hz 2.050 ms to 16:22:4 length 35.033 us latency 200000 usFrom 17:22:2 20 Hz 2.050 ms to 17:21:3 length 0.000 us latency 200000 usFrom 17:22:2 20 Hz 2.050 ms to 18:33:2 length 3.500 us latency 200000 usFrom 17:22:2 20 Hz 2.050 ms to 19:28:1 length 5.033 us latency 200000 usFrom 17:22:3 10 Hz 7.650 ms to 17:21:4 length 0.000 us latency 200000 usFrom 17:22:3 10 Hz 7.650 ms to 18:29:10 length 33.833 us latency 200000 usFrom 17:22:4 5 Hz 12.000 ms to 16:21:3 length 1.833 us latency 200000 usFrom 17:22:4 5 Hz 12.000 ms to 16:22:4 length 8.000 us latency 200000 usFrom 17:22:4 5 Hz 12.000 ms to 17:21:3 length 1.833 us latency 200000 usFrom 17:22:4 5 Hz 12.000 ms to 17:21:5 length 0.000 us latency 200000 usFrom 17:22:4 5 Hz 12.000 ms to 17:22:4 length 3.967 us latency 200000 usFrom 17:22:4 5 Hz 12.000 ms to 19:28:1 length 3.967 us latency 200000 usFrom 18:16:1 5 Hz 0.563 ms to 18:29:1 length 0.000 us latency 200000 usFrom 18:16:2 5 Hz 1.126 ms to 12:0:1 length 0.833 us latency 200000 usFrom 18:16:2 5 Hz 1.126 ms to 13:0:1 length 0.833 us latency 200000 usFrom 18:16:2 5 Hz 1.126 ms to 14:0:1 length 0.833 us latency 200000 usFrom 18:16:2 5 Hz 1.126 ms to 15:0:1 length 0.833 us latency 200000 usFrom 18:16:2 5 Hz 1.126 ms to 16:16:1 length 0.833 us latency 200000 usFrom 18:16:2 5 Hz 1.126 ms to 16:16:2 length 12.467 us latency 200000 usFrom 18:16:2 5 Hz 1.126 ms to 16:16:3 length 21.633 us latency 93918 usFrom 18:16:2 5 Hz 1.126 ms to 16:19:5 length 0.833 us latency 200000 usFrom 18:16:2 5 Hz 1.126 ms to 16:21:5 length 0.833 us latency 200000 usFrom 18:16:2 5 Hz 1.126 ms to 16:22:4 length 6.633 us latency 200000 usFrom 18:16:2 5 Hz 1.126 ms to 17:16:1 length 0.833 us latency 200000 usFrom 18:16:2 5 Hz 1.126 ms to 17:16:2 length 12.467 us latency 200000 usFrom 18:16:2 5 Hz 1.126 ms to 17:16:3 length 21.633 us latency 93918 usFrom 18:16:2 5 Hz 1.126 ms to 17:19:5 length 0.833 us latency 200000 usFrom 18:16:2 5 Hz 1.126 ms to 17:21:5 length 0.833 us latency 200000 usFrom 18:16:2 5 Hz 1.126 ms to 17:22:4 length 6.633 us latency 200000 usFrom 18:16:2 5 Hz 1.126 ms to 18:20:4 length 0.833 us latency 200000 usFrom 18:16:2 5 Hz 1.126 ms to 18:29:2 length 0.833 us latency 200000 usFrom 18:16:2 5 Hz 1.126 ms to 18:31:1 length 0.833 us latency 200000 usFrom 18:16:2 5 Hz 1.126 ms to 18:32:1 length 0.833 us latency 200000 usFrom 18:16:2 5 Hz 1.126 ms to 18:33:2 length 1.667 us latency 200000 usFrom 18:16:2 5 Hz 1.126 ms to 18:35:1 length 0.833 us latency 200000 usFrom 18:16:2 5 Hz 1.126 ms to 19:16:1 length 0.833 us latency 200000 usFrom 18:16:2 5 Hz 1.126 ms to 19:16:2 length 12.467 us latency 200000 usFrom 18:16:2 5 Hz 1.126 ms to 19:16:3 length 21.633 us latency 93918 usFrom 18:16:2 5 Hz 1.126 ms to 19:20:4 length 0.833 us latency 200000 usFrom 18:16:2 5 Hz 1.126 ms to 19:26:22 length 0.833 us latency 200000 us116

From 18:16:2 5 Hz 1.126 ms to 19:27:1 length 0.833 us latency 200000 usFrom 18:16:2 5 Hz 1.126 ms to 19:28:1 length 0.833 us latency 200000 usFrom 18:16:5 5 Hz 3.041 ms to 12:0:1 length 5.800 us latency 200000 usFrom 18:16:5 5 Hz 3.041 ms to 13:0:1 length 5.800 us latency 200000 usFrom 18:16:5 5 Hz 3.041 ms to 14:0:1 length 5.800 us latency 200000 usFrom 18:16:5 5 Hz 3.041 ms to 15:0:1 length 5.800 us latency 200000 usFrom 18:16:5 5 Hz 3.041 ms to 16:16:5 length 39.167 us latency 200000 usFrom 18:16:5 5 Hz 3.041 ms to 17:16:5 length 39.167 us latency 200000 usFrom 18:16:5 5 Hz 3.041 ms to 18:16:5 length 4.200 us latency 200000 usFrom 18:16:5 5 Hz 3.041 ms to 18:29:10 length 9.300 us latency 200000 usFrom 18:16:5 5 Hz 3.041 ms to 19:16:5 length 39.167 us latency 200000 usFrom 18:17:1 10 Hz 0.980 ms to 16:17:1 length 5.167 us latency 200000 usFrom 18:17:1 10 Hz 0.980 ms to 17:17:1 length 5.167 us latency 200000 usFrom 18:17:1 10 Hz 0.980 ms to 18:29:9 length 94.667 us latency 200000 usFrom 18:17:1 10 Hz 0.980 ms to 19:17:1 length 5.167 us latency 200000 usFrom 18:17:1 10 Hz 0.980 ms to 20:2:3 length 447.733 us latency 200000 usFrom 18:17:1 10 Hz 0.980 ms to 22:2:3 length 447.733 us latency 200000 usFrom 18:20:4 5 Hz 0.676 ms to 16:22:4 length 9.300 us latency 200000 usFrom 18:20:4 5 Hz 0.676 ms to 17:22:4 length 9.300 us latency 200000 usFrom 18:20:4 5 Hz 0.676 ms to 18:29:10 length 9.300 us latency 200000 usFrom 18:20:4 5 Hz 0.676 ms to 19:20:4 length 2.967 us latency 200000 usFrom 18:29:1 40 Hz 2.452 ms to 16:16:1 length 68.567 us latency 200000 usFrom 18:29:1 40 Hz 2.452 ms to 17:16:1 length 68.567 us latency 200000 usFrom 18:29:1 40 Hz 2.452 ms to 18:16:1 length 68.567 us latency 200000 usFrom 18:29:1 40 Hz 2.452 ms to 18:35:4 length 68.567 us latency 200000 usFrom 18:29:1 40 Hz 2.452 ms to 19:16:1 length 68.567 us latency 200000 usFrom 18:29:10 10 Hz 16.650 ms to 16:16:5 length 20.167 us latency 200000 usFrom 18:29:10 10 Hz 16.650 ms to 16:19:5 length 20.167 us latency 200000 usFrom 18:29:10 10 Hz 16.650 ms to 16:21:5 length 20.167 us latency 200000 usFrom 18:29:10 10 Hz 16.650 ms to 16:22:4 length 4.033 us latency 200000 usFrom 18:29:10 10 Hz 16.650 ms to 17:16:5 length 20.167 us latency 200000 usFrom 18:29:10 10 Hz 16.650 ms to 17:19:5 length 20.167 us latency 200000 usFrom 18:29:10 10 Hz 16.650 ms to 17:21:5 length 20.167 us latency 200000 usFrom 18:29:10 10 Hz 16.650 ms to 17:22:4 length 4.033 us latency 200000 usFrom 18:29:10 10 Hz 16.650 ms to 18:16:5 length 20.167 us latency 200000 usFrom 18:29:10 10 Hz 16.650 ms to 18:20:4 length 20.167 us latency 200000 usFrom 18:29:10 10 Hz 16.650 ms to 18:29:10 length 4.033 us latency 200000 usFrom 18:29:10 10 Hz 16.650 ms to 18:31:1 length 12.100 us latency 200000 usFrom 18:29:10 10 Hz 16.650 ms to 18:32:3 length 35.767 us latency 200000 usFrom 18:29:10 10 Hz 16.650 ms to 18:33:2 length 44.367 us latency 200000 usFrom 18:29:10 10 Hz 16.650 ms to 18:35:1 length 20.167 us latency 200000 usFrom 18:29:10 10 Hz 16.650 ms to 18:35:4 length 16.300 us latency 200000 usFrom 18:29:10 10 Hz 16.650 ms to 19:16:5 length 20.167 us latency 200000 usFrom 18:29:10 10 Hz 16.650 ms to 19:20:4 length 20.167 us latency 200000 us117

From 18:29:10 10 Hz 16.650 ms to 19:26:22 length 20.167 us latency 200000 usFrom 18:29:10 10 Hz 16.650 ms to 19:27:1 length 20.167 us latency 200000 usFrom 18:29:10 10 Hz 16.650 ms to 19:28:1 length 20.167 us latency 200000 usFrom 18:29:2 5 Hz 1.243 ms to 18:29:10 length 8.300 us latency 200000 usFrom 18:29:9 5 Hz 4.079 ms to 12:0:1 length 4.100 us latency 200000 usFrom 18:29:9 5 Hz 4.079 ms to 13:0:1 length 4.100 us latency 200000 usFrom 18:29:9 5 Hz 4.079 ms to 14:0:1 length 4.100 us latency 200000 usFrom 18:29:9 5 Hz 4.079 ms to 15:0:1 length 4.100 us latency 200000 usFrom 18:29:9 5 Hz 4.079 ms to 16:17:1 length 42.967 us latency 185741 usFrom 18:29:9 5 Hz 4.079 ms to 17:17:1 length 42.967 us latency 185741 usFrom 18:29:9 5 Hz 4.079 ms to 18:17:1 length 42.967 us latency 185741 usFrom 18:29:9 5 Hz 4.079 ms to 19:17:1 length 42.967 us latency 185741 usFrom 18:32:3 5 Hz 1.120 ms to 16:22:4 length 5.633 us latency 200000 usFrom 18:32:3 5 Hz 1.120 ms to 17:22:4 length 5.633 us latency 200000 usFrom 18:32:3 5 Hz 1.120 ms to 18:29:10 length 8.300 us latency 200000 usFrom 18:33:2 20 Hz 1.942 ms to 16:22:2 length 67.500 us latency 200000 usFrom 18:33:2 20 Hz 1.942 ms to 17:22:2 length 67.500 us latency 200000 usFrom 18:33:2 20 Hz 1.942 ms to 18:29:10 length 0.000 us latency 200000 usFrom 18:33:2 20 Hz 1.942 ms to 18:33:2 length 8.300 us latency 200000 usFrom 18:33:2 20 Hz 1.942 ms to 18:35:2 length 16.600 us latency 200000 usFrom 18:35:1 20 Hz 1.230 ms to 16:22:4 length 5.633 us latency 200000 usFrom 18:35:1 20 Hz 1.230 ms to 17:22:4 length 5.633 us latency 200000 usFrom 18:35:1 20 Hz 1.230 ms to 18:29:1 length 5.633 us latency 200000 usFrom 18:35:1 20 Hz 1.230 ms to 18:29:10 length 8.300 us latency 200000 usFrom 18:35:1 20 Hz 1.230 ms to 18:33:2 length 5.633 us latency 200000 usFrom 18:35:1 20 Hz 1.230 ms to 19:26:22 length 5.633 us latency 200000 usFrom 18:35:2 20 Hz 0.827 ms to 16:22:4 length 5.633 us latency 200000 usFrom 18:35:2 20 Hz 0.827 ms to 17:22:4 length 5.633 us latency 200000 usFrom 18:35:2 20 Hz 0.827 ms to 18:33:2 length 19.267 us latency 200000 usFrom 18:35:2 20 Hz 0.827 ms to 19:26:22 length 5.633 us latency 200000 usFrom 18:35:4 20 Hz 2.100 ms to 16:22:4 length 17.667 us latency 200000 usFrom 18:35:4 20 Hz 2.100 ms to 17:22:4 length 17.667 us latency 200000 usFrom 18:35:4 20 Hz 2.100 ms to 18:29:1 length 17.667 us latency 85000 usFrom 18:35:4 20 Hz 2.100 ms to 18:29:10 length 16.300 us latency 200000 usFrom 18:35:4 20 Hz 2.100 ms to 18:33:2 length 68.567 us latency 200000 usFrom 18:35:4 20 Hz 2.100 ms to 19:26:22 length 68.567 us latency 200000 usFrom 19:16:1 5 Hz 0.563 ms to 18:29:1 length 4.567 us latency 200000 usFrom 19:16:2 5 Hz 1.126 ms to 12:0:1 length 0.833 us latency 200000 usFrom 19:16:2 5 Hz 1.126 ms to 13:0:1 length 0.833 us latency 200000 usFrom 19:16:2 5 Hz 1.126 ms to 14:0:1 length 0.833 us latency 200000 usFrom 19:16:2 5 Hz 1.126 ms to 15:0:1 length 0.833 us latency 200000 usFrom 19:16:2 5 Hz 1.126 ms to 16:16:1 length 0.833 us latency 200000 usFrom 19:16:2 5 Hz 1.126 ms to 16:16:2 length 12.467 us latency 200000 usFrom 19:16:2 5 Hz 1.126 ms to 16:16:3 length 21.633 us latency 93918 us118

From 19:16:2 5 Hz 1.126 ms to 16:19:5 length 0.833 us latency 200000 usFrom 19:16:2 5 Hz 1.126 ms to 16:21:5 length 0.833 us latency 200000 usFrom 19:16:2 5 Hz 1.126 ms to 16:22:4 length 6.633 us latency 200000 usFrom 19:16:2 5 Hz 1.126 ms to 17:16:1 length 0.833 us latency 200000 usFrom 19:16:2 5 Hz 1.126 ms to 17:16:2 length 12.467 us latency 200000 usFrom 19:16:2 5 Hz 1.126 ms to 17:16:3 length 21.633 us latency 93918 usFrom 19:16:2 5 Hz 1.126 ms to 17:19:5 length 0.833 us latency 200000 usFrom 19:16:2 5 Hz 1.126 ms to 17:21:5 length 0.833 us latency 200000 usFrom 19:16:2 5 Hz 1.126 ms to 17:22:4 length 6.633 us latency 200000 usFrom 19:16:2 5 Hz 1.126 ms to 18:16:1 length 0.833 us latency 200000 usFrom 19:16:2 5 Hz 1.126 ms to 18:16:2 length 11.633 us latency 200000 usFrom 19:16:2 5 Hz 1.126 ms to 18:16:3 length 21.633 us latency 93918 usFrom 19:16:2 5 Hz 1.126 ms to 18:20:4 length 0.833 us latency 200000 usFrom 19:16:2 5 Hz 1.126 ms to 18:29:2 length 0.833 us latency 200000 usFrom 19:16:2 5 Hz 1.126 ms to 18:32:1 length 0.833 us latency 200000 usFrom 19:16:2 5 Hz 1.126 ms to 18:33:2 length 0.833 us latency 200000 usFrom 19:16:2 5 Hz 1.126 ms to 18:35:1 length 0.833 us latency 200000 usFrom 19:16:2 5 Hz 1.126 ms to 19:16:2 length 0.833 us latency 200000 usFrom 19:16:2 5 Hz 1.126 ms to 19:20:4 length 0.833 us latency 200000 usFrom 19:16:2 5 Hz 1.126 ms to 19:26:22 length 0.833 us latency 200000 usFrom 19:16:2 5 Hz 1.126 ms to 19:27:1 length 0.833 us latency 200000 usFrom 19:16:2 5 Hz 1.126 ms to 19:28:1 length 0.833 us latency 200000 usFrom 19:16:5 5 Hz 3.041 ms to 12:0:1 length 5.800 us latency 200000 usFrom 19:16:5 5 Hz 3.041 ms to 13:0:1 length 5.800 us latency 200000 usFrom 19:16:5 5 Hz 3.041 ms to 14:0:1 length 5.800 us latency 200000 usFrom 19:16:5 5 Hz 3.041 ms to 15:0:1 length 5.800 us latency 200000 usFrom 19:16:5 5 Hz 3.041 ms to 16:16:5 length 39.167 us latency 200000 usFrom 19:16:5 5 Hz 3.041 ms to 17:16:5 length 39.167 us latency 200000 usFrom 19:16:5 5 Hz 3.041 ms to 18:16:5 length 39.167 us latency 200000 usFrom 19:16:5 5 Hz 3.041 ms to 18:29:10 length 9.300 us latency 200000 usFrom 19:16:5 5 Hz 3.041 ms to 19:16:5 length 4.200 us latency 200000 usFrom 19:16:6 5 Hz 1.014 ms to 19:26:22 length 0.000 us latency 200000 usFrom 19:16:6 5 Hz 1.014 ms to 19:28:1 length 0.000 us latency 200000 usFrom 19:17:1 10 Hz 0.980 ms to 16:17:1 length 5.167 us latency 200000 usFrom 19:17:1 10 Hz 0.980 ms to 17:17:1 length 5.167 us latency 200000 usFrom 19:17:1 10 Hz 0.980 ms to 18:17:1 length 5.167 us latency 200000 usFrom 19:17:1 10 Hz 0.980 ms to 18:29:9 length 94.667 us latency 200000 usFrom 19:17:1 10 Hz 0.980 ms to 20:2:3 length 447.733 us latency 200000 usFrom 19:17:1 10 Hz 0.980 ms to 22:2:3 length 447.733 us latency 200000 usFrom 19:18:1 10 Hz 0.750 ms to 12:0:1 length 3.333 us latency 200000 usFrom 19:18:1 10 Hz 0.750 ms to 13:0:1 length 3.333 us latency 200000 usFrom 19:18:1 10 Hz 0.750 ms to 14:0:1 length 3.333 us latency 200000 usFrom 19:18:1 10 Hz 0.750 ms to 15:0:1 length 3.333 us latency 200000 usFrom 19:20:4 5 Hz 0.676 ms to 16:22:4 length 9.300 us latency 200000 us119

From 19:20:4 5 Hz 0.676 ms to 17:22:4 length 9.300 us latency 200000 usFrom 19:20:4 5 Hz 0.676 ms to 18:20:4 length 2.967 us latency 200000 usFrom 19:20:4 5 Hz 0.676 ms to 18:29:10 length 9.300 us latency 200000 usFrom 19:26:22 20 Hz 8.600 ms to 16:21:3 length 2.433 us latency 200000 usFrom 19:26:22 20 Hz 8.600 ms to 16:21:4 length 4.033 us latency 200000 usFrom 19:26:22 20 Hz 8.600 ms to 16:21:5 length 13.700 us latency 200000 usFrom 19:26:22 20 Hz 8.600 ms to 16:22:2 length 140.167 us latency 200000 usFrom 19:26:22 20 Hz 8.600 ms to 16:22:3 length 4.033 us latency 200000 usFrom 19:26:22 20 Hz 8.600 ms to 16:22:4 length 13.700 us latency 200000 usFrom 19:26:22 20 Hz 8.600 ms to 17:21:3 length 2.433 us latency 200000 usFrom 19:26:22 20 Hz 8.600 ms to 17:21:4 length 4.033 us latency 200000 usFrom 19:26:22 20 Hz 8.600 ms to 17:21:5 length 13.700 us latency 200000 usFrom 19:26:22 20 Hz 8.600 ms to 17:22:2 length 140.167 us latency 200000 usFrom 19:26:22 20 Hz 8.600 ms to 17:22:3 length 4.033 us latency 200000 usFrom 19:26:22 20 Hz 8.600 ms to 17:22:4 length 13.700 us latency 200000 usFrom 19:26:22 20 Hz 8.600 ms to 18:29:10 length 13.933 us latency 200000 usFrom 19:26:22 20 Hz 8.600 ms to 18:32:1 length 10.500 us latency 200000 usFrom 19:26:22 20 Hz 8.600 ms to 18:33:2 length 24.733 us latency 200000 usFrom 19:26:22 20 Hz 8.600 ms to 18:35:4 length 39.767 us latency 200000 usFrom 19:26:22 20 Hz 8.600 ms to 19:27:1 length 14.767 us latency 100000 usFrom 19:26:22 20 Hz 8.600 ms to 19:28:1 length 10.500 us latency 100000 usFrom 19:27:1 20 Hz 3.550 ms to 12:0:1 length 0.833 us latency 200000 usFrom 19:27:1 20 Hz 3.550 ms to 13:0:1 length 0.833 us latency 200000 usFrom 19:27:1 20 Hz 3.550 ms to 14:0:1 length 0.833 us latency 200000 usFrom 19:27:1 20 Hz 3.550 ms to 16:21:4 length 4.033 us latency 200000 usFrom 19:27:1 20 Hz 3.550 ms to 16:22:3 length 4.033 us latency 200000 usFrom 19:27:1 20 Hz 3.550 ms to 17:21:4 length 4.033 us latency 200000 usFrom 19:27:1 20 Hz 3.550 ms to 17:22:3 length 4.033 us latency 200000 usFrom 19:27:1 20 Hz 3.550 ms to 18:29:10 length 8.300 us latency 200000 usFrom 19:27:1 20 Hz 3.550 ms to 18:32:1 length 4.033 us latency 200000 usFrom 19:27:1 20 Hz 3.550 ms to 19:26:22 length 4.033 us latency 100000 usFrom 19:28:1 20 Hz 6.550 ms to 16:21:3 length 2.433 us latency 200000 usFrom 19:28:1 20 Hz 6.550 ms to 16:21:4 length 4.033 us latency 200000 usFrom 19:28:1 20 Hz 6.550 ms to 16:21:5 length 4.033 us latency 200000 usFrom 19:28:1 20 Hz 6.550 ms to 16:22:2 length 2.433 us latency 200000 usFrom 19:28:1 20 Hz 6.550 ms to 16:22:3 length 4.033 us latency 200000 usFrom 19:28:1 20 Hz 6.550 ms to 17:21:3 length 2.433 us latency 200000 usFrom 19:28:1 20 Hz 6.550 ms to 17:21:4 length 4.033 us latency 200000 usFrom 19:28:1 20 Hz 6.550 ms to 17:21:5 length 4.033 us latency 200000 usFrom 19:28:1 20 Hz 6.550 ms to 17:22:2 length 2.433 us latency 200000 usFrom 19:28:1 20 Hz 6.550 ms to 17:22:3 length 4.033 us latency 200000 usFrom 19:28:1 20 Hz 6.550 ms to 18:29:10 length 8.300 us latency 200000 usFrom 19:28:1 20 Hz 6.550 ms to 18:32:1 length 8.067 us latency 200000 usFrom 19:28:1 20 Hz 6.550 ms to 19:26:22 length 10.500 us latency 100000 us120

From 1:0:1 5 Hz 0.000 ms to 11:2:3 length 5.633 us latency 200000 usFrom 1:0:1 5 Hz 0.000 ms to 5:16:3 length 16.300 us latency 68993 usFrom 1:0:1 5 Hz 0.000 ms to 5:16:5 length 36.333 us latency 100000 usFrom 1:0:1 5 Hz 0.000 ms to 6:16:3 length 16.300 us latency 68993 usFrom 1:0:1 5 Hz 0.000 ms to 6:16:5 length 36.333 us latency 100000 usFrom 1:0:1 5 Hz 0.000 ms to 7:16:3 length 16.300 us latency 68993 usFrom 1:0:1 5 Hz 0.000 ms to 7:16:5 length 36.333 us latency 100000 usFrom 1:0:1 5 Hz 0.000 ms to 7:29:9 length 383.333 us latency 200000 usFrom 1:0:1 5 Hz 0.000 ms to 8:16:3 length 16.300 us latency 68993 usFrom 1:0:1 5 Hz 0.000 ms to 8:16:5 length 36.333 us latency 100000 usFrom 1:0:1 5 Hz 0.000 ms to 8:30:20 length 51.267 us latency 200000 usFrom 1:0:1 5 Hz 0.000 ms to 9:2:3 length 5.633 us latency 200000 usFrom 1:0:2 10 Hz 0.000 ms to 7:29:1 length 1.667 us latency 200000 usFrom 1:0:3 40 Hz 0.000 ms to 7:29:1 length 0.833 us latency 200000 usFrom 1:0:3 40 Hz 0.000 ms to 8:26:22 length 1.667 us latency 50000 usFrom 20:2:3 5 Hz 0.600 ms to 12:0:1 length 11.967 us latency 200000 usFrom 20:2:3 5 Hz 0.600 ms to 13:0:1 length 11.967 us latency 200000 usFrom 20:2:3 5 Hz 0.600 ms to 14:0:1 length 11.967 us latency 200000 usFrom 20:2:3 5 Hz 0.600 ms to 15:0:1 length 11.967 us latency 200000 usFrom 20:2:3 5 Hz 0.600 ms to 16:17:1 length 49.000 us latency 200000 usFrom 20:2:3 5 Hz 0.600 ms to 17:17:1 length 49.000 us latency 200000 usFrom 20:2:3 5 Hz 0.600 ms to 18:17:1 length 49.000 us latency 200000 usFrom 20:2:3 5 Hz 0.600 ms to 19:17:1 length 49.000 us latency 200000 usFrom 22:2:3 5 Hz 0.600 ms to 12:0:1 length 11.967 us latency 200000 usFrom 22:2:3 5 Hz 0.600 ms to 13:0:1 length 11.967 us latency 200000 usFrom 22:2:3 5 Hz 0.600 ms to 14:0:1 length 11.967 us latency 200000 usFrom 22:2:3 5 Hz 0.600 ms to 15:0:1 length 11.967 us latency 200000 usFrom 22:2:3 5 Hz 0.600 ms to 16:17:1 length 49.000 us latency 200000 usFrom 22:2:3 5 Hz 0.600 ms to 17:17:1 length 49.000 us latency 200000 usFrom 22:2:3 5 Hz 0.600 ms to 18:17:1 length 49.000 us latency 200000 usFrom 22:2:3 5 Hz 0.600 ms to 19:17:1 length 49.000 us latency 200000 usFrom 2:0:1 5 Hz 0.000 ms to 11:2:3 length 5.633 us latency 200000 usFrom 2:0:1 5 Hz 0.000 ms to 5:16:3 length 16.300 us latency 68993 usFrom 2:0:1 5 Hz 0.000 ms to 5:16:5 length 36.333 us latency 100000 usFrom 2:0:1 5 Hz 0.000 ms to 6:16:3 length 16.300 us latency 68993 usFrom 2:0:1 5 Hz 0.000 ms to 6:16:5 length 36.333 us latency 100000 usFrom 2:0:1 5 Hz 0.000 ms to 7:16:3 length 16.300 us latency 68993 usFrom 2:0:1 5 Hz 0.000 ms to 7:16:5 length 36.333 us latency 100000 usFrom 2:0:1 5 Hz 0.000 ms to 7:29:9 length 383.333 us latency 200000 usFrom 2:0:1 5 Hz 0.000 ms to 8:16:3 length 16.300 us latency 68993 usFrom 2:0:1 5 Hz 0.000 ms to 8:16:5 length 36.333 us latency 100000 usFrom 2:0:1 5 Hz 0.000 ms to 8:30:20 length 51.267 us latency 200000 usFrom 2:0:1 5 Hz 0.000 ms to 9:2:3 length 5.633 us latency 200000 usFrom 2:0:2 10 Hz 0.000 ms to 7:29:1 length 2.500 us latency 200000 us121

From 2:0:3 40 Hz 0.000 ms to 7:29:1 length 0.833 us latency 200000 usFrom 3:0:1 5 Hz 0.000 ms to 11:2:3 length 5.633 us latency 200000 usFrom 3:0:1 5 Hz 0.000 ms to 5:16:3 length 16.300 us latency 68993 usFrom 3:0:1 5 Hz 0.000 ms to 5:16:5 length 36.333 us latency 100000 usFrom 3:0:1 5 Hz 0.000 ms to 6:16:3 length 16.300 us latency 68993 usFrom 3:0:1 5 Hz 0.000 ms to 6:16:5 length 36.333 us latency 100000 usFrom 3:0:1 5 Hz 0.000 ms to 7:16:3 length 16.300 us latency 68993 usFrom 3:0:1 5 Hz 0.000 ms to 7:16:5 length 36.333 us latency 100000 usFrom 3:0:1 5 Hz 0.000 ms to 7:29:9 length 383.333 us latency 200000 usFrom 3:0:1 5 Hz 0.000 ms to 8:16:3 length 16.300 us latency 68993 usFrom 3:0:1 5 Hz 0.000 ms to 8:16:5 length 36.333 us latency 100000 usFrom 3:0:1 5 Hz 0.000 ms to 8:30:20 length 51.267 us latency 200000 usFrom 3:0:1 5 Hz 0.000 ms to 9:2:3 length 5.633 us latency 200000 usFrom 3:0:2 10 Hz 0.000 ms to 7:29:1 length 1.667 us latency 200000 usFrom 3:0:3 40 Hz 0.000 ms to 7:29:1 length 0.833 us latency 200000 usFrom 4:0:1 5 Hz 0.000 ms to 11:2:3 length 5.633 us latency 200000 usFrom 4:0:1 5 Hz 0.000 ms to 5:16:3 length 16.300 us latency 68993 usFrom 4:0:1 5 Hz 0.000 ms to 5:16:5 length 36.333 us latency 100000 usFrom 4:0:1 5 Hz 0.000 ms to 6:16:3 length 16.300 us latency 68993 usFrom 4:0:1 5 Hz 0.000 ms to 6:16:5 length 36.333 us latency 100000 usFrom 4:0:1 5 Hz 0.000 ms to 7:16:3 length 16.300 us latency 68993 usFrom 4:0:1 5 Hz 0.000 ms to 7:16:5 length 36.333 us latency 100000 usFrom 4:0:1 5 Hz 0.000 ms to 7:29:9 length 383.333 us latency 200000 usFrom 4:0:1 5 Hz 0.000 ms to 8:16:3 length 16.300 us latency 68993 usFrom 4:0:1 5 Hz 0.000 ms to 8:16:5 length 36.333 us latency 100000 usFrom 4:0:1 5 Hz 0.000 ms to 8:30:20 length 51.267 us latency 200000 usFrom 4:0:1 5 Hz 0.000 ms to 9:2:3 length 5.633 us latency 200000 usFrom 4:0:2 10 Hz 0.000 ms to 7:29:1 length 1.667 us latency 200000 usFrom 4:0:3 40 Hz 0.000 ms to 7:29:1 length 0.833 us latency 200000 usFrom 4:0:3 40 Hz 0.000 ms to 8:26:22 length 1.667 us latency 50000 usFrom 5:16:1 5 Hz 0.563 ms to 7:29:1 length 4.567 us latency 200000 usFrom 5:16:2 5 Hz 1.126 ms to 1:0:1 length 0.833 us latency 200000 usFrom 5:16:2 5 Hz 1.126 ms to 2:0:1 length 0.833 us latency 200000 usFrom 5:16:2 5 Hz 1.126 ms to 3:0:1 length 0.833 us latency 200000 usFrom 5:16:2 5 Hz 1.126 ms to 4:0:1 length 0.833 us latency 200000 usFrom 5:16:2 5 Hz 1.126 ms to 5:19:5 length 0.833 us latency 200000 usFrom 5:16:2 5 Hz 1.126 ms to 5:21:5 length 0.833 us latency 200000 usFrom 5:16:2 5 Hz 1.126 ms to 5:22:4 length 6.633 us latency 200000 usFrom 5:16:2 5 Hz 1.126 ms to 6:16:1 length 0.833 us latency 200000 usFrom 5:16:2 5 Hz 1.126 ms to 6:16:2 length 12.467 us latency 200000 usFrom 5:16:2 5 Hz 1.126 ms to 6:16:3 length 21.633 us latency 93918 usFrom 5:16:2 5 Hz 1.126 ms to 6:19:5 length 0.833 us latency 200000 usFrom 5:16:2 5 Hz 1.126 ms to 6:21:5 length 0.833 us latency 200000 usFrom 5:16:2 5 Hz 1.126 ms to 6:22:4 length 6.633 us latency 200000 us122

From 5:16:2 5 Hz 1.126 ms to 7:16:1 length 0.833 us latency 200000 usFrom 5:16:2 5 Hz 1.126 ms to 7:16:2 length 12.467 us latency 200000 usFrom 5:16:2 5 Hz 1.126 ms to 7:16:3 length 21.633 us latency 93918 usFrom 5:16:2 5 Hz 1.126 ms to 7:20:4 length 0.833 us latency 200000 usFrom 5:16:2 5 Hz 1.126 ms to 7:29:2 length 0.833 us latency 200000 usFrom 5:16:2 5 Hz 1.126 ms to 7:31:1 length 0.833 us latency 200000 usFrom 5:16:2 5 Hz 1.126 ms to 7:32:1 length 0.833 us latency 200000 usFrom 5:16:2 5 Hz 1.126 ms to 7:33:2 length 0.833 us latency 200000 usFrom 5:16:2 5 Hz 1.126 ms to 7:35:1 length 0.833 us latency 200000 usFrom 5:16:2 5 Hz 1.126 ms to 8:16:1 length 0.833 us latency 200000 usFrom 5:16:2 5 Hz 1.126 ms to 8:16:2 length 12.467 us latency 200000 usFrom 5:16:2 5 Hz 1.126 ms to 8:16:3 length 21.633 us latency 93918 usFrom 5:16:2 5 Hz 1.126 ms to 8:20:4 length 0.833 us latency 200000 usFrom 5:16:2 5 Hz 1.126 ms to 8:26:22 length 0.833 us latency 200000 usFrom 5:16:2 5 Hz 1.126 ms to 8:27:1 length 0.833 us latency 200000 usFrom 5:16:2 5 Hz 1.126 ms to 8:28:1 length 0.833 us latency 200000 usFrom 5:16:2 5 Hz 1.126 ms to 8:30:20 length 21.000 us latency 200000 usFrom 5:16:5 5 Hz 3.041 ms to 1:0:1 length 5.800 us latency 200000 usFrom 5:16:5 5 Hz 3.041 ms to 2:0:1 length 5.800 us latency 200000 usFrom 5:16:5 5 Hz 3.041 ms to 3:0:1 length 5.800 us latency 200000 usFrom 5:16:5 5 Hz 3.041 ms to 4:0:1 length 5.800 us latency 200000 usFrom 5:16:5 5 Hz 3.041 ms to 5:16:5 length 4.200 us latency 200000 usFrom 5:16:5 5 Hz 3.041 ms to 6:16:5 length 39.167 us latency 200000 usFrom 5:16:5 5 Hz 3.041 ms to 7:16:5 length 39.167 us latency 200000 usFrom 5:16:5 5 Hz 3.041 ms to 7:29:10 length 9.300 us latency 200000 usFrom 5:16:5 5 Hz 3.041 ms to 8:16:5 length 39.167 us latency 200000 usFrom 5:17:1 10 Hz 0.980 ms to 11:2:3 length 447.733 us latency 200000 usFrom 5:17:1 10 Hz 0.980 ms to 6:17:1 length 5.167 us latency 200000 usFrom 5:17:1 10 Hz 0.980 ms to 7:17:1 length 5.167 us latency 200000 usFrom 5:17:1 10 Hz 0.980 ms to 7:29:9 length 94.667 us latency 200000 usFrom 5:17:1 10 Hz 0.980 ms to 8:17:1 length 5.167 us latency 200000 usFrom 5:17:1 10 Hz 0.980 ms to 8:30:20 length 353.067 us latency 200000 usFrom 5:17:1 10 Hz 0.980 ms to 9:2:3 length 447.733 us latency 200000 usFrom 5:19:1 80 Hz 1.180 ms to 5:22:4 length 11.133 us latency 200000 usFrom 5:19:1 80 Hz 1.180 ms to 6:22:4 length 11.133 us latency 200000 usFrom 5:19:1 80 Hz 1.180 ms to 7:32:1 length 2.900 us latency 200000 usFrom 5:19:1 80 Hz 1.180 ms to 8:30:20 length 21.300 us latency 200000 usFrom 5:19:2 10 Hz 2.400 ms to 8:30:20 length 43.133 us latency 200000 usFrom 5:19:3 20 Hz 1.900 ms to 8:30:20 length 54.100 us latency 200000 usFrom 5:19:4 40 Hz 2.000 ms to 5:22:4 length 13.500 us latency 200000 usFrom 5:19:4 40 Hz 2.000 ms to 6:22:4 length 13.500 us latency 200000 usFrom 5:19:4 40 Hz 2.000 ms to 8:30:20 length 41.433 us latency 200000 usFrom 5:19:5 5 Hz 0.100 ms to 5:22:4 length 9.300 us latency 200000 usFrom 5:19:5 5 Hz 0.100 ms to 6:19:5 length 2.967 us latency 200000 us123

From 5:19:5 5 Hz 0.100 ms to 6:22:4 length 9.300 us latency 200000 usFrom 5:19:5 5 Hz 0.100 ms to 7:29:10 length 9.300 us latency 200000 usFrom 5:19:5 5 Hz 0.100 ms to 8:30:20 length 11.133 us latency 200000 usFrom 5:21:2 40 Hz 3.150 ms to 5:22:2 length 0.000 us latency 200000 usFrom 5:21:2 40 Hz 3.150 ms to 8:30:20 length 1.833 us latency 200000 usFrom 5:21:3 20 Hz 2.800 ms to 5:22:2 length 11.967 us latency 200000 usFrom 5:21:3 20 Hz 2.800 ms to 5:22:3 length 5.033 us latency 200000 usFrom 5:21:3 20 Hz 2.800 ms to 6:21:3 length 4.033 us latency 200000 usFrom 5:21:3 20 Hz 2.800 ms to 6:22:2 length 7.933 us latency 200000 usFrom 5:21:3 20 Hz 2.800 ms to 6:22:3 length 5.033 us latency 200000 usFrom 5:21:3 20 Hz 2.800 ms to 7:29:10 length 5.033 us latency 200000 usFrom 5:21:3 20 Hz 2.800 ms to 7:32:1 length 7.933 us latency 200000 usFrom 5:21:3 20 Hz 2.800 ms to 8:26:22 length 14.800 us latency 150000 usFrom 5:21:3 20 Hz 2.800 ms to 8:27:1 length 6.867 us latency 200000 usFrom 5:21:3 20 Hz 2.800 ms to 8:28:1 length 6.867 us latency 200000 usFrom 5:21:3 20 Hz 2.800 ms to 8:30:20 length 36.100 us latency 200000 usFrom 5:21:4 10 Hz 5.900 ms to 5:22:3 length 0.000 us latency 200000 usFrom 5:21:4 10 Hz 5.900 ms to 5:22:4 length 2.367 us latency 200000 usFrom 5:21:4 10 Hz 5.900 ms to 6:22:4 length 2.367 us latency 200000 usFrom 5:21:4 10 Hz 5.900 ms to 8:30:20 length 18.933 us latency 200000 usFrom 5:21:5 5 Hz 14.600 ms to 5:22:4 length 0.000 us latency 200000 usFrom 5:21:5 5 Hz 14.600 ms to 6:21:5 length 35.800 us latency 200000 usFrom 5:21:5 5 Hz 14.600 ms to 7:29:10 length 8.300 us latency 200000 usFrom 5:21:5 5 Hz 14.600 ms to 7:32:1 length 16.833 us latency 200000 usFrom 5:21:5 5 Hz 14.600 ms to 7:33:2 length 16.833 us latency 200000 usFrom 5:21:5 5 Hz 14.600 ms to 8:26:22 length 3.967 us latency 200000 usFrom 5:21:5 5 Hz 14.600 ms to 8:30:20 length 1.833 us latency 200000 usFrom 5:22:2 20 Hz 2.050 ms to 5:21:3 length 0.000 us latency 200000 usFrom 5:22:2 20 Hz 2.050 ms to 6:22:2 length 2.433 us latency 200000 usFrom 5:22:2 20 Hz 2.050 ms to 6:22:4 length 35.033 us latency 200000 usFrom 5:22:2 20 Hz 2.050 ms to 7:33:2 length 3.500 us latency 200000 usFrom 5:22:2 20 Hz 2.050 ms to 8:28:1 length 5.033 us latency 200000 usFrom 5:22:2 20 Hz 2.050 ms to 8:30:20 length 4.733 us latency 200000 usFrom 5:22:3 10 Hz 7.650 ms to 5:21:4 length 0.000 us latency 200000 usFrom 5:22:3 10 Hz 7.650 ms to 7:29:10 length 33.833 us latency 200000 usFrom 5:22:3 10 Hz 7.650 ms to 8:30:20 length 6.567 us latency 200000 usFrom 5:22:4 5 Hz 12.000 ms to 5:21:3 length 1.833 us latency 200000 usFrom 5:22:4 5 Hz 12.000 ms to 5:21:5 length 0.000 us latency 200000 usFrom 5:22:4 5 Hz 12.000 ms to 5:22:4 length 3.967 us latency 200000 usFrom 5:22:4 5 Hz 12.000 ms to 6:21:3 length 1.833 us latency 200000 usFrom 5:22:4 5 Hz 12.000 ms to 6:22:4 length 8.000 us latency 200000 usFrom 5:22:4 5 Hz 12.000 ms to 8:28:1 length 6.933 us latency 200000 usFrom 5:22:4 5 Hz 12.000 ms to 8:30:20 length 1.833 us latency 200000 usFrom 6:16:1 5 Hz 0.563 ms to 7:29:1 length 4.567 us latency 200000 us124

From 6:16:2 5 Hz 1.126 ms to 1:0:1 length 0.833 us latency 200000 usFrom 6:16:2 5 Hz 1.126 ms to 2:0:1 length 0.833 us latency 200000 usFrom 6:16:2 5 Hz 1.126 ms to 3:0:1 length 0.833 us latency 200000 usFrom 6:16:2 5 Hz 1.126 ms to 4:0:1 length 0.833 us latency 200000 usFrom 6:16:2 5 Hz 1.126 ms to 5:16:1 length 0.833 us latency 200000 usFrom 6:16:2 5 Hz 1.126 ms to 5:16:2 length 12.467 us latency 200000 usFrom 6:16:2 5 Hz 1.126 ms to 5:16:3 length 21.633 us latency 93918 usFrom 6:16:2 5 Hz 1.126 ms to 5:19:5 length 0.833 us latency 200000 usFrom 6:16:2 5 Hz 1.126 ms to 5:21:5 length 0.833 us latency 200000 usFrom 6:16:2 5 Hz 1.126 ms to 5:22:4 length 6.633 us latency 200000 usFrom 6:16:2 5 Hz 1.126 ms to 6:19:5 length 0.833 us latency 200000 usFrom 6:16:2 5 Hz 1.126 ms to 6:21:5 length 0.833 us latency 200000 usFrom 6:16:2 5 Hz 1.126 ms to 6:22:4 length 6.633 us latency 200000 usFrom 6:16:2 5 Hz 1.126 ms to 7:16:1 length 0.833 us latency 200000 usFrom 6:16:2 5 Hz 1.126 ms to 7:16:2 length 12.467 us latency 200000 usFrom 6:16:2 5 Hz 1.126 ms to 7:16:3 length 21.633 us latency 93918 usFrom 6:16:2 5 Hz 1.126 ms to 7:20:4 length 0.833 us latency 200000 usFrom 6:16:2 5 Hz 1.126 ms to 7:29:2 length 0.833 us latency 200000 usFrom 6:16:2 5 Hz 1.126 ms to 7:31:1 length 0.833 us latency 200000 usFrom 6:16:2 5 Hz 1.126 ms to 7:32:1 length 0.833 us latency 200000 usFrom 6:16:2 5 Hz 1.126 ms to 7:33:2 length 0.833 us latency 200000 usFrom 6:16:2 5 Hz 1.126 ms to 7:35:1 length 0.833 us latency 200000 usFrom 6:16:2 5 Hz 1.126 ms to 8:16:1 length 0.833 us latency 200000 usFrom 6:16:2 5 Hz 1.126 ms to 8:16:2 length 12.467 us latency 200000 usFrom 6:16:2 5 Hz 1.126 ms to 8:16:3 length 21.633 us latency 93918 usFrom 6:16:2 5 Hz 1.126 ms to 8:20:4 length 0.833 us latency 200000 usFrom 6:16:2 5 Hz 1.126 ms to 8:26:22 length 0.833 us latency 200000 usFrom 6:16:2 5 Hz 1.126 ms to 8:27:1 length 0.833 us latency 200000 usFrom 6:16:2 5 Hz 1.126 ms to 8:28:1 length 0.833 us latency 200000 usFrom 6:16:2 5 Hz 1.126 ms to 8:30:20 length 21.000 us latency 200000 usFrom 6:16:5 5 Hz 3.041 ms to 1:0:1 length 5.800 us latency 200000 usFrom 6:16:5 5 Hz 3.041 ms to 2:0:1 length 5.800 us latency 200000 usFrom 6:16:5 5 Hz 3.041 ms to 3:0:1 length 5.800 us latency 200000 usFrom 6:16:5 5 Hz 3.041 ms to 4:0:1 length 5.800 us latency 200000 usFrom 6:16:5 5 Hz 3.041 ms to 5:16:5 length 39.167 us latency 200000 usFrom 6:16:5 5 Hz 3.041 ms to 6:16:5 length 4.200 us latency 200000 usFrom 6:16:5 5 Hz 3.041 ms to 7:16:5 length 39.167 us latency 200000 usFrom 6:16:5 5 Hz 3.041 ms to 7:29:10 length 9.300 us latency 200000 usFrom 6:16:5 5 Hz 3.041 ms to 8:16:5 length 39.167 us latency 200000 usFrom 6:17:1 10 Hz 0.980 ms to 11:2:3 length 447.733 us latency 200000 usFrom 6:17:1 10 Hz 0.980 ms to 5:17:1 length 5.167 us latency 200000 usFrom 6:17:1 10 Hz 0.980 ms to 7:17:1 length 5.167 us latency 200000 usFrom 6:17:1 10 Hz 0.980 ms to 7:29:9 length 94.667 us latency 200000 usFrom 6:17:1 10 Hz 0.980 ms to 8:17:1 length 5.167 us latency 200000 us125

From 6:17:1 10 Hz 0.980 ms to 8:30:20 length 353.067 us latency 200000 usFrom 6:17:1 10 Hz 0.980 ms to 9:2:3 length 447.733 us latency 200000 usFrom 6:19:1 80 Hz 1.180 ms to 5:22:4 length 11.133 us latency 200000 usFrom 6:19:1 80 Hz 1.180 ms to 6:22:4 length 11.133 us latency 200000 usFrom 6:19:1 80 Hz 1.180 ms to 7:32:1 length 2.900 us latency 200000 usFrom 6:19:1 80 Hz 1.180 ms to 8:30:20 length 21.300 us latency 200000 usFrom 6:19:2 10 Hz 2.400 ms to 8:30:20 length 43.133 us latency 200000 usFrom 6:19:3 20 Hz 1.900 ms to 8:30:20 length 54.100 us latency 200000 usFrom 6:19:4 40 Hz 2.000 ms to 5:22:4 length 13.500 us latency 200000 usFrom 6:19:4 40 Hz 2.000 ms to 6:22:4 length 13.500 us latency 200000 usFrom 6:19:4 40 Hz 2.000 ms to 8:30:20 length 41.433 us latency 200000 usFrom 6:19:5 5 Hz 0.100 ms to 5:19:5 length 2.967 us latency 200000 usFrom 6:19:5 5 Hz 0.100 ms to 5:22:4 length 9.300 us latency 200000 usFrom 6:19:5 5 Hz 0.100 ms to 6:22:4 length 9.300 us latency 200000 usFrom 6:19:5 5 Hz 0.100 ms to 7:29:10 length 9.300 us latency 200000 usFrom 6:19:5 5 Hz 0.100 ms to 8:30:20 length 11.133 us latency 200000 usFrom 6:21:2 40 Hz 3.150 ms to 6:22:2 length 0.000 us latency 200000 usFrom 6:21:2 40 Hz 3.150 ms to 8:30:20 length 1.833 us latency 200000 usFrom 6:21:3 20 Hz 2.800 ms to 5:21:3 length 4.033 us latency 200000 usFrom 6:21:3 20 Hz 2.800 ms to 5:22:2 length 7.933 us latency 200000 usFrom 6:21:3 20 Hz 2.800 ms to 5:22:3 length 5.033 us latency 200000 usFrom 6:21:3 20 Hz 2.800 ms to 6:22:2 length 11.967 us latency 200000 usFrom 6:21:3 20 Hz 2.800 ms to 6:22:3 length 5.033 us latency 200000 usFrom 6:21:3 20 Hz 2.800 ms to 7:29:10 length 5.033 us latency 200000 usFrom 6:21:3 20 Hz 2.800 ms to 7:32:1 length 7.933 us latency 200000 usFrom 6:21:3 20 Hz 2.800 ms to 8:26:22 length 14.800 us latency 150000 usFrom 6:21:3 20 Hz 2.800 ms to 8:27:1 length 6.867 us latency 200000 usFrom 6:21:3 20 Hz 2.800 ms to 8:28:1 length 6.867 us latency 200000 usFrom 6:21:3 20 Hz 2.800 ms to 8:30:20 length 36.100 us latency 200000 usFrom 6:21:4 10 Hz 5.900 ms to 5:22:4 length 2.367 us latency 200000 usFrom 6:21:4 10 Hz 5.900 ms to 6:22:3 length 0.000 us latency 200000 usFrom 6:21:4 10 Hz 5.900 ms to 6:22:4 length 2.367 us latency 200000 usFrom 6:21:4 10 Hz 5.900 ms to 8:30:20 length 18.933 us latency 200000 usFrom 6:21:5 5 Hz 14.600 ms to 5:21:5 length 35.800 us latency 200000 usFrom 6:21:5 5 Hz 14.600 ms to 6:22:4 length 0.000 us latency 200000 usFrom 6:21:5 5 Hz 14.600 ms to 7:29:10 length 8.300 us latency 200000 usFrom 6:21:5 5 Hz 14.600 ms to 7:32:1 length 16.833 us latency 200000 usFrom 6:21:5 5 Hz 14.600 ms to 8:26:22 length 3.967 us latency 200000 usFrom 6:21:5 5 Hz 14.600 ms to 8:30:20 length 1.833 us latency 200000 usFrom 6:22:2 20 Hz 2.050 ms to 5:22:2 length 2.433 us latency 200000 usFrom 6:22:2 20 Hz 2.050 ms to 5:22:4 length 35.033 us latency 200000 usFrom 6:22:2 20 Hz 2.050 ms to 6:21:3 length 0.000 us latency 200000 usFrom 6:22:2 20 Hz 2.050 ms to 7:33:2 length 3.500 us latency 200000 usFrom 6:22:2 20 Hz 2.050 ms to 8:28:1 length 5.033 us latency 200000 us126

From 6:22:2 20 Hz 2.050 ms to 8:30:20 length 4.733 us latency 200000 usFrom 6:22:3 10 Hz 7.650 ms to 6:21:4 length 0.000 us latency 200000 usFrom 6:22:3 10 Hz 7.650 ms to 7:29:10 length 33.833 us latency 200000 usFrom 6:22:3 10 Hz 7.650 ms to 8:30:20 length 6.567 us latency 200000 usFrom 6:22:4 5 Hz 12.000 ms to 5:21:3 length 1.833 us latency 200000 usFrom 6:22:4 5 Hz 12.000 ms to 5:22:4 length 8.000 us latency 200000 usFrom 6:22:4 5 Hz 12.000 ms to 6:21:3 length 1.833 us latency 200000 usFrom 6:22:4 5 Hz 12.000 ms to 6:21:5 length 0.000 us latency 200000 usFrom 6:22:4 5 Hz 12.000 ms to 6:22:4 length 3.967 us latency 200000 usFrom 6:22:4 5 Hz 12.000 ms to 8:28:1 length 3.967 us latency 200000 usFrom 6:22:4 5 Hz 12.000 ms to 8:30:20 length 1.833 us latency 200000 usFrom 7:16:1 5 Hz 0.563 ms to 7:29:1 length 0.000 us latency 200000 usFrom 7:16:2 5 Hz 1.126 ms to 1:0:1 length 0.833 us latency 200000 usFrom 7:16:2 5 Hz 1.126 ms to 2:0:1 length 0.833 us latency 200000 usFrom 7:16:2 5 Hz 1.126 ms to 3:0:1 length 0.833 us latency 200000 usFrom 7:16:2 5 Hz 1.126 ms to 4:0:1 length 0.833 us latency 200000 usFrom 7:16:2 5 Hz 1.126 ms to 5:16:1 length 0.833 us latency 200000 usFrom 7:16:2 5 Hz 1.126 ms to 5:16:2 length 12.467 us latency 200000 usFrom 7:16:2 5 Hz 1.126 ms to 5:16:3 length 21.633 us latency 93918 usFrom 7:16:2 5 Hz 1.126 ms to 5:19:5 length 0.833 us latency 200000 usFrom 7:16:2 5 Hz 1.126 ms to 5:21:5 length 0.833 us latency 200000 usFrom 7:16:2 5 Hz 1.126 ms to 5:22:4 length 6.633 us latency 200000 usFrom 7:16:2 5 Hz 1.126 ms to 6:16:1 length 0.833 us latency 200000 usFrom 7:16:2 5 Hz 1.126 ms to 6:16:2 length 12.467 us latency 200000 usFrom 7:16:2 5 Hz 1.126 ms to 6:16:3 length 21.633 us latency 93918 usFrom 7:16:2 5 Hz 1.126 ms to 6:19:5 length 0.833 us latency 200000 usFrom 7:16:2 5 Hz 1.126 ms to 6:21:5 length 0.833 us latency 200000 usFrom 7:16:2 5 Hz 1.126 ms to 6:22:4 length 6.633 us latency 200000 usFrom 7:16:2 5 Hz 1.126 ms to 7:20:4 length 0.833 us latency 200000 usFrom 7:16:2 5 Hz 1.126 ms to 7:29:2 length 0.833 us latency 200000 usFrom 7:16:2 5 Hz 1.126 ms to 7:31:1 length 1.667 us latency 200000 usFrom 7:16:2 5 Hz 1.126 ms to 7:32:1 length 0.833 us latency 200000 usFrom 7:16:2 5 Hz 1.126 ms to 7:33:2 length 1.667 us latency 200000 usFrom 7:16:2 5 Hz 1.126 ms to 7:35:1 length 0.833 us latency 200000 usFrom 7:16:2 5 Hz 1.126 ms to 8:16:1 length 0.833 us latency 200000 usFrom 7:16:2 5 Hz 1.126 ms to 8:16:2 length 12.467 us latency 200000 usFrom 7:16:2 5 Hz 1.126 ms to 8:16:3 length 21.633 us latency 93918 usFrom 7:16:2 5 Hz 1.126 ms to 8:20:4 length 0.833 us latency 200000 usFrom 7:16:2 5 Hz 1.126 ms to 8:26:22 length 0.833 us latency 200000 usFrom 7:16:2 5 Hz 1.126 ms to 8:27:1 length 0.833 us latency 200000 usFrom 7:16:2 5 Hz 1.126 ms to 8:28:1 length 0.833 us latency 200000 usFrom 7:16:2 5 Hz 1.126 ms to 8:30:20 length 21.000 us latency 200000 usFrom 7:16:5 5 Hz 3.041 ms to 1:0:1 length 5.800 us latency 200000 usFrom 7:16:5 5 Hz 3.041 ms to 2:0:1 length 5.800 us latency 200000 us127

From 7:16:5 5 Hz 3.041 ms to 3:0:1 length 5.800 us latency 200000 usFrom 7:16:5 5 Hz 3.041 ms to 4:0:1 length 5.800 us latency 200000 usFrom 7:16:5 5 Hz 3.041 ms to 5:16:5 length 39.167 us latency 200000 usFrom 7:16:5 5 Hz 3.041 ms to 6:16:5 length 39.167 us latency 200000 usFrom 7:16:5 5 Hz 3.041 ms to 7:16:5 length 4.200 us latency 200000 usFrom 7:16:5 5 Hz 3.041 ms to 7:29:10 length 9.300 us latency 200000 usFrom 7:16:5 5 Hz 3.041 ms to 8:16:5 length 39.167 us latency 200000 usFrom 7:17:1 10 Hz 0.980 ms to 11:2:3 length 447.733 us latency 200000 usFrom 7:17:1 10 Hz 0.980 ms to 5:17:1 length 5.167 us latency 200000 usFrom 7:17:1 10 Hz 0.980 ms to 6:17:1 length 5.167 us latency 200000 usFrom 7:17:1 10 Hz 0.980 ms to 7:29:9 length 94.667 us latency 200000 usFrom 7:17:1 10 Hz 0.980 ms to 8:17:1 length 5.167 us latency 200000 usFrom 7:17:1 10 Hz 0.980 ms to 8:30:20 length 353.067 us latency 200000 usFrom 7:17:1 10 Hz 0.980 ms to 9:2:3 length 447.733 us latency 200000 usFrom 7:20:1 40 Hz 0.850 ms to 8:30:20 length 6.867 us latency 200000 usFrom 7:20:2 10 Hz 0.800 ms to 8:30:20 length 47.933 us latency 200000 usFrom 7:20:3 20 Hz 1.150 ms to 8:30:20 length 23.800 us latency 200000 usFrom 7:20:4 5 Hz 0.676 ms to 5:22:4 length 9.300 us latency 200000 usFrom 7:20:4 5 Hz 0.676 ms to 6:22:4 length 9.300 us latency 200000 usFrom 7:20:4 5 Hz 0.676 ms to 7:29:10 length 9.300 us latency 200000 usFrom 7:20:4 5 Hz 0.676 ms to 8:20:4 length 2.967 us latency 200000 usFrom 7:20:4 5 Hz 0.676 ms to 8:30:20 length 32.033 us latency 200000 usFrom 7:29:1 40 Hz 2.452 ms to 5:16:1 length 68.567 us latency 200000 usFrom 7:29:1 40 Hz 2.452 ms to 6:16:1 length 68.567 us latency 200000 usFrom 7:29:1 40 Hz 2.452 ms to 7:16:1 length 68.567 us latency 200000 usFrom 7:29:1 40 Hz 2.452 ms to 7:35:4 length 68.567 us latency 200000 usFrom 7:29:1 40 Hz 2.452 ms to 8:16:1 length 68.567 us latency 200000 usFrom 7:29:1 40 Hz 2.452 ms to 8:30:20 length 14.167 us latency 200000 usFrom 7:29:10 10 Hz 16.650 ms to 1:0:1 length 0.833 us latency 200000 usFrom 7:29:10 10 Hz 16.650 ms to 2:0:1 length 0.833 us latency 200000 usFrom 7:29:10 10 Hz 16.650 ms to 3:0:1 length 0.833 us latency 200000 usFrom 7:29:10 10 Hz 16.650 ms to 5:16:5 length 20.167 us latency 200000 usFrom 7:29:10 10 Hz 16.650 ms to 5:19:5 length 20.167 us latency 200000 usFrom 7:29:10 10 Hz 16.650 ms to 5:21:5 length 20.167 us latency 200000 usFrom 7:29:10 10 Hz 16.650 ms to 5:22:4 length 4.033 us latency 200000 usFrom 7:29:10 10 Hz 16.650 ms to 6:16:5 length 20.167 us latency 200000 usFrom 7:29:10 10 Hz 16.650 ms to 6:19:5 length 20.167 us latency 200000 usFrom 7:29:10 10 Hz 16.650 ms to 6:21:5 length 20.167 us latency 200000 usFrom 7:29:10 10 Hz 16.650 ms to 6:22:4 length 4.033 us latency 200000 usFrom 7:29:10 10 Hz 16.650 ms to 7:16:5 length 20.167 us latency 200000 usFrom 7:29:10 10 Hz 16.650 ms to 7:20:4 length 20.167 us latency 200000 usFrom 7:29:10 10 Hz 16.650 ms to 7:29:10 length 4.033 us latency 200000 usFrom 7:29:10 10 Hz 16.650 ms to 7:31:1 length 12.100 us latency 200000 usFrom 7:29:10 10 Hz 16.650 ms to 7:32:3 length 32.267 us latency 200000 us128

From 7:29:10 10 Hz 16.650 ms to 7:33:2 length 44.367 us latency 200000 usFrom 7:29:10 10 Hz 16.650 ms to 7:35:1 length 20.167 us latency 200000 usFrom 7:29:10 10 Hz 16.650 ms to 7:35:4 length 16.300 us latency 200000 usFrom 7:29:10 10 Hz 16.650 ms to 8:16:5 length 20.167 us latency 200000 usFrom 7:29:10 10 Hz 16.650 ms to 8:20:4 length 20.167 us latency 200000 usFrom 7:29:10 10 Hz 16.650 ms to 8:26:22 length 20.167 us latency 200000 usFrom 7:29:10 10 Hz 16.650 ms to 8:27:1 length 20.167 us latency 200000 usFrom 7:29:10 10 Hz 16.650 ms to 8:28:1 length 20.167 us latency 200000 usFrom 7:29:10 10 Hz 16.650 ms to 8:30:20 length 63.767 us latency 200000 usFrom 7:29:2 5 Hz 1.243 ms to 7:29:10 length 8.300 us latency 200000 usFrom 7:29:9 5 Hz 4.079 ms to 1:0:1 length 4.100 us latency 200000 usFrom 7:29:9 5 Hz 4.079 ms to 2:0:1 length 4.100 us latency 200000 usFrom 7:29:9 5 Hz 4.079 ms to 3:0:1 length 4.100 us latency 200000 usFrom 7:29:9 5 Hz 4.079 ms to 4:0:1 length 4.100 us latency 200000 usFrom 7:29:9 5 Hz 4.079 ms to 5:17:1 length 42.967 us latency 185741 usFrom 7:29:9 5 Hz 4.079 ms to 6:17:1 length 42.967 us latency 185741 usFrom 7:29:9 5 Hz 4.079 ms to 7:17:1 length 42.967 us latency 185741 usFrom 7:29:9 5 Hz 4.079 ms to 8:17:1 length 42.967 us latency 185741 usFrom 7:31:1 10 Hz 1.550 ms to 8:30:20 length 6.767 us latency 200000 usFrom 7:32:3 5 Hz 1.120 ms to 5:22:4 length 5.633 us latency 200000 usFrom 7:32:3 5 Hz 1.120 ms to 6:22:4 length 5.633 us latency 200000 usFrom 7:32:3 5 Hz 1.120 ms to 7:29:10 length 8.300 us latency 200000 usFrom 7:32:3 5 Hz 1.120 ms to 8:30:20 length 9.133 us latency 200000 usFrom 7:33:2 20 Hz 1.942 ms to 5:22:2 length 67.500 us latency 200000 usFrom 7:33:2 20 Hz 1.942 ms to 6:22:2 length 67.500 us latency 200000 usFrom 7:33:2 20 Hz 1.942 ms to 7:29:10 length 0.000 us latency 200000 usFrom 7:33:2 20 Hz 1.942 ms to 7:33:2 length 8.300 us latency 200000 usFrom 7:33:2 20 Hz 1.942 ms to 7:35:2 length 16.600 us latency 200000 usFrom 7:33:2 20 Hz 1.942 ms to 8:30:20 length 3.500 us latency 200000 usFrom 7:35:1 20 Hz 1.230 ms to 5:22:4 length 5.633 us latency 200000 usFrom 7:35:1 20 Hz 1.230 ms to 6:22:4 length 5.633 us latency 200000 usFrom 7:35:1 20 Hz 1.230 ms to 7:29:1 length 5.633 us latency 200000 usFrom 7:35:1 20 Hz 1.230 ms to 7:29:10 length 8.300 us latency 200000 usFrom 7:35:1 20 Hz 1.230 ms to 7:33:2 length 5.633 us latency 200000 usFrom 7:35:1 20 Hz 1.230 ms to 8:26:22 length 5.633 us latency 200000 usFrom 7:35:1 20 Hz 1.230 ms to 8:30:20 length 8.133 us latency 200000 usFrom 7:35:2 20 Hz 0.827 ms to 5:22:4 length 5.633 us latency 200000 usFrom 7:35:2 20 Hz 0.827 ms to 6:22:4 length 5.633 us latency 200000 usFrom 7:35:2 20 Hz 0.827 ms to 7:33:2 length 19.267 us latency 200000 usFrom 7:35:2 20 Hz 0.827 ms to 8:26:22 length 5.633 us latency 200000 usFrom 7:35:2 20 Hz 0.827 ms to 8:30:20 length 28.433 us latency 200000 usFrom 7:35:4 20 Hz 2.100 ms to 5:22:4 length 17.667 us latency 200000 usFrom 7:35:4 20 Hz 2.100 ms to 6:22:4 length 17.667 us latency 200000 usFrom 7:35:4 20 Hz 2.100 ms to 7:29:1 length 17.667 us latency 85000 us129

From 7:35:4 20 Hz 2.100 ms to 7:29:10 length 16.300 us latency 200000 usFrom 7:35:4 20 Hz 2.100 ms to 7:33:2 length 68.567 us latency 200000 usFrom 7:35:4 20 Hz 2.100 ms to 8:26:22 length 68.567 us latency 200000 usFrom 7:35:4 20 Hz 2.100 ms to 8:30:20 length 35.333 us latency 200000 usFrom 8:16:1 5 Hz 0.563 ms to 7:29:1 length 4.567 us latency 200000 usFrom 8:16:2 5 Hz 1.126 ms to 1:0:1 length 0.833 us latency 200000 usFrom 8:16:2 5 Hz 1.126 ms to 2:0:1 length 0.833 us latency 200000 usFrom 8:16:2 5 Hz 1.126 ms to 3:0:1 length 0.833 us latency 200000 usFrom 8:16:2 5 Hz 1.126 ms to 4:0:1 length 0.833 us latency 200000 usFrom 8:16:2 5 Hz 1.126 ms to 5:16:1 length 0.833 us latency 200000 usFrom 8:16:2 5 Hz 1.126 ms to 5:16:2 length 12.467 us latency 200000 usFrom 8:16:2 5 Hz 1.126 ms to 5:16:3 length 21.633 us latency 93918 usFrom 8:16:2 5 Hz 1.126 ms to 5:19:5 length 0.833 us latency 200000 usFrom 8:16:2 5 Hz 1.126 ms to 5:21:5 length 0.833 us latency 200000 usFrom 8:16:2 5 Hz 1.126 ms to 5:22:4 length 6.633 us latency 200000 usFrom 8:16:2 5 Hz 1.126 ms to 6:16:1 length 0.833 us latency 200000 usFrom 8:16:2 5 Hz 1.126 ms to 6:16:2 length 12.467 us latency 200000 usFrom 8:16:2 5 Hz 1.126 ms to 6:16:3 length 21.633 us latency 93918 usFrom 8:16:2 5 Hz 1.126 ms to 6:19:5 length 0.833 us latency 200000 usFrom 8:16:2 5 Hz 1.126 ms to 6:21:5 length 0.833 us latency 200000 usFrom 8:16:2 5 Hz 1.126 ms to 6:22:4 length 6.633 us latency 200000 usFrom 8:16:2 5 Hz 1.126 ms to 7:16:1 length 0.833 us latency 200000 usFrom 8:16:2 5 Hz 1.126 ms to 7:16:2 length 11.633 us latency 200000 usFrom 8:16:2 5 Hz 1.126 ms to 7:16:3 length 21.633 us latency 93918 usFrom 8:16:2 5 Hz 1.126 ms to 7:20:4 length 0.833 us latency 200000 usFrom 8:16:2 5 Hz 1.126 ms to 7:29:2 length 0.833 us latency 200000 usFrom 8:16:2 5 Hz 1.126 ms to 7:31:1 length 0.833 us latency 200000 usFrom 8:16:2 5 Hz 1.126 ms to 7:32:1 length 0.833 us latency 200000 usFrom 8:16:2 5 Hz 1.126 ms to 7:33:2 length 0.833 us latency 200000 usFrom 8:16:2 5 Hz 1.126 ms to 7:35:1 length 0.833 us latency 200000 usFrom 8:16:2 5 Hz 1.126 ms to 8:16:2 length 0.833 us latency 200000 usFrom 8:16:2 5 Hz 1.126 ms to 8:20:4 length 0.833 us latency 200000 usFrom 8:16:2 5 Hz 1.126 ms to 8:26:22 length 0.833 us latency 200000 usFrom 8:16:2 5 Hz 1.126 ms to 8:27:1 length 0.833 us latency 200000 usFrom 8:16:2 5 Hz 1.126 ms to 8:28:1 length 0.833 us latency 200000 usFrom 8:16:2 5 Hz 1.126 ms to 8:30:20 length 22.367 us latency 200000 usFrom 8:16:5 5 Hz 3.041 ms to 1:0:1 length 5.800 us latency 200000 usFrom 8:16:5 5 Hz 3.041 ms to 2:0:1 length 5.800 us latency 200000 usFrom 8:16:5 5 Hz 3.041 ms to 3:0:1 length 5.800 us latency 200000 usFrom 8:16:5 5 Hz 3.041 ms to 4:0:1 length 5.800 us latency 200000 usFrom 8:16:5 5 Hz 3.041 ms to 5:16:5 length 39.167 us latency 200000 usFrom 8:16:5 5 Hz 3.041 ms to 6:16:5 length 39.167 us latency 200000 usFrom 8:16:5 5 Hz 3.041 ms to 7:16:5 length 39.167 us latency 200000 usFrom 8:16:5 5 Hz 3.041 ms to 7:29:10 length 9.300 us latency 200000 us130

From 8:16:5 5 Hz 3.041 ms to 8:16:5 length 4.200 us latency 200000 usFrom 8:16:6 5 Hz 1.014 ms to 8:26:22 length 0.000 us latency 200000 usFrom 8:16:6 5 Hz 1.014 ms to 8:28:1 length 0.000 us latency 200000 usFrom 8:17:1 10 Hz 0.980 ms to 11:2:3 length 447.733 us latency 200000 usFrom 8:17:1 10 Hz 0.980 ms to 5:17:1 length 5.167 us latency 200000 usFrom 8:17:1 10 Hz 0.980 ms to 6:17:1 length 5.167 us latency 200000 usFrom 8:17:1 10 Hz 0.980 ms to 7:17:1 length 5.167 us latency 200000 usFrom 8:17:1 10 Hz 0.980 ms to 7:29:9 length 94.667 us latency 200000 usFrom 8:17:1 10 Hz 0.980 ms to 8:30:20 length 353.067 us latency 200000 usFrom 8:17:1 10 Hz 0.980 ms to 9:2:3 length 447.733 us latency 200000 usFrom 8:18:1 10 Hz 0.750 ms to 1:0:1 length 3.333 us latency 200000 usFrom 8:18:1 10 Hz 0.750 ms to 2:0:1 length 3.333 us latency 200000 usFrom 8:18:1 10 Hz 0.750 ms to 3:0:1 length 3.333 us latency 200000 usFrom 8:18:1 10 Hz 0.750 ms to 4:0:1 length 3.333 us latency 200000 usFrom 8:20:1 40 Hz 0.850 ms to 8:30:20 length 6.867 us latency 200000 usFrom 8:20:2 10 Hz 0.800 ms to 8:30:20 length 47.933 us latency 200000 usFrom 8:20:3 20 Hz 1.150 ms to 8:30:20 length 23.800 us latency 200000 usFrom 8:20:4 5 Hz 0.676 ms to 5:22:4 length 9.300 us latency 200000 usFrom 8:20:4 5 Hz 0.676 ms to 6:22:4 length 9.300 us latency 200000 usFrom 8:20:4 5 Hz 0.676 ms to 7:20:4 length 2.967 us latency 200000 usFrom 8:20:4 5 Hz 0.676 ms to 7:29:10 length 9.300 us latency 200000 usFrom 8:20:4 5 Hz 0.676 ms to 8:30:20 length 32.033 us latency 200000 usFrom 8:26:22 20 Hz 8.600 ms to 5:21:3 length 2.433 us latency 200000 usFrom 8:26:22 20 Hz 8.600 ms to 5:21:4 length 4.033 us latency 200000 usFrom 8:26:22 20 Hz 8.600 ms to 5:21:5 length 13.700 us latency 200000 usFrom 8:26:22 20 Hz 8.600 ms to 5:22:2 length 140.167 us latency 200000 usFrom 8:26:22 20 Hz 8.600 ms to 5:22:3 length 4.033 us latency 200000 usFrom 8:26:22 20 Hz 8.600 ms to 5:22:4 length 13.700 us latency 200000 usFrom 8:26:22 20 Hz 8.600 ms to 6:21:3 length 2.433 us latency 200000 usFrom 8:26:22 20 Hz 8.600 ms to 6:21:4 length 4.033 us latency 200000 usFrom 8:26:22 20 Hz 8.600 ms to 6:21:5 length 13.700 us latency 200000 usFrom 8:26:22 20 Hz 8.600 ms to 6:22:2 length 140.167 us latency 200000 usFrom 8:26:22 20 Hz 8.600 ms to 6:22:3 length 4.033 us latency 200000 usFrom 8:26:22 20 Hz 8.600 ms to 6:22:4 length 13.700 us latency 200000 usFrom 8:26:22 20 Hz 8.600 ms to 7:29:10 length 13.933 us latency 200000 usFrom 8:26:22 20 Hz 8.600 ms to 7:32:1 length 10.500 us latency 200000 usFrom 8:26:22 20 Hz 8.600 ms to 7:33:2 length 24.733 us latency 200000 usFrom 8:26:22 20 Hz 8.600 ms to 7:35:4 length 39.767 us latency 200000 usFrom 8:26:22 20 Hz 8.600 ms to 8:27:1 length 14.767 us latency 100000 usFrom 8:26:22 20 Hz 8.600 ms to 8:28:1 length 10.500 us latency 100000 usFrom 8:26:22 20 Hz 8.600 ms to 8:30:20 length 62.700 us latency 200000 usFrom 8:27:1 20 Hz 3.550 ms to 5:21:4 length 4.033 us latency 200000 usFrom 8:27:1 20 Hz 3.550 ms to 5:22:3 length 4.033 us latency 200000 usFrom 8:27:1 20 Hz 3.550 ms to 6:21:4 length 4.033 us latency 200000 us131

From 8:27:1 20 Hz 3.550 ms to 6:22:3 length 4.033 us latency 200000 usFrom 8:27:1 20 Hz 3.550 ms to 7:29:10 length 8.300 us latency 200000 usFrom 8:27:1 20 Hz 3.550 ms to 7:32:1 length 4.033 us latency 200000 usFrom 8:27:1 20 Hz 3.550 ms to 8:26:22 length 4.033 us latency 100000 usFrom 8:27:1 20 Hz 3.550 ms to 8:30:20 length 8.067 us latency 200000 usFrom 8:28:1 20 Hz 6.550 ms to 5:21:3 length 2.433 us latency 200000 usFrom 8:28:1 20 Hz 6.550 ms to 5:21:4 length 4.033 us latency 200000 usFrom 8:28:1 20 Hz 6.550 ms to 5:21:5 length 4.033 us latency 200000 usFrom 8:28:1 20 Hz 6.550 ms to 5:22:2 length 2.433 us latency 200000 usFrom 8:28:1 20 Hz 6.550 ms to 5:22:3 length 4.033 us latency 200000 usFrom 8:28:1 20 Hz 6.550 ms to 6:21:3 length 2.433 us latency 200000 usFrom 8:28:1 20 Hz 6.550 ms to 6:21:4 length 4.033 us latency 200000 usFrom 8:28:1 20 Hz 6.550 ms to 6:21:5 length 4.033 us latency 200000 usFrom 8:28:1 20 Hz 6.550 ms to 6:22:2 length 2.433 us latency 200000 usFrom 8:28:1 20 Hz 6.550 ms to 6:22:3 length 4.033 us latency 200000 usFrom 8:28:1 20 Hz 6.550 ms to 7:29:10 length 8.300 us latency 200000 usFrom 8:28:1 20 Hz 6.550 ms to 7:32:1 length 8.067 us latency 200000 usFrom 8:28:1 20 Hz 6.550 ms to 8:26:22 length 10.500 us latency 100000 usFrom 8:28:1 20 Hz 6.550 ms to 8:30:20 length 25.333 us latency 200000 usFrom 8:30:20 20 Hz 9.155 ms to 7:29:10 length 8.300 us latency 200000 usFrom 8:30:20 20 Hz 9.155 ms to 7:31:1 length 169.200 us latency 200000 usFrom 8:30:20 20 Hz 9.155 ms to 7:35:4 length 293.700 us latency 200000 usFrom 9:2:3 5 Hz 0.600 ms to 1:0:1 length 11.967 us latency 200000 usFrom 9:2:3 5 Hz 0.600 ms to 2:0:1 length 11.967 us latency 200000 usFrom 9:2:3 5 Hz 0.600 ms to 3:0:1 length 11.967 us latency 200000 usFrom 9:2:3 5 Hz 0.600 ms to 4:0:1 length 11.967 us latency 200000 usFrom 9:2:3 5 Hz 0.600 ms to 5:17:1 length 49.000 us latency 200000 usFrom 9:2:3 5 Hz 0.600 ms to 6:17:1 length 49.000 us latency 200000 usFrom 9:2:3 5 Hz 0.600 ms to 7:17:1 length 49.000 us latency 200000 usFrom 9:2:3 5 Hz 0.600 ms to 8:17:1 length 49.000 us latency 200000 us
132

Appendix BThe Allocation and Scheduling Results of the Problem given in Appendix A:The schedule for processor 0 is:13: 0: 2 starts at 0 ms 0 us and �nishs at 0 ms 0 us12: 0: 2 starts at 0 ms 0 us and �nishs at 0 ms 0 us4: 0: 2 starts at 0 ms 0 us and �nishs at 0 ms 0 us14: 0: 2 starts at 0 ms 0 us and �nishs at 0 ms 0 us18:35: 1 starts at 0 ms 0 us and �nishs at 1 ms 231 us7:17: 1 starts at 1 ms 231 us and �nishs at 2 ms 212 us18:35: 4 starts at 2 ms 455 us and �nishs at 4 ms 555 us6:22: 2 starts at 5 ms 151 us and �nishs at 7 ms 201 us19:26:22 starts at 7 ms 201 us and �nishs at 15 ms 802 us6:19: 2 starts at 15 ms 802 us and �nishs at 18 ms 203 us5:17: 1 starts at 18 ms 203 us and �nishs at 19 ms 184 us5:16: 1 starts at 19 ms 184 us and �nishs at 19 ms 748 us19:28: 1 starts at 19 ms 795 us and �nishs at 26 ms 346 us6:21: 3 starts at 26 ms 346 us and �nishs at 29 ms 146 us18:17: 1 starts at 29 ms 146 us and �nishs at 30 ms 127 us7:32: 1 starts at 37 ms 778 us and �nishs at 37 ms 778 us9: 2: 3 starts at 37 ms 778 us and �nishs at 38 ms 379 us6:16: 1 starts at 38 ms 379 us and �nishs at 38 ms 943 us8:16: 2 starts at 38 ms 943 us and �nishs at 40 ms 70 us7:16: 2 starts at 40 ms 70 us and �nishs at 41 ms 197 us18:35: 1 starts at 49 ms 875 us and �nishs at 51 ms 106 us18:35: 4 starts at 52 ms 330 us and �nishs at 54 ms 430 us6:22: 2 starts at 55 ms 26 us and �nishs at 57 ms 76 us19:26:22 starts at 57 ms 78 us and �nishs at 65 ms 679 us19:28: 1 starts at 69 ms 670 us and �nishs at 76 ms 221 us7:16: 3 starts at 76 ms 221 us and �nishs at 76 ms 221 us6:21: 3 starts at 76 ms 232 us and �nishs at 79 ms 32 us18:29:10 starts at 79 ms 32 us and �nishs at 95 ms 682 us17:19: 5 starts at 95 ms 859 us and �nishs at 95 ms 960 us18:20: 4 starts at 96 ms 529 us and �nishs at 97 ms 205 us18:32: 3 starts at 97 ms 205 us and �nishs at 98 ms 326 us13: 0: 2 starts at 99 ms 750 us and �nishs at 99 ms 750 us12: 0: 2 starts at 99 ms 750 us and �nishs at 99 ms 750 us4: 0: 2 starts at 99 ms 750 us and �nishs at 99 ms 750 us14: 0: 2 starts at 99 ms 750 us and �nishs at 99 ms 750 us18:35: 1 starts at 99 ms 750 us and �nishs at 100 ms 981 us7:17: 1 starts at 100 ms 981 us and �nishs at 101 ms 962 us18:35: 4 starts at 102 ms 205 us and �nishs at 104 ms 305 us6:22: 2 starts at 104 ms 901 us and �nishs at 106 ms 951 us19:26:22 starts at 106 ms 955 us and �nishs at 115 ms 556 us6:19: 2 starts at 115 ms 556 us and �nishs at 117 ms 957 us5:17: 1 starts at 118 ms 1 us and �nishs at 118 ms 982 us19:28: 1 starts at 119 ms 545 us and �nishs at 126 ms 96 us18:32: 1 starts at 126 ms 96 us and �nishs at 126 ms 96 us6:21: 3 starts at 126 ms 115 us and �nishs at 128 ms 915 us18:17: 1 starts at 128 ms 915 us and �nishs at 129 ms 896 us6:22: 3 starts at 129 ms 896 us and �nishs at 137 ms 547 us133

6:22: 4 starts at 137 ms 547 us and �nishs at 149 ms 547 us18:35: 1 starts at 149 ms 625 us and �nishs at 150 ms 856 us18:35: 4 starts at 152 ms 80 us and �nishs at 154 ms 180 us6:22: 2 starts at 154 ms 776 us and �nishs at 156 ms 826 us19:26:22 starts at 156 ms 832 us and �nishs at 165 ms 433 us19:28: 1 starts at 169 ms 420 us and �nishs at 175 ms 971 us6:21: 3 starts at 175 ms 998 us and �nishs at 178 ms 798 us18:29:10 starts at 178 ms 917 us and �nishs at 195 ms 567 us18:29: 9 starts at 195 ms 567 us and �nishs at 199 ms 646 us6:22: 3 starts at 230 ms 127 us and �nishs at 237 ms 778 usThe schedule for processor 1 is:1: 0: 2 starts at 0 ms 0 us and �nishs at 0 ms 0 us12: 0: 3 starts at 0 ms 0 us and �nishs at 0 ms 0 us14: 0: 3 starts at 0 ms 0 us and �nishs at 0 ms 0 us13: 0: 3 starts at 0 ms 0 us and �nishs at 0 ms 0 us6:19: 1 starts at 0 ms 0 us and �nishs at 1 ms 180 us5:19: 1 starts at 1 ms 180 us and �nishs at 2 ms 360 us7:20: 1 starts at 2 ms 360 us and �nishs at 3 ms 211 us8:20: 1 starts at 3 ms 211 us and �nishs at 4 ms 62 us6:19: 4 starts at 4 ms 62 us and �nishs at 6 ms 62 us8:20: 3 starts at 6 ms 62 us and �nishs at 7 ms 212 us7:35: 1 starts at 7 ms 212 us and �nishs at 8 ms 443 us6:19: 3 starts at 8 ms 443 us and �nishs at 10 ms 343 us6:17: 1 starts at 10 ms 343 us and �nishs at 11 ms 324 us8:16: 1 starts at 11 ms 324 us and �nishs at 11 ms 888 us19:16: 1 starts at 11 ms 888 us and �nishs at 12 ms 452 us6:19: 1 starts at 12 ms 469 us and �nishs at 13 ms 649 us5:19: 1 starts at 13 ms 649 us and �nishs at 14 ms 829 us7:35: 4 starts at 14 ms 829 us and �nishs at 16 ms 929 us12: 0: 3 starts at 24 ms 938 us and �nishs at 24 ms 938 us14: 0: 3 starts at 24 ms 938 us and �nishs at 24 ms 938 us13: 0: 3 starts at 24 ms 938 us and �nishs at 24 ms 938 us6:19: 1 starts at 24 ms 938 us and �nishs at 26 ms 118 us5:19: 1 starts at 26 ms 118 us and �nishs at 27 ms 298 us7:20: 1 starts at 27 ms 298 us and �nishs at 28 ms 149 us8:20: 1 starts at 28 ms 149 us and �nishs at 29 ms 0 us6:19: 4 starts at 29 ms 0 us and �nishs at 31 ms 0 us17:17: 1 starts at 31 ms 949 us and �nishs at 32 ms 930 us4: 0: 1 starts at 32 ms 930 us and �nishs at 32 ms 930 us17:16: 2 starts at 32 ms 930 us and �nishs at 34 ms 57 us7:35: 2 starts at 34 ms 972 us and �nishs at 35 ms 800 us12: 0: 1 starts at 36 ms 500 us and �nishs at 36 ms 500 us6:19: 1 starts at 37 ms 407 us and �nishs at 38 ms 587 us5:19: 1 starts at 38 ms 587 us and �nishs at 39 ms 767 us8:30:20 starts at 39 ms 767 us and �nishs at 48 ms 922 us12: 0: 3 starts at 49 ms 876 us and �nishs at 49 ms 876 us14: 0: 3 starts at 49 ms 876 us and �nishs at 49 ms 876 us13: 0: 3 starts at 49 ms 876 us and �nishs at 49 ms 876 us6:19: 1 starts at 49 ms 876 us and �nishs at 51 ms 56 us5:19: 1 starts at 51 ms 56 us and �nishs at 52 ms 236 us7:20: 1 starts at 52 ms 236 us and �nishs at 53 ms 87 us134

8:20: 1 starts at 53 ms 87 us and �nishs at 53 ms 938 us6:19: 4 starts at 53 ms 938 us and �nishs at 55 ms 938 us8:20: 3 starts at 55 ms 938 us and �nishs at 57 ms 88 us7:35: 1 starts at 57 ms 88 us and �nishs at 58 ms 319 us6:19: 3 starts at 58 ms 319 us and �nishs at 60 ms 219 us6:19: 1 starts at 62 ms 345 us and �nishs at 63 ms 525 us5:19: 1 starts at 63 ms 525 us and �nishs at 64 ms 705 us7:35: 4 starts at 64 ms 773 us and �nishs at 66 ms 873 us6:21: 4 starts at 66 ms 873 us and �nishs at 72 ms 774 us12: 0: 3 starts at 74 ms 814 us and �nishs at 74 ms 814 us14: 0: 3 starts at 74 ms 814 us and �nishs at 74 ms 814 us13: 0: 3 starts at 74 ms 814 us and �nishs at 74 ms 814 us6:19: 1 starts at 74 ms 814 us and �nishs at 75 ms 994 us5:19: 1 starts at 75 ms 994 us and �nishs at 77 ms 174 us7:20: 1 starts at 77 ms 174 us and �nishs at 78 ms 25 us8:20: 1 starts at 78 ms 25 us and �nishs at 78 ms 876 us6:19: 4 starts at 78 ms 876 us and �nishs at 80 ms 876 us13: 0: 1 starts at 82 ms 969 us and �nishs at 82 ms 969 us18:16: 2 starts at 83 ms 77 us and �nishs at 84 ms 204 us7:35: 2 starts at 84 ms 989 us and �nishs at 85 ms 817 us19:16: 3 starts at 85 ms 817 us and �nishs at 85 ms 817 us18:16: 3 starts at 85 ms 817 us and �nishs at 85 ms 817 us6:19: 1 starts at 87 ms 283 us and �nishs at 88 ms 463 us5:19: 1 starts at 88 ms 463 us and �nishs at 89 ms 643 us8:30:20 starts at 89 ms 813 us and �nishs at 98 ms 968 us1: 0: 2 starts at 99 ms 750 us and �nishs at 99 ms 750 us12: 0: 3 starts at 99 ms 752 us and �nishs at 99 ms 752 us14: 0: 3 starts at 99 ms 752 us and �nishs at 99 ms 752 us13: 0: 3 starts at 99 ms 752 us and �nishs at 99 ms 752 us6:19: 1 starts at 99 ms 752 us and �nishs at 100 ms 932 us5:19: 1 starts at 100 ms 932 us and �nishs at 102 ms 112 us7:20: 1 starts at 102 ms 112 us and �nishs at 102 ms 963 us8:20: 1 starts at 102 ms 963 us and �nishs at 103 ms 814 us6:19: 4 starts at 103 ms 814 us and �nishs at 105 ms 814 us8:20: 3 starts at 105 ms 814 us and �nishs at 106 ms 964 us7:35: 1 starts at 106 ms 964 us and �nishs at 108 ms 195 us6:19: 3 starts at 108 ms 195 us and �nishs at 110 ms 95 us6:17: 1 starts at 110 ms 95 us and �nishs at 111 ms 76 us6:19: 1 starts at 112 ms 221 us and �nishs at 113 ms 401 us5:19: 1 starts at 113 ms 401 us and �nishs at 114 ms 581 us7:35: 4 starts at 114 ms 717 us and �nishs at 116 ms 817 us17:22: 3 starts at 116 ms 817 us and �nishs at 124 ms 468 us12: 0: 3 starts at 124 ms 690 us and �nishs at 124 ms 690 us14: 0: 3 starts at 124 ms 690 us and �nishs at 124 ms 690 us13: 0: 3 starts at 124 ms 690 us and �nishs at 124 ms 690 us6:19: 1 starts at 124 ms 690 us and �nishs at 125 ms 870 us5:19: 1 starts at 125 ms 870 us and �nishs at 127 ms 50 us7:20: 1 starts at 127 ms 50 us and �nishs at 127 ms 901 us8:20: 1 starts at 127 ms 901 us and �nishs at 128 ms 752 us6:19: 4 starts at 128 ms 752 us and �nishs at 130 ms 752 us17:17: 1 starts at 131 ms 713 us and �nishs at 132 ms 694 us135

7:35: 2 starts at 134 ms 947 us and �nishs at 135 ms 775 us6:19: 1 starts at 137 ms 159 us and �nishs at 138 ms 339 us5:19: 1 starts at 138 ms 339 us and �nishs at 139 ms 519 us8:30:20 starts at 139 ms 859 us and �nishs at 149 ms 14 us12: 0: 3 starts at 149 ms 628 us and �nishs at 149 ms 628 us14: 0: 3 starts at 149 ms 628 us and �nishs at 149 ms 628 us13: 0: 3 starts at 149 ms 628 us and �nishs at 149 ms 628 us6:19: 1 starts at 149 ms 628 us and �nishs at 150 ms 808 us5:19: 1 starts at 150 ms 808 us and �nishs at 151 ms 988 us7:20: 1 starts at 151 ms 988 us and �nishs at 152 ms 839 us8:20: 1 starts at 152 ms 839 us and �nishs at 153 ms 690 us6:19: 4 starts at 153 ms 690 us and �nishs at 155 ms 690 us8:20: 3 starts at 155 ms 690 us and �nishs at 156 ms 840 us7:35: 1 starts at 156 ms 840 us and �nishs at 158 ms 71 us6:19: 3 starts at 158 ms 71 us and �nishs at 159 ms 971 us6:19: 1 starts at 162 ms 97 us and �nishs at 163 ms 277 us5:19: 1 starts at 163 ms 277 us and �nishs at 164 ms 457 us7:35: 4 starts at 164 ms 661 us and �nishs at 166 ms 761 us6:21: 4 starts at 166 ms 761 us and �nishs at 172 ms 662 us12: 0: 3 starts at 174 ms 566 us and �nishs at 174 ms 566 us14: 0: 3 starts at 174 ms 566 us and �nishs at 174 ms 566 us13: 0: 3 starts at 174 ms 566 us and �nishs at 174 ms 566 us6:19: 1 starts at 174 ms 566 us and �nishs at 175 ms 746 us5:19: 1 starts at 175 ms 746 us and �nishs at 176 ms 926 us7:20: 1 starts at 176 ms 926 us and �nishs at 177 ms 777 us8:20: 1 starts at 177 ms 777 us and �nishs at 178 ms 628 us6:19: 4 starts at 178 ms 628 us and �nishs at 180 ms 628 us7:35: 2 starts at 184 ms 905 us and �nishs at 185 ms 733 us6:19: 1 starts at 187 ms 35 us and �nishs at 188 ms 215 us5:19: 1 starts at 188 ms 215 us and �nishs at 189 ms 395 us8:30:20 starts at 189 ms 905 us and �nishs at 199 ms 60 us17:22: 3 starts at 216 ms 929 us and �nishs at 224 ms 580 usThe schedule for processor 2 is:2: 0: 3 starts at 0 ms 0 us and �nishs at 0 ms 0 us3: 0: 3 starts at 0 ms 0 us and �nishs at 0 ms 0 us17:19: 1 starts at 0 ms 0 us and �nishs at 1 ms 180 us7:29: 1 starts at 1 ms 180 us and �nishs at 3 ms 632 us8:26:22 starts at 3 ms 632 us and �nishs at 12 ms 233 us17:19: 1 starts at 12 ms 469 us and �nishs at 13 ms 649 us7:20: 3 starts at 13 ms 649 us and �nishs at 14 ms 799 us19:17: 1 starts at 14 ms 799 us and �nishs at 15 ms 780 us18:33: 2 starts at 15 ms 802 us and �nishs at 17 ms 745 us16:22: 2 starts at 17 ms 745 us and �nishs at 19 ms 795 us5:21: 3 starts at 19 ms 795 us and �nishs at 22 ms 595 us5:22: 2 starts at 22 ms 613 us and �nishs at 24 ms 663 us2: 0: 3 starts at 24 ms 938 us and �nishs at 24 ms 938 us3: 0: 3 starts at 24 ms 938 us and �nishs at 24 ms 938 us17:19: 1 starts at 24 ms 938 us and �nishs at 26 ms 118 us7:29: 1 starts at 26 ms 119 us and �nishs at 28 ms 571 us5:19: 2 starts at 28 ms 571 us and �nishs at 30 ms 972 us8:18: 1 starts at 30 ms 972 us and �nishs at 31 ms 722 us136

11: 2: 3 starts at 31 ms 722 us and �nishs at 32 ms 323 us19:27: 1 starts at 32 ms 930 us and �nishs at 36 ms 480 us17:19: 1 starts at 37 ms 407 us and �nishs at 38 ms 587 us17:22: 2 starts at 38 ms 587 us and �nishs at 40 ms 637 us17:21: 3 starts at 40 ms 646 us and �nishs at 43 ms 446 us16:21: 4 starts at 43 ms 446 us and �nishs at 49 ms 347 us2: 0: 3 starts at 49 ms 876 us and �nishs at 49 ms 876 us3: 0: 3 starts at 49 ms 876 us and �nishs at 49 ms 876 us17:19: 1 starts at 49 ms 876 us and �nishs at 51 ms 56 us7:29: 1 starts at 51 ms 58 us and �nishs at 53 ms 510 us8:26:22 starts at 53 ms 510 us and �nishs at 62 ms 111 us17:19: 1 starts at 62 ms 345 us and �nishs at 63 ms 525 us7:20: 3 starts at 63 ms 525 us and �nishs at 64 ms 675 us22: 2: 3 starts at 64 ms 675 us and �nishs at 65 ms 276 us18:33: 2 starts at 65 ms 746 us and �nishs at 67 ms 689 us16:22: 2 starts at 67 ms 689 us and �nishs at 69 ms 739 us5:21: 3 starts at 69 ms 739 us and �nishs at 72 ms 539 us5:22: 2 starts at 72 ms 539 us and �nishs at 74 ms 589 us6:16: 3 starts at 74 ms 589 us and �nishs at 74 ms 589 us6:19: 5 starts at 74 ms 700 us and �nishs at 74 ms 801 us2: 0: 3 starts at 74 ms 814 us and �nishs at 74 ms 814 us3: 0: 3 starts at 74 ms 814 us and �nishs at 74 ms 814 us17:19: 1 starts at 74 ms 814 us and �nishs at 75 ms 994 us7:29: 1 starts at 75 ms 997 us and �nishs at 78 ms 449 us8:20: 4 starts at 78 ms 449 us and �nishs at 79 ms 125 us7:29: 2 starts at 79 ms 125 us and �nishs at 80 ms 369 us18:29: 2 starts at 80 ms 369 us and �nishs at 81 ms 613 us16:16: 2 starts at 81 ms 613 us and �nishs at 82 ms 740 us19:27: 1 starts at 82 ms 812 us and �nishs at 86 ms 362 us18:16: 1 starts at 86 ms 362 us and �nishs at 86 ms 926 us17:19: 1 starts at 87 ms 283 us and �nishs at 88 ms 463 us17:22: 2 starts at 88 ms 611 us and �nishs at 90 ms 661 us17:21: 3 starts at 90 ms 661 us and �nishs at 93 ms 461 us19:20: 4 starts at 95 ms 843 us and �nishs at 96 ms 519 us2: 0: 3 starts at 99 ms 752 us and �nishs at 99 ms 752 us3: 0: 3 starts at 99 ms 752 us and �nishs at 99 ms 752 us17:19: 1 starts at 99 ms 752 us and �nishs at 100 ms 932 us7:29: 1 starts at 100 ms 936 us and �nishs at 103 ms 388 us8:26:22 starts at 103 ms 388 us and �nishs at 111 ms 989 us17:19: 1 starts at 112 ms 221 us and �nishs at 113 ms 401 us7:20: 3 starts at 113 ms 401 us and �nishs at 114 ms 551 us19:17: 1 starts at 114 ms 551 us and �nishs at 115 ms 532 us18:33: 2 starts at 115 ms 690 us and �nishs at 117 ms 633 us16:22: 2 starts at 117 ms 633 us and �nishs at 119 ms 683 us5:21: 3 starts at 119 ms 683 us and �nishs at 122 ms 483 us5:22: 2 starts at 122 ms 483 us and �nishs at 124 ms 533 us2: 0: 3 starts at 124 ms 690 us and �nishs at 124 ms 690 us3: 0: 3 starts at 124 ms 690 us and �nishs at 124 ms 690 us17:19: 1 starts at 124 ms 690 us and �nishs at 125 ms 870 us7:29: 1 starts at 125 ms 875 us and �nishs at 128 ms 327 us5:19: 2 starts at 128 ms 327 us and �nishs at 130 ms 728 us137

8:18: 1 starts at 130 ms 728 us and �nishs at 131 ms 478 us19:27: 1 starts at 132 ms 694 us and �nishs at 136 ms 244 us17:19: 1 starts at 137 ms 159 us and �nishs at 138 ms 339 us17:22: 2 starts at 138 ms 635 us and �nishs at 140 ms 685 us17:21: 3 starts at 140 ms 685 us and �nishs at 143 ms 485 us16:21: 4 starts at 143 ms 485 us and �nishs at 149 ms 386 us2: 0: 3 starts at 149 ms 628 us and �nishs at 149 ms 628 us3: 0: 3 starts at 149 ms 628 us and �nishs at 149 ms 628 us17:19: 1 starts at 149 ms 628 us and �nishs at 150 ms 808 us7:29: 1 starts at 150 ms 814 us and �nishs at 153 ms 266 us8:26:22 starts at 153 ms 266 us and �nishs at 161 ms 867 us17:19: 1 starts at 162 ms 97 us and �nishs at 163 ms 277 us7:20: 3 starts at 163 ms 277 us and �nishs at 164 ms 427 us18:33: 2 starts at 165 ms 634 us and �nishs at 167 ms 577 us16:22: 2 starts at 167 ms 577 us and �nishs at 169 ms 627 us5:21: 3 starts at 169 ms 627 us and �nishs at 172 ms 427 us5:22: 2 starts at 172 ms 427 us and �nishs at 174 ms 477 us2: 0: 3 starts at 174 ms 566 us and �nishs at 174 ms 566 us3: 0: 3 starts at 174 ms 566 us and �nishs at 174 ms 566 us17:19: 1 starts at 174 ms 566 us and �nishs at 175 ms 746 us7:29: 1 starts at 175 ms 753 us and �nishs at 178 ms 205 us19:27: 1 starts at 182 ms 576 us and �nishs at 186 ms 126 us17:19: 1 starts at 187 ms 35 us and �nishs at 188 ms 215 us17:22: 2 starts at 188 ms 659 us and �nishs at 190 ms 709 us17:21: 3 starts at 190 ms 709 us and �nishs at 193 ms 509 usThe schedule for processor 3 is:4: 0: 3 starts at 0 ms 0 us and �nishs at 0 ms 0 us1: 0: 3 starts at 0 ms 0 us and �nishs at 0 ms 0 us18:29: 1 starts at 0 ms 3 us and �nishs at 2 ms 455 us5:19: 3 starts at 2 ms 455 us and �nishs at 4 ms 355 us8:20: 2 starts at 4 ms 355 us and �nishs at 5 ms 156 us19:16: 6 starts at 5 ms 156 us and �nishs at 6 ms 171 us8:16: 6 starts at 6 ms 171 us and �nishs at 7 ms 186 us8:28: 1 starts at 12 ms 374 us and �nishs at 18 ms 925 us8:17: 1 starts at 19 ms 556 us and �nishs at 20 ms 537 us4: 0: 3 starts at 24 ms 938 us and �nishs at 24 ms 938 us1: 0: 3 starts at 24 ms 938 us and �nishs at 24 ms 938 us18:29: 1 starts at 24 ms 942 us and �nishs at 27 ms 394 us8:27: 1 starts at 27 ms 394 us and �nishs at 30 ms 944 us16:17: 1 starts at 30 ms 944 us and �nishs at 31 ms 925 us7:29: 9 starts at 34 ms 628 us and �nishs at 38 ms 707 us4: 0: 3 starts at 49 ms 876 us and �nishs at 49 ms 876 us1: 0: 3 starts at 49 ms 876 us and �nishs at 49 ms 876 us18:29: 1 starts at 49 ms 881 us and �nishs at 52 ms 333 us5:19: 3 starts at 52 ms 333 us and �nishs at 54 ms 233 us16:22: 3 starts at 54 ms 233 us and �nishs at 61 ms 884 us8:28: 1 starts at 62 ms 258 us and �nishs at 68 ms 809 us14: 0: 1 starts at 68 ms 809 us and �nishs at 68 ms 809 us2: 0: 1 starts at 72 ms 60 us and �nishs at 72 ms 60 us3: 0: 1 starts at 72 ms 159 us and �nishs at 72 ms 159 us4: 0: 3 starts at 74 ms 814 us and �nishs at 74 ms 814 us138

1: 0: 3 starts at 74 ms 814 us and �nishs at 74 ms 814 us18:29: 1 starts at 74 ms 820 us and �nishs at 77 ms 272 us8:27: 1 starts at 77 ms 276 us and �nishs at 80 ms 826 us5:21: 5 starts at 80 ms 826 us and �nishs at 95 ms 427 us16:19: 5 starts at 95 ms 748 us and �nishs at 95 ms 849 us6:16: 5 starts at 95 ms 849 us and �nishs at 98 ms 890 us4: 0: 3 starts at 99 ms 752 us and �nishs at 99 ms 752 us1: 0: 3 starts at 99 ms 752 us and �nishs at 99 ms 752 us18:29: 1 starts at 99 ms 759 us and �nishs at 102 ms 211 us5:19: 3 starts at 102 ms 211 us and �nishs at 104 ms 111 us8:20: 2 starts at 104 ms 111 us and �nishs at 104 ms 912 us18:16: 5 starts at 104 ms 912 us and �nishs at 107 ms 953 us17:16: 5 starts at 108 ms 21 us and �nishs at 111 ms 62 us8:28: 1 starts at 112 ms 139 us and �nishs at 118 ms 690 us8:17: 1 starts at 119 ms 354 us and �nishs at 120 ms 335 us4: 0: 3 starts at 124 ms 690 us and �nishs at 124 ms 690 us1: 0: 3 starts at 124 ms 690 us and �nishs at 124 ms 690 us18:29: 1 starts at 124 ms 698 us and �nishs at 127 ms 150 us8:27: 1 starts at 127 ms 158 us and �nishs at 130 ms 708 us16:17: 1 starts at 130 ms 708 us and �nishs at 131 ms 689 us17:21: 5 starts at 131 ms 689 us and �nishs at 146 ms 290 us4: 0: 3 starts at 149 ms 628 us and �nishs at 149 ms 628 us1: 0: 3 starts at 149 ms 628 us and �nishs at 149 ms 628 us18:29: 1 starts at 149 ms 637 us and �nishs at 152 ms 89 us5:19: 3 starts at 152 ms 89 us and �nishs at 153 ms 989 us16:22: 3 starts at 154 ms 60 us and �nishs at 161 ms 711 us8:28: 1 starts at 162 ms 20 us and �nishs at 168 ms 571 us4: 0: 3 starts at 174 ms 566 us and �nishs at 174 ms 566 us1: 0: 3 starts at 174 ms 566 us and �nishs at 174 ms 566 us18:29: 1 starts at 174 ms 576 us and �nishs at 177 ms 28 us8:27: 1 starts at 177 ms 40 us and �nishs at 180 ms 590 us5:22: 4 starts at 180 ms 590 us and �nishs at 192 ms 590 usThe schedule for processor 4 is:3: 0: 2 starts at 0 ms 0 us and �nishs at 0 ms 0 us15: 0: 3 starts at 0 ms 0 us and �nishs at 0 ms 0 us16:19: 4 starts at 0 ms 0 us and �nishs at 2 ms 0 us6:21: 2 starts at 2 ms 0 us and �nishs at 5 ms 151 us19:18: 1 starts at 5 ms 151 us and �nishs at 5 ms 901 us6:16: 2 starts at 5 ms 901 us and �nishs at 7 ms 28 us15: 0: 3 starts at 24 ms 938 us and �nishs at 24 ms 938 us16:19: 4 starts at 24 ms 938 us and �nishs at 26 ms 938 us6:21: 2 starts at 26 ms 938 us and �nishs at 30 ms 89 us16:21: 3 starts at 30 ms 89 us and �nishs at 32 ms 889 us7:33: 2 starts at 32 ms 889 us and �nishs at 34 ms 832 us15: 0: 3 starts at 49 ms 876 us and �nishs at 49 ms 876 us16:19: 4 starts at 49 ms 876 us and �nishs at 51 ms 876 us6:21: 2 starts at 51 ms 876 us and �nishs at 55 ms 27 us7:29:10 starts at 55 ms 27 us and �nishs at 71 ms 677 us7:31: 1 starts at 71 ms 842 us and �nishs at 73 ms 392 us1: 0: 1 starts at 73 ms 392 us and �nishs at 73 ms 392 us7:20: 4 starts at 73 ms 392 us and �nishs at 74 ms 68 us139

20: 2: 3 starts at 74 ms 68 us and �nishs at 74 ms 669 us15: 0: 3 starts at 74 ms 814 us and �nishs at 74 ms 814 us16:19: 4 starts at 74 ms 814 us and �nishs at 76 ms 814 us6:21: 2 starts at 76 ms 814 us and �nishs at 79 ms 965 us16:21: 3 starts at 79 ms 967 us and �nishs at 82 ms 767 us7:33: 2 starts at 82 ms 906 us and �nishs at 84 ms 849 us15: 0: 1 starts at 84 ms 849 us and �nishs at 84 ms 849 us7:32: 3 starts at 84 ms 849 us and �nishs at 85 ms 970 us17:16: 3 starts at 85 ms 970 us and �nishs at 85 ms 970 us7:16: 5 starts at 85 ms 970 us and �nishs at 89 ms 11 us5:16: 5 starts at 89 ms 11 us and �nishs at 92 ms 52 us18:31: 1 starts at 95 ms 809 us and �nishs at 95 ms 809 us16:16: 5 starts at 95 ms 875 us and �nishs at 98 ms 916 us3: 0: 2 starts at 99 ms 750 us and �nishs at 99 ms 750 us15: 0: 3 starts at 99 ms 752 us and �nishs at 99 ms 752 us16:19: 4 starts at 99 ms 752 us and �nishs at 101 ms 752 us6:21: 2 starts at 101 ms 752 us and �nishs at 104 ms 903 us19:18: 1 starts at 104 ms 903 us and �nishs at 105 ms 653 us16:21: 5 starts at 105 ms 653 us and �nishs at 120 ms 254 us15: 0: 3 starts at 124 ms 690 us and �nishs at 124 ms 690 us16:19: 4 starts at 124 ms 690 us and �nishs at 126 ms 690 us6:21: 2 starts at 126 ms 690 us and �nishs at 129 ms 841 us16:21: 3 starts at 129 ms 845 us and �nishs at 132 ms 645 us7:33: 2 starts at 132 ms 864 us and �nishs at 134 ms 807 us16:22: 4 starts at 134 ms 807 us and �nishs at 146 ms 807 us15: 0: 3 starts at 149 ms 628 us and �nishs at 149 ms 628 us16:19: 4 starts at 149 ms 628 us and �nishs at 151 ms 628 us6:21: 2 starts at 151 ms 628 us and �nishs at 154 ms 779 us7:29:10 starts at 154 ms 847 us and �nishs at 171 ms 497 us7:31: 1 starts at 171 ms 662 us and �nishs at 173 ms 212 us15: 0: 3 starts at 174 ms 566 us and �nishs at 174 ms 566 us16:19: 4 starts at 174 ms 566 us and �nishs at 176 ms 566 us6:21: 2 starts at 176 ms 566 us and �nishs at 179 ms 717 us16:21: 3 starts at 179 ms 723 us and �nishs at 182 ms 523 us7:33: 2 starts at 182 ms 822 us and �nishs at 184 ms 765 us6:21: 5 starts at 184 ms 765 us and �nishs at 199 ms 366 us17:22: 4 starts at 207 ms 28 us and �nishs at 219 ms 28 usThe schedule for processor 5 is:2: 0: 2 starts at 0 ms 0 us and �nishs at 0 ms 0 us15: 0: 2 starts at 0 ms 0 us and �nishs at 0 ms 0 us16:19: 1 starts at 0 ms 0 us and �nishs at 1 ms 180 us5:19: 4 starts at 1 ms 180 us and �nishs at 3 ms 180 us17:21: 2 starts at 3 ms 180 us and �nishs at 6 ms 331 us17:19: 4 starts at 6 ms 331 us and �nishs at 8 ms 331 us16:21: 2 starts at 8 ms 331 us and �nishs at 11 ms 482 us7:20: 2 starts at 11 ms 482 us and �nishs at 12 ms 283 us16:19: 1 starts at 12 ms 469 us and �nishs at 13 ms 649 us5:21: 2 starts at 13 ms 649 us and �nishs at 16 ms 800 us17:16: 1 starts at 16 ms 800 us and �nishs at 17 ms 364 us18:35: 2 starts at 17 ms 886 us and �nishs at 18 ms 714 us5:16: 2 starts at 18 ms 714 us and �nishs at 19 ms 841 us140

19:16: 2 starts at 19 ms 841 us and �nishs at 20 ms 968 us7:16: 1 starts at 20 ms 968 us and �nishs at 21 ms 532 us16:16: 1 starts at 21 ms 532 us and �nishs at 22 ms 96 us16:19: 1 starts at 24 ms 938 us and �nishs at 26 ms 118 us5:19: 4 starts at 26 ms 118 us and �nishs at 28 ms 118 us17:21: 2 starts at 28 ms 118 us and �nishs at 31 ms 269 us17:19: 4 starts at 31 ms 269 us and �nishs at 33 ms 269 us16:21: 2 starts at 33 ms 269 us and �nishs at 36 ms 420 us16:19: 1 starts at 37 ms 407 us and �nishs at 38 ms 587 us5:21: 2 starts at 38 ms 587 us and �nishs at 41 ms 738 us17:21: 4 starts at 41 ms 738 us and �nishs at 47 ms 639 us16:19: 1 starts at 49 ms 876 us and �nishs at 51 ms 56 us5:19: 4 starts at 51 ms 56 us and �nishs at 53 ms 56 us17:21: 2 starts at 53 ms 56 us and �nishs at 56 ms 207 us17:19: 4 starts at 56 ms 207 us and �nishs at 58 ms 207 us16:21: 2 starts at 58 ms 207 us and �nishs at 61 ms 358 us16:19: 1 starts at 62 ms 345 us and �nishs at 63 ms 525 us5:21: 2 starts at 63 ms 525 us and �nishs at 66 ms 676 us18:35: 2 starts at 67 ms 761 us and �nishs at 68 ms 589 us5:21: 4 starts at 68 ms 589 us and �nishs at 74 ms 490 us5:16: 3 starts at 74 ms 490 us and �nishs at 74 ms 490 us8:16: 3 starts at 74 ms 490 us and �nishs at 74 ms 490 us5:19: 5 starts at 74 ms 490 us and �nishs at 74 ms 591 us16:19: 1 starts at 74 ms 814 us and �nishs at 75 ms 994 us5:19: 4 starts at 75 ms 994 us and �nishs at 77 ms 994 us17:21: 2 starts at 77 ms 994 us and �nishs at 81 ms 145 us17:19: 4 starts at 81 ms 145 us and �nishs at 83 ms 145 us16:21: 2 starts at 83 ms 145 us and �nishs at 86 ms 296 us16:16: 3 starts at 86 ms 296 us and �nishs at 86 ms 296 us16:19: 1 starts at 87 ms 283 us and �nishs at 88 ms 463 us5:21: 2 starts at 88 ms 463 us and �nishs at 91 ms 614 us5:22: 3 starts at 91 ms 614 us and �nishs at 99 ms 265 us2: 0: 2 starts at 99 ms 750 us and �nishs at 99 ms 750 us15: 0: 2 starts at 99 ms 750 us and �nishs at 99 ms 750 us16:19: 1 starts at 99 ms 752 us and �nishs at 100 ms 932 us5:19: 4 starts at 100 ms 932 us and �nishs at 102 ms 932 us17:21: 2 starts at 102 ms 932 us and �nishs at 106 ms 83 us17:19: 4 starts at 106 ms 83 us and �nishs at 108 ms 83 us16:21: 2 starts at 108 ms 83 us and �nishs at 111 ms 234 us7:20: 2 starts at 111 ms 234 us and �nishs at 112 ms 35 us16:19: 1 starts at 112 ms 221 us and �nishs at 113 ms 401 us5:21: 2 starts at 113 ms 401 us and �nishs at 116 ms 552 us18:35: 2 starts at 117 ms 705 us and �nishs at 118 ms 533 us8:16: 5 starts at 118 ms 533 us and �nishs at 121 ms 574 us19:16: 5 starts at 121 ms 574 us and �nishs at 124 ms 615 us16:19: 1 starts at 124 ms 690 us and �nishs at 125 ms 870 us5:19: 4 starts at 125 ms 870 us and �nishs at 127 ms 870 us17:21: 2 starts at 127 ms 870 us and �nishs at 131 ms 21 us17:19: 4 starts at 131 ms 21 us and �nishs at 133 ms 21 us16:21: 2 starts at 133 ms 21 us and �nishs at 136 ms 172 us16:19: 1 starts at 137 ms 159 us and �nishs at 138 ms 339 us141

5:21: 2 starts at 138 ms 339 us and �nishs at 141 ms 490 us17:21: 4 starts at 141 ms 498 us and �nishs at 147 ms 399 us16:19: 1 starts at 149 ms 628 us and �nishs at 150 ms 808 us5:19: 4 starts at 150 ms 808 us and �nishs at 152 ms 808 us17:21: 2 starts at 152 ms 808 us and �nishs at 155 ms 959 us17:19: 4 starts at 155 ms 959 us and �nishs at 157 ms 959 us16:21: 2 starts at 157 ms 959 us and �nishs at 161 ms 110 us16:19: 1 starts at 162 ms 97 us and �nishs at 163 ms 277 us5:21: 2 starts at 163 ms 277 us and �nishs at 166 ms 428 us18:35: 2 starts at 167 ms 649 us and �nishs at 168 ms 477 us5:21: 4 starts at 168 ms 477 us and �nishs at 174 ms 378 us16:19: 1 starts at 174 ms 566 us and �nishs at 175 ms 746 us5:19: 4 starts at 175 ms 746 us and �nishs at 177 ms 746 us17:21: 2 starts at 177 ms 746 us and �nishs at 180 ms 897 us17:19: 4 starts at 180 ms 897 us and �nishs at 182 ms 897 us16:21: 2 starts at 182 ms 897 us and �nishs at 186 ms 48 us16:19: 1 starts at 187 ms 35 us and �nishs at 188 ms 215 us5:21: 2 starts at 188 ms 215 us and �nishs at 191 ms 366 us5:22: 3 starts at 191 ms 386 us and �nishs at 199 ms 37 usThe schedule for the communications network is:1: 0: 3 sends to 7:29: 1 starts at 0 ms 0 us and �nishs at 0 ms 1 us4: 0: 3 sends to 7:29: 1 starts at 0 ms 1 us and �nishs at 0 ms 2 us13: 0: 3 sends to 18:29: 1 starts at 0 ms 2 us and �nishs at 0 ms 3 us14: 0: 3 sends to 18:29: 1 starts at 0 ms 3 us and �nishs at 0 ms 4 us15: 0: 3 sends to 18:29: 1 starts at 0 ms 4 us and �nishs at 0 ms 5 us12: 0: 3 sends to 18:29: 1 starts at 0 ms 5 us and �nishs at 0 ms 6 us1: 0: 3 sends to 8:26:22 starts at 0 ms 6 us and �nishs at 0 ms 8 us4: 0: 3 sends to 8:26:22 starts at 0 ms 8 us and �nishs at 0 ms 10 us12: 0: 3 sends to 19:26:22 starts at 0 ms 10 us and �nishs at 0 ms 12 us13: 0: 3 sends to 19:26:22 starts at 0 ms 12 us and �nishs at 0 ms 14 us1: 0: 2 sends to 7:29: 1 starts at 0 ms 14 us and �nishs at 0 ms 16 us3: 0: 2 sends to 7:29: 1 starts at 0 ms 16 us and �nishs at 0 ms 18 us14: 0: 2 sends to 18:29: 1 starts at 0 ms 18 us and �nishs at 0 ms 21 us15: 0: 2 sends to 18:29: 1 starts at 0 ms 21 us and �nishs at 0 ms 24 us2: 0: 2 sends to 7:29: 1 starts at 0 ms 24 us and �nishs at 0 ms 27 us4: 0: 2 sends to 7:29: 1 starts at 0 ms 27 us and �nishs at 0 ms 29 us12: 0: 2 sends to 18:29: 1 starts at 0 ms 29 us and �nishs at 0 ms 30 us13: 0: 2 sends to 18:29: 1 starts at 0 ms 30 us and �nishs at 0 ms 32 us16:19: 1 sends to 18:32: 1 starts at 1 ms 180 us and �nishs at 1 ms 183 us16:19: 1 sends to 16:22: 4 starts at 1 ms 183 us and �nishs at 1 ms 195 us18:35: 1 sends to 18:29: 1 starts at 1 ms 231 us and �nishs at 1 ms 237 us18:35: 1 sends to 18:33: 2 starts at 1 ms 237 us and �nishs at 1 ms 243 us7:17: 1 sends to 6:17: 1 starts at 2 ms 212 us and �nishs at 2 ms 218 us5:19: 1 sends to 6:22: 4 starts at 2 ms 360 us and �nishs at 2 ms 372 us5:19: 1 sends to 7:32: 1 starts at 2 ms 372 us and �nishs at 2 ms 375 us18:29: 1 sends to 18:35: 4 starts at 2 ms 455 us and �nishs at 2 ms 524 us7:17: 1 sends to 8:30:20 starts at 2 ms 524 us and �nishs at 2 ms 878 us18:29: 1 sends to 17:16: 1 starts at 2 ms 878 us and �nishs at 2 ms 947 us18:29: 1 sends to 19:16: 1 starts at 2 ms 947 us and �nishs at 3 ms 16 us18:29: 1 sends to 16:16: 1 starts at 3 ms 16 us and �nishs at 3 ms 85 us5:19: 4 sends to 8:30:20 starts at 3 ms 180 us and �nishs at 3 ms 222 us142

5:19: 4 sends to 6:22: 4 starts at 3 ms 222 us and �nishs at 3 ms 236 us7:29: 1 sends to 7:35: 4 starts at 3 ms 632 us and �nishs at 3 ms 701 us5:19: 3 sends to 8:30:20 starts at 4 ms 355 us and �nishs at 4 ms 410 us18:35: 4 sends to 18:29: 1 starts at 4 ms 555 us and �nishs at 4 ms 573 us18:35: 4 sends to 18:33: 2 starts at 4 ms 573 us and �nishs at 4 ms 642 us6:21: 2 sends to 6:22: 2 starts at 5 ms 151 us and �nishs at 5 ms 151 us8:20: 2 sends to 8:30:20 starts at 5 ms 156 us and �nishs at 5 ms 204 us19:18: 1 sends to 12: 0: 1 starts at 5 ms 901 us and �nishs at 5 ms 905 us19:16: 6 sends to 19:28: 1 starts at 6 ms 171 us and �nishs at 6 ms 171 us19:16: 6 sends to 19:26:22 starts at 6 ms 171 us and �nishs at 6 ms 171 us6:16: 2 sends to 6:22: 4 starts at 7 ms 28 us and �nishs at 7 ms 35 us6:16: 2 sends to 7:32: 1 starts at 7 ms 35 us and �nishs at 7 ms 36 us6:16: 2 sends to 7:35: 1 starts at 7 ms 36 us and �nishs at 7 ms 37 us6:16: 2 sends to 8:26:22 starts at 7 ms 37 us and �nishs at 7 ms 38 us6:16: 2 sends to 8:27: 1 starts at 7 ms 38 us and �nishs at 7 ms 39 us6:16: 2 sends to 8:28: 1 starts at 7 ms 39 us and �nishs at 7 ms 40 us6:16: 2 sends to 8:30:20 starts at 7 ms 40 us and �nishs at 7 ms 61 us6:16: 2 sends to 8:16: 1 starts at 7 ms 61 us and �nishs at 7 ms 62 us7:29: 1 sends to 8:16: 1 starts at 7 ms 62 us and �nishs at 7 ms 131 us6:16: 2 sends to 5:16: 2 starts at 7 ms 131 us and �nishs at 7 ms 144 us6:16: 2 sends to 5:16: 1 starts at 7 ms 144 us and �nishs at 7 ms 145 us8:16: 6 sends to 8:26:22 starts at 7 ms 186 us and �nishs at 7 ms 186 us6:22: 2 sends to 8:28: 1 starts at 7 ms 201 us and �nishs at 7 ms 207 us7:29: 1 sends to 5:16: 1 starts at 7 ms 207 us and �nishs at 7 ms 276 us7:35: 1 sends to 7:29: 1 starts at 8 ms 443 us and �nishs at 8 ms 449 us7:35: 1 sends to 8:26:22 starts at 8 ms 449 us and �nishs at 8 ms 455 us6:17: 1 sends to 7:17: 1 starts at 11 ms 324 us and �nishs at 11 ms 330 us6:17: 1 sends to 5:17: 1 starts at 11 ms 330 us and �nishs at 11 ms 336 us16:21: 2 sends to 16:22: 2 starts at 11 ms 482 us and �nishs at 11 ms 482 us8:16: 1 sends to 7:29: 1 starts at 11 ms 888 us and �nishs at 11 ms 893 us8:26:22 sends to 6:22: 2 starts at 12 ms 233 us and �nishs at 12 ms 374 us8:26:22 sends to 8:28: 1 starts at 12 ms 374 us and �nishs at 12 ms 385 us8:26:22 sends to 7:35: 4 starts at 12 ms 385 us and �nishs at 12 ms 425 us8:26:22 sends to 5:21: 4 starts at 12 ms 425 us and �nishs at 12 ms 430 us8:26:22 sends to 6:21: 4 starts at 12 ms 430 us and �nishs at 12 ms 435 us7:20: 2 sends to 8:30:20 starts at 12 ms 435 us and �nishs at 12 ms 483 us19:16: 1 sends to 18:29: 1 starts at 12 ms 483 us and �nishs at 12 ms 488 us7:20: 3 sends to 8:30:20 starts at 14 ms 799 us and �nishs at 14 ms 823 us19:17: 1 sends to 18:17: 1 starts at 15 ms 780 us and �nishs at 15 ms 786 us19:26:22 sends to 18:33: 2 starts at 15 ms 802 us and �nishs at 15 ms 827 us19:26:22 sends to 16:21: 4 starts at 15 ms 827 us and �nishs at 15 ms 832 us19:26:22 sends to 17:21: 4 starts at 15 ms 832 us and �nishs at 15 ms 837 us16:21: 3 sends to 17:22: 3 starts at 16 ms 567 us and �nishs at 16 ms 573 us17:21: 4 sends to 17:22: 3 starts at 16 ms 573 us and �nishs at 16 ms 573 us17:21: 3 sends to 17:22: 3 starts at 16 ms 573 us and �nishs at 16 ms 579 us19:26:22 sends to 17:22: 3 starts at 16 ms 579 us and �nishs at 16 ms 584 us19:27: 1 sends to 17:22: 3 starts at 16 ms 584 us and �nishs at 16 ms 589 us19:28: 1 sends to 17:22: 3 starts at 16 ms 589 us and �nishs at 16 ms 594 us5:21: 2 sends to 5:22: 2 starts at 16 ms 800 us and �nishs at 16 ms 800 us5:21: 2 sends to 8:30:20 starts at 16 ms 800 us and �nishs at 16 ms 802 us7:35: 4 sends to 7:29: 1 starts at 16 ms 929 us and �nishs at 16 ms 947 us143

7:35: 4 sends to 8:26:22 starts at 16 ms 947 us and �nishs at 17 ms 16 us17:16: 1 sends to 18:29: 1 starts at 17 ms 364 us and �nishs at 17 ms 369 us19:26:22 sends to 16:22: 2 starts at 17 ms 745 us and �nishs at 17 ms 886 us18:33: 2 sends to 18:35: 2 starts at 17 ms 886 us and �nishs at 17 ms 903 us6:19: 2 sends to 8:30:20 starts at 18 ms 203 us and �nishs at 18 ms 247 us18:35: 2 sends to 18:33: 2 starts at 18 ms 714 us and �nishs at 18 ms 734 us18:35: 2 sends to 19:26:22 starts at 18 ms 734 us and �nishs at 18 ms 740 us8:28: 1 sends to 6:22: 2 starts at 18 ms 925 us and �nishs at 18 ms 928 us8:28: 1 sends to 8:26:22 starts at 18 ms 928 us and �nishs at 18 ms 939 us8:28: 1 sends to 5:21: 3 starts at 18 ms 939 us and �nishs at 18 ms 942 us17:22: 4 sends to 17:21: 5 starts at 19 ms 28 us and �nishs at 19 ms 28 us17:22: 4 sends to 17:21: 3 starts at 19 ms 28 us and �nishs at 19 ms 30 us17:22: 4 sends to 19:28: 1 starts at 19 ms 30 us and �nishs at 19 ms 34 us5:17: 1 sends to 6:17: 1 starts at 19 ms 184 us and �nishs at 19 ms 190 us5:17: 1 sends to 8:30:20 starts at 19 ms 190 us and �nishs at 19 ms 544 us5:17: 1 sends to 8:17: 1 starts at 19 ms 544 us and �nishs at 19 ms 550 us6:17: 1 sends to 8:17: 1 starts at 19 ms 550 us and �nishs at 19 ms 556 us7:17: 1 sends to 8:17: 1 starts at 19 ms 556 us and �nishs at 19 ms 562 us5:16: 1 sends to 7:29: 1 starts at 19 ms 748 us and �nishs at 19 ms 753 us16:22: 2 sends to 16:21: 3 starts at 19 ms 795 us and �nishs at 19 ms 795 us16:22: 2 sends to 19:28: 1 starts at 19 ms 795 us and �nishs at 19 ms 801 us19:26:22 sends to 16:21: 3 starts at 19 ms 801 us and �nishs at 19 ms 804 us5:17: 1 sends to 11: 2: 3 starts at 19 ms 804 us and �nishs at 20 ms 252 us5:16: 2 sends to 4: 0: 1 starts at 20 ms 252 us and �nishs at 20 ms 253 us5:16: 2 sends to 6:16: 2 starts at 20 ms 253 us and �nishs at 20 ms 266 us5:16: 2 sends to 6:22: 4 starts at 20 ms 266 us and �nishs at 20 ms 273 us5:16: 2 sends to 7:31: 1 starts at 20 ms 273 us and �nishs at 20 ms 274 us5:16: 2 sends to 7:32: 1 starts at 20 ms 274 us and �nishs at 20 ms 275 us5:16: 2 sends to 7:33: 2 starts at 20 ms 275 us and �nishs at 20 ms 276 us5:16: 2 sends to 7:35: 1 starts at 20 ms 276 us and �nishs at 20 ms 277 us5:16: 2 sends to 8:16: 1 starts at 20 ms 277 us and �nishs at 20 ms 278 us5:16: 2 sends to 8:26:22 starts at 20 ms 278 us and �nishs at 20 ms 279 us5:16: 2 sends to 8:27: 1 starts at 20 ms 279 us and �nishs at 20 ms 280 us5:16: 2 sends to 8:28: 1 starts at 20 ms 280 us and �nishs at 20 ms 281 us5:16: 2 sends to 8:30:20 starts at 20 ms 281 us and �nishs at 20 ms 302 us5:16: 2 sends to 7:20: 4 starts at 20 ms 302 us and �nishs at 20 ms 303 us6:16: 2 sends to 5:19: 5 starts at 20 ms 303 us and �nishs at 20 ms 304 us6:16: 2 sends to 7:16: 1 starts at 20 ms 304 us and �nishs at 20 ms 305 us7:29: 1 sends to 7:16: 1 starts at 20 ms 305 us and �nishs at 20 ms 374 us5:16: 2 sends to 6:16: 1 starts at 20 ms 374 us and �nishs at 20 ms 375 us7:29: 1 sends to 6:16: 1 starts at 20 ms 375 us and �nishs at 20 ms 444 us5:16: 2 sends to 8:20: 4 starts at 20 ms 444 us and �nishs at 20 ms 445 us6:16: 2 sends to 8:20: 4 starts at 20 ms 445 us and �nishs at 20 ms 446 us5:16: 2 sends to 6:19: 5 starts at 20 ms 446 us and �nishs at 20 ms 447 us5:16: 2 sends to 1: 0: 1 starts at 20 ms 447 us and �nishs at 20 ms 448 us5:16: 2 sends to 8:16: 2 starts at 20 ms 448 us and �nishs at 20 ms 461 us6:16: 2 sends to 8:16: 2 starts at 20 ms 461 us and �nishs at 20 ms 474 us5:16: 2 sends to 7:29: 2 starts at 20 ms 474 us and �nishs at 20 ms 475 us6:16: 2 sends to 7:29: 2 starts at 20 ms 475 us and �nishs at 20 ms 476 us5:16: 2 sends to 7:16: 2 starts at 20 ms 476 us and �nishs at 20 ms 489 us6:16: 2 sends to 7:16: 2 starts at 20 ms 489 us and �nishs at 20 ms 502 us144

5:16: 2 sends to 5:21: 5 starts at 20 ms 502 us and �nishs at 20 ms 503 us6:16: 2 sends to 5:21: 5 starts at 20 ms 503 us and �nishs at 20 ms 504 us5:16: 2 sends to 5:22: 4 starts at 20 ms 504 us and �nishs at 20 ms 511 us5:19: 1 sends to 5:22: 4 starts at 20 ms 511 us and �nishs at 20 ms 523 us5:19: 4 sends to 5:22: 4 starts at 20 ms 523 us and �nishs at 20 ms 537 us8:17: 1 sends to 5:17: 1 starts at 20 ms 537 us and �nishs at 20 ms 543 us8:17: 1 sends to 6:17: 1 starts at 20 ms 543 us and �nishs at 20 ms 549 us8:17: 1 sends to 7:17: 1 starts at 20 ms 549 us and �nishs at 20 ms 555 us8:17: 1 sends to 8:30:20 starts at 20 ms 555 us and �nishs at 20 ms 909 us6:17: 1 sends to 11: 2: 3 starts at 20 ms 909 us and �nishs at 21 ms 357 us7:17: 1 sends to 11: 2: 3 starts at 21 ms 357 us and �nishs at 21 ms 805 us7:16: 1 sends to 7:29: 1 starts at 21 ms 805 us and �nishs at 21 ms 805 us8:17: 1 sends to 11: 2: 3 starts at 21 ms 805 us and �nishs at 22 ms 253 us19:16: 2 sends to 12: 0: 1 starts at 22 ms 253 us and �nishs at 22 ms 254 us19:16: 2 sends to 16:19: 5 starts at 22 ms 254 us and �nishs at 22 ms 255 us19:16: 2 sends to 16:21: 5 starts at 22 ms 255 us and �nishs at 22 ms 256 us19:16: 2 sends to 17:19: 5 starts at 22 ms 256 us and �nishs at 22 ms 257 us19:16: 2 sends to 18:33: 2 starts at 22 ms 257 us and �nishs at 22 ms 258 us19:16: 2 sends to 18:35: 1 starts at 22 ms 258 us and �nishs at 22 ms 259 us19:16: 2 sends to 19:26:22 starts at 22 ms 259 us and �nishs at 22 ms 260 us19:16: 2 sends to 19:27: 1 starts at 22 ms 260 us and �nishs at 22 ms 261 us19:16: 2 sends to 19:28: 1 starts at 22 ms 261 us and �nishs at 22 ms 262 us19:16: 2 sends to 14: 0: 1 starts at 22 ms 262 us and �nishs at 22 ms 263 us19:18: 1 sends to 14: 0: 1 starts at 22 ms 263 us and �nishs at 22 ms 267 us16:16: 1 sends to 18:29: 1 starts at 22 ms 267 us and �nishs at 22 ms 272 us19:16: 2 sends to 17:16: 2 starts at 22 ms 272 us and �nishs at 22 ms 285 us5:16: 2 sends to 6:21: 5 starts at 22 ms 285 us and �nishs at 22 ms 286 us5:21: 3 sends to 6:22: 2 starts at 22 ms 595 us and �nishs at 22 ms 603 us5:21: 3 sends to 8:28: 1 starts at 22 ms 603 us and �nishs at 22 ms 610 us6:22: 2 sends to 5:22: 2 starts at 22 ms 610 us and �nishs at 22 ms 613 us8:28: 1 sends to 5:22: 2 starts at 22 ms 613 us and �nishs at 22 ms 616 us5:21: 3 sends to 8:30:20 starts at 22 ms 616 us and �nishs at 22 ms 653 us5:21: 3 sends to 8:27: 1 starts at 22 ms 653 us and �nishs at 22 ms 660 us8:26:22 sends to 8:27: 1 starts at 22 ms 660 us and �nishs at 22 ms 675 us5:21: 3 sends to 6:21: 3 starts at 22 ms 675 us and �nishs at 22 ms 680 us8:26:22 sends to 6:21: 3 starts at 22 ms 680 us and �nishs at 22 ms 683 us8:28: 1 sends to 6:21: 3 starts at 22 ms 683 us and �nishs at 22 ms 686 us5:21: 3 sends to 7:29:10 starts at 22 ms 686 us and �nishs at 22 ms 692 us5:21: 3 sends to 6:22: 3 starts at 22 ms 692 us and �nishs at 22 ms 698 us5:21: 3 sends to 5:22: 3 starts at 22 ms 698 us and �nishs at 22 ms 704 us5:21: 3 sends to 7:32: 1 starts at 22 ms 704 us and �nishs at 22 ms 712 us6:19: 1 sends to 7:32: 1 starts at 22 ms 712 us and �nishs at 22 ms 715 us17:22: 3 sends to 17:21: 4 starts at 24 ms 580 us and �nishs at 24 ms 580 us17:22: 3 sends to 18:29:10 starts at 24 ms 580 us and �nishs at 24 ms 614 us5:22: 2 sends to 6:22: 2 starts at 24 ms 663 us and �nishs at 24 ms 666 us5:22: 2 sends to 8:28: 1 starts at 24 ms 666 us and �nishs at 24 ms 672 us5:22: 2 sends to 8:30:20 starts at 24 ms 672 us and �nishs at 24 ms 677 us6:21: 2 sends to 8:30:20 starts at 24 ms 677 us and �nishs at 24 ms 679 us6:22: 2 sends to 8:30:20 starts at 24 ms 679 us and �nishs at 24 ms 684 us7:29: 1 sends to 8:30:20 starts at 24 ms 684 us and �nishs at 24 ms 699 us8:26:22 sends to 8:30:20 starts at 24 ms 699 us and �nishs at 24 ms 762 us145

8:28: 1 sends to 8:30:20 starts at 24 ms 762 us and �nishs at 24 ms 788 us5:22: 2 sends to 7:33: 2 starts at 24 ms 788 us and �nishs at 24 ms 792 us6:22: 2 sends to 7:33: 2 starts at 24 ms 792 us and �nishs at 24 ms 796 us7:35: 1 sends to 7:33: 2 starts at 24 ms 796 us and �nishs at 24 ms 802 us7:35: 4 sends to 7:33: 2 starts at 24 ms 802 us and �nishs at 24 ms 871 us8:26:22 sends to 7:33: 2 starts at 24 ms 871 us and �nishs at 24 ms 896 us15: 0: 3 sends to 18:29: 1 starts at 24 ms 938 us and �nishs at 24 ms 939 us12: 0: 3 sends to 18:29: 1 starts at 24 ms 939 us and �nishs at 24 ms 940 us13: 0: 3 sends to 18:29: 1 starts at 24 ms 941 us and �nishs at 24 ms 942 us14: 0: 3 sends to 18:29: 1 starts at 24 ms 942 us and �nishs at 24 ms 943 us1: 0: 3 sends to 7:29: 1 starts at 26 ms 118 us and �nishs at 26 ms 119 us4: 0: 3 sends to 7:29: 1 starts at 26 ms 119 us and �nishs at 26 ms 120 us19:28: 1 sends to 16:22: 2 starts at 26 ms 346 us and �nishs at 26 ms 349 us19:28: 1 sends to 16:21: 3 starts at 26 ms 349 us and �nishs at 26 ms 352 us6:21: 3 sends to 5:21: 3 starts at 29 ms 146 us and �nishs at 29 ms 151 us6:21: 3 sends to 5:22: 2 starts at 29 ms 151 us and �nishs at 29 ms 159 us6:21: 3 sends to 8:26:22 starts at 29 ms 159 us and �nishs at 29 ms 174 us6:21: 3 sends to 8:27: 1 starts at 29 ms 174 us and �nishs at 29 ms 181 us6:21: 3 sends to 8:28: 1 starts at 29 ms 181 us and �nishs at 29 ms 188 us6:21: 3 sends to 8:30:20 starts at 29 ms 188 us and �nishs at 29 ms 225 us6:21: 3 sends to 7:29:10 starts at 29 ms 225 us and �nishs at 29 ms 231 us8:26:22 sends to 7:32: 1 starts at 29 ms 231 us and �nishs at 29 ms 242 us6:21: 4 sends to 6:22: 3 starts at 29 ms 646 us and �nishs at 29 ms 646 us5:21: 3 sends to 6:22: 3 starts at 29 ms 646 us and �nishs at 29 ms 652 us8:26:22 sends to 6:22: 3 starts at 29 ms 652 us and �nishs at 29 ms 657 us8:27: 1 sends to 6:22: 3 starts at 29 ms 657 us and �nishs at 29 ms 662 us8:28: 1 sends to 6:22: 3 starts at 29 ms 662 us and �nishs at 29 ms 667 us18:17: 1 sends to 19:17: 1 starts at 30 ms 127 us and �nishs at 30 ms 133 us18:17: 1 sends to 16:17: 1 starts at 30 ms 133 us and �nishs at 30 ms 139 us19:17: 1 sends to 16:17: 1 starts at 30 ms 139 us and �nishs at 30 ms 145 us8:27: 1 sends to 8:26:22 starts at 30 ms 944 us and �nishs at 30 ms 949 us8:27: 1 sends to 8:30:20 starts at 30 ms 949 us and �nishs at 30 ms 958 us8:27: 1 sends to 5:21: 4 starts at 30 ms 958 us and �nishs at 30 ms 963 us8:28: 1 sends to 5:21: 4 starts at 30 ms 963 us and �nishs at 30 ms 968 us5:19: 2 sends to 8:30:20 starts at 30 ms 972 us and �nishs at 31 ms 16 us8:27: 1 sends to 6:21: 4 starts at 31 ms 16 us and �nishs at 31 ms 21 us8:28: 1 sends to 6:21: 4 starts at 31 ms 21 us and �nishs at 31 ms 26 us8:27: 1 sends to 7:32: 1 starts at 31 ms 26 us and �nishs at 31 ms 31 us8:28: 1 sends to 7:32: 1 starts at 31 ms 31 us and �nishs at 31 ms 40 us16:17: 1 sends to 18:17: 1 starts at 31 ms 925 us and �nishs at 31 ms 931 us16:17: 1 sends to 19:17: 1 starts at 31 ms 931 us and �nishs at 31 ms 937 us16:17: 1 sends to 17:17: 1 starts at 31 ms 937 us and �nishs at 31 ms 943 us18:17: 1 sends to 17:17: 1 starts at 31 ms 943 us and �nishs at 31 ms 949 us19:17: 1 sends to 17:17: 1 starts at 31 ms 949 us and �nishs at 31 ms 955 us11: 2: 3 sends to 5:17: 1 starts at 32 ms 323 us and �nishs at 32 ms 372 us11: 2: 3 sends to 6:17: 1 starts at 32 ms 372 us and �nishs at 32 ms 421 us11: 2: 3 sends to 7:17: 1 starts at 32 ms 421 us and �nishs at 32 ms 470 us11: 2: 3 sends to 8:17: 1 starts at 32 ms 470 us and �nishs at 32 ms 519 us11: 2: 3 sends to 4: 0: 1 starts at 32 ms 519 us and �nishs at 32 ms 531 us6:16: 2 sends to 4: 0: 1 starts at 32 ms 531 us and �nishs at 32 ms 532 us8:18: 1 sends to 4: 0: 1 starts at 32 ms 532 us and �nishs at 32 ms 536 us146

11: 2: 3 sends to 2: 0: 1 starts at 32 ms 536 us and �nishs at 32 ms 548 us5:16: 2 sends to 2: 0: 1 starts at 32 ms 548 us and �nishs at 32 ms 549 us6:16: 2 sends to 2: 0: 1 starts at 32 ms 549 us and �nishs at 32 ms 550 us11: 2: 3 sends to 3: 0: 1 starts at 32 ms 550 us and �nishs at 32 ms 562 us5:16: 2 sends to 3: 0: 1 starts at 32 ms 562 us and �nishs at 32 ms 563 us6:16: 2 sends to 3: 0: 1 starts at 32 ms 563 us and �nishs at 32 ms 564 us16:21: 3 sends to 16:22: 2 starts at 32 ms 889 us and �nishs at 32 ms 901 us16:21: 3 sends to 19:26:22 starts at 32 ms 901 us and �nishs at 32 ms 916 us16:21: 3 sends to 19:28: 1 starts at 32 ms 916 us and �nishs at 32 ms 923 us16:21: 3 sends to 19:27: 1 starts at 32 ms 923 us and �nishs at 32 ms 930 us19:26:22 sends to 19:27: 1 starts at 32 ms 930 us and �nishs at 32 ms 945 us17:21: 2 sends to 17:22: 2 starts at 32 ms 945 us and �nishs at 32 ms 945 us16:21: 3 sends to 17:22: 2 starts at 32 ms 945 us and �nishs at 32 ms 953 us19:26:22 sends to 17:22: 2 starts at 32 ms 953 us and �nishs at 33 ms 94 us19:28: 1 sends to 17:22: 2 starts at 33 ms 94 us and �nishs at 33 ms 97 us16:21: 3 sends to 17:21: 3 starts at 33 ms 97 us and �nishs at 33 ms 102 us16:21: 3 sends to 16:22: 3 starts at 33 ms 102 us and �nishs at 33 ms 108 us16:21: 3 sends to 18:29:10 starts at 33 ms 108 us and �nishs at 33 ms 114 us16:21: 3 sends to 17:22: 3 starts at 33 ms 114 us and �nishs at 33 ms 120 us17:17: 1 sends to 16:17: 1 starts at 33 ms 120 us and �nishs at 33 ms 126 us17:17: 1 sends to 18:17: 1 starts at 33 ms 126 us and �nishs at 33 ms 132 us17:17: 1 sends to 19:17: 1 starts at 33 ms 132 us and �nishs at 33 ms 138 us4: 0: 1 sends to 11: 2: 3 starts at 33 ms 138 us and �nishs at 33 ms 144 us4: 0: 1 sends to 9: 2: 3 starts at 33 ms 144 us and �nishs at 33 ms 150 us6:17: 1 sends to 9: 2: 3 starts at 33 ms 150 us and �nishs at 33 ms 598 us8:17: 1 sends to 9: 2: 3 starts at 33 ms 598 us and �nishs at 34 ms 46 us16:21: 3 sends to 18:32: 1 starts at 34 ms 46 us and �nishs at 34 ms 54 us4: 0: 1 sends to 7:29: 9 starts at 34 ms 54 us and �nishs at 34 ms 438 us5:17: 1 sends to 7:29: 9 starts at 34 ms 438 us and �nishs at 34 ms 533 us6:17: 1 sends to 7:29: 9 starts at 34 ms 533 us and �nishs at 34 ms 628 us7:17: 1 sends to 7:29: 9 starts at 34 ms 628 us and �nishs at 34 ms 723 us17:16: 2 sends to 14: 0: 1 starts at 34 ms 723 us and �nishs at 34 ms 724 us17:16: 2 sends to 16:16: 1 starts at 34 ms 724 us and �nishs at 34 ms 725 us17:16: 2 sends to 16:19: 5 starts at 34 ms 725 us and �nishs at 34 ms 726 us17:16: 2 sends to 16:21: 5 starts at 34 ms 726 us and �nishs at 34 ms 727 us17:16: 2 sends to 16:22: 4 starts at 34 ms 727 us and �nishs at 34 ms 734 us17:16: 2 sends to 17:19: 5 starts at 34 ms 734 us and �nishs at 34 ms 735 us17:16: 2 sends to 18:20: 4 starts at 34 ms 735 us and �nishs at 34 ms 736 us17:16: 2 sends to 18:32: 1 starts at 34 ms 736 us and �nishs at 34 ms 737 us17:16: 2 sends to 18:33: 2 starts at 34 ms 737 us and �nishs at 34 ms 738 us17:16: 2 sends to 18:35: 1 starts at 34 ms 738 us and �nishs at 34 ms 739 us17:16: 2 sends to 19:16: 2 starts at 34 ms 739 us and �nishs at 34 ms 752 us17:16: 2 sends to 19:20: 4 starts at 34 ms 752 us and �nishs at 34 ms 753 us17:16: 2 sends to 19:26:22 starts at 34 ms 753 us and �nishs at 34 ms 754 us17:16: 2 sends to 19:27: 1 starts at 34 ms 754 us and �nishs at 34 ms 755 us17:16: 2 sends to 19:28: 1 starts at 34 ms 755 us and �nishs at 34 ms 756 us17:16: 2 sends to 18:29: 2 starts at 34 ms 756 us and �nishs at 34 ms 757 us19:16: 2 sends to 18:29: 2 starts at 34 ms 757 us and �nishs at 34 ms 758 us17:16: 2 sends to 16:16: 2 starts at 34 ms 758 us and �nishs at 34 ms 771 us19:16: 2 sends to 16:16: 2 starts at 34 ms 771 us and �nishs at 34 ms 784 us7:33: 2 sends to 5:22: 2 starts at 34 ms 832 us and �nishs at 34 ms 900 us147

7:33: 2 sends to 6:22: 2 starts at 34 ms 900 us and �nishs at 34 ms 968 us7:33: 2 sends to 8:30:20 starts at 34 ms 968 us and �nishs at 34 ms 972 us7:33: 2 sends to 7:35: 2 starts at 34 ms 972 us and �nishs at 34 ms 989 us7:35: 1 sends to 7:29:10 starts at 34 ms 989 us and �nishs at 34 ms 998 us7:35: 4 sends to 7:29:10 starts at 34 ms 998 us and �nishs at 35 ms 15 us8:26:22 sends to 7:29:10 starts at 35 ms 15 us and �nishs at 35 ms 29 us8:27: 1 sends to 7:29:10 starts at 35 ms 29 us and �nishs at 35 ms 38 us8:28: 1 sends to 7:29:10 starts at 35 ms 38 us and �nishs at 35 ms 47 us7:35: 2 sends to 7:33: 2 starts at 35 ms 800 us and �nishs at 35 ms 820 us7:35: 2 sends to 8:26:22 starts at 35 ms 820 us and �nishs at 35 ms 826 us19:27: 1 sends to 19:26:22 starts at 36 ms 480 us and �nishs at 36 ms 485 us19:28: 1 sends to 16:21: 4 starts at 36 ms 485 us and �nishs at 36 ms 490 us19:27: 1 sends to 17:21: 4 starts at 36 ms 490 us and �nishs at 36 ms 495 us19:28: 1 sends to 17:21: 4 starts at 36 ms 495 us and �nishs at 36 ms 500 us19:27: 1 sends to 12: 0: 1 starts at 36 ms 500 us and �nishs at 36 ms 501 us12: 0: 1 sends to 22: 2: 3 starts at 36 ms 501 us and �nishs at 36 ms 507 us16:17: 1 sends to 22: 2: 3 starts at 36 ms 507 us and �nishs at 36 ms 955 us17:17: 1 sends to 22: 2: 3 starts at 36 ms 955 us and �nishs at 37 ms 403 us19:27: 1 sends to 14: 0: 1 starts at 37 ms 403 us and �nishs at 37 ms 404 us12: 0: 1 sends to 20: 2: 3 starts at 37 ms 404 us and �nishs at 37 ms 410 us12: 0: 1 sends to 16:16: 5 starts at 37 ms 410 us and �nishs at 37 ms 447 us12: 0: 1 sends to 18:16: 5 starts at 37 ms 447 us and �nishs at 37 ms 484 us12: 0: 1 sends to 17:16: 3 starts at 37 ms 484 us and �nishs at 37 ms 501 us12: 0: 1 sends to 17:16: 5 starts at 37 ms 501 us and �nishs at 37 ms 538 us12: 0: 1 sends to 16:16: 3 starts at 37 ms 538 us and �nishs at 37 ms 555 us12: 0: 1 sends to 19:16: 5 starts at 37 ms 555 us and �nishs at 37 ms 592 us6:22: 3 sends to 6:21: 4 starts at 37 ms 778 us and �nishs at 37 ms 778 us6:22: 3 sends to 7:29:10 starts at 37 ms 778 us and �nishs at 37 ms 812 us6:22: 3 sends to 8:30:20 starts at 37 ms 812 us and �nishs at 37 ms 819 us18:17: 1 sends to 22: 2: 3 starts at 37 ms 819 us and �nishs at 38 ms 267 us9: 2: 3 sends to 4: 0: 1 starts at 38 ms 379 us and �nishs at 38 ms 391 us9: 2: 3 sends to 6:17: 1 starts at 38 ms 391 us and �nishs at 38 ms 440 us9: 2: 3 sends to 8:17: 1 starts at 38 ms 440 us and �nishs at 38 ms 489 us7:29: 9 sends to 4: 0: 1 starts at 38 ms 707 us and �nishs at 38 ms 712 us7:29: 9 sends to 5:17: 1 starts at 38 ms 712 us and �nishs at 38 ms 755 us7:29: 9 sends to 6:17: 1 starts at 38 ms 755 us and �nishs at 38 ms 798 us7:29: 9 sends to 7:17: 1 starts at 38 ms 798 us and �nishs at 38 ms 841 us6:16: 1 sends to 7:29: 1 starts at 38 ms 943 us and �nishs at 38 ms 948 us12: 0: 1 sends to 18:29: 9 starts at 38 ms 948 us and �nishs at 39 ms 332 us8:16: 2 sends to 1: 0: 1 starts at 40 ms 70 us and �nishs at 40 ms 71 us8:16: 2 sends to 4: 0: 1 starts at 40 ms 71 us and �nishs at 40 ms 72 us8:16: 2 sends to 5:16: 2 starts at 40 ms 72 us and �nishs at 40 ms 85 us8:16: 2 sends to 5:19: 5 starts at 40 ms 85 us and �nishs at 40 ms 86 us8:16: 2 sends to 6:16: 2 starts at 40 ms 86 us and �nishs at 40 ms 99 us8:16: 2 sends to 6:19: 5 starts at 40 ms 99 us and �nishs at 40 ms 100 us8:16: 2 sends to 7:16: 1 starts at 40 ms 100 us and �nishs at 40 ms 101 us8:16: 2 sends to 7:20: 4 starts at 40 ms 101 us and �nishs at 40 ms 102 us8:16: 2 sends to 7:31: 1 starts at 40 ms 102 us and �nishs at 40 ms 103 us8:16: 2 sends to 7:33: 2 starts at 40 ms 103 us and �nishs at 40 ms 104 us8:16: 2 sends to 7:35: 1 starts at 40 ms 104 us and �nishs at 40 ms 105 us8:16: 2 sends to 8:20: 4 starts at 40 ms 105 us and �nishs at 40 ms 106 us148

8:16: 2 sends to 8:26:22 starts at 40 ms 106 us and �nishs at 40 ms 107 us8:16: 2 sends to 8:27: 1 starts at 40 ms 107 us and �nishs at 40 ms 108 us8:16: 2 sends to 8:28: 1 starts at 40 ms 108 us and �nishs at 40 ms 109 us8:16: 2 sends to 8:30:20 starts at 40 ms 109 us and �nishs at 40 ms 132 us8:16: 2 sends to 7:29: 2 starts at 40 ms 132 us and �nishs at 40 ms 133 us17:22: 2 sends to 19:28: 1 starts at 40 ms 637 us and �nishs at 40 ms 643 us19:26:22 sends to 17:21: 3 starts at 40 ms 643 us and �nishs at 40 ms 646 us19:28: 1 sends to 17:21: 3 starts at 40 ms 646 us and �nishs at 40 ms 649 us7:16: 2 sends to 1: 0: 1 starts at 41 ms 197 us and �nishs at 41 ms 198 us7:16: 2 sends to 4: 0: 1 starts at 41 ms 198 us and �nishs at 41 ms 199 us7:16: 2 sends to 5:16: 2 starts at 41 ms 199 us and �nishs at 41 ms 212 us7:16: 2 sends to 5:19: 5 starts at 41 ms 212 us and �nishs at 41 ms 213 us7:16: 2 sends to 6:16: 2 starts at 41 ms 213 us and �nishs at 41 ms 226 us7:16: 2 sends to 6:19: 5 starts at 41 ms 226 us and �nishs at 41 ms 227 us7:16: 2 sends to 7:20: 4 starts at 41 ms 227 us and �nishs at 41 ms 228 us7:16: 2 sends to 7:29: 2 starts at 41 ms 228 us and �nishs at 41 ms 229 us7:16: 2 sends to 7:31: 1 starts at 41 ms 229 us and �nishs at 41 ms 231 us7:16: 2 sends to 7:33: 2 starts at 41 ms 231 us and �nishs at 41 ms 233 us7:16: 2 sends to 7:35: 1 starts at 41 ms 233 us and �nishs at 41 ms 234 us7:16: 2 sends to 8:16: 1 starts at 41 ms 234 us and �nishs at 41 ms 235 us7:16: 2 sends to 8:16: 3 starts at 41 ms 235 us and �nishs at 41 ms 257 us7:16: 2 sends to 8:20: 4 starts at 41 ms 257 us and �nishs at 41 ms 258 us7:16: 2 sends to 8:26:22 starts at 41 ms 258 us and �nishs at 41 ms 259 us7:16: 2 sends to 8:27: 1 starts at 41 ms 259 us and �nishs at 41 ms 260 us7:16: 2 sends to 8:28: 1 starts at 41 ms 260 us and �nishs at 41 ms 261 us7:16: 2 sends to 8:30:20 starts at 41 ms 261 us and �nishs at 41 ms 282 us7:16: 2 sends to 2: 0: 1 starts at 41 ms 282 us and �nishs at 41 ms 283 us7:16: 2 sends to 3: 0: 1 starts at 41 ms 283 us and �nishs at 41 ms 284 us7:16: 2 sends to 5:21: 5 starts at 41 ms 284 us and �nishs at 41 ms 285 us17:21: 3 sends to 16:21: 3 starts at 43 ms 446 us and �nishs at 43 ms 451 us17:21: 3 sends to 19:26:22 starts at 43 ms 451 us and �nishs at 43 ms 466 us17:21: 3 sends to 19:28: 1 starts at 43 ms 466 us and �nishs at 43 ms 473 us17:21: 3 sends to 17:22: 3 starts at 43 ms 473 us and �nishs at 43 ms 479 us17:21: 4 sends to 17:22: 3 starts at 47 ms 639 us and �nishs at 47 ms 639 us19:26:22 sends to 17:22: 3 starts at 47 ms 639 us and �nishs at 47 ms 644 us19:27: 1 sends to 17:22: 3 starts at 47 ms 644 us and �nishs at 47 ms 649 us19:28: 1 sends to 17:22: 3 starts at 47 ms 649 us and �nishs at 47 ms 654 us8:30:20 sends to 7:29:10 starts at 48 ms 922 us and �nishs at 48 ms 931 us16:21: 4 sends to 16:22: 3 starts at 49 ms 347 us and �nishs at 49 ms 347 us17:21: 3 sends to 16:22: 3 starts at 49 ms 347 us and �nishs at 49 ms 353 us19:26:22 sends to 16:22: 3 starts at 49 ms 353 us and �nishs at 49 ms 358 us19:27: 1 sends to 16:22: 3 starts at 49 ms 358 us and �nishs at 49 ms 363 us19:28: 1 sends to 16:22: 3 starts at 49 ms 363 us and �nishs at 49 ms 368 us15: 0: 3 sends to 18:29: 1 starts at 49 ms 876 us and �nishs at 49 ms 877 us12: 0: 3 sends to 18:29: 1 starts at 49 ms 877 us and �nishs at 49 ms 878 us13: 0: 3 sends to 18:29: 1 starts at 49 ms 880 us and �nishs at 49 ms 881 us14: 0: 3 sends to 18:29: 1 starts at 49 ms 881 us and �nishs at 49 ms 882 us1: 0: 3 sends to 7:29: 1 starts at 51 ms 57 us and �nishs at 51 ms 58 us4: 0: 3 sends to 7:29: 1 starts at 51 ms 58 us and �nishs at 51 ms 59 us18:35: 1 sends to 18:29: 1 starts at 51 ms 106 us and �nishs at 51 ms 112 us18:35: 1 sends to 18:33: 2 starts at 51 ms 112 us and �nishs at 51 ms 118 us149

18:29: 1 sends to 18:35: 4 starts at 52 ms 330 us and �nishs at 52 ms 399 us1: 0: 3 sends to 8:26:22 starts at 53 ms 507 us and �nishs at 53 ms 509 us4: 0: 3 sends to 8:26:22 starts at 53 ms 509 us and �nishs at 53 ms 511 us5:19: 3 sends to 8:30:20 starts at 54 ms 233 us and �nishs at 54 ms 288 us18:35: 4 sends to 18:29: 1 starts at 54 ms 430 us and �nishs at 54 ms 448 us6:21: 2 sends to 6:22: 2 starts at 55 ms 26 us and �nishs at 55 ms 26 us12: 0: 3 sends to 19:26:22 starts at 57 ms 76 us and �nishs at 57 ms 78 us13: 0: 3 sends to 19:26:22 starts at 57 ms 78 us and �nishs at 57 ms 80 us7:35: 1 sends to 7:29: 1 starts at 58 ms 319 us and �nishs at 58 ms 325 us7:35: 1 sends to 8:26:22 starts at 58 ms 325 us and �nishs at 58 ms 331 us16:22: 3 sends to 16:21: 4 starts at 61 ms 884 us and �nishs at 61 ms 884 us16:22: 3 sends to 18:29:10 starts at 61 ms 884 us and �nishs at 61 ms 918 us18:33: 2 sends to 18:29:10 starts at 61 ms 918 us and �nishs at 61 ms 918 us17:21: 3 sends to 18:29:10 starts at 61 ms 918 us and �nishs at 61 ms 924 us19:27: 1 sends to 18:29:10 starts at 61 ms 924 us and �nishs at 61 ms 933 us8:26:22 sends to 6:22: 2 starts at 62 ms 111 us and �nishs at 62 ms 252 us6:22: 2 sends to 8:28: 1 starts at 62 ms 252 us and �nishs at 62 ms 258 us8:26:22 sends to 8:28: 1 starts at 62 ms 258 us and �nishs at 62 ms 269 us7:20: 3 sends to 8:30:20 starts at 64 ms 675 us and �nishs at 64 ms 699 us7:29: 1 sends to 7:35: 4 starts at 64 ms 704 us and �nishs at 64 ms 773 us8:26:22 sends to 7:35: 4 starts at 64 ms 773 us and �nishs at 64 ms 813 us22: 2: 3 sends to 12: 0: 1 starts at 65 ms 276 us and �nishs at 65 ms 288 us22: 2: 3 sends to 16:17: 1 starts at 65 ms 288 us and �nishs at 65 ms 337 us22: 2: 3 sends to 17:17: 1 starts at 65 ms 337 us and �nishs at 65 ms 386 us22: 2: 3 sends to 18:17: 1 starts at 65 ms 386 us and �nishs at 65 ms 435 us22: 2: 3 sends to 14: 0: 1 starts at 65 ms 435 us and �nishs at 65 ms 447 us18:35: 4 sends to 18:33: 2 starts at 65 ms 677 us and �nishs at 65 ms 746 us19:26:22 sends to 18:33: 2 starts at 65 ms 746 us and �nishs at 65 ms 771 us7:35: 4 sends to 7:29: 1 starts at 66 ms 873 us and �nishs at 66 ms 891 us7:35: 4 sends to 8:26:22 starts at 66 ms 891 us and �nishs at 66 ms 960 us16:21: 2 sends to 16:22: 2 starts at 67 ms 620 us and �nishs at 67 ms 620 us19:26:22 sends to 16:22: 2 starts at 67 ms 620 us and �nishs at 67 ms 761 us18:33: 2 sends to 18:35: 2 starts at 67 ms 761 us and �nishs at 67 ms 778 us18:35: 2 sends to 18:33: 2 starts at 68 ms 589 us and �nishs at 68 ms 609 us18:35: 2 sends to 19:26:22 starts at 68 ms 609 us and �nishs at 68 ms 615 us8:28: 1 sends to 6:22: 2 starts at 68 ms 809 us and �nishs at 68 ms 812 us8:28: 1 sends to 8:26:22 starts at 68 ms 812 us and �nishs at 68 ms 823 us14: 0: 1 sends to 22: 2: 3 starts at 68 ms 823 us and �nishs at 68 ms 829 us14: 0: 1 sends to 20: 2: 3 starts at 68 ms 829 us and �nishs at 68 ms 835 us16:17: 1 sends to 20: 2: 3 starts at 68 ms 835 us and �nishs at 69 ms 283 us16:22: 2 sends to 19:28: 1 starts at 69 ms 670 us and �nishs at 69 ms 676 us8:28: 1 sends to 5:21: 3 starts at 69 ms 676 us and �nishs at 69 ms 679 us17:17: 1 sends to 20: 2: 3 starts at 69 ms 679 us and �nishs at 70 ms 127 us18:17: 1 sends to 20: 2: 3 starts at 70 ms 127 us and �nishs at 70 ms 575 us19:17: 1 sends to 20: 2: 3 starts at 70 ms 575 us and �nishs at 71 ms 23 us7:29:10 sends to 7:35: 1 starts at 71 ms 677 us and �nishs at 71 ms 698 us7:29:10 sends to 7:35: 4 starts at 71 ms 698 us and �nishs at 71 ms 715 us7:29:10 sends to 8:26:22 starts at 71 ms 715 us and �nishs at 71 ms 736 us7:29:10 sends to 8:27: 1 starts at 71 ms 736 us and �nishs at 71 ms 757 us7:29:10 sends to 8:28: 1 starts at 71 ms 757 us and �nishs at 71 ms 778 us7:29:10 sends to 8:30:20 starts at 71 ms 778 us and �nishs at 71 ms 842 us150

8:30:20 sends to 7:31: 1 starts at 71 ms 842 us and �nishs at 72 ms 12 us7:29:10 sends to 5:19: 5 starts at 72 ms 12 us and �nishs at 72 ms 33 us7:29: 9 sends to 1: 0: 1 starts at 72 ms 33 us and �nishs at 72 ms 38 us8:18: 1 sends to 1: 0: 1 starts at 72 ms 38 us and �nishs at 72 ms 42 us9: 2: 3 sends to 1: 0: 1 starts at 72 ms 42 us and �nishs at 72 ms 54 us7:29:10 sends to 2: 0: 1 starts at 72 ms 54 us and �nishs at 72 ms 55 us8:16: 2 sends to 2: 0: 1 starts at 72 ms 55 us and �nishs at 72 ms 56 us8:18: 1 sends to 2: 0: 1 starts at 72 ms 56 us and �nishs at 72 ms 60 us9: 2: 3 sends to 2: 0: 1 starts at 72 ms 60 us and �nishs at 72 ms 72 us2: 0: 1 sends to 11: 2: 3 starts at 72 ms 72 us and �nishs at 72 ms 78 us2: 0: 1 sends to 8:16: 3 starts at 72 ms 78 us and �nishs at 72 ms 95 us2: 0: 1 sends to 8:30:20 starts at 72 ms 95 us and �nishs at 72 ms 147 us2: 0: 1 sends to 9: 2: 3 starts at 72 ms 147 us and �nishs at 72 ms 153 us7:29:10 sends to 3: 0: 1 starts at 72 ms 153 us and �nishs at 72 ms 154 us8:16: 2 sends to 3: 0: 1 starts at 72 ms 154 us and �nishs at 72 ms 155 us8:18: 1 sends to 3: 0: 1 starts at 72 ms 155 us and �nishs at 72 ms 159 us9: 2: 3 sends to 3: 0: 1 starts at 72 ms 159 us and �nishs at 72 ms 171 us3: 0: 1 sends to 11: 2: 3 starts at 72 ms 171 us and �nishs at 72 ms 177 us3: 0: 1 sends to 8:16: 3 starts at 72 ms 177 us and �nishs at 72 ms 194 us3: 0: 1 sends to 8:30:20 starts at 72 ms 194 us and �nishs at 72 ms 246 us3: 0: 1 sends to 9: 2: 3 starts at 72 ms 246 us and �nishs at 72 ms 252 us7:29:10 sends to 5:21: 5 starts at 72 ms 252 us and �nishs at 72 ms 273 us8:16: 2 sends to 5:21: 5 starts at 72 ms 273 us and �nishs at 72 ms 274 us8:26:22 sends to 5:21: 5 starts at 72 ms 274 us and �nishs at 72 ms 288 us5:21: 2 sends to 5:22: 2 starts at 72 ms 488 us and �nishs at 72 ms 488 us6:22: 2 sends to 5:22: 2 starts at 72 ms 488 us and �nishs at 72 ms 491 us8:28: 1 sends to 5:22: 2 starts at 72 ms 491 us and �nishs at 72 ms 494 us5:21: 3 sends to 6:22: 2 starts at 72 ms 539 us and �nishs at 72 ms 547 us5:21: 3 sends to 8:28: 1 starts at 72 ms 547 us and �nishs at 72 ms 554 us6:21: 4 sends to 6:22: 3 starts at 72 ms 774 us and �nishs at 72 ms 774 us8:26:22 sends to 6:22: 3 starts at 72 ms 774 us and �nishs at 72 ms 779 us8:27: 1 sends to 6:22: 3 starts at 72 ms 779 us and �nishs at 72 ms 784 us8:28: 1 sends to 6:22: 3 starts at 72 ms 784 us and �nishs at 72 ms 789 us7:31: 1 sends to 8:30:20 starts at 73 ms 392 us and �nishs at 73 ms 399 us1: 0: 1 sends to 11: 2: 3 starts at 73 ms 399 us and �nishs at 73 ms 405 us1: 0: 1 sends to 7:29: 9 starts at 73 ms 405 us and �nishs at 73 ms 789 us1: 0: 1 sends to 8:30:20 starts at 73 ms 789 us and �nishs at 73 ms 841 us1: 0: 1 sends to 9: 2: 3 starts at 73 ms 841 us and �nishs at 73 ms 847 us1: 0: 1 sends to 8:16: 3 starts at 73 ms 847 us and �nishs at 73 ms 864 us4: 0: 1 sends to 8:16: 3 starts at 73 ms 864 us and �nishs at 73 ms 881 us6:16: 2 sends to 8:16: 3 starts at 73 ms 881 us and �nishs at 73 ms 903 us1: 0: 1 sends to 6:16: 3 starts at 73 ms 903 us and �nishs at 73 ms 920 us2: 0: 1 sends to 6:16: 3 starts at 73 ms 920 us and �nishs at 73 ms 937 us3: 0: 1 sends to 6:16: 3 starts at 73 ms 937 us and �nishs at 73 ms 954 us4: 0: 1 sends to 6:16: 3 starts at 73 ms 954 us and �nishs at 73 ms 971 us5:16: 2 sends to 6:16: 3 starts at 73 ms 971 us and �nishs at 73 ms 993 us7:16: 2 sends to 6:16: 3 starts at 73 ms 993 us and �nishs at 74 ms 15 us8:16: 2 sends to 6:16: 3 starts at 74 ms 15 us and �nishs at 74 ms 37 us1: 0: 1 sends to 5:16: 3 starts at 74 ms 37 us and �nishs at 74 ms 54 us7:20: 4 sends to 6:22: 4 starts at 74 ms 68 us and �nishs at 74 ms 78 us7:20: 4 sends to 8:30:20 starts at 74 ms 78 us and �nishs at 74 ms 111 us151

7:20: 4 sends to 8:20: 4 starts at 74 ms 111 us and �nishs at 74 ms 114 us7:29:10 sends to 8:20: 4 starts at 74 ms 114 us and �nishs at 74 ms 135 us2: 0: 1 sends to 5:16: 3 starts at 74 ms 135 us and �nishs at 74 ms 152 us3: 0: 1 sends to 5:16: 3 starts at 74 ms 152 us and �nishs at 74 ms 169 us4: 0: 1 sends to 5:16: 3 starts at 74 ms 169 us and �nishs at 74 ms 186 us6:16: 2 sends to 5:16: 3 starts at 74 ms 186 us and �nishs at 74 ms 208 us7:16: 2 sends to 5:16: 3 starts at 74 ms 208 us and �nishs at 74 ms 230 us8:16: 2 sends to 5:16: 3 starts at 74 ms 230 us and �nishs at 74 ms 252 us2: 0: 1 sends to 7:16: 5 starts at 74 ms 252 us and �nishs at 74 ms 289 us3: 0: 1 sends to 7:16: 5 starts at 74 ms 289 us and �nishs at 74 ms 326 us4: 0: 1 sends to 7:16: 5 starts at 74 ms 326 us and �nishs at 74 ms 363 us1: 0: 1 sends to 7:16: 3 starts at 74 ms 363 us and �nishs at 74 ms 380 us2: 0: 1 sends to 7:16: 3 starts at 74 ms 380 us and �nishs at 74 ms 397 us3: 0: 1 sends to 7:16: 3 starts at 74 ms 397 us and �nishs at 74 ms 414 us4: 0: 1 sends to 7:16: 3 starts at 74 ms 414 us and �nishs at 74 ms 431 us5:16: 2 sends to 7:16: 3 starts at 74 ms 431 us and �nishs at 74 ms 453 us6:16: 2 sends to 7:16: 3 starts at 74 ms 453 us and �nishs at 74 ms 475 us5:21: 4 sends to 8:30:20 starts at 74 ms 490 us and �nishs at 74 ms 509 us6:21: 3 sends to 5:22: 3 starts at 74 ms 509 us and �nishs at 74 ms 515 us8:26:22 sends to 5:22: 3 starts at 74 ms 515 us and �nishs at 74 ms 520 us8:27: 1 sends to 5:22: 3 starts at 74 ms 520 us and �nishs at 74 ms 525 us8:28: 1 sends to 5:22: 3 starts at 74 ms 525 us and �nishs at 74 ms 530 us5:21: 4 sends to 6:22: 4 starts at 74 ms 530 us and �nishs at 74 ms 533 us5:22: 2 sends to 6:22: 4 starts at 74 ms 533 us and �nishs at 74 ms 569 us6:19: 1 sends to 6:22: 4 starts at 74 ms 569 us and �nishs at 74 ms 581 us5:22: 2 sends to 6:22: 2 starts at 74 ms 589 us and �nishs at 74 ms 592 us5:22: 2 sends to 8:28: 1 starts at 74 ms 592 us and �nishs at 74 ms 598 us6:19: 4 sends to 6:22: 4 starts at 74 ms 598 us and �nishs at 74 ms 612 us6:21: 4 sends to 6:22: 4 starts at 74 ms 612 us and �nishs at 74 ms 615 us7:29:10 sends to 6:22: 4 starts at 74 ms 615 us and �nishs at 74 ms 620 us7:35: 1 sends to 6:22: 4 starts at 74 ms 620 us and �nishs at 74 ms 626 us7:35: 2 sends to 6:22: 4 starts at 74 ms 626 us and �nishs at 74 ms 632 us7:35: 4 sends to 6:22: 4 starts at 74 ms 632 us and �nishs at 74 ms 650 us8:26:22 sends to 6:22: 4 starts at 74 ms 650 us and �nishs at 74 ms 664 us5:19: 5 sends to 6:22: 4 starts at 74 ms 664 us and �nishs at 74 ms 674 us5:19: 5 sends to 7:29:10 starts at 74 ms 674 us and �nishs at 74 ms 684 us5:19: 5 sends to 8:30:20 starts at 74 ms 684 us and �nishs at 74 ms 696 us5:19: 5 sends to 6:19: 5 starts at 74 ms 696 us and �nishs at 74 ms 699 us6:16: 2 sends to 6:19: 5 starts at 74 ms 699 us and �nishs at 74 ms 700 us7:29:10 sends to 6:19: 5 starts at 74 ms 700 us and �nishs at 74 ms 721 us20: 2: 3 sends to 12: 0: 1 starts at 74 ms 721 us and �nishs at 74 ms 733 us20: 2: 3 sends to 14: 0: 1 starts at 74 ms 733 us and �nishs at 74 ms 745 us20: 2: 3 sends to 16:17: 1 starts at 74 ms 745 us and �nishs at 74 ms 794 us6:19: 5 sends to 5:19: 5 starts at 74 ms 801 us and �nishs at 74 ms 804 us6:19: 5 sends to 6:22: 4 starts at 74 ms 804 us and �nishs at 74 ms 814 us15: 0: 3 sends to 18:29: 1 starts at 74 ms 814 us and �nishs at 74 ms 815 us12: 0: 3 sends to 18:29: 1 starts at 74 ms 815 us and �nishs at 74 ms 816 us13: 0: 3 sends to 18:29: 1 starts at 74 ms 819 us and �nishs at 74 ms 820 us14: 0: 3 sends to 18:29: 1 starts at 74 ms 820 us and �nishs at 74 ms 821 us6:19: 5 sends to 7:29:10 starts at 74 ms 821 us and �nishs at 74 ms 831 us6:19: 5 sends to 8:30:20 starts at 74 ms 831 us and �nishs at 74 ms 843 us152

20: 2: 3 sends to 17:17: 1 starts at 74 ms 843 us and �nishs at 74 ms 892 us20: 2: 3 sends to 18:17: 1 starts at 74 ms 892 us and �nishs at 74 ms 941 us20: 2: 3 sends to 19:17: 1 starts at 74 ms 941 us and �nishs at 74 ms 990 us5:19: 5 sends to 5:22: 4 starts at 74 ms 990 us and �nishs at 75 ms 0 us5:21: 4 sends to 5:22: 4 starts at 75 ms 0 us and �nishs at 75 ms 3 us2: 0: 1 sends to 5:16: 5 starts at 75 ms 3 us and �nishs at 75 ms 40 us3: 0: 1 sends to 5:16: 5 starts at 75 ms 40 us and �nishs at 75 ms 77 us4: 0: 1 sends to 5:16: 5 starts at 75 ms 77 us and �nishs at 75 ms 114 us1: 0: 1 sends to 6:16: 5 starts at 75 ms 114 us and �nishs at 75 ms 151 us4: 0: 1 sends to 6:16: 5 starts at 75 ms 151 us and �nishs at 75 ms 188 us1: 0: 1 sends to 8:16: 5 starts at 75 ms 188 us and �nishs at 75 ms 225 us2: 0: 1 sends to 8:16: 5 starts at 75 ms 225 us and �nishs at 75 ms 262 us3: 0: 1 sends to 8:16: 5 starts at 75 ms 262 us and �nishs at 75 ms 299 us4: 0: 1 sends to 8:16: 5 starts at 75 ms 299 us and �nishs at 75 ms 336 us1: 0: 3 sends to 7:29: 1 starts at 75 ms 996 us and �nishs at 75 ms 997 us4: 0: 3 sends to 7:29: 1 starts at 75 ms 997 us and �nishs at 75 ms 998 us19:28: 1 sends to 16:22: 2 starts at 76 ms 221 us and �nishs at 76 ms 224 us5:21: 3 sends to 6:21: 3 starts at 76 ms 224 us and �nishs at 76 ms 229 us8:26:22 sends to 6:21: 3 starts at 76 ms 229 us and �nishs at 76 ms 232 us8:28: 1 sends to 6:21: 3 starts at 76 ms 232 us and �nishs at 76 ms 235 us5:21: 3 sends to 8:27: 1 starts at 77 ms 269 us and �nishs at 77 ms 276 us8:26:22 sends to 8:27: 1 starts at 77 ms 276 us and �nishs at 77 ms 291 us6:21: 3 sends to 5:21: 3 starts at 79 ms 32 us and �nishs at 79 ms 37 us6:21: 3 sends to 5:22: 2 starts at 79 ms 37 us and �nishs at 79 ms 45 us6:21: 3 sends to 8:26:22 starts at 79 ms 45 us and �nishs at 79 ms 60 us6:21: 3 sends to 8:27: 1 starts at 79 ms 60 us and �nishs at 79 ms 67 us6:21: 3 sends to 8:28: 1 starts at 79 ms 67 us and �nishs at 79 ms 74 us6:21: 3 sends to 8:30:20 starts at 79 ms 74 us and �nishs at 79 ms 111 us8:20: 4 sends to 6:22: 4 starts at 79 ms 125 us and �nishs at 79 ms 135 us8:20: 4 sends to 7:20: 4 starts at 79 ms 135 us and �nishs at 79 ms 138 us8:20: 4 sends to 7:29:10 starts at 79 ms 138 us and �nishs at 79 ms 148 us8:20: 4 sends to 8:30:20 starts at 79 ms 148 us and �nishs at 79 ms 181 us16:22: 2 sends to 16:21: 3 starts at 79 ms 964 us and �nishs at 79 ms 964 us19:26:22 sends to 16:21: 3 starts at 79 ms 964 us and �nishs at 79 ms 967 us19:28: 1 sends to 16:21: 3 starts at 79 ms 967 us and �nishs at 79 ms 970 us7:29: 2 sends to 7:29:10 starts at 80 ms 369 us and �nishs at 80 ms 378 us8:27: 1 sends to 8:26:22 starts at 80 ms 826 us and �nishs at 80 ms 831 us8:27: 1 sends to 8:30:20 starts at 80 ms 831 us and �nishs at 80 ms 840 us18:29: 2 sends to 18:29:10 starts at 81 ms 613 us and �nishs at 81 ms 622 us16:16: 2 sends to 12: 0: 1 starts at 82 ms 740 us and �nishs at 82 ms 741 us16:16: 2 sends to 14: 0: 1 starts at 82 ms 741 us and �nishs at 82 ms 742 us16:16: 2 sends to 16:19: 5 starts at 82 ms 742 us and �nishs at 82 ms 743 us16:16: 2 sends to 16:21: 5 starts at 82 ms 743 us and �nishs at 82 ms 744 us16:16: 2 sends to 16:22: 4 starts at 82 ms 744 us and �nishs at 82 ms 751 us16:16: 2 sends to 17:16: 1 starts at 82 ms 751 us and �nishs at 82 ms 752 us16:16: 2 sends to 17:16: 2 starts at 82 ms 752 us and �nishs at 82 ms 765 us16:16: 2 sends to 17:19: 5 starts at 82 ms 765 us and �nishs at 82 ms 766 us16:16: 2 sends to 18:20: 4 starts at 82 ms 766 us and �nishs at 82 ms 767 us16:21: 3 sends to 16:22: 2 starts at 82 ms 767 us and �nishs at 82 ms 779 us16:21: 3 sends to 19:26:22 starts at 82 ms 779 us and �nishs at 82 ms 794 us16:21: 3 sends to 19:28: 1 starts at 82 ms 794 us and �nishs at 82 ms 801 us153

5:22: 2 sends to 7:33: 2 starts at 82 ms 801 us and �nishs at 82 ms 805 us16:21: 3 sends to 19:27: 1 starts at 82 ms 805 us and �nishs at 82 ms 812 us19:26:22 sends to 19:27: 1 starts at 82 ms 812 us and �nishs at 82 ms 827 us6:22: 2 sends to 7:33: 2 starts at 82 ms 827 us and �nishs at 82 ms 831 us7:35: 1 sends to 7:33: 2 starts at 82 ms 831 us and �nishs at 82 ms 837 us7:35: 4 sends to 7:33: 2 starts at 82 ms 837 us and �nishs at 82 ms 906 us8:26:22 sends to 7:33: 2 starts at 82 ms 906 us and �nishs at 82 ms 931 us16:16: 2 sends to 18:32: 1 starts at 82 ms 931 us and �nishs at 82 ms 932 us16:16: 2 sends to 18:35: 1 starts at 82 ms 932 us and �nishs at 82 ms 933 us16:16: 2 sends to 19:16: 1 starts at 82 ms 933 us and �nishs at 82 ms 934 us16:16: 2 sends to 19:16: 2 starts at 82 ms 934 us and �nishs at 82 ms 947 us16:16: 2 sends to 19:26:22 starts at 82 ms 947 us and �nishs at 82 ms 948 us16:16: 2 sends to 19:28: 1 starts at 82 ms 948 us and �nishs at 82 ms 949 us16:16: 2 sends to 17:21: 5 starts at 82 ms 949 us and �nishs at 82 ms 950 us16:16: 2 sends to 13: 0: 1 starts at 82 ms 950 us and �nishs at 82 ms 951 us19:16: 2 sends to 13: 0: 1 starts at 82 ms 951 us and �nishs at 82 ms 952 us19:18: 1 sends to 13: 0: 1 starts at 82 ms 952 us and �nishs at 82 ms 956 us19:27: 1 sends to 13: 0: 1 starts at 82 ms 956 us and �nishs at 82 ms 957 us20: 2: 3 sends to 13: 0: 1 starts at 82 ms 957 us and �nishs at 82 ms 969 us22: 2: 3 sends to 13: 0: 1 starts at 82 ms 969 us and �nishs at 82 ms 981 us13: 0: 1 sends to 20: 2: 3 starts at 82 ms 981 us and �nishs at 82 ms 987 us13: 0: 1 sends to 22: 2: 3 starts at 82 ms 987 us and �nishs at 82 ms 993 us17:16: 2 sends to 18:16: 1 starts at 82 ms 993 us and �nishs at 82 ms 994 us18:29: 1 sends to 18:16: 1 starts at 82 ms 994 us and �nishs at 83 ms 63 us19:16: 2 sends to 18:16: 1 starts at 83 ms 63 us and �nishs at 83 ms 64 us16:16: 2 sends to 18:16: 2 starts at 83 ms 64 us and �nishs at 83 ms 77 us19:16: 2 sends to 18:16: 2 starts at 83 ms 77 us and �nishs at 83 ms 89 us16:16: 2 sends to 15: 0: 1 starts at 83 ms 89 us and �nishs at 83 ms 90 us17:16: 2 sends to 15: 0: 1 starts at 83 ms 90 us and �nishs at 83 ms 91 us13: 0: 1 sends to 16:16: 5 starts at 83 ms 91 us and �nishs at 83 ms 128 us14: 0: 1 sends to 16:16: 5 starts at 83 ms 128 us and �nishs at 83 ms 165 us14: 0: 1 sends to 18:16: 3 starts at 83 ms 165 us and �nishs at 83 ms 182 us13: 0: 1 sends to 18:16: 5 starts at 83 ms 182 us and �nishs at 83 ms 219 us13: 0: 1 sends to 17:16: 3 starts at 83 ms 219 us and �nishs at 83 ms 236 us14: 0: 1 sends to 17:16: 3 starts at 83 ms 236 us and �nishs at 83 ms 253 us14: 0: 1 sends to 19:16: 3 starts at 83 ms 253 us and �nishs at 83 ms 270 us13: 0: 1 sends to 18:29: 9 starts at 83 ms 270 us and �nishs at 83 ms 654 us14: 0: 1 sends to 18:29: 9 starts at 83 ms 654 us and �nishs at 84 ms 38 us16:16: 2 sends to 17:22: 4 starts at 84 ms 38 us and �nishs at 84 ms 45 us16:19: 1 sends to 17:22: 4 starts at 84 ms 45 us and �nishs at 84 ms 57 us13: 0: 1 sends to 17:16: 5 starts at 84 ms 57 us and �nishs at 84 ms 94 us13: 0: 1 sends to 16:16: 3 starts at 84 ms 94 us and �nishs at 84 ms 111 us14: 0: 1 sends to 16:16: 3 starts at 84 ms 111 us and �nishs at 84 ms 128 us13: 0: 1 sends to 19:16: 5 starts at 84 ms 128 us and �nishs at 84 ms 165 us14: 0: 1 sends to 19:16: 5 starts at 84 ms 165 us and �nishs at 84 ms 202 us18:16: 2 sends to 14: 0: 1 starts at 84 ms 204 us and �nishs at 84 ms 205 us18:16: 2 sends to 16:16: 1 starts at 84 ms 205 us and �nishs at 84 ms 206 us18:16: 2 sends to 16:16: 2 starts at 84 ms 206 us and �nishs at 84 ms 219 us18:16: 2 sends to 16:19: 5 starts at 84 ms 219 us and �nishs at 84 ms 220 us18:16: 2 sends to 16:21: 5 starts at 84 ms 220 us and �nishs at 84 ms 221 us18:16: 2 sends to 16:22: 4 starts at 84 ms 221 us and �nishs at 84 ms 228 us154

18:16: 2 sends to 17:16: 1 starts at 84 ms 228 us and �nishs at 84 ms 229 us18:16: 2 sends to 17:19: 5 starts at 84 ms 229 us and �nishs at 84 ms 230 us18:16: 2 sends to 17:21: 5 starts at 84 ms 230 us and �nishs at 84 ms 231 us18:16: 2 sends to 18:20: 4 starts at 84 ms 231 us and �nishs at 84 ms 232 us18:16: 2 sends to 18:29: 2 starts at 84 ms 232 us and �nishs at 84 ms 233 us18:16: 2 sends to 18:31: 1 starts at 84 ms 233 us and �nishs at 84 ms 234 us18:16: 2 sends to 18:32: 1 starts at 84 ms 234 us and �nishs at 84 ms 235 us18:16: 2 sends to 18:33: 2 starts at 84 ms 235 us and �nishs at 84 ms 237 us18:16: 2 sends to 18:35: 1 starts at 84 ms 237 us and �nishs at 84 ms 238 us18:16: 2 sends to 19:16: 2 starts at 84 ms 238 us and �nishs at 84 ms 251 us18:16: 2 sends to 19:20: 4 starts at 84 ms 251 us and �nishs at 84 ms 252 us18:16: 2 sends to 19:26:22 starts at 84 ms 252 us and �nishs at 84 ms 253 us18:16: 2 sends to 19:27: 1 starts at 84 ms 253 us and �nishs at 84 ms 254 us18:16: 2 sends to 19:28: 1 starts at 84 ms 254 us and �nishs at 84 ms 255 us18:16: 2 sends to 15: 0: 1 starts at 84 ms 255 us and �nishs at 84 ms 256 us19:16: 2 sends to 15: 0: 1 starts at 84 ms 256 us and �nishs at 84 ms 257 us22: 2: 3 sends to 15: 0: 1 starts at 84 ms 257 us and �nishs at 84 ms 269 us7:33: 2 sends to 5:22: 2 starts at 84 ms 849 us and �nishs at 84 ms 917 us7:33: 2 sends to 6:22: 2 starts at 84 ms 917 us and �nishs at 84 ms 985 us7:33: 2 sends to 8:30:20 starts at 84 ms 985 us and �nishs at 84 ms 989 us7:33: 2 sends to 7:35: 2 starts at 84 ms 989 us and �nishs at 85 ms 6 us15: 0: 1 sends to 22: 2: 3 starts at 85 ms 6 us and �nishs at 85 ms 12 us15: 0: 1 sends to 18:16: 3 starts at 85 ms 12 us and �nishs at 85 ms 29 us16:16: 2 sends to 18:16: 3 starts at 85 ms 29 us and �nishs at 85 ms 51 us19:16: 2 sends to 18:16: 3 starts at 85 ms 51 us and �nishs at 85 ms 73 us15: 0: 1 sends to 18:16: 5 starts at 85 ms 73 us and �nishs at 85 ms 110 us16:16: 2 sends to 17:16: 3 starts at 85 ms 110 us and �nishs at 85 ms 132 us18:16: 2 sends to 17:16: 3 starts at 85 ms 132 us and �nishs at 85 ms 154 us19:16: 2 sends to 17:16: 3 starts at 85 ms 154 us and �nishs at 85 ms 176 us15: 0: 1 sends to 19:16: 3 starts at 85 ms 176 us and �nishs at 85 ms 193 us16:16: 2 sends to 19:16: 3 starts at 85 ms 193 us and �nishs at 85 ms 215 us15: 0: 1 sends to 18:29: 9 starts at 85 ms 215 us and �nishs at 85 ms 599 us16:17: 1 sends to 18:29: 9 starts at 85 ms 599 us and �nishs at 85 ms 694 us17:17: 1 sends to 18:29: 9 starts at 85 ms 694 us and �nishs at 85 ms 789 us15: 0: 1 sends to 16:16: 3 starts at 85 ms 789 us and �nishs at 85 ms 806 us7:35: 2 sends to 7:33: 2 starts at 85 ms 817 us and �nishs at 85 ms 837 us7:35: 2 sends to 8:26:22 starts at 85 ms 837 us and �nishs at 85 ms 843 us19:17: 1 sends to 18:29: 9 starts at 85 ms 843 us and �nishs at 85 ms 938 us17:16: 2 sends to 16:16: 3 starts at 85 ms 938 us and �nishs at 85 ms 960 us7:32: 3 sends to 6:22: 4 starts at 85 ms 970 us and �nishs at 85 ms 976 us7:32: 3 sends to 8:30:20 starts at 85 ms 976 us and �nishs at 85 ms 986 us15: 0: 1 sends to 17:16: 5 starts at 85 ms 986 us and �nishs at 86 ms 23 us18:16: 2 sends to 16:16: 3 starts at 86 ms 23 us and �nishs at 86 ms 45 us15: 0: 1 sends to 19:16: 5 starts at 86 ms 45 us and �nishs at 86 ms 82 us19:27: 1 sends to 19:26:22 starts at 86 ms 362 us and �nishs at 86 ms 367 us18:16: 1 sends to 18:29: 1 starts at 86 ms 926 us and �nishs at 86 ms 926 us17:21: 2 sends to 17:22: 2 starts at 88 ms 462 us and �nishs at 88 ms 462 us16:21: 3 sends to 17:22: 2 starts at 88 ms 462 us and �nishs at 88 ms 470 us19:26:22 sends to 17:22: 2 starts at 88 ms 470 us and �nishs at 88 ms 611 us19:28: 1 sends to 17:22: 2 starts at 88 ms 611 us and �nishs at 88 ms 614 us7:16: 5 sends to 2: 0: 1 starts at 89 ms 11 us and �nishs at 89 ms 17 us155

7:16: 5 sends to 3: 0: 1 starts at 89 ms 17 us and �nishs at 89 ms 23 us7:16: 5 sends to 4: 0: 1 starts at 89 ms 23 us and �nishs at 89 ms 29 us5:19: 4 sends to 8:30:20 starts at 89 ms 642 us and �nishs at 89 ms 684 us5:21: 2 sends to 8:30:20 starts at 89 ms 684 us and �nishs at 89 ms 686 us5:21: 3 sends to 8:30:20 starts at 89 ms 686 us and �nishs at 89 ms 723 us5:22: 2 sends to 8:30:20 starts at 89 ms 723 us and �nishs at 89 ms 728 us6:21: 2 sends to 8:30:20 starts at 89 ms 728 us and �nishs at 89 ms 730 us6:22: 2 sends to 8:30:20 starts at 89 ms 730 us and �nishs at 89 ms 735 us7:29: 1 sends to 8:30:20 starts at 89 ms 735 us and �nishs at 89 ms 750 us8:26:22 sends to 8:30:20 starts at 89 ms 750 us and �nishs at 89 ms 813 us8:28: 1 sends to 8:30:20 starts at 89 ms 813 us and �nishs at 89 ms 839 us16:21: 3 sends to 17:21: 3 starts at 90 ms 521 us and �nishs at 90 ms 526 us19:26:22 sends to 17:21: 3 starts at 90 ms 526 us and �nishs at 90 ms 529 us19:28: 1 sends to 17:21: 3 starts at 90 ms 529 us and �nishs at 90 ms 532 us17:22: 2 sends to 19:28: 1 starts at 90 ms 661 us and �nishs at 90 ms 667 us5:16: 5 sends to 2: 0: 1 starts at 92 ms 52 us and �nishs at 92 ms 58 us5:16: 5 sends to 3: 0: 1 starts at 92 ms 58 us and �nishs at 92 ms 64 us5:16: 5 sends to 4: 0: 1 starts at 92 ms 64 us and �nishs at 92 ms 70 us5:16: 5 sends to 6:16: 5 starts at 92 ms 70 us and �nishs at 92 ms 110 us7:16: 5 sends to 6:16: 5 starts at 92 ms 110 us and �nishs at 92 ms 150 us7:29:10 sends to 6:16: 5 starts at 92 ms 150 us and �nishs at 92 ms 171 us5:16: 5 sends to 8:16: 5 starts at 92 ms 171 us and �nishs at 92 ms 211 us17:21: 3 sends to 16:21: 3 starts at 93 ms 461 us and �nishs at 93 ms 466 us17:21: 3 sends to 19:26:22 starts at 93 ms 466 us and �nishs at 93 ms 481 us17:21: 3 sends to 19:28: 1 starts at 93 ms 481 us and �nishs at 93 ms 488 us5:21: 5 sends to 7:29:10 starts at 95 ms 427 us and �nishs at 95 ms 436 us5:21: 5 sends to 7:32: 1 starts at 95 ms 436 us and �nishs at 95 ms 453 us5:21: 5 sends to 7:33: 2 starts at 95 ms 453 us and �nishs at 95 ms 470 us5:21: 5 sends to 8:26:22 starts at 95 ms 470 us and �nishs at 95 ms 474 us5:21: 5 sends to 8:30:20 starts at 95 ms 474 us and �nishs at 95 ms 476 us6:16: 2 sends to 5:22: 4 starts at 95 ms 476 us and �nishs at 95 ms 483 us6:19: 1 sends to 5:22: 4 starts at 95 ms 483 us and �nishs at 95 ms 495 us6:19: 4 sends to 5:22: 4 starts at 95 ms 495 us and �nishs at 95 ms 509 us6:19: 5 sends to 5:22: 4 starts at 95 ms 509 us and �nishs at 95 ms 519 us6:21: 4 sends to 5:22: 4 starts at 95 ms 519 us and �nishs at 95 ms 522 us6:22: 2 sends to 5:22: 4 starts at 95 ms 522 us and �nishs at 95 ms 558 us5:21: 5 sends to 6:21: 5 starts at 95 ms 558 us and �nishs at 95 ms 594 us18:29:10 sends to 18:33: 2 starts at 95 ms 682 us and �nishs at 95 ms 727 us18:29:10 sends to 19:27: 1 starts at 95 ms 727 us and �nishs at 95 ms 748 us18:29:10 sends to 16:19: 5 starts at 95 ms 748 us and �nishs at 95 ms 769 us18:29:10 sends to 16:21: 5 starts at 95 ms 769 us and �nishs at 95 ms 790 us19:26:22 sends to 16:21: 5 starts at 95 ms 790 us and �nishs at 95 ms 804 us19:28: 1 sends to 16:21: 5 starts at 95 ms 804 us and �nishs at 95 ms 809 us18:29:10 sends to 18:31: 1 starts at 95 ms 809 us and �nishs at 95 ms 822 us18:29:10 sends to 19:20: 4 starts at 95 ms 822 us and �nishs at 95 ms 843 us19:16: 2 sends to 19:20: 4 starts at 95 ms 843 us and �nishs at 95 ms 844 us19:16: 2 sends to 18:20: 4 starts at 95 ms 844 us and �nishs at 95 ms 845 us16:19: 5 sends to 18:29:10 starts at 95 ms 849 us and �nishs at 95 ms 859 us16:19: 5 sends to 17:19: 5 starts at 95 ms 859 us and �nishs at 95 ms 862 us16:19: 5 sends to 16:22: 4 starts at 95 ms 862 us and �nishs at 95 ms 872 us16:21: 4 sends to 16:22: 4 starts at 95 ms 872 us and �nishs at 95 ms 875 us156

18:29:10 sends to 16:16: 5 starts at 95 ms 875 us and �nishs at 95 ms 896 us16:19: 5 sends to 17:22: 4 starts at 95 ms 896 us and �nishs at 95 ms 906 us16:21: 4 sends to 17:22: 4 starts at 95 ms 906 us and �nishs at 95 ms 909 us16:22: 2 sends to 17:22: 4 starts at 95 ms 909 us and �nishs at 95 ms 945 us17:19: 5 sends to 16:19: 5 starts at 95 ms 960 us and �nishs at 95 ms 963 us19:20: 4 sends to 18:29:10 starts at 96 ms 519 us and �nishs at 96 ms 529 us19:20: 4 sends to 18:20: 4 starts at 96 ms 529 us and �nishs at 96 ms 532 us18:20: 4 sends to 19:20: 4 starts at 97 ms 205 us and �nishs at 97 ms 208 us18:32: 3 sends to 16:22: 4 starts at 98 ms 326 us and �nishs at 98 ms 332 us18:32: 3 sends to 17:22: 4 starts at 98 ms 332 us and �nishs at 98 ms 338 us6:16: 5 sends to 1: 0: 1 starts at 98 ms 890 us and �nishs at 98 ms 896 us6:16: 5 sends to 4: 0: 1 starts at 98 ms 896 us and �nishs at 98 ms 902 us6:16: 5 sends to 7:29:10 starts at 98 ms 902 us and �nishs at 98 ms 912 us16:16: 5 sends to 12: 0: 1 starts at 98 ms 916 us and �nishs at 98 ms 922 us16:16: 5 sends to 13: 0: 1 starts at 98 ms 922 us and �nishs at 98 ms 928 us16:16: 5 sends to 14: 0: 1 starts at 98 ms 928 us and �nishs at 98 ms 934 us16:16: 5 sends to 18:29:10 starts at 98 ms 934 us and �nishs at 98 ms 944 us16:16: 5 sends to 18:16: 5 starts at 98 ms 944 us and �nishs at 98 ms 984 us18:29:10 sends to 18:16: 5 starts at 98 ms 984 us and �nishs at 99 ms 5 us16:16: 5 sends to 17:16: 5 starts at 99 ms 5 us and �nishs at 99 ms 45 us6:16: 5 sends to 5:16: 5 starts at 99 ms 45 us and �nishs at 99 ms 85 us6:16: 5 sends to 7:16: 5 starts at 99 ms 85 us and �nishs at 99 ms 125 us6:16: 5 sends to 8:16: 5 starts at 99 ms 125 us and �nishs at 99 ms 165 us7:16: 5 sends to 8:16: 5 starts at 99 ms 165 us and �nishs at 99 ms 205 us7:29:10 sends to 8:16: 5 starts at 99 ms 205 us and �nishs at 99 ms 226 us5:22: 3 sends to 7:29:10 starts at 99 ms 265 us and �nishs at 99 ms 299 us5:22: 3 sends to 8:30:20 starts at 99 ms 299 us and �nishs at 99 ms 306 us16:16: 5 sends to 19:16: 5 starts at 99 ms 306 us and �nishs at 99 ms 346 us1: 0: 2 sends to 7:29: 1 starts at 99 ms 750 us and �nishs at 99 ms 752 us15: 0: 3 sends to 18:29: 1 starts at 99 ms 752 us and �nishs at 99 ms 753 us12: 0: 3 sends to 18:29: 1 starts at 99 ms 753 us and �nishs at 99 ms 754 us3: 0: 2 sends to 7:29: 1 starts at 99 ms 754 us and �nishs at 99 ms 756 us4: 0: 2 sends to 7:29: 1 starts at 99 ms 756 us and �nishs at 99 ms 758 us13: 0: 3 sends to 18:29: 1 starts at 99 ms 758 us and �nishs at 99 ms 759 us14: 0: 3 sends to 18:29: 1 starts at 99 ms 759 us and �nishs at 99 ms 760 us14: 0: 2 sends to 18:29: 1 starts at 99 ms 760 us and �nishs at 99 ms 763 us15: 0: 2 sends to 18:29: 1 starts at 99 ms 763 us and �nishs at 99 ms 766 us2: 0: 2 sends to 7:29: 1 starts at 99 ms 766 us and �nishs at 99 ms 769 us12: 0: 2 sends to 18:29: 1 starts at 99 ms 769 us and �nishs at 99 ms 770 us13: 0: 2 sends to 18:29: 1 starts at 99 ms 770 us and �nishs at 99 ms 772 us1: 0: 3 sends to 7:29: 1 starts at 100 ms 935 us and �nishs at 100 ms 936 us4: 0: 3 sends to 7:29: 1 starts at 100 ms 936 us and �nishs at 100 ms 937 us18:35: 1 sends to 18:29: 1 starts at 100 ms 981 us and �nishs at 100 ms 987 us18:35: 1 sends to 18:33: 2 starts at 100 ms 987 us and �nishs at 100 ms 993 us18:29: 1 sends to 18:35: 4 starts at 102 ms 205 us and �nishs at 102 ms 274 us7:17: 1 sends to 8:30:20 starts at 102 ms 274 us and �nishs at 102 ms 628 us1: 0: 3 sends to 8:26:22 starts at 103 ms 385 us and �nishs at 103 ms 387 us4: 0: 3 sends to 8:26:22 starts at 103 ms 387 us and �nishs at 103 ms 389 us5:19: 3 sends to 8:30:20 starts at 104 ms 111 us and �nishs at 104 ms 166 us18:35: 4 sends to 18:29: 1 starts at 104 ms 305 us and �nishs at 104 ms 323 us6:21: 2 sends to 6:22: 2 starts at 104 ms 901 us and �nishs at 104 ms 901 us157

8:20: 2 sends to 8:30:20 starts at 104 ms 912 us and �nishs at 104 ms 960 us12: 0: 3 sends to 19:26:22 starts at 106 ms 953 us and �nishs at 106 ms 955 us13: 0: 3 sends to 19:26:22 starts at 106 ms 955 us and �nishs at 106 ms 957 us18:16: 5 sends to 12: 0: 1 starts at 107 ms 953 us and �nishs at 107 ms 959 us18:16: 5 sends to 13: 0: 1 starts at 107 ms 959 us and �nishs at 107 ms 965 us18:16: 5 sends to 15: 0: 1 starts at 107 ms 965 us and �nishs at 107 ms 971 us18:16: 5 sends to 16:16: 5 starts at 107 ms 971 us and �nishs at 108 ms 11 us18:16: 5 sends to 18:29:10 starts at 108 ms 11 us and �nishs at 108 ms 21 us18:29:10 sends to 17:16: 5 starts at 108 ms 21 us and �nishs at 108 ms 42 us7:35: 1 sends to 7:29: 1 starts at 108 ms 195 us and �nishs at 108 ms 201 us7:35: 1 sends to 8:26:22 starts at 108 ms 201 us and �nishs at 108 ms 207 us7:17: 1 sends to 6:17: 1 starts at 110 ms 93 us and �nishs at 110 ms 99 us17:16: 5 sends to 12: 0: 1 starts at 111 ms 62 us and �nishs at 111 ms 68 us17:16: 5 sends to 13: 0: 1 starts at 111 ms 68 us and �nishs at 111 ms 74 us6:17: 1 sends to 7:17: 1 starts at 111 ms 76 us and �nishs at 111 ms 82 us17:16: 5 sends to 15: 0: 1 starts at 111 ms 82 us and �nishs at 111 ms 88 us17:16: 5 sends to 16:16: 5 starts at 111 ms 88 us and �nishs at 111 ms 128 us17:16: 5 sends to 18:29:10 starts at 111 ms 128 us and �nishs at 111 ms 138 us17:16: 5 sends to 19:16: 5 starts at 111 ms 138 us and �nishs at 111 ms 178 us18:16: 5 sends to 19:16: 5 starts at 111 ms 178 us and �nishs at 111 ms 218 us18:29:10 sends to 19:16: 5 starts at 111 ms 218 us and �nishs at 111 ms 239 us8:26:22 sends to 6:22: 2 starts at 111 ms 989 us and �nishs at 112 ms 130 us6:22: 2 sends to 8:28: 1 starts at 112 ms 133 us and �nishs at 112 ms 139 us8:26:22 sends to 8:28: 1 starts at 112 ms 139 us and �nishs at 112 ms 150 us7:20: 2 sends to 8:30:20 starts at 112 ms 150 us and �nishs at 112 ms 198 us7:20: 3 sends to 8:30:20 starts at 114 ms 551 us and �nishs at 114 ms 575 us7:29: 1 sends to 7:35: 4 starts at 114 ms 648 us and �nishs at 114 ms 717 us8:26:22 sends to 7:35: 4 starts at 114 ms 717 us and �nishs at 114 ms 757 us18:35: 4 sends to 18:33: 2 starts at 115 ms 621 us and �nishs at 115 ms 690 us19:26:22 sends to 18:33: 2 starts at 115 ms 690 us and �nishs at 115 ms 715 us7:35: 4 sends to 7:29: 1 starts at 116 ms 817 us and �nishs at 116 ms 835 us7:35: 4 sends to 8:26:22 starts at 116 ms 835 us and �nishs at 116 ms 904 us16:21: 2 sends to 16:22: 2 starts at 117 ms 564 us and �nishs at 117 ms 564 us19:26:22 sends to 16:22: 2 starts at 117 ms 564 us and �nishs at 117 ms 705 us18:33: 2 sends to 18:35: 2 starts at 117 ms 705 us and �nishs at 117 ms 722 us6:19: 2 sends to 8:30:20 starts at 117 ms 957 us and �nishs at 118 ms 1 us6:17: 1 sends to 5:17: 1 starts at 118 ms 1 us and �nishs at 118 ms 7 us18:35: 2 sends to 18:33: 2 starts at 118 ms 533 us and �nishs at 118 ms 553 us18:35: 2 sends to 19:26:22 starts at 118 ms 553 us and �nishs at 118 ms 559 us8:28: 1 sends to 6:22: 2 starts at 118 ms 690 us and �nishs at 118 ms 693 us8:28: 1 sends to 8:26:22 starts at 118 ms 693 us and �nishs at 118 ms 704 us5:17: 1 sends to 6:17: 1 starts at 118 ms 982 us and �nishs at 118 ms 988 us5:17: 1 sends to 8:30:20 starts at 118 ms 988 us and �nishs at 119 ms 342 us5:17: 1 sends to 8:17: 1 starts at 119 ms 342 us and �nishs at 119 ms 348 us6:17: 1 sends to 8:17: 1 starts at 119 ms 348 us and �nishs at 119 ms 354 us7:17: 1 sends to 8:17: 1 starts at 119 ms 354 us and �nishs at 119 ms 360 us16:22: 2 sends to 19:28: 1 starts at 119 ms 545 us and �nishs at 119 ms 551 us8:28: 1 sends to 5:21: 3 starts at 119 ms 614 us and �nishs at 119 ms 617 us16:21: 5 sends to 18:29:10 starts at 120 ms 254 us and �nishs at 120 ms 263 us16:21: 5 sends to 18:33: 2 starts at 120 ms 263 us and �nishs at 120 ms 280 us16:21: 5 sends to 19:26:22 starts at 120 ms 280 us and �nishs at 120 ms 284 us158

16:21: 5 sends to 18:32: 1 starts at 120 ms 284 us and �nishs at 120 ms 301 us17:19: 1 sends to 18:32: 1 starts at 120 ms 301 us and �nishs at 120 ms 304 us17:21: 3 sends to 18:32: 1 starts at 120 ms 304 us and �nishs at 120 ms 312 us19:16: 2 sends to 18:32: 1 starts at 120 ms 312 us and �nishs at 120 ms 313 us19:27: 1 sends to 18:32: 1 starts at 120 ms 313 us and �nishs at 120 ms 318 us17:19: 1 sends to 16:22: 4 starts at 120 ms 318 us and �nishs at 120 ms 330 us8:17: 1 sends to 5:17: 1 starts at 120 ms 335 us and �nishs at 120 ms 341 us8:17: 1 sends to 6:17: 1 starts at 120 ms 341 us and �nishs at 120 ms 347 us8:17: 1 sends to 7:17: 1 starts at 120 ms 347 us and �nishs at 120 ms 353 us8:17: 1 sends to 8:30:20 starts at 120 ms 353 us and �nishs at 120 ms 707 us17:19: 4 sends to 16:22: 4 starts at 120 ms 707 us and �nishs at 120 ms 721 us17:19: 5 sends to 16:22: 4 starts at 120 ms 721 us and �nishs at 120 ms 731 us17:21: 4 sends to 16:22: 4 starts at 120 ms 731 us and �nishs at 120 ms 734 us17:22: 2 sends to 16:22: 4 starts at 120 ms 734 us and �nishs at 120 ms 770 us18:20: 4 sends to 16:22: 4 starts at 120 ms 770 us and �nishs at 120 ms 780 us18:29:10 sends to 16:22: 4 starts at 120 ms 780 us and �nishs at 120 ms 785 us18:35: 1 sends to 16:22: 4 starts at 120 ms 785 us and �nishs at 120 ms 791 us18:35: 2 sends to 16:22: 4 starts at 120 ms 791 us and �nishs at 120 ms 797 us18:35: 4 sends to 16:22: 4 starts at 120 ms 797 us and �nishs at 120 ms 815 us19:16: 2 sends to 16:22: 4 starts at 120 ms 815 us and �nishs at 120 ms 822 us19:20: 4 sends to 16:22: 4 starts at 120 ms 822 us and �nishs at 120 ms 832 us19:26:22 sends to 16:22: 4 starts at 120 ms 832 us and �nishs at 120 ms 846 us16:21: 5 sends to 17:21: 5 starts at 120 ms 846 us and �nishs at 120 ms 882 us17:16: 2 sends to 17:21: 5 starts at 120 ms 882 us and �nishs at 120 ms 883 us18:29:10 sends to 17:21: 5 starts at 120 ms 883 us and �nishs at 120 ms 904 us19:16: 2 sends to 17:21: 5 starts at 120 ms 904 us and �nishs at 120 ms 905 us19:26:22 sends to 17:21: 5 starts at 120 ms 905 us and �nishs at 120 ms 919 us19:28: 1 sends to 17:21: 5 starts at 120 ms 919 us and �nishs at 120 ms 924 us8:16: 5 sends to 1: 0: 1 starts at 121 ms 574 us and �nishs at 121 ms 580 us8:16: 5 sends to 2: 0: 1 starts at 121 ms 580 us and �nishs at 121 ms 586 us8:16: 5 sends to 3: 0: 1 starts at 121 ms 586 us and �nishs at 121 ms 592 us8:16: 5 sends to 4: 0: 1 starts at 121 ms 592 us and �nishs at 121 ms 598 us8:16: 5 sends to 5:16: 5 starts at 121 ms 598 us and �nishs at 121 ms 638 us8:16: 5 sends to 6:16: 5 starts at 121 ms 638 us and �nishs at 121 ms 678 us8:16: 5 sends to 7:16: 5 starts at 121 ms 678 us and �nishs at 121 ms 718 us8:16: 5 sends to 7:29:10 starts at 121 ms 718 us and �nishs at 121 ms 728 us5:21: 2 sends to 5:22: 2 starts at 122 ms 414 us and �nishs at 122 ms 414 us6:22: 2 sends to 5:22: 2 starts at 122 ms 414 us and �nishs at 122 ms 417 us8:28: 1 sends to 5:22: 2 starts at 122 ms 417 us and �nishs at 122 ms 420 us5:21: 3 sends to 6:22: 2 starts at 122 ms 483 us and �nishs at 122 ms 491 us5:21: 3 sends to 8:28: 1 starts at 122 ms 491 us and �nishs at 122 ms 498 us17:22: 3 sends to 17:21: 4 starts at 124 ms 468 us and �nishs at 124 ms 468 us17:22: 3 sends to 18:29:10 starts at 124 ms 468 us and �nishs at 124 ms 502 us5:22: 2 sends to 6:22: 2 starts at 124 ms 533 us and �nishs at 124 ms 536 us5:22: 2 sends to 8:28: 1 starts at 124 ms 536 us and �nishs at 124 ms 542 us19:16: 5 sends to 12: 0: 1 starts at 124 ms 615 us and �nishs at 124 ms 621 us19:16: 5 sends to 13: 0: 1 starts at 124 ms 621 us and �nishs at 124 ms 627 us19:16: 5 sends to 14: 0: 1 starts at 124 ms 627 us and �nishs at 124 ms 633 us19:16: 5 sends to 15: 0: 1 starts at 124 ms 633 us and �nishs at 124 ms 639 us19:16: 5 sends to 16:16: 5 starts at 124 ms 639 us and �nishs at 124 ms 679 us19:16: 5 sends to 18:29:10 starts at 124 ms 679 us and �nishs at 124 ms 689 us159

15: 0: 3 sends to 18:29: 1 starts at 124 ms 690 us and �nishs at 124 ms 691 us12: 0: 3 sends to 18:29: 1 starts at 124 ms 691 us and �nishs at 124 ms 692 us13: 0: 3 sends to 18:29: 1 starts at 124 ms 697 us and �nishs at 124 ms 698 us14: 0: 3 sends to 18:29: 1 starts at 124 ms 698 us and �nishs at 124 ms 699 us19:16: 5 sends to 17:16: 5 starts at 124 ms 699 us and �nishs at 124 ms 739 us19:16: 5 sends to 18:16: 5 starts at 124 ms 739 us and �nishs at 124 ms 779 us1: 0: 3 sends to 7:29: 1 starts at 125 ms 874 us and �nishs at 125 ms 875 us4: 0: 3 sends to 7:29: 1 starts at 125 ms 875 us and �nishs at 125 ms 876 us19:28: 1 sends to 16:22: 2 starts at 126 ms 96 us and �nishs at 126 ms 99 us5:21: 3 sends to 6:21: 3 starts at 126 ms 107 us and �nishs at 126 ms 112 us8:26:22 sends to 6:21: 3 starts at 126 ms 112 us and �nishs at 126 ms 115 us8:28: 1 sends to 6:21: 3 starts at 126 ms 115 us and �nishs at 126 ms 118 us5:21: 3 sends to 8:27: 1 starts at 127 ms 151 us and �nishs at 127 ms 158 us8:26:22 sends to 8:27: 1 starts at 127 ms 158 us and �nishs at 127 ms 173 us19:17: 1 sends to 18:17: 1 starts at 128 ms 896 us and �nishs at 128 ms 902 us6:21: 3 sends to 5:21: 3 starts at 128 ms 915 us and �nishs at 128 ms 920 us6:21: 3 sends to 5:22: 2 starts at 128 ms 920 us and �nishs at 128 ms 928 us6:21: 3 sends to 8:26:22 starts at 128 ms 928 us and �nishs at 128 ms 943 us6:21: 3 sends to 8:27: 1 starts at 128 ms 943 us and �nishs at 128 ms 950 us6:21: 3 sends to 8:28: 1 starts at 128 ms 950 us and �nishs at 128 ms 957 us6:21: 3 sends to 8:30:20 starts at 128 ms 957 us and �nishs at 128 ms 994 us16:22: 2 sends to 16:21: 3 starts at 129 ms 842 us and �nishs at 129 ms 842 us19:26:22 sends to 16:21: 3 starts at 129 ms 842 us and �nishs at 129 ms 845 us19:28: 1 sends to 16:21: 3 starts at 129 ms 845 us and �nishs at 129 ms 848 us18:17: 1 sends to 19:17: 1 starts at 129 ms 896 us and �nishs at 129 ms 902 us18:17: 1 sends to 16:17: 1 starts at 130 ms 694 us and �nishs at 130 ms 700 us19:17: 1 sends to 16:17: 1 starts at 130 ms 700 us and �nishs at 130 ms 706 us8:27: 1 sends to 8:26:22 starts at 130 ms 708 us and �nishs at 130 ms 713 us8:27: 1 sends to 8:30:20 starts at 130 ms 713 us and �nishs at 130 ms 722 us5:19: 2 sends to 8:30:20 starts at 130 ms 728 us and �nishs at 130 ms 772 us16:17: 1 sends to 18:17: 1 starts at 131 ms 689 us and �nishs at 131 ms 695 us16:17: 1 sends to 19:17: 1 starts at 131 ms 695 us and �nishs at 131 ms 701 us16:17: 1 sends to 17:17: 1 starts at 131 ms 701 us and �nishs at 131 ms 707 us18:17: 1 sends to 17:17: 1 starts at 131 ms 707 us and �nishs at 131 ms 713 us19:17: 1 sends to 17:17: 1 starts at 131 ms 713 us and �nishs at 131 ms 719 us16:21: 3 sends to 16:22: 2 starts at 132 ms 645 us and �nishs at 132 ms 657 us16:21: 3 sends to 19:26:22 starts at 132 ms 657 us and �nishs at 132 ms 672 us16:21: 3 sends to 19:28: 1 starts at 132 ms 672 us and �nishs at 132 ms 679 us16:21: 3 sends to 19:27: 1 starts at 132 ms 687 us and �nishs at 132 ms 694 us19:26:22 sends to 19:27: 1 starts at 132 ms 694 us and �nishs at 132 ms 709 us17:17: 1 sends to 16:17: 1 starts at 132 ms 709 us and �nishs at 132 ms 715 us17:17: 1 sends to 18:17: 1 starts at 132 ms 715 us and �nishs at 132 ms 721 us17:17: 1 sends to 19:17: 1 starts at 132 ms 721 us and �nishs at 132 ms 727 us5:22: 2 sends to 7:33: 2 starts at 132 ms 781 us and �nishs at 132 ms 785 us6:22: 2 sends to 7:33: 2 starts at 132 ms 785 us and �nishs at 132 ms 789 us7:35: 1 sends to 7:33: 2 starts at 132 ms 789 us and �nishs at 132 ms 795 us7:35: 4 sends to 7:33: 2 starts at 132 ms 795 us and �nishs at 132 ms 864 us8:26:22 sends to 7:33: 2 starts at 132 ms 864 us and �nishs at 132 ms 889 us7:33: 2 sends to 5:22: 2 starts at 134 ms 807 us and �nishs at 134 ms 875 us7:33: 2 sends to 6:22: 2 starts at 134 ms 875 us and �nishs at 134 ms 943 us7:33: 2 sends to 8:30:20 starts at 134 ms 943 us and �nishs at 134 ms 947 us160

7:33: 2 sends to 7:35: 2 starts at 134 ms 947 us and �nishs at 134 ms 964 us7:35: 2 sends to 7:33: 2 starts at 135 ms 775 us and �nishs at 135 ms 795 us7:35: 2 sends to 8:26:22 starts at 135 ms 795 us and �nishs at 135 ms 801 us19:27: 1 sends to 19:26:22 starts at 136 ms 244 us and �nishs at 136 ms 249 us6:22: 3 sends to 6:21: 4 starts at 137 ms 547 us and �nishs at 137 ms 547 us6:22: 3 sends to 7:29:10 starts at 137 ms 547 us and �nishs at 137 ms 581 us6:22: 3 sends to 8:30:20 starts at 137 ms 581 us and �nishs at 137 ms 588 us17:21: 2 sends to 17:22: 2 starts at 138 ms 486 us and �nishs at 138 ms 486 us16:21: 3 sends to 17:22: 2 starts at 138 ms 486 us and �nishs at 138 ms 494 us19:26:22 sends to 17:22: 2 starts at 138 ms 494 us and �nishs at 138 ms 635 us19:28: 1 sends to 17:22: 2 starts at 138 ms 635 us and �nishs at 138 ms 638 us5:19: 4 sends to 8:30:20 starts at 139 ms 688 us and �nishs at 139 ms 730 us5:21: 2 sends to 8:30:20 starts at 139 ms 730 us and �nishs at 139 ms 732 us5:21: 3 sends to 8:30:20 starts at 139 ms 732 us and �nishs at 139 ms 769 us5:22: 2 sends to 8:30:20 starts at 139 ms 769 us and �nishs at 139 ms 774 us6:21: 2 sends to 8:30:20 starts at 139 ms 774 us and �nishs at 139 ms 776 us6:22: 2 sends to 8:30:20 starts at 139 ms 776 us and �nishs at 139 ms 781 us7:29: 1 sends to 8:30:20 starts at 139 ms 781 us and �nishs at 139 ms 796 us8:26:22 sends to 8:30:20 starts at 139 ms 796 us and �nishs at 139 ms 859 us8:28: 1 sends to 8:30:20 starts at 139 ms 859 us and �nishs at 139 ms 885 us16:21: 3 sends to 17:21: 3 starts at 140 ms 536 us and �nishs at 140 ms 541 us19:26:22 sends to 17:21: 3 starts at 140 ms 541 us and �nishs at 140 ms 544 us19:28: 1 sends to 17:21: 3 starts at 140 ms 544 us and �nishs at 140 ms 547 us17:22: 2 sends to 19:28: 1 starts at 140 ms 685 us and �nishs at 140 ms 691 us19:26:22 sends to 17:21: 4 starts at 141 ms 488 us and �nishs at 141 ms 493 us19:27: 1 sends to 17:21: 4 starts at 141 ms 493 us and �nishs at 141 ms 498 us19:28: 1 sends to 17:21: 4 starts at 141 ms 498 us and �nishs at 141 ms 503 us19:26:22 sends to 16:21: 4 starts at 143 ms 196 us and �nishs at 143 ms 201 us19:28: 1 sends to 16:21: 4 starts at 143 ms 201 us and �nishs at 143 ms 206 us17:21: 3 sends to 16:21: 3 starts at 143 ms 485 us and �nishs at 143 ms 490 us17:21: 3 sends to 19:26:22 starts at 143 ms 490 us and �nishs at 143 ms 505 us17:21: 3 sends to 19:28: 1 starts at 143 ms 505 us and �nishs at 143 ms 512 us17:21: 5 sends to 16:21: 5 starts at 146 ms 290 us and �nishs at 146 ms 326 us17:21: 5 sends to 18:29:10 starts at 146 ms 326 us and �nishs at 146 ms 335 us17:21: 5 sends to 18:32: 1 starts at 146 ms 335 us and �nishs at 146 ms 352 us17:21: 5 sends to 19:26:22 starts at 146 ms 352 us and �nishs at 146 ms 356 us16:22: 4 sends to 17:21: 3 starts at 146 ms 807 us and �nishs at 146 ms 809 us16:22: 4 sends to 19:28: 1 starts at 146 ms 809 us and �nishs at 146 ms 816 us17:16: 2 sends to 17:22: 4 starts at 146 ms 816 us and �nishs at 146 ms 823 us17:19: 1 sends to 17:22: 4 starts at 146 ms 823 us and �nishs at 146 ms 835 us17:19: 4 sends to 17:22: 4 starts at 146 ms 835 us and �nishs at 146 ms 849 us17:19: 5 sends to 17:22: 4 starts at 146 ms 849 us and �nishs at 146 ms 859 us17:21: 5 sends to 17:22: 4 starts at 146 ms 859 us and �nishs at 146 ms 859 us17:21: 4 sends to 17:22: 4 starts at 146 ms 859 us and �nishs at 146 ms 862 us18:16: 2 sends to 17:22: 4 starts at 146 ms 862 us and �nishs at 146 ms 869 us18:20: 4 sends to 17:22: 4 starts at 146 ms 869 us and �nishs at 146 ms 879 us18:29:10 sends to 17:22: 4 starts at 146 ms 879 us and �nishs at 146 ms 884 us18:35: 1 sends to 17:22: 4 starts at 146 ms 884 us and �nishs at 146 ms 890 us18:35: 2 sends to 17:22: 4 starts at 146 ms 890 us and �nishs at 146 ms 896 us18:35: 4 sends to 17:22: 4 starts at 146 ms 896 us and �nishs at 146 ms 914 us19:16: 2 sends to 17:22: 4 starts at 146 ms 914 us and �nishs at 146 ms 921 us161

19:20: 4 sends to 17:22: 4 starts at 146 ms 921 us and �nishs at 146 ms 931 us19:26:22 sends to 17:22: 4 starts at 146 ms 931 us and �nishs at 146 ms 945 us6:22: 4 sends to 6:21: 5 starts at 149 ms 547 us and �nishs at 149 ms 547 us6:22: 4 sends to 5:21: 3 starts at 149 ms 547 us and �nishs at 149 ms 549 us6:22: 4 sends to 8:28: 1 starts at 149 ms 549 us and �nishs at 149 ms 553 us6:22: 4 sends to 8:30:20 starts at 149 ms 553 us and �nishs at 149 ms 555 us6:22: 4 sends to 5:22: 4 starts at 149 ms 555 us and �nishs at 149 ms 563 us7:16: 2 sends to 5:22: 4 starts at 149 ms 563 us and �nishs at 149 ms 570 us7:20: 4 sends to 5:22: 4 starts at 149 ms 570 us and �nishs at 149 ms 580 us7:29:10 sends to 5:22: 4 starts at 149 ms 580 us and �nishs at 149 ms 585 us7:32: 3 sends to 5:22: 4 starts at 149 ms 585 us and �nishs at 149 ms 591 us7:35: 1 sends to 5:22: 4 starts at 149 ms 591 us and �nishs at 149 ms 597 us7:35: 2 sends to 5:22: 4 starts at 149 ms 597 us and �nishs at 149 ms 603 us7:35: 4 sends to 5:22: 4 starts at 149 ms 603 us and �nishs at 149 ms 621 us8:16: 2 sends to 5:22: 4 starts at 149 ms 621 us and �nishs at 149 ms 628 us15: 0: 3 sends to 18:29: 1 starts at 149 ms 628 us and �nishs at 149 ms 629 us12: 0: 3 sends to 18:29: 1 starts at 149 ms 629 us and �nishs at 149 ms 630 us7:16: 2 sends to 6:21: 5 starts at 149 ms 630 us and �nishs at 149 ms 631 us8:16: 2 sends to 6:21: 5 starts at 149 ms 631 us and �nishs at 149 ms 632 us13: 0: 3 sends to 18:29: 1 starts at 149 ms 636 us and �nishs at 149 ms 637 us14: 0: 3 sends to 18:29: 1 starts at 149 ms 637 us and �nishs at 149 ms 638 us8:20: 4 sends to 5:22: 4 starts at 149 ms 638 us and �nishs at 149 ms 648 us8:26:22 sends to 5:22: 4 starts at 149 ms 648 us and �nishs at 149 ms 662 us8:26:22 sends to 6:21: 5 starts at 149 ms 662 us and �nishs at 149 ms 676 us8:28: 1 sends to 6:21: 5 starts at 149 ms 676 us and �nishs at 149 ms 681 us1: 0: 3 sends to 7:29: 1 starts at 150 ms 813 us and �nishs at 150 ms 814 us4: 0: 3 sends to 7:29: 1 starts at 150 ms 814 us and �nishs at 150 ms 815 us18:35: 1 sends to 18:29: 1 starts at 150 ms 856 us and �nishs at 150 ms 862 us18:35: 1 sends to 18:33: 2 starts at 150 ms 862 us and �nishs at 150 ms 868 us18:29: 1 sends to 18:35: 4 starts at 152 ms 80 us and �nishs at 152 ms 149 us1: 0: 3 sends to 8:26:22 starts at 153 ms 263 us and �nishs at 153 ms 265 us4: 0: 3 sends to 8:26:22 starts at 153 ms 265 us and �nishs at 153 ms 267 us16:21: 4 sends to 16:22: 3 starts at 153 ms 983 us and �nishs at 153 ms 983 us16:21: 3 sends to 16:22: 3 starts at 153 ms 983 us and �nishs at 153 ms 989 us5:19: 3 sends to 8:30:20 starts at 153 ms 989 us and �nishs at 154 ms 44 us17:21: 3 sends to 16:22: 3 starts at 154 ms 44 us and �nishs at 154 ms 50 us19:26:22 sends to 16:22: 3 starts at 154 ms 50 us and �nishs at 154 ms 55 us19:27: 1 sends to 16:22: 3 starts at 154 ms 55 us and �nishs at 154 ms 60 us19:28: 1 sends to 16:22: 3 starts at 154 ms 60 us and �nishs at 154 ms 65 us18:35: 4 sends to 18:29: 1 starts at 154 ms 180 us and �nishs at 154 ms 198 us6:21: 2 sends to 6:22: 2 starts at 154 ms 776 us and �nishs at 154 ms 776 us5:21: 3 sends to 7:29:10 starts at 154 ms 777 us and �nishs at 154 ms 783 us6:21: 3 sends to 7:29:10 starts at 154 ms 783 us and �nishs at 154 ms 789 us7:35: 1 sends to 7:29:10 starts at 154 ms 789 us and �nishs at 154 ms 798 us7:35: 4 sends to 7:29:10 starts at 154 ms 798 us and �nishs at 154 ms 815 us8:26:22 sends to 7:29:10 starts at 154 ms 815 us and �nishs at 154 ms 829 us8:27: 1 sends to 7:29:10 starts at 154 ms 829 us and �nishs at 154 ms 838 us8:28: 1 sends to 7:29:10 starts at 154 ms 838 us and �nishs at 154 ms 847 us8:30:20 sends to 7:29:10 starts at 154 ms 847 us and �nishs at 154 ms 856 us12: 0: 3 sends to 19:26:22 starts at 156 ms 830 us and �nishs at 156 ms 832 us13: 0: 3 sends to 19:26:22 starts at 156 ms 832 us and �nishs at 156 ms 834 us162

7:35: 1 sends to 7:29: 1 starts at 158 ms 71 us and �nishs at 158 ms 77 us7:35: 1 sends to 8:26:22 starts at 158 ms 77 us and �nishs at 158 ms 83 us16:22: 3 sends to 16:21: 4 starts at 161 ms 711 us and �nishs at 161 ms 711 us8:26:22 sends to 6:22: 2 starts at 161 ms 867 us and �nishs at 162 ms 8 us6:22: 2 sends to 8:28: 1 starts at 162 ms 14 us and �nishs at 162 ms 20 us8:26:22 sends to 8:28: 1 starts at 162 ms 20 us and �nishs at 162 ms 31 us7:20: 3 sends to 8:30:20 starts at 164 ms 427 us and �nishs at 164 ms 451 us7:29: 1 sends to 7:35: 4 starts at 164 ms 592 us and �nishs at 164 ms 661 us8:26:22 sends to 7:35: 4 starts at 164 ms 661 us and �nishs at 164 ms 701 us18:35: 4 sends to 18:33: 2 starts at 165 ms 565 us and �nishs at 165 ms 634 us19:26:22 sends to 18:33: 2 starts at 165 ms 634 us and �nishs at 165 ms 659 us8:26:22 sends to 6:21: 4 starts at 166 ms 623 us and �nishs at 166 ms 628 us8:27: 1 sends to 6:21: 4 starts at 166 ms 628 us and �nishs at 166 ms 633 us8:28: 1 sends to 6:21: 4 starts at 166 ms 633 us and �nishs at 166 ms 638 us7:35: 4 sends to 7:29: 1 starts at 166 ms 761 us and �nishs at 166 ms 779 us7:35: 4 sends to 8:26:22 starts at 166 ms 779 us and �nishs at 166 ms 848 us16:21: 2 sends to 16:22: 2 starts at 167 ms 508 us and �nishs at 167 ms 508 us19:26:22 sends to 16:22: 2 starts at 167 ms 508 us and �nishs at 167 ms 649 us18:33: 2 sends to 18:35: 2 starts at 167 ms 649 us and �nishs at 167 ms 666 us8:26:22 sends to 5:21: 4 starts at 168 ms 339 us and �nishs at 168 ms 344 us8:27: 1 sends to 5:21: 4 starts at 168 ms 344 us and �nishs at 168 ms 349 us8:28: 1 sends to 5:21: 4 starts at 168 ms 349 us and �nishs at 168 ms 354 us18:35: 2 sends to 18:33: 2 starts at 168 ms 477 us and �nishs at 168 ms 497 us18:35: 2 sends to 19:26:22 starts at 168 ms 497 us and �nishs at 168 ms 503 us8:28: 1 sends to 6:22: 2 starts at 168 ms 571 us and �nishs at 168 ms 574 us8:28: 1 sends to 8:26:22 starts at 168 ms 574 us and �nishs at 168 ms 585 us16:22: 2 sends to 19:28: 1 starts at 169 ms 420 us and �nishs at 169 ms 426 us8:28: 1 sends to 5:21: 3 starts at 169 ms 558 us and �nishs at 169 ms 561 us7:29:10 sends to 7:35: 1 starts at 171 ms 497 us and �nishs at 171 ms 518 us7:29:10 sends to 7:35: 4 starts at 171 ms 518 us and �nishs at 171 ms 535 us7:29:10 sends to 8:26:22 starts at 171 ms 535 us and �nishs at 171 ms 556 us7:29:10 sends to 8:27: 1 starts at 171 ms 556 us and �nishs at 171 ms 577 us7:29:10 sends to 8:28: 1 starts at 171 ms 577 us and �nishs at 171 ms 598 us7:29:10 sends to 8:30:20 starts at 171 ms 598 us and �nishs at 171 ms 662 us8:30:20 sends to 7:31: 1 starts at 171 ms 662 us and �nishs at 171 ms 832 us5:21: 2 sends to 5:22: 2 starts at 172 ms 358 us and �nishs at 172 ms 358 us6:22: 2 sends to 5:22: 2 starts at 172 ms 358 us and �nishs at 172 ms 361 us8:28: 1 sends to 5:22: 2 starts at 172 ms 361 us and �nishs at 172 ms 364 us5:21: 3 sends to 6:22: 2 starts at 172 ms 427 us and �nishs at 172 ms 435 us5:21: 3 sends to 8:28: 1 starts at 172 ms 435 us and �nishs at 172 ms 442 us7:31: 1 sends to 8:30:20 starts at 173 ms 212 us and �nishs at 173 ms 219 us5:21: 4 sends to 8:30:20 starts at 174 ms 378 us and �nishs at 174 ms 397 us5:22: 2 sends to 6:22: 2 starts at 174 ms 477 us and �nishs at 174 ms 480 us5:22: 2 sends to 8:28: 1 starts at 174 ms 480 us and �nishs at 174 ms 486 us15: 0: 3 sends to 18:29: 1 starts at 174 ms 566 us and �nishs at 174 ms 567 us12: 0: 3 sends to 18:29: 1 starts at 174 ms 567 us and �nishs at 174 ms 568 us13: 0: 3 sends to 18:29: 1 starts at 174 ms 575 us and �nishs at 174 ms 576 us14: 0: 3 sends to 18:29: 1 starts at 174 ms 576 us and �nishs at 174 ms 577 us1: 0: 3 sends to 7:29: 1 starts at 175 ms 752 us and �nishs at 175 ms 753 us4: 0: 3 sends to 7:29: 1 starts at 175 ms 753 us and �nishs at 175 ms 754 us19:28: 1 sends to 16:22: 2 starts at 175 ms 971 us and �nishs at 175 ms 974 us163

5:21: 3 sends to 6:21: 3 starts at 175 ms 990 us and �nishs at 175 ms 995 us8:26:22 sends to 6:21: 3 starts at 175 ms 995 us and �nishs at 175 ms 998 us8:28: 1 sends to 6:21: 3 starts at 175 ms 998 us and �nishs at 176 ms 1 us5:21: 3 sends to 8:27: 1 starts at 177 ms 33 us and �nishs at 177 ms 40 us8:26:22 sends to 8:27: 1 starts at 177 ms 40 us and �nishs at 177 ms 55 us16:21: 3 sends to 18:29:10 starts at 178 ms 782 us and �nishs at 178 ms 788 us6:21: 3 sends to 5:21: 3 starts at 178 ms 798 us and �nishs at 178 ms 803 us6:21: 3 sends to 5:22: 2 starts at 178 ms 803 us and �nishs at 178 ms 811 us6:21: 3 sends to 8:26:22 starts at 178 ms 811 us and �nishs at 178 ms 826 us6:21: 3 sends to 8:27: 1 starts at 178 ms 826 us and �nishs at 178 ms 833 us6:21: 3 sends to 8:28: 1 starts at 178 ms 833 us and �nishs at 178 ms 840 us6:21: 3 sends to 8:30:20 starts at 178 ms 840 us and �nishs at 178 ms 877 us16:22: 3 sends to 18:29:10 starts at 178 ms 877 us and �nishs at 178 ms 911 us18:33: 2 sends to 18:29:10 starts at 178 ms 911 us and �nishs at 178 ms 911 us17:21: 3 sends to 18:29:10 starts at 178 ms 911 us and �nishs at 178 ms 917 us19:27: 1 sends to 18:29:10 starts at 178 ms 917 us and �nishs at 178 ms 926 us16:22: 2 sends to 16:21: 3 starts at 179 ms 720 us and �nishs at 179 ms 720 us19:26:22 sends to 16:21: 3 starts at 179 ms 720 us and �nishs at 179 ms 723 us19:28: 1 sends to 16:21: 3 starts at 179 ms 723 us and �nishs at 179 ms 726 us8:27: 1 sends to 8:26:22 starts at 180 ms 590 us and �nishs at 180 ms 595 us8:27: 1 sends to 8:30:20 starts at 180 ms 595 us and �nishs at 180 ms 604 us16:21: 3 sends to 16:22: 2 starts at 182 ms 523 us and �nishs at 182 ms 535 us16:21: 3 sends to 19:26:22 starts at 182 ms 535 us and �nishs at 182 ms 550 us16:21: 3 sends to 19:28: 1 starts at 182 ms 550 us and �nishs at 182 ms 557 us16:21: 3 sends to 19:27: 1 starts at 182 ms 569 us and �nishs at 182 ms 576 us19:26:22 sends to 19:27: 1 starts at 182 ms 576 us and �nishs at 182 ms 591 us5:22: 2 sends to 7:33: 2 starts at 182 ms 739 us and �nishs at 182 ms 743 us6:22: 2 sends to 7:33: 2 starts at 182 ms 743 us and �nishs at 182 ms 747 us7:35: 1 sends to 7:33: 2 starts at 182 ms 747 us and �nishs at 182 ms 753 us7:35: 4 sends to 7:33: 2 starts at 182 ms 753 us and �nishs at 182 ms 822 us8:26:22 sends to 7:33: 2 starts at 182 ms 822 us and �nishs at 182 ms 847 us7:33: 2 sends to 5:22: 2 starts at 184 ms 765 us and �nishs at 184 ms 833 us7:33: 2 sends to 6:22: 2 starts at 184 ms 833 us and �nishs at 184 ms 901 us7:33: 2 sends to 8:30:20 starts at 184 ms 901 us and �nishs at 184 ms 905 us7:33: 2 sends to 7:35: 2 starts at 184 ms 905 us and �nishs at 184 ms 922 us7:35: 2 sends to 7:33: 2 starts at 185 ms 733 us and �nishs at 185 ms 753 us7:35: 2 sends to 8:26:22 starts at 185 ms 753 us and �nishs at 185 ms 759 us19:27: 1 sends to 19:26:22 starts at 186 ms 126 us and �nishs at 186 ms 131 us17:21: 2 sends to 17:22: 2 starts at 188 ms 510 us and �nishs at 188 ms 510 us16:21: 3 sends to 17:22: 2 starts at 188 ms 510 us and �nishs at 188 ms 518 us19:26:22 sends to 17:22: 2 starts at 188 ms 518 us and �nishs at 188 ms 659 us19:28: 1 sends to 17:22: 2 starts at 188 ms 659 us and �nishs at 188 ms 662 us5:19: 4 sends to 8:30:20 starts at 189 ms 734 us and �nishs at 189 ms 776 us5:21: 2 sends to 8:30:20 starts at 189 ms 776 us and �nishs at 189 ms 778 us5:21: 3 sends to 8:30:20 starts at 189 ms 778 us and �nishs at 189 ms 815 us5:22: 2 sends to 8:30:20 starts at 189 ms 815 us and �nishs at 189 ms 820 us6:21: 2 sends to 8:30:20 starts at 189 ms 820 us and �nishs at 189 ms 822 us6:22: 2 sends to 8:30:20 starts at 189 ms 822 us and �nishs at 189 ms 827 us7:29: 1 sends to 8:30:20 starts at 189 ms 827 us and �nishs at 189 ms 842 us8:26:22 sends to 8:30:20 starts at 189 ms 842 us and �nishs at 189 ms 905 us8:28: 1 sends to 8:30:20 starts at 189 ms 905 us and �nishs at 189 ms 931 us164

16:21: 3 sends to 17:21: 3 starts at 190 ms 560 us and �nishs at 190 ms 565 us19:26:22 sends to 17:21: 3 starts at 190 ms 565 us and �nishs at 190 ms 568 us19:28: 1 sends to 17:21: 3 starts at 190 ms 568 us and �nishs at 190 ms 571 us17:22: 2 sends to 19:28: 1 starts at 190 ms 709 us and �nishs at 190 ms 715 us5:21: 3 sends to 5:22: 3 starts at 191 ms 364 us and �nishs at 191 ms 370 us6:21: 3 sends to 5:22: 3 starts at 191 ms 370 us and �nishs at 191 ms 376 us8:26:22 sends to 5:22: 3 starts at 191 ms 376 us and �nishs at 191 ms 381 us8:27: 1 sends to 5:22: 3 starts at 191 ms 381 us and �nishs at 191 ms 386 us8:28: 1 sends to 5:22: 3 starts at 191 ms 386 us and �nishs at 191 ms 391 us5:22: 4 sends to 5:21: 3 starts at 192 ms 590 us and �nishs at 192 ms 592 us5:22: 4 sends to 6:21: 3 starts at 192 ms 592 us and �nishs at 192 ms 594 us5:22: 4 sends to 6:22: 4 starts at 192 ms 594 us and �nishs at 192 ms 602 us5:22: 4 sends to 8:30:20 starts at 192 ms 602 us and �nishs at 192 ms 604 us17:21: 3 sends to 16:21: 3 starts at 193 ms 509 us and �nishs at 193 ms 514 us17:21: 3 sends to 19:26:22 starts at 193 ms 514 us and �nishs at 193 ms 529 us17:21: 3 sends to 19:28: 1 starts at 193 ms 529 us and �nishs at 193 ms 536 us18:29:10 sends to 18:33: 2 starts at 195 ms 567 us and �nishs at 195 ms 612 us18:29:10 sends to 19:27: 1 starts at 195 ms 612 us and �nishs at 195 ms 633 us5:22: 3 sends to 7:29:10 starts at 199 ms 37 us and �nishs at 199 ms 71 us5:22: 3 sends to 8:30:20 starts at 199 ms 71 us and �nishs at 199 ms 78 us6:21: 5 sends to 6:22: 4 starts at 199 ms 366 us and �nishs at 199 ms 366 us6:21: 5 sends to 5:21: 5 starts at 199 ms 366 us and �nishs at 199 ms 402 us6:21: 5 sends to 7:32: 1 starts at 199 ms 402 us and �nishs at 199 ms 419 us6:21: 5 sends to 8:26:22 starts at 199 ms 419 us and �nishs at 199 ms 423 us6:21: 5 sends to 8:30:20 starts at 199 ms 423 us and �nishs at 199 ms 425 us18:29: 9 sends to 12: 0: 1 starts at 199 ms 646 us and �nishs at 199 ms 651 us18:29: 9 sends to 13: 0: 1 starts at 199 ms 651 us and �nishs at 199 ms 656 us18:29: 9 sends to 14: 0: 1 starts at 199 ms 656 us and �nishs at 199 ms 661 us18:29: 9 sends to 15: 0: 1 starts at 199 ms 661 us and �nishs at 199 ms 666 us18:29: 9 sends to 16:17: 1 starts at 199 ms 666 us and �nishs at 199 ms 709 us18:29: 9 sends to 17:17: 1 starts at 199 ms 709 us and �nishs at 199 ms 752 us18:29: 9 sends to 19:17: 1 starts at 199 ms 752 us and �nishs at 199 ms 795 us16:21: 3 sends to 17:22: 3 starts at 216 ms 567 us and �nishs at 216 ms 573 us17:21: 4 sends to 17:22: 3 starts at 216 ms 573 us and �nishs at 216 ms 573 us17:21: 3 sends to 17:22: 3 starts at 216 ms 573 us and �nishs at 216 ms 579 us19:26:22 sends to 17:22: 3 starts at 216 ms 579 us and �nishs at 216 ms 584 us19:27: 1 sends to 17:22: 3 starts at 216 ms 584 us and �nishs at 216 ms 589 us19:28: 1 sends to 17:22: 3 starts at 216 ms 589 us and �nishs at 216 ms 594 us17:22: 4 sends to 17:21: 5 starts at 219 ms 28 us and �nishs at 219 ms 28 us17:22: 4 sends to 17:21: 3 starts at 219 ms 28 us and �nishs at 219 ms 30 us17:22: 4 sends to 19:28: 1 starts at 219 ms 30 us and �nishs at 219 ms 34 us17:22: 3 sends to 17:21: 4 starts at 224 ms 580 us and �nishs at 224 ms 580 us17:22: 3 sends to 18:29:10 starts at 224 ms 580 us and �nishs at 224 ms 614 us6:21: 4 sends to 6:22: 3 starts at 229 ms 646 us and �nishs at 229 ms 646 us5:21: 3 sends to 6:22: 3 starts at 229 ms 646 us and �nishs at 229 ms 652 us8:26:22 sends to 6:22: 3 starts at 229 ms 652 us and �nishs at 229 ms 657 us8:27: 1 sends to 6:22: 3 starts at 229 ms 657 us and �nishs at 229 ms 662 us8:28: 1 sends to 6:22: 3 starts at 229 ms 662 us and �nishs at 229 ms 667 us6:22: 3 sends to 6:21: 4 starts at 237 ms 778 us and �nishs at 237 ms 778 us6:22: 3 sends to 7:29:10 starts at 237 ms 778 us and �nishs at 237 ms 812 us6:22: 3 sends to 8:30:20 starts at 237 ms 812 us and �nishs at 237 ms 819 us165

Bibliography[AR80a] R. K. Arora and S. P. Rana. Analysis of the module assignment problem in distributedcomputing systems with limited storage. Information Processing Letters, 10(3):111{115,1980.[AR80b] R. K. Arora and S. P. Rana. Heuristic algorithms for process assignment in distributedcomputing systems. Information Processing Letters, 11(4,5):199{203, 1980.[BFB91] C. Barmon, M. N. Faruqui, and G. P. Battacharjee. Dynamic load balancing algorithmin a distributed system. Microprocessing and microprogramming, 29(5):273{285, March1991.[Bok81] Shahid H. Bokhari. A shortest tree algorithm for optimal assignment across space andtime in distributed processor system. IEEE Transactions on Software Engineering,7(11):583{589, Nov. 1981.[Bok87] Shahid H. Bokhari. Assignment Problems in Parallel and Distributed Computing.Kluwer Academic Publishers, 1987.[Bur91] A. Burns. Scheduling hard real-time systems: A review. Software Engineering Journal,6(3):116{128, 1991.[CA93] Sheng-Tzong Cheng and Ashok K. Agrawala. Optimal replication of series-parallel graphs for computation-intensive applications. Technical Report CS-TR-3020,UMIACS-TR-93-4, Department of Computer Science, University of Maryland, CollegePark, Jan. 1993. to appear in Journal of Parallel and Distributed Computing, 1994.[CA94] Sheng-Tzong Cheng and Ashok K. Agrawala. Scheduling of periodic tasks with relativetiming constraints. Technical Report CS-TR-3392, UMIACS-TR-94-135, Department ofComputer Science, University of Maryland, College Park, December. 1994. Submittedto the 10th Annual IEEE Conference on Computer Assurance, COMPASS '95.166

[CA95] Sheng-Tzong Cheng and Ashok K. Agrawala. Allocation and scheduling of real-time pe-riodic tasks with relative timing constraints. Technical Report CS-TR-3402, UMIACS-TR-95-6, Department of Computer Science, University of Maryland, College Park, Jan-uary 1995.[CC90] Y. Chen and T. Chen. Implementing fault-tolerance via modular redundancy withcomparison. IEEE Transactions on Reliability, 39:217{225, June 1990.[CHA94] Sheng-Tzong Cheng, Shyhin Hwang, and Ashok K. Agrawala. Mission-oriented repli-cation of periodic tasks in real-time distributed system. Technical Report CS-TR-3256,UMIACS-TR-94-46, Department of Computer Science, University of Maryland, Col-lege Park, 1994. to appear in the 15th IEEE International Conference on DistributedComputing Systems, ICDCS '95.[CHLE80] Wesley W. Chu, Leslie J. Holloway, Min-Tsung Lan, and Kemal Efe. Task allocationin distributed data processing. IEEE Computer, 13:57{69, Nov. 1980.[CL87] Wesley W. Chu and Lance M-T Lan. Task allocation and precedence relations fordistributed real-time systems. IEEE Transactions on Computers, 36(6):667{679, June1987.[CO91] H.W.D. Chang and W.J.B. Oldham. A dynamic task allocation model for large dis-tributed computing systems. Journal of Microcomputer Applications, 10(3):92{107,1991.[GH93] R. Gerber and S. Hong. Semantics-based complier transformations for enhancedschedulability. In Proceedings of IEEE Real-Time Systems Symposium, pages 232{242,Raleigh-Durham, NC, Dec. 1993.[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to Theory ofNP-Completeness. W.H. Freeman & Company, Publishers, San Francisco, 1979.[GMK+91] �O. Gudmundsson, D. Moss�e, K.T. Ko, A.K. Agrawala, and S.K. Tripathi. Maruti: Aplatform for hard real-time applications. In K. Gordon, A.K. Agrawala, and P. Hwang(eds.), editors, Mission Critical Operating Systems. IOS Press, 1991.[GPS] R. Gerber, W. Pugh, and M. Saksena. Parametric dispatching of hard real-time tasks.IEEE Transactions on Computers. To appear.167

[HL89] C. C. Han and K. J. Lin. Job scheduling with temporal distance constraints. TechnicalReport UIUCDCS-R-89-1560, Department of Computer Science, University of Illinoisat Urbana-Champaign, 1989.[HL92a] C. C. Han and K. J. Lin. Scheduling distance-constrainted real-time tasks. In Pro-ceedings of IEEE Real-Time Systems Symposium, pages 300{308, Phoenix, AZ, Dec.1992.[HL92b] C. C. Han and K. J. Lin. Scheduling real-time computations with separation constraints.Information Processing Letters, 42(5):61{66, May 1992.[HMR+89] R. Holte, A. Mok, L. Rosier, I. Tulchinsky, and D. Varvel. The pinwheel: A real-timescheduling problem. In Proceedings of the 22nd Hawaii International Conference onSystem Science, pages 693{702, Jan. 1989.[HS78] E. Horowitz and S.Sahni. Fundamentals of Computer Algorithms. Computer SciencePublishers, 1978.[HS92] Chao-Ju Hou and Kang G. Shin. Allocation of periodic task modules with precedenceand deadline constraints in distributed real-time systems. In Proceedings of the 1992IEEE 13th Real-Time Systems Symposium, pages 146{155, Phoenix, AZ, 1992.[JLT] Rong-Hong Jan, Deron Liang, and Satish K. Tripathi. A linear-time algorithm forcomputing distributed task reliability in pseudo two-terminal series-parallel graphs.[KGV83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.Science, 220(4598):671{680, May 1983.[LAMS92] Deron Liang, Ashok K. Agrawala, Daniel Mosse, and Yiheng. Shi. Designing faulttolerant applications in maruti. In Proceedings of the 3rd International Symposiumon Software Reliability Engineering, pages 264{273, Research Triangle Park, NC, Oct.1992.[LH91] Feng-Tse Lin and Ching-Chi Hsu. Task assignment problems in distributed comput-ing systems by simulated annealing. Journal of the Chinese Institute of Engineers,14(5):537{550, Sept. 1991.[LL73] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming ina hard-real-time environment. Journal of the Association for Cumputing Machinery,20(1):46{61, Jan. 1973. 168

[Lo88] V. M. Lo. Heuristic algorithms for task assignment in distributed systems. IEEETransactions on Computers, 37(11):1384{1397, Nov. 1988.[MLT82] P.R. Ma, E.Y.S. Lee, and M. Tsuchiya. A task allocation model for distributed com-puting systems. IEEE Transactions on Computers, 31:41{47, Jan. 1982.[MM89] V.F. Magirou and J.Z. Milis. An algorithm for the multiprocessor assignment problem.Operations Research Letters, 8:351{356, Dec. 1989.[MSA92] Daniel Moss�e, M.C. Saksena, and Ashok K. Agrawala. Maruti: An approach to real-time system design. Technical Report CS-TR-2845, UMIACS-TR-92-21, Departmentof Computer Science, University of Maryland, College Park, 1992.[PK84] C.C. Price and S. Krishnaprasad. Software allocation models for distributed computingsystems. In Proceedings of the 4th International Conference on Distributed ComputingSystems, pages 40{48, May 1984.[PP82] C.C. Price and U.W. Pooch. Search techniques for a nonlinear multiprocessor schedulingproblem. Naval Res. Logist. Quart., 29:213{233, June 1982.[PS89] D. T. Peng and K. G. Shin. Static allocation of periodic tasks with precedence con-straints in distributed real-time systems. In The 9th International Conference on Dis-tributed Computing Systems, Newport Beach, CA, June 1989.[Ram90] Krithi Ramamritham. Allocation and scheduling of complex periodic tasks. In Pro-ceedings of the 10th International Conference on Distributed Computing Systems, pages108{115, Paris, France, 1990.[RS94] K. Ramamritham and J. A. Stankovic. Scheduling algorithms and operating systemssupport for real-time systems. Proceedings of the IEEE, 82(1):55{67, Jan. 1994.[RSL89] R. Rajkumar, L. Sha, and J. P. Lehoczky. An experimental investigation of synchro-nization protocols. In Proceedings of IEEE Workshop on Real-Time Operating Systemsand Software, pages 11{17, May 1989.[SA93] M. Saksena and A. K. Agrawala. Temproal analysis for hard-real time scheduling.In Proceedings 12th International Phoenix Conference on Computers and Communica-tions, pages 538{544, Phoenix, AZ, March 1993.169

[SdSA94] M. Saksena, J. da Silva, and A. K. Agrawala. Design and implementation of maruti-ii. Technical Report CS-TR-2845, Department of Computer Science, University ofMaryland, College Park, 1994.[SK91] David Stewart and Pradeep Khosla. Real-time scheduling of dynamically recon�gurablesystems. In Proceedings of the IEEE International Conference on Systems Engineering,pages 139{142, Dayton, Ohio, Aug. 1991.[SRL90] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols: An approachto real-time synchronization. IEEE Transactions on Computers, 39(9):1175{1185, Sept.1990.[SS91] A. K. Sarje and G. Sagar. Heuristic models for task allocation in distributed computersystems. IEE Proceedings, Part E, [Computers and Digital Techniques], 138(5):313{318,Sept. 1991.[SSA89] G. Sagar, Anil K. Sarje, and Kamal U. Ahmed. Task allocation techniques fordistributed computing systems: a review. Journal of Microcomputer Applications,12(2):97{105, April 1989.[ST85] Chien-Chung Shen and Wen-Hsiang Tsai. A graph matching approach to optimaltask assignment in distributed computing systems using a minimax criterion. IEEETransactions on Computers, 34(3):197{203, March 1985.[Sto77] Harold S. Stone. Multiprocessor scheduling with the aid of network ow algorithm.IEEE Transactions on Software Engineering, 3:85{93, Jan. 1977.[SW89] Sol M. Shatz and Jia-Ping Wang. Models & algorithms for reliability-oriented task-allocation in redundant distributed-computer systems. IEEE Transactions on Reliabil-ity, 38(1):16{27, April 1989.[TBW92] K. W. Tindell, A. Burns, and A. J. Wellings. Allocating hard real-time tasks: anNP-hard problem made easy. Real-Time Systems, 4(2):145{165, June 1992.[Tow86] Don Towsley. Allocating programs containing branches and loops within a multipleprocessor system. IEEE Transactions on Software Engineering, 12:1018{1024, Oct.1986.[TT89] P. Thambidurai and K. S. Trivedi. Transient overloads in fault-tolerant real-time sys-tems. In Proceedings of the 1989 IEEE 10th Real-Time Systems Symposium, SantaMonica, CA, Dec. 1989. 170

[XP90] J. Xu and D.L. Parnas. Scheduling processes with release times, deadlines, precedence,and exclusion relations. IEEE Transactions on Software Engineering, 16(3):360{369,March 1990.[XP91] J. Xu and D.L. Parnas. On satisfying timing constraints in hard-real-time systems.In Proceedings of the ACM SIGSOFT'91 Conference on Software for Critical Systems,pages 132{146, Dec. 1991.[YSA94] X. Yuan, M. Saksena, and A. K. Agrawala. A decomposition approach to real-timescheduling. Real-Time Systems, 6(1):7{36, Jan. 1994.[ZRS87] W. Zhao, K. Ramamritham, and J. A. Stankovic. Scheduling tasks with resourcerequirements in a hard real-time system. IEEE Transactions on Software Engineering,13(5):564{577, May 1987.

171

