
CS-TR-3515 August 1995Fast Sequential and Parallel Algorithmsfor Association Rule Mining:A Comparison1Andreas MuellerDepartment of Computer ScienceUniversity of Maryland-College ParkCollege Park, MD 20742AbstractThe �eld of knowledge discovery in databases, or \Data Mining", has received increasing attention duringrecent years as large organizations have begun to realize the potential value of the information that is storedimplicitly in their databases. One speci�c data mining task is the mining of Association Rules, particularlyfrom retail data. The task is to determine patterns (or rules) that characterize the shopping behavior ofcustomers from a large database of previous consumer transactions. The rules can then be used to focusmarketing e�orts such as product placement and sales promotions.Because early algorithms required an unpredictably large number of IO operations, reducing IO cost hasbeen the primary target of the algorithms presented in the literature. One of the most recent proposedalgorithms, called PARTITION, uses a new TID-list data representation and a new partitioning technique.The partitioning technique reduces IO cost to a constant amount by processing one database portion at a timein memory. We implemented an algorithm called SPTID that incorporates both TID-lists and partitioningto study their bene�ts. For comparison, a non-partitioning algorithm called SEAR, which is based on anew pre�x-tree data structure, is used. Our experiments with SPTID and SEAR indicate that TID-listshave inherent ine�ciencies; furthermore, because all of the algorithms tested tend to be CPU-bound, tradingCPU-overhead against I/O operations by partitioning did not lead to better performance.In order to scale mining algorithms to the huge databases (e.g., multiple Terabytes) that large organiza-tions will manage in the near future, we implemented parallel versions of SEAR and SPEAR (its partitionedcounterpart). The performance results show that, while both algorithms parallelize easily and obtain goodspeedup and scale-up results, the parallel SEAR version performs better than parallel SPEAR, despite thefact that it uses more communication.1This research was funded in part under U.S.Air Force Grant #F19628-94-C-0057 (Syracuse University Subcontract 3531427)and Caltech Subcontract #9503 1

Table of ContentsSection Page1 Introduction 41.1 Overview over KDD Research : 61.1.1 Types of Knowledge : 61.1.2 Database Speci�cs : 71.1.3 General Issues : 81.1.4 KDD System Architecture : 91.2 Structure of this Report : 102 Association Rule Mining 112.1 Association Rules : 112.1.1 De�nition of Frequent Sets : 112.1.2 De�nition of Association Rules : 122.2 The Basic Algorithmic Scheme for Mining Association Rules : : : : : : : : : : : : : : : : : : : 142.3 Previous Algorithms : 152.3.1 AIS : 152.3.2 SETM : 162.3.3 Apriori, AprioriTid and AprioriHybrid : 182.3.4 PARTITION : 223 Sequential Algorithms 283.1 SEAR : Modifying Apriori : 283.1.1 Pre�x Trees: Storage for Sets and Candidates : 283.1.2 Using Pre�x Trees for SEAR : 303.2 SPTID: A Partitioning Algorithm : 333.3 The SPEAR Algorithm : 343.4 SPINC: An Incremental Algorithm : 354 Experiments on Sequential Algorithms 384.1 Synthetic Data Generation : 384.2 SEAR Pass Bundling : 404.2.1 Varying Minimum Support : 404.2.2 Increasing the Number of Transactions : 414.3 Comparing TID-Lists and Item-Lists : 414.3.1 Varying Minimum Support : 424.3.2 Explanation of Performance Results : 434.3.3 Varying the Number of Items : 464.3.4 Increasing the Transaction Size : 462

4.3.5 Other Data Sets : 474.3.6 Summary : 484.4 Partitioning : 484.5 Summary : 525 Parallel Algorithms 535.1 Programming Environment and Data Distribution : 535.2 PEAR: The Parallel SEAR Algorithm : 545.2.1 Algorithm Description : 545.2.2 Implementation : 555.3 PPAR: The Partitioned Parallel Algorithm : 565.3.1 Algorithm Description : 565.3.2 Computing the Union of Locally Frequent Sets : 576 Parallel Experiments 606.1 Cost of the Combine Operation : 606.2 Speed-Up Experiments : 616.3 Scale-Up Experiments : 636.4 Size-Up Experiments : 637 Extensions and Other Related Work 657.1 Discovering Episodes in Sequences : 657.1.1 Episodes in Sequences : 657.1.2 Algorithm : 667.2 Concept Hierarchies : 667.2.1 New De�nitions for Interestingness : 677.2.2 Algorithms : 677.3 Parallel Discovery of Classi�cation Rules : 687.3.1 Classi�cation Rule Mining : 687.3.2 A Parallel Mining Engine : 697.3.3 Meta-Learning and Multi-Strategy-Learning : 698 Conclusion and Future Work 71Bibliography 74
3

Chapter 1IntroductionWhile data analysis has long been the object of statistics and several �elds of computer science includingmachine learning, expert systems and knowledge acquisition for expert systems in particular, these techniqueshave only in recent years been applied to large databases to unveil the wealth of knowledge that is buriedthere. The growing interest from businesses in data mining or knowledge discovery in data bases (KDD), asthe �eld is also called, and the appearance of data mining tools in the marketplace show the need for meansto handle today's very large and ever growing databases. W.Frawley de�ned the data mining problem as the" nontrivial extraction of implicit, previously unknown and potentially useful information from data"[15].Unfortunately, the characteristics of databases, above all their sheer size, often make it impossible to simplyapply the tools developed for problems in the other areas mentioned above. New algorithms must be designedto take these peculiarities into account and to provide users with e�ective and convenient ways to discoverthe knowledge they need.Association rule mining (ARM) is one problem in KDD that has received considerable attention duringthe past year, as demonstrated by the large number of new publications [19, 32, 34, 37]. As with many otherproblems in KDD, a certain type of database and a special application has lead to specialized algorithms forthis problem. In this case, retail data1, a database of consumer transactions in large retail stores, has to besearched for rules that characterize common consumer behavior. Discovered rules may reveal, for example,that there is a 75% percent chance that people also buy spaghetti sauce if they buy pasta and ground meat.While this example seems rather intuitive, other rules like it may not be so obvious and a means to �nd themis required. Furthermore, mining tools enable users to quantify their assumptions and refute or con�rm themthrough data mining queries. The relevance of these rules to applications like marketing, product planning,store layout, advertisement and sales promotion can easily be conceived. However, the ARM algorithms canbe applied to a much broader scope of problems such as failure correlation in complex systems or even theanalysis of medical data. Association rules are introduced more formally in Chapter 2.Unfortunately, the number of possible association rules grows exponentially with the number of itemsconsidered. For 1000 items, for example, more than 21000 rules have to be considered in a naive approach.Several algorithms have been proposed in the literature to make this search more e�ective, i.e. Apriori [4]and PARTITION[34]. Algorithms di�er mainly with respect to the internal data representations used forintermediate results and the IO cost and CPU-overhead they incur. Like all algorithms before it, Apriori needsto scan the entire database several times. To reduce the number of IO operations, PARTITION implementsa new divide-and-conquer partitioning strategy. It reads and processes the database one partition after theother and only one second scan is necessary to join the partial results. The second novelty in PARTITION isthe use of the new TID-list structure to store a partition in memory (as opposed to the item-list representationused by Apriori). [34] report that PARTITION is superior to Apriori because it needs less IO and less CPU-1sometimes also referred to as basket data 4

overhead due to these two new features.In this report, we investigate the e�ect of data structures and the partitioning concept on the performanceof the algorithms. In particular, we present the Sequential E�cient Association Rules algorithm (SEAR)which employs a new pre�x tree data structure and includes an optimization we call pass bundling that hasnot been investigated in the literature. SEAR, which is based on the item-list representation, is compared toSPTID (short for \Sequential Partitioning with TID-lists") which uses TID-lists.To examine the e�ects of partitioning, the non-partitioning SEAR algorithm is contrasted with threepartitioning algorithms: SPTID, which uses TID-lists, SPEAR, the partitioned version of SEAR, and SPINC,a new incremental partitioning algorithm that allows less than two scans over the data. As shown in Table 1.1,SEAR, SPEAR and SPINC all use item-lists and pre�x-trees to ensure comparability; SPTID is included forcompleteness. non-partitioning partitioning incrementalTID-lists SPTID (1 partition) SPTID |Item-lists (Pre�x-trees) SEAR SPEAR SPINCTable 1.1: Overview of sequential algorithmsOur experiments show that1. pass bundling reduces both CPU and IO overhead signi�cantly,2. partitioning introduces constant CPU overhead per partition which exceeds by far the bene�ts due toreduced IO cost, unless disk IO is extremely expensive,3. TID-lists are fast in later phases, but highly ine�cient in early phases of the algorithm and dissatisfac-tory performance can only be avoided by bypassing the initial phases with special optimizations (whichdo not use TID-lists).Therefore, we contend that partitioning | contrary to common opinion | does not reduce the executiontime of ARM algorithms, but leads to worse performance as the number of partitions grows. The e�cientuse of TID-lists requires partitioning, because large intermediate results would otherwise have to be swappedto disk for databases larger than the available bu�er space ; the algorithms that use TID-lists are thereforeslowed by the partitioning overhead, even if CPU cost is greatly reduced by means of the bypass optimization.In contrast, item-lists with pass bundling also achieve low IO and CPU cost without the partitioning overhead.Unfortunately, because the bypass optimization was not mentioned in the paper on PARTITION [34], wecould not add it to SPTID to compare both concepts directly to determine which performs better, and furtherresearch is required to provide a de�nitive answer to this question.All sequential algorithms will be described in detail in Chapter 3, the results of our sequential experimentscan be found in Chapter 4.In spite of continued improvements in sequential algorithms, data mining queries in general and the ARMalgorithms in particular remain expensive and time-consuming operations that are too costly for convenientuse in interactive mining tools. The rapid growth of database sizes also calls for higher mining speeds thanare currently available. Sampling is one solution to this problem [28], but looking at only a portion of thedatabase will not produce exact results. Parallel data mining is the second option and the focus of the secondpart of this report, where parallel SPMD2 implementations of SEAR and SPEAR on an IBM SP2 message-passing multiprocessor and the results of our speedup and scale-up experiments are presented. We assume the2short for Single Program Multiple Data 5

shared-nothing paradigm that is commonly used in parallel databases [12, 13, 6] and the nature of the problemsuits this assumption well. Our �ndings con�rm our initial expectations that both algorithms parallelize well,require only a comparatively small amount of communication and achieve near-linear speed-up that is onlydiminished by the sequential portions of the algorithms.1.1 Overview over KDD ResearchTo give an overview over the �eld of KDD we �rst introduce the major types of knowledge we desire toextract from data. We proceed to list the additional di�culties that arise with databases as data source forpattern discovery algorithms. This section ends with more general issues and a proposed architecture forKDD systems. For more detailed introductions to KDD see [21, 40].1.1.1 Types of KnowledgeRecalling the aforementioned de�nition of KDD by W.Frawley { that discovered information is implicit,previously unknown and potentially useful { we can state what \knowledge" means in our context. Beingimplicit, knowledge in the data mining sense goes beyond mere factual knowledge that has been stored andmanaged successfully by DBMS for years. The fact that Ms X works for company Y and earns $ 30; 000annually is not the desired output of a data mining algorithm, no matter how revealing and surprising thisfact may be to the user. This shows that previously unknown is to be understood both from the system'sperspective and with respect to the user's current level of knowledge. This kind of knowledge could also becalled "meta-knowledge": patterns that characterize the data | hidden laws and structures that need not bestrict functional dependencies, but may hold only with a certain probability. Frawley in [15] demands thatthe statement of the discovered pattern be somewhat simpler than the subset of data objects it describes.What simpler means is left vague intentionally. Length of encoding or other information theoretic measuresseem reasonable and have been used widely [11, 36, 2]. In short, we are interested in facts about data, andthe term knowledge shall be used with this meaning from now on. The last requirement { potentially useful{ is highly dependent on the application and even on the special focus of the current mining task. This issuewill be revisited in later sections when background knowledge and related work are discussed (Section 1.1.3and Section 7.2.1).R. Agrawal in [2] identi�es the three types of knowledge to be discovered in databases: classi�cation,association and sequences. Classi�cation tries to divide the given data set into disjoint classes using supervisedor unsupervised learning, the latter also being referred to as clustering. The goal is to �nd a set of predicates3that characterize a (in the supervised case prede�ned) class of data objects and can be applied to unknownobjects to predict their class membership. A bank, for example, might want to classify its credit customersto determine whether to give loans or not. In [15] W. Frawley and G. Piatetski-Shapiro subdivide this taskinto summarization, that searches for common characteristic features of one class only, and discriminationwhere the goal is to �nd features that help distinguish di�erent classes or alternatively one class from allothers.When discovering sequences, time is given as an additional attribute and questions concentrate on dynamicpatterns. Examples can be found in stock market data or consumer behavior. For special algorithms forsequence discovery that use the Discrete Fourier Transform to speed up the pattern search we refer the readerto [33]. An interesting problem involving sequences is the discovery of episodes, frequent partially orderedsets of events that occur within a given time window [29]. The algorithms for �nding episodes are very similarto those used in ARM which is why they are described in a comparatively detailed way in Section 7.1.3in machine learning terminology: concept descriptions 6

The third type of knowledge are association rules. Associations can be arbitrary rules of the formX ! Y ,X and Y being conjunctions of attribute value restrictions. We have already introduced this area and willtreat it in depth in Section 2.1.1.[2] proposes a uni�ed framework for all three areas, arguing that they all are variations of a basic rulediscovery task and can be reduced to a set of standard operations. In fact, classi�cation can be viewed asdiscovering the antecedent of rules that have the class label as the consequent. A rule like [salary> $30,000 ^average balance >$1000 ^ age > 35] [! class = low credit risk] may su�ce as an example. For performancereasons it is advisable, however, to exploit application characteristics in specialized algorithms for di�erenttasks. This observation is supported by the large number of highly specialized algorithms proposed for ARMalone.1.1.2 Database Speci�csOne might argue that many aspects of data mining are not very di�erent from standard machine learningproblems. However, the special situation of using a database as the data source causes additional di�culties.Size of Data SetsWhile training sets in machine learning rarely exceed several thousand items, databases with hundreds ofthousands or even millions of items are common today, and the trend is rising. This introduces the problem ofhandling the data itself and potentially large amounts of intermediate results. Furthermore, most current datamining algorithms view the database as one global relation. This universal-relation assumption aggravatesthe size problem because databases which are split up into several relations according to some normal formto save disk space have to be joined into one (most likely, very large) relation.Noise, Missing and Contradicting DataDatabases are typically not generated and maintained for the purpose of data mining; their data is intendedto serve the interest of the application, not to facilitate the mining job. In the worst case, attributes thatare indispensable for the discovery task at hand may be missing altogether and bad or wrong results willbe produced. But even on a smaller scale, the task is made much harder for mining algorithms by NULLvalues that occur very frequently in relational data. The basic choice in dealing with NULL values is toeither replace them by default values determined by conditional probabilities based on the available �elds orto ignore the data object altogether and avoid a presumably dangerous wrong choice. Both alternatives areinherently awed because they may produce wrong results. The last resort is for the system to try to obtainthe missing values from the user or other external sources. But this is usually not feasible.Real world data is often noisy or contains contradictory information due to errors or simply due to thenature of the data. This is not the best possible input to standard learning algorithms. Probabilistic methodsare needed to deal with these di�culties.Redundant InformationWhile discovery algorithms are supposed to detect patterns in the database, this is undesirable for previouslyknown dependencies. [30] identi�es two cases where trivial patterns are wrongly reported as "knowledge"due to redundant information stored in the database. One case is strong functional dependencies when one�eld is a function of one or several other �elds, for example: Pro�t = Sales - Expenses. The other caseoccurs when �eld values are merely constrained by other �elds, like BeginDate � EndDate. An additional,and unfortunately rather frequent situation is related to concept hierarchies. Whenever a reference to somehigher concept is stored with a data object this will be considered a pattern by the algorithm although this7

knowledge is of no interest to the user. Examples are City) State, Department) Division in a largecompany, or AIDS) ViralInfection. These di�culties indicate that the mining process has to be directedand supported by background knowledge or domain knowledge, an issue we will talk about in Section 1.1.3.Knowledge RepresentationThe knowledge discovered should be readable by humans, and it should allow easy retrieval of the items inthe database that match a discovered rule. This pretty much rules out the use of neural nets, because thelearned information is usually hidden in internal layers of the net. This is �ne for learning robot motions,but not for when a sales manager wants to know what products to arrange next to each other. The di�erenceis that, to take an example from ARM, symbolic learning produces the actual rules, while a neural net canonly decide for a given rule whether it is signi�cant or not. For this reason, neural nets prohibit the use of adatabase query language for optimized retrieval of items that match a rule. Instead of fast indexed selection,a scan over the entire database is necessary. As argued in [1] symbolic learning outruns neural nets becausemultiple passes over the training set are necessary in the learning process.This favors the use of symbolic representations, namely predicates and so called decision trees that arepredominantly used in classi�cation.1.1.3 General IssuesUsers in the MineMining tools are not yet able and might never be able to determine whether the knowledge they discover is ofany interest to the user. A mining tool can easily ood the user with trivial domain knowledge as pointed outin previous sections. It comes as no surprise, for example, that all pregnant patients are female. Thereforeinteractively directing the discovery process is desired. This requires new means to formulate highly complexqueries in a way that is acceptable to the domain expert, and sophisticated means of result representation,in short: high system to user bandwidth and vice versa. An example from association rule discovery thatinvestigates rule templates and visualization of results can be found in [26]. It is not clear just how muchuser interaction is desired or necessary, and the answer to this question may very well be dependent on themining domain. Systems with various degrees of independence exist and the tradeo� between versatility andindependence of a discovery system was even used in [30] to typify KDD systems.The \human in the loop" requires fast response times, and execution times of several minutes cannot betolerated. The demands users make on discovery tools create additional challenges for KDD algorithms anddeserve further attention. Users might want fast, but less accurate results for a �rst quick look at the dataand focus on points of interest later demanding more and more accuracy and reliability as they go along.Typical usage patterns like this raise issues of result reuse and result re�nement that may be more e�cientthan rerunning the algorithms from scratch for every user query. Storing discovered knowledge for futurereference and consistency of such growing data/knowledge bases in dynamic environments are only examplesof some of the problems that have to be addressed in interactive mining systems.Including Domain KnowledgeThis point is strongly related to the previous one in that it tries to contain the amount of insigni�cantinformation generated by the mining algorithms. Based on domain knowledge or | in more elaboratesystems even common sense reasoning | �lters can be designed to prevent trivialities from being presentedto the user.Providing the discovery tool with domain knowledge can also speed up the discovery process because thealgorithm can take o� from previous knowledge or identify certain paths as useless and abandon them. It8

is obvious, for example, that the name of a patient is usually not a decisive factor in the diagnosis of hisillness. The attribute can therefore be removed entirely before the mining algorithm is invoked. The problemof selecting and exploiting this knowledge is being investigated. Examples of domain knowledge are the useof concept hierarchies, user-de�ned predicates, and automated selection of relevant attributes to reduce datasizes and running time [16].1.1.4 KDD System ArchitectureInternal and External MinersA mining tool can be viewed as an application that uses the DBMS as server for its data managementrequirements. In this case it would be called an external discovery tool, whereas internal miners only readthe data from the DBMS once and convert it into their own format, working independently from that pointon. External tools are necessarily more tailored to the database interface (SQL or the like) but since DBMSare usually not optimized for data mining, performance may su�er in this approach. We have alreadymentioned the universal relation assumption that can lead to huge amounts of data or repeated expensivejoins. Relations might also have to be inverted to convert them into a format more suitable for mining.Consider, for example, grouping a DebitCredit type history relation by account number.Internal tools, on the other hand, need storage for the data, but access is more e�cient especially becauselarge parts of the data often need not be considered in later passes of the algorithms and internal miners canprune the data set along the way. Hybrid approaches or mining algorithms that rely heavily on databasefunctionality[16] are also possible of course.Some argue that mining capabilities should not be provided in applications separate from the actualdatabase but be an integral part of a DBMS's capabilities[15]. According to this vision future DBMS shouldbe able to provide the user with more insight on the data than just selection and aggregation. Interestingquestions that arise in this context are concerned with the tradeo�s between support for OLTP and themining algorithm's needs for fast access to the entire database. In other words, the question is how to coupleknowledge base and database ? [25]A Model for KDDWe conclude this chapter by presenting a model which reects most of the observations made in previoussections. This section follows roughly the idealized model for KDD systems proposed in [30]. Actual systemsmay more or less map to this scheme, but most major components will be represented.As depicted in Figure 1.1, input to the system comes from the user who runs mining queries against thedatabase, in the form of domain knowledge and from the database itself. The knowledge base is used tostore pre-supplied domain speci�cs and possibly knowledge acquired in previous mining sessions. Based onthis background knowledge, the focus component selects the part of the database that is pertinent to thecurrent task and the DB interface creates the actual database query to retrieve the data. Note that thismodel precludes neither internal nor external mining. Pattern extraction denotes the set of actual miningalgorithms, and the evaluation component �lters the discovered patterns according to their interestingness.To the model proposed in [30], we added the user interface and display components to emphasize the need forand the non-triviality of convenient and e�ective user interaction. Current research is investigating primarilythree areas: pattern extraction as the core component of a KDD tool, the inter-working between domainknowledge and the focus{extraction{evaluation process, and �nally the user interface aspects.The subsequent chapters will focus on the pattern extraction problem for association rules. However, manyof the issues presented here in a rather general way will surface again under this more narrow perspective.9

DBMS

Domain
Knowledge

Input

User

Fo
cu

s

D
is

pl
ay

Controller

U
se

r
In

te
rf

ac
e

In
te

fa
ce

D
at

ab
as

e

Pattern
Discovery

Knowledge Base

E
va

lu
at

io
n

D
is

co
ve

ri
es

Figure 1.1: General model for KDD systems1.2 Structure of this ReportThe remainder of this report is structured as follows. Chapter 2 introduces association rule mining moreformally and provides an overview over previous algorithms. Our own work on sequential algorithms isdescribed in Chapter 3, covering the algorithms SEAR, SPTID, SPEAR and SPINC, in this order. Thesubsequent chapter reports the results of our experiments with those sequential algorithms, focusing on thee�ects of di�erent data structures and the bene�ts of partitioning.The second part of this report is dedicated to the parallel implementations of the SEAR and SPEARalgorithms. Our major concern is to investigate how these algorithms parallelize; also, contrasting the twoalgorithms compares a non-partitioning and a partitioning algorithm, providing further insight on (parallel)partitioning. Chapter 5 describes the algorithms PEAR (parallel SEAR) and PPAR (parallel SPEAR), andthe results of the parallel experiments with these algorithms can be found in Chapter 6.A short overview of interesting extensions and other related work is given in Chapter 7, before we concludethis report with a summary of our results and a list of future research topics in Chapter 8.
10

Chapter 2Association Rule MiningThis chapter introduces association rule mining in more detail, starting with the formal problem statementand properties of association rules and frequent sets that play a central role in ARM. The second part of thechapter is dedicated to describing and evaluating previous algorithms for the problem. Other related worksuch as the treatment of concept hierarchies, other parallel KDD projects and episode-discovery in sequencesare briey covered later in Chapter 7.2.1 Association RulesIn this section we give the formal de�nition of the association rule mining problem. First, however, weintroduce frequent sets which form the basis for generating the actual association rules. Except where statedotherwise we follow the initial terminology used by [3].2.1.1 De�nition of Frequent SetsGiven a set I = fI1; I2; : : : ; Img of items (e.g. a set of items sold by a retail store) a transaction1 T is de�nedas any subset of items in I (� I). Like sets, transactions do not contain duplicates, but we extend thepure notion of a set and assume that the items in transactions and in all other itemsets we may consider aresorted.Let the database D be a set of n transactions, and each transaction is labeled with a unique transactionidenti�er (TID).A transaction T is said to support a set X � I if it contains all items of X , i.e. if X � T . Sometimeswe need to refer to the set of transactions that support X and use T (X) to denote the set of TIDs of thesetransactions.We de�ne the support of X , abbreviated supp(X), to be the fraction of all transactions in D that supportX . If we have supp(X) � smin for a given minimum support value smin, the set X is called frequent2. Themotivation behind minimum support is that we want to concern ourselves only with itemsets that occur oftenenough in D to be interesting. Infrequent itemsets, i.e. those that do not have minimum support, are notconsidered interesting. Finally, we will call an itemset X of cardinality k = jX j a k-itemset.Three properties of frequent sets will be helpful later on; Properties 2.2 and 2.3 in particular form thefoundation for all ARM algorithms.1Note the special use of the term transaction in the ARM context. Di�erent from its usual context in DBMS, the term appliesto data about consumer transactions.2[3] in D and other early work refer to frequent sets as large sets, but since this has lead to confusion with the cardinality ofthe set we chose to adopt the change in terminology proposed recently in [37].11

Property 2.1 (Support for Subsets)If A � B for itemsets A;B, then supp(A) � supp(B) because all transactions in D that support Bnecessarily support A also.Property 2.2 (Supersets of Infrequent Sets are Infrequent)If itemset A lacks minimum support in D, i.e. supp(A) < smin, every superset B of A will not befrequent either because supp(B) � supp(A) < smin according to Property 2.1.Property 2.3 (Subsets of Frequent Sets are Frequent)If itemset B is frequent in D, i.e. supp(B) � smin, every subset A of B is also frequent in D becausesupp(A) � supp(B) � smin according to Property 2.1. In particular, if A = fi1; i2; : : : ; ikg is frequent,all its k (k-1)-subsets are frequent. Note that the converse does not hold.2.1.2 De�nition of Association RulesAn association rule is an implication of the form R : X ! Y , where X and Y are disjoint itemsets: X; Y � Iand X \ Y = ;. Furthermore, Y 6= ; is required. Such a rule can be understood as the prediction, that ifa transaction supports X , it will also support Y with a certain probability, which is called the con�dence(denoted conf (R)) of the rule.The con�dence of R is de�ned as the conditional probability that given that T supports X , T will alsosupport Y . More formally:conf (R) = p(Y � T j X � T) = p(Y � T ^ X � T)p(X � T) = supp(X [Y)supp(X) :The support for rule R in D is de�ned as supp(X[Y). The con�dence of a rule reveals how often it can beexpected to apply, while its support indicates how trustworthy the entire rule is. For a rule to be relevant itneeds to have enough support and su�cient con�dence. We will therefore say that rule R holds with respectto D, some �xed minimum con�dence level cmin and a �xed minimum support smin, if conf (R) � cmin andsupp(R) � smin. Note that, as a necessary condition for a rule to hold, both antecedent and consequent ofthe rule have to be frequent.To illustrate the importance of both requirements, minimum support and minimum con�dence, assume�rst that we base a rule on just one data object. This rule will have maximum con�dence of 100% but it doesnot describe a common pattern in the database and has to be discarded because it lacks minimum support.Let's assume now that a rule has enough support, but low con�dence, for example it says that 2% of allcustomers who buy soap also purchase tomatoes. Although this fact is well supported by the data in thedatabase, it is not relevant, because it does not express a strong correlation.Properties of Association RulesThe requirement that antecedent and consequent be disjoint is not absolutely necessary; it does not leadto nonsense rules but only to redundant or insigni�cant ones. X ! X , for example is trivially true andX ! X [Y is equivalent to X ! Y and therefore not interesting. The antecedent X of a rule maybe empty; every transaction is considered to support the empty itemset and therefore the entire databasesatis�es the antecedent. The con�dence of such a rule is equal to the relative frequency of the consequentitemset. The consequent Y is required to be non-empty for the same reason we demand that antecedent andconsequent be disjoint. Recall that for the con�dence of a rule we are interested in the conditional probabilityc = p(Y � T j X � T) for some transaction T . If Y = ; we have c = p(; � T j X � T) = supp(X[;)supp(X) = 1.This shows that, in fact, the rules X ! X and X ! ; are equivalent.12

As opposed to functional dependencies that require strict satisfaction, association rules are generally nottransitive and do not compose. In most cases, whether a rule holds or not cannot be inferred from thecon�dence of another rule. These observations are stated more formally in the following list:Property 2.4 (No Composition of Rules)If X ! Z and Y ! Z hold in D, the same is not necessarily true for X [Y ! Z. Consider the casewhen X \ Y = ; and transactions in D support Z if and only if they support either X or Y . Then theset X [Y has support 0, and therefore X [Y ! Z has 0% con�dence.A similar argument applies to the composition of rules with the same antecedent:X ! Y ^ X ! Z =)= X ! Y [ZProperty 2.5 (Decomposition of Rules)If X [Y ! Z holds, X ! Z and Y ! Z may not hold. This is the case, for example, when Z ispresent in a transaction only if both X and Y are present also, i.e. supp(X [Y) = supp(Z). If thesupport for X and Y is su�ciently greater than supp(X [Y), the two individual rules do not have therequired con�dence. The situation is depicted in �gure 2.1. Circles denote the set of transactions thatsupport the itemset they are labelled with.
T(Z)

T(X) T(Y)

Figure 2.1: Counter-example for composition of rulesHowever, the converse, X ! Y [Z =) X ! Y ^ X ! Z;holds because supp(XY) � supp(XYZ) and supp(XZ) � supp(XY Z). Therefore, both support andcon�dence of the smaller rules increase compared to the original rule. Unfortunately, this does not helpmuch during the rule construction process, because we would like to build larger rules from smallerones and not the other way around.Property 2.6 (No Transitivity)If X ! Y and Y ! Z hold we cannot infer that X ! Z. Assume for instance that T (X) � T (Y) �T (Z) and the minimum con�dence level is cmin. Let conf (X ! Y) = conf (Y ! Z) = cmin. Basedon relative support values we get conf (X ! Z) = c2min < cmin since cmin < 1 which is not enoughcon�dence and the rule does not hold. Note that this computation is based on the set inclusion above.In general, con�dence values cannot be multiplied in this manner.13

Property 2.7 (Inferring Whether Rules Hold)[2] show that if a rule A! (L�A) does not have minimum con�dence, neither does B ! (L�B) foritemsets L;A;B and B � A . Using supp(B) � supp(A) (Property 2.1) and the de�nition of con�dencewe obtain conf (B ! (L�B)) = supp(L)supp(B) � supp(L)supp(A) < c.Likewise, if a rule (L � C) ! C holds, so does (L � D) ! D for D � C and D 6= ;, because theconsequent is required non-empty.The last property will be used to speed up the generation of rules once all frequent sets and their supportis determined. See Section 2.3.3 for details on the algorithms.Other Possible De�nitionsThe preceeding de�nition is a restricted version of association rules that in their most general form maycontain negations and disjunctions also. Disjunctions could be used to express that di�erent variations of aproduct were sold and the di�erence is not relevant, as e.g. in [LowFatMilk _ SkimMilk] ^ Butter ! [Jelly_ Peanutbutter]. But this approach is not likely to be successful because the additional expressivity addsto the complexity of the discovery algorithms. Furthermore, the problem of deciding the interestingness ofsuch rules becomes much harder, because large disjunctions of arbitrary items can easily reach minimumsupport in a database. Finally, the hierarchical solutions we describe in Section 7.2 are much better suitedfor treating groups of items.Rules that contain negation su�er from similar drawbacks. The rule space that has to be searched growsimmensely, and discarding the vast amount of irrelevant rules becomes very di�cult. It is intuitively obviousthat, given the large number of possible itemsets, the number of sets of items not bought together exceedsthose actually purchased together by orders of magnitude. Note however that limiting rules to conjunctsin antecedent and consequent actually restricts the patterns we can possibly �nd. It may very well be aninteresting piece of information, that people who buy Coke and Chips display a strong dislike for RootBeer,but this dissociation cannot be expressed in our rules.2.2 The Basic Algorithmic Scheme for Mining Association RulesWith these de�nitions we can proceed to describe the structure of the basic rule discovery algorithm. Al-though the algorithms presented later will be very di�erent from each other, they all use a basic scheme, thecomponents of which may be arranged di�erently or the entire scheme might be applied repeatedly.To construct all association rules the support of every frequent itemset in the database has to be computed.Therefore, all algorithms proceed in two stages: First all frequent sets are generated, then a second phase ischarged with generating the actual rules and their con�dence from those frequent sets.Finding All Frequent SetsAs noted before, the number of potential frequent sets is equal to the size of the power set of all items, whichgrows exponentially with the number of items considered. A straightforward algorithm might perform anexhaustive search and test every set in the power set as to whether it is frequent or not.The basic method every algorithm follows is to create a set of itemsets, called candidates, that it believescould be frequent. How many such candidates are created, in which sequence and how often depends on theindividual algorithm.To �nd out which of these candidate itemsets are actually frequent and what their exact support is, thesupport for each candidate set has to be counted in a pass over the database.14

Since counting the occurrences of a candidate set involves a considerable amount of processing time andmemory, the obvious goal is to reduce the number of candidates generated by an algorithm.Rule ConstructionAs soon as all support values are available, possible rules can be created and their con�dence determined.For every frequent set X , each of its proper subsets is chosen as antecedent of a rule and the remaining itemsconstitute the consequent. Since X itself is frequent, all of its subsets have to be frequent as well accordingto Property 2.3, and their support is known. The con�dence of the rule is computed and the rule is acceptedor discarded, depending on the minimum con�dence level.Improvements can be gained from Property 2.7 because once a rule fails, no subsets of its antecedenthave to be considered any more. Compared to the task of �nding all frequent sets, this step is ratherstraightforward.2.3 Previous AlgorithmsAll ARM algorithms proposed in the literature separate rule construction from �nding frequent sets. Thelatter is the interesting part and the one that is solved di�erently by the individual algorithms. We thereforefocus on �nding frequent sets throughout this section. The algorithms use one of three major data repre-sentations to store the database: item-lists, candidate-lists and TID-lists. We describe their advantages anddisadvantages as they are introduced and argue how the choice of representation inuences the performanceof the algorithms that use them.2.3.1 AISThe problem of association rules was �rst introduced in [3] along with an algorithm that was later called AISby the authors [4].
1 2 4 6

1 2 4 7

1 2 4 5 51 2 4 6

1 2 4 75

1 2 4 76

1 2 3 4 5 6 7T TID 1 2 3 4 5 6 7T TID

Transaction T:
{ 1, 2, 4}Frontier set F:

1 2 4F 1 2 4F

< TID, { 1, 2, 3, 4, 5, 6, 7 } >

2-extensions:1-extensions:Figure 2.2: Illustration of 1- and 2-extensions for AISTo �nd frequent sets, AIS creates candidates on-the-y while it reads the database. Several passes arenecessary, and during one pass, the entire database is read one transaction after the other. A candidateis created by adding items to sets that were found to be frequent in previous passes. Such sets are calledfrontier sets. The candidate that is created by adding an item to a frontier set F is called a 1-extension of Fbecause one item was added to F . To avoid duplicate candidates, only items that are larger than the largestitem in F are considered for 1-extensions. To avoid generating candidates that do not even occur in thedatabase, AIS does not build 1-extensions on blind faith, but only when they are encountered while reading15

the database. Figure 2.2 illustrates which 1-extensions are created when a transaction is read that supportsa frontier set F . This �gure illustrates also how this concept can be extended to k-extensions as well, thatare formed by adding k items to a frontier set.Associated with every candidate, a counter is maintained to keep track of the frequency of this candidatein the database. When a candidate is �rst created, this counter is set to 1, and when it is found subsequentlyin other transactions, this counter is incremented.After a complete pass though all transactions, the counts are examined and candidates that meet theminimum support requirement become the new frontier sets3.Ideally, all former frontier sets can be discarded, because all their possible extensions have been considered,and keeping them for the next pass would create candidates that were already evaluated. In most cases,however, the storage requirements for candidate sets and frontier sets exceed main memory and frontier setshave to be swapped out to disk. Their extensions, as generated to this point, are abandoned and producedagain in the next pass, which is cheaper than swapping them to disk also.After the new frontier sets have been determined (all candidates with minimum support), the nextextension/counting phase begins unless there are no frontier sets left, which means that none of the previouscandidates were frequent. Initially, the only frontier set is ;, which is extended to all 1-itemsets in the �rstpass, which in turn are extended to 2-itemsets in the second pass and so on.Unfortunately, this candidate generation strategy creates a large number of candidates, and sophisticatedpruning techniques are necessary to decide whether an extension should be included in the candidate setor not. The methods include a technique called pruning function optimization and estimating support fora prospective candidate based on relative frequencies of its subsets. Pruning functions use the fact that asum of carefully chosen weights per item can rule out certain sets as candidates without actually countingthem. An example is the total transaction price. If fewer transactions than the minimum support fractionexceed a price threshold then sets that are more expensive cannot possibly be frequent. These decisions canbe fairly costly; moreover, they have to be made repeatedly for many subsets for each transaction. If anunlikely candidate set is rejected, this decision has to be made for every transaction the set appears in.In this initial paper, rules were restricted to one item in the consequent but allowed any union of itemsin the antecedent. This limitation was not justi�ed by the algorithm itself because it �nds all frequent sets,and this information is enough to produce rules without this limitation.2.3.2 SETMSETM [22] is designed to use only standard database operations to �nd frequent sets. For this reason, it usesits own data representation that stores every itemset supported by a transaction along with the transaction'sTID. Figure 2.3 shows part of an example run of SETM on a tiny database and illustrates also, how thedatabase is stored in a table of <TID,itemlist > records. SETM repeatedly modi�es the entire database toperform candidate generation, support-counting and the removal of infrequent sets. The above representationis used throughout the algorithm; whether the database contains all candidate itemsets or only all frequentitemsets depends on the current stage.We use Figure 2.3 to explain the algorithm. We assume that all infrequent items have been deletedalready, which is why <1,f5g> is not part of L1, the stage that contains all frequent 1-itemsets. To formC2, L1 is joined with itself on equal TIDs as shown. For each transaction, C2 contains all the 2-candidatesit supports each one accompanied by the TID. The next task is to delete infrequent candidate itemsets fromC2 to produce a table L2 that contains all frequent 2-itemsets. This is done by �rst sorting C2 on itemsets,3This is a simpli�cation because determining which expansions to include as candidates becomes more tricky in the presenceof k-extensions and support estimation. For k-extensions, for example, only maximal frequent sets become frontier sets. For thedetails we refer the reader to [3] 16

TID

1,3
1,4
3,4
2,3
2,4
3,4
1,3
1,4
2,3
2,4
3,4

1
1
1
2
2
2
3
3
3
3
3

C2:

1
1 1,4

2 2,3

1 1,3

2 2,4
2 3,4
3 1,2
3 1,3
3 1,4
3 2,3
3 2,4
3 3,4

TID Items

3,4

1 1,3
3 1,3
1 1,4
3 1,4

2 3,4
3 3,4

2 2,3
2,3
2,4
2,4

3
2
3
1 3,4

3 1,2

ItemsTID TID Items
C3:

1 1,3,4
3 1,3,4
2 2,3,4
3 2,3,4

Database:

TID

1
2
3

1, 3, 4, 5
2, 3, 4
1, 2, 3, 4

Items

Join on items
Sort

infrequent
itemsets

Delete
Sort

on TIDs Join

Minimum Support:

2 occurrences

TID

1
1
1
2
2
2
3
3
3
3

1
3
4
2
3
4
1
2
3
4

Items

Items Items
L2:

1 1,3
3 1,3
1 1,4
3 1,4

2 3,4
3 3,4

2 2,3
2,3
2,4
2,4

3
2
3
1 3,4

TID

L1:

Figure 2.3: Part of a sample run of SETMcounting support by means of aggregation and then deleting infrequent sets. Now, we would like to computeall the 3-candidates supported by each transaction, which is accomplished by another join like the following(k=2):insert into C(k+1)select a.TID, a.item1, a.item2,: : :, a.itemk, b.itemkfrom Lk a, Lk bwhere a.TID = b.TID, a.item1=b.item1,: : :, a.itemk�1=b.itemk�1, a.itemk < b.itemkUnfortunately, L2 is currently sorted on itemsets instead of TIDs which is the order required to carry outthe join e�ciently. Therefore L2 is sorted on TIDs before the self-join. After C3 is created, it is sorted onitemsets and infrequent sets are removed and so on, until some Lk becomes empty.The problem with this algorithm is that candidates are replicated for every transaction they occur in,which results in huge sizes of intermediate results. Moreover, the itemsets have to be stored explicitly, i.e.by listing their items in ascending order. Using candidate ids would save space, but then the join could notbe carried out as an SQL operation. What is even worse is that these huge relations have to be sorted twiceto generate the next larger frequent sets.The advantage and the novelty of this approach is that, in fact, SETM creates fewer candidates than AIS.Assume AIS reads our small example database in its third pass with all itemsets in L2 as frontier sets. Whenlooking at the �rst transaction, AIS will notice that it supports the frontier sets f1; 3g, f1; 4g and f3; 4g andcontains item 5. Nothing stops AIS from generating the candidates f1; 3; 5g, f1; 4; 5g and f3; 4; 5g, although17

Algorithm 2.1 Apriori-geninsert into Ck+1select a.item1, a.item2,: : :, a.itemk, b.itemkfrom Lk a, Lk bwhere a.item1=b.item1,: : :, a.itemk�1=b.itemk�1, a.itemk < b.itemkfnow prune rules with subsets missing in Lkgforall itemset c 2 Ck+1 doforall k-subsets s of c doif (s =2 Lk) thendelete c from Ck+1enditem 5 is not even frequent. But these candidates are never considered by SETM.In spite of this advantage, as reported in [4], the ine�ciencies of SETM outweigh by far those of AIS.2.3.3 Apriori, AprioriTid and AprioriHybridCandidate Generation: Apriori-genThe vast number of candidates AIS creates caused its authors to develop a new candidate generation strategycalled Apriori-gen4 as part of the algorithms Apriori and AprioriTid [4]. Apriori-gen has been so successful inreducing the number candidates that it was used in every algorithm that was proposed since it was published[19, 32, 34, 37].The underlying principle, based on Property 2.7, is to generate only those candidates for which all subsetshave been previously determined to be frequent. In particular, a (k+1)-candidate will be accepted only if allits k-subsets are frequent.Assume candidates of size k+1 are to be created. As shown in the SQL-like code in Algorithm 2.1,Apriori-gen takes the set of frequent k-itemsets Lk as input and searches for pairs of sets that have their k-1smallest items in common. Taking the k-1 common items and the two di�erent items, these two sets are thenjoined to form a prospective (k+1)-candidate. Duplicates are avoided by demanding that the largest itemof the second set be greater than the largest item of the �rst. So far, the frequency of only two subsets hasbeen asserted, because their mere presence in the input set allowed the candidate to be created in the �rstplace. Note that up to this point, Apriori-gen is similar to the candidate generation strategy used by SETM.The novelty of Apriori-gen is, that the existence of all remaining k-subsets of each candidate is also testedin the second part of Algorithm 2.1.If, for example, f1; 3; 4; 6g and f1; 3; 4; 8g are frequent, those two are joined to create the candidate setf1; 3; 4; 6; 8g. The subsets that remain to be checked are f3; 4; 6; 8g, f1; 4; 6; 8g and f1; 3; 6; 8g, and if any ofthese are infrequent, the candidate is discarded. Note that it is enough to pair only those frequent sets thatdi�er only in their largest set. Consider frequent sets f1; 3; 4; 6g and f1; 3; 5; 6g, that di�er on their thirditem only. The candidate that could be created from this pair is f1; 3; 4; 5; 6g. But if this set should be acandidate at all, its subsets f1; 3; 4; 5g and f1; 3; 4; 6g are in L4 and will be used to generate it.Since the 1-candidates are simply all the sets that contain only one item, this procedure is not necessaryto generate them. Apriori-gen is �rst used to generate C2 from L1.4Very much the same idea was suggested independently in [28] where it was called o�-line candidate determination(OCD)18

The second novelty of Apriori-gen (and the one leading to its name) is that candidate generation is doneprior to and separate from the counting step, and the algorithm is only called once to create the candidatesof a given size.Therefore, the improvements achieved by Apriori-gen over the candidate generation strategy employed byAIS are two-fold: �rst, fewer candidates are created, and secondly, they are not created repeatedly for everytransaction, but only once. SETM also creates more candidates than do algorithms that use Apriori-gen,and it also creates them again and again for every transaction.AprioriApriori is the �rst algorithm to use Apriori-gen for candidate generation. As mentioned in the previousparagraph, Apriori-gen is separate from the counting step that determines the frequency of each currentcandidate. This means that each pass of Apriori consists of a call to Apriori-gen to generate all candidatesof a given size (size k in pass k) and a counting phase that determines the support for all these candidates.Each counting phase scans the entire database.Upon reading a transaction T in the counting phase of pass k, Apriori has to determine all the k-candidatessupported by T and increment the support counters associated with these candidates.In order to perform this operation e�ciently, Apriori stores candidate sets in a tree. Figure 2.4 illustratesthis structure for all 3-candidates that are possible for 5 items. The actual sets are stored in the leaves of thetree, and edges are labeled with items. To �nd the proper location for a candidate, starting from the root,traverse the edge with the �rst item in the set. Reaching an internal node, choose the edge labeled with thethe next item in the set, until a leaf is reached. The path to locate set f1; 3; 4g is marked with thickenedarrows in the �gure. Note that by virtue of ordering the items, each set has its unique place in the tree. Thesmallest items in a set that are used along the path to the leaf need not be stored. Inserting sets into thetree can cause a leaf node to overow, in which case it is split and the tree grows.
{3}
{4}
{5}

{5}

{3,4}
{3,5}
{4,5}

{4,5}

1 32

{4}

3 42

{5}

Set {1,3,4}Figure 2.4: Apriori's tree structure for candidatesTo count all candidates for transaction T , all leaves that could contain a candidate have to be searched,and to reach all these leaves, Apriori tries all possible combinations of the items in T as paths to a leaf.Once a leaf with a set of candidates is located in this fashion it remains to be checked which are actuallysupported by the transaction. As far as the implementation is concerned, this test for set inclusion can beoptimized by storing the sets as bitmaps, one bit for each item. As observed in [34], these bitmaps canbecome quite large for many items (128 Bytes for 1000 items) and cause considerable overhead.19

Internal nodes are implemented as hash tables to allow fast selection of the next node. To reach the leaffor a set, start with the root and hash on the �rst item of the set. Reaching the next internal node, hash onthe second item and so on until a leaf is found.We implemented a di�erent hash-based tree structure for all our algorithms that resembles the one usedby Apriori, but avoids the overhead of searching for candidates within leaves. This data structure is explainedin Section 3.1.1.Item-listsThe major problem for Apriori (and for AIS as well) is that it always has to read the entire database in everypass, although many items and many transactions are no longer needed in later passes of the algorithm.In particular, the items that are not frequent and the transactions that contain less items than the currentcandidates are not necessary. Removing them would obviate the expensive e�ort to try to count sets thatcannot possibly be candidates.Apriori does not include these optimizations, moreover they would be hard to add to Apriori (and AISas well). The reason stems from the item-list data representation used by both algorithms. As depicted inFigure 2.5, transactions are stored as a sequence of sorted itemlists in this representation. While item-lists arethe most common representation and the one that is usually assumed as input format, they make it di�cultto remove unnecessary parts of the data. Let's assume we want to remove all items that are not part of anyfrequent set. Unfortunately, the knowledge of which items to keep and which to discard is only available andapplicable after scanning the database to count the support for the candidates. Therefore, we can eliminateitems only in the subsequent pass over the data, that is they have to be read once more, although this isnot really necessary. As we will see later, the other two representations remove these items instantly, whichleads to much smaller data sizes in later passes; unfortunately this is not the case for early passes, where thevolume of intermediate data representations can exceed the original data size. The advantage of item-lists istherefore that the size of the data does not grow in the course of the algorithms.
TID

1
2
3

Items

{ 1, 3, 4, 5 }
{ 2, 3, 4 }
{ 1, 2, 3, 4 }Figure 2.5: Item-list data representationAprioriTidThe shortcoming of Apriori, that it could not remove unwanted parts of the database during later passes, hasprompted its authors to develop AprioriTid, which uses a di�erent data representation than the item-listsused by Apriori.AprioriTid5 [4] can be considered an optimized version of SETM that does not rely on standard databaseoperations and uses Apriori-gen for faster candidate generation. Furthermore, AprioriTid reads the data onlyonce and tries to bu�er the data for all other passes. Again, a pass consists of the Apriori-gen call followedby a counting phase to determine the support for the current candidates.Unlike SETM, AprioriTid stores a transaction as the list of the current candidates it supports. This rep-resentation, which we call candidate-lists is depicted in Figure 2.6. Note that only the database transactions5The name conicts with our terminology of the data representations because it suggests the use of TID-lists which is nottrue. In fact,while the authors use TIDs for illustration, AprioriTid does not need them at all.20

are stored in this fashion, all other sets such as candidates and frequent itemsets are still lists of items inascending order as usual. No initial conversions are necessary to create candidate-lists from the commoninput structure because an item can be associated with the corresponding 1-candidate-set, thus for the �rstpass (candidate sets of size 1) there is no di�erence between this representation and item-lists. After the �rstpass the data changes, such that for every transaction, all the 2-candidate-sets that it supports are stored; inthe second pass, those are replaced by candidates of size 3 and so on. The data from previous passes is notneeded any more. Counting support for candidates is easy, because candidates are stored explicitly in eachtransaction.
Database:

TID

1
2
3

1, 3, 4, 5
2, 3, 4
1, 2, 3, 4

Items

Minimum Support:

2 occurrences

C1:

TID Candidates

1

2 {2},{3},{4}

3 {1},{2},{3},{4}

C2:

TID Candidates

1

3

2

{1},{3},{4},{5}

{1,3},{1,4},{3,4}

{2,3},{2,3},{3,4}

{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}

TID Candidates

1

2

3

{1,3,4}

{2,3,4}

{1,3,4}{2,3,4}

C3:Figure 2.6: Candidate-list data representationThe interesting part of AprioriTid is how a list of (k+1)-candidates CTk+1 supported by some transactionT can be derived from the set of k-candidates CTk supported by T. Auxiliary data structures are useful toaccomplish this task: When running Apriori-gen to create all (k+1)-candidates, we store with each candidatethe references to the two k-itemsets that were used in its generation. Furthermore, along with each of the k-itemsets, references to all its candidate extensions are kept. CTk+1 is computed as follows: for every frequentcandidate set in CTk , consider all its candidate extensions c computed by Apriori-gen and check if bothgenerating itemsets are present in T. If so, add c to CTk+1.Compared to SETM, AprioriTid has the advantage that candidate identi�ers can be used instead ofexplicitly listing all the items of a candidate set, which e�ectively reduces the size of the intermediate resultsCk. Furthermore, the auxiliary data structures save work that is wasted by SETM during sorting and joiningto create candidate sets.The importance of AprioriTid stems from the fact that it was the �rst algorithm to read the database onlyonce and work on a copy in memory from that point on. While this idea is of limited use to this algorithm,because it limits the size of the database, those limits are overcome later by the PARTITION algorithm(Section 2.3.4). 21

Candidate-ListsThe disadvantage of using candidate lists is that the size of intermediate results, although much smaller thanthose that have to be handled by SETM, can still be several times the original data size. The reason is thata transaction of k frequent items supports �k2� 2-candidates. Therefore k(k�1)2 candidate identi�ers have to bestored after the �rst pass compared to only m � k candidates (one for every item) in the original database.In our experience with synthetic datasets6, between 50% and 95% of all items are typically frequent7, whichmeans that except for extreme cases we have 0:5m � k � 0:95m. For example, for a transaction of 15 items10 of which are frequent, we have 45 2-candidates as opposed to 15 1-candidates. To make matters worse,the size of intermediate results cannot be known beforehand unless other means (e.g sampling) are used toestimate the characteristics of the data set. Note that this behavior is a feature of candidate lists which isindependent of the speci�cs of AprioriTid.To handle the cases when intermediate results exceed main memory, AprioriTid uses a bu�er managerthat swaps part of the data to disk temporarily. This constitutes an inherent limit to the size of the datathat can be processed e�ciently by AprioriTid.The advantage of candidate-lists is that useless parts of the data are discarded automatically in theprocess. A transaction that does not support any of the current candidates will be removed. Of course, onlythe current candidates supported by a transaction are stored, and this number can be expected to be rathersmall for candidates with more than 2 items. So, while the data might be very large after the �rst pass, itssize decreases rapidly in subsequent passes.AprioriHybrid { Combining Apriori and AprioriTidThe performance tests conducted by R.Agrawal et al.[4] show that Apriori and AprioriTid outperform bothAIS and SETM.Comparing Apriori and AprioriTid is more interesting because they both generate the same number ofcandidates and di�er mainly in their underlying data representation. While Apriori avoids swapping data todisk, it does not weed out useless items in later passes and wastes time on futile attempts to count supportof sets involving these items. AprioriTid, on the other hand, prunes the data set as described in the previoussection and as a result outruns Apriori in later passes. Unfortunately, it is slowed mainly in the secondpass if its data does not �t in memory as a consequence of the candidate-list representation and swapping isnecessary. In this case Apriori beats AprioriTid.For this reason another algorithm, AprioriHybrid, is proposed in [4], that uses Apriori for the initialpasses and switches to AprioriTid as soon as the data is expected to �t in memory. The switch takes anextra e�ort to transform one representation into the other that has to be balanced by savings in later passes.The hybrid version led to improvements over Apriori whenever AprioriTid could be used long enough afterthe switch to o�set the extra e�ort, and performed slightly worse otherwise. Furthermore, the size of thedatabase that can be mined by the hybrid version is not limited any more as it was by AprioriTid.2.3.4 PARTITIONWhile all the algorithms presented so far are more or less variations of the same scheme, the PARTITIONalgorithm [34]8 takes a somewhat di�erent approach. In doing so, PARTITION tries to address two majorshortcomings of previous algorithms.6see Section 4.1 for a description of the commonly accepted generation procedure7To be exact, the corresponding 1-itemsets are frequent.8Most of this section is based on this paper. 22

The �rst problem with the previous algorithms is that the number of passes over the database is notknown beforehand, regardless of which representation is used. Therefore the number of IO operations is notknown and is likely to be very large. AprioriTid tries to circumvent this problem by bu�ering the database,but then the database size is limited by the size of main memory.The second problem lies with pruning the database in later passes, i.e. removing unnecessary partsof the data. Item-lists as used by AIS and Apriori are not well suited for this optimization, as we saidearlier in Section 2.3.3. Candidate-lists do permit pruning the database, but cause problems because of theirunpredictably large intermediate results in early passes.We describe in detail how PARTITION addresses these shortcomings in the paragraphs below. Weexamine in Chapter 4 how severe these problems really are and how well the counter-measures perform,using our own algorithm SPTID, which uses many of the features of PARTITION. The implementation ofSPTID is described in the next chapter.Partitioning the DatabaseThe approach taken by PARTITION (Algorithm 2.2) to solve the �rst problem (unpredictably large IO-cost)is to divide the database into equally sized horizontal partitions. An algorithm to determine the frequentsets is run on each subset of transactions independently, producing a set of local frequent itemsets for eachpartition. Let Li denote the local frequent itemsets for partition i. Note that the minimum support level isa percentage of the number of transactions in the database, or in the partition respectively. 1% minimumsupport in a partition of 10,000 transactions is equal to 100 transactions, regardless of how large the actualdatabase is. The partition size is chosen such that an entire partition can reside in memory. Hence, onlyone read is necessary for this step and all passes access only bu�ered data. The principles of Apriori-gen areapplied for candidate generation.Because the data in each partition is di�erent, the Li will be di�erent from each other also, to the e�ectthat the support of some sets is not available for all partitions. But all of these counts are necessary to decidewhether a set is (globally) frequent or not. To obtain the so-called global support for these itemsets, anotherscan through the database is required, which is called the counting phase in the context of the PARTITIONalgorithm. To know which sets to count during this phase, the global candidate set CG = Si Li is formed asthe union of all local frequent sets. All sets in CG have to be counted, except for the ones that were frequentin every partition, because these counts are already available.After the counting phase, all global support values are available and sets without minimum support canbe discarded, leaving in LG all and only the frequent sets. Thus, the total IO requirement is only two scansregardless of the database characteristics.This procedure is correct because CG contains all possible frequent itemsets. If a set is frequent in theentire database, it has to be frequent in at least one partition, which is expressed in the following property.Needless to say, the converse does not hold, which is why the counting phase is necessary.Property 2.8 (Support on Partition of D)Given a horizontal partitioning P = fP1; : : : ;Ppg of D with Si Pi = D and Pi \ Pj = ; for all i 6= j. Ifitemset X is frequent in D, there exists a partition Px such that X is frequent in Px.Proof (by contradiction)Assume X is frequent in D, but not frequent in any Pi, (1 � i � p). Further, let smin be a �xedminimum support level, and let n := jDj and ni := jPij be the number of transactions in D and Pirespectively. 23

Algorithm 2.2 PARTITIONP = compute partition(D)fPhase Igforall partitions Pi doread in partition(Pi)Li = fallfrequent1� itemsetsgfor (k = 2;Lik�1 6= ;; k++) doLik = ;forall candidates c of size kT (c) = generate TID list(c)if (jT (c)j � ni smin) then Lik = Lik [fcgelse drop candidate(cj)Li = Sk LikCG = Si LifPhase IIgforall partitions Pi doread in partition(Pi)forall c 2 CG doT (c) =generate TID list(c)c:count+= jT (c)jreturn LG = fc 2 CGjc:count � n smingend If X is frequent in D, it follows that suppD(X) � smin . But since X is not frequent in any Pi,suppPi(X) < smin. Thereforen suppD(X) =Xi ni suppPi(X) <Xi nismin = n smin ;and therefore suppD(X) < smin , which contradicts our assumption that X is frequent in D. 2The TID-List Data RepresentationTo address the second problem (failure to reduce the database size in later passes), PARTITION uses a new\TID-list" data representation both to determine the frequent itemsets for each partition and to count globalsupport during the counting phase.TID-lists invert the candidate-list representation by associating with each itemset X a list of all the TIDsfor those transactions that support the set; in other words, the database is transformed into a set of < X;T(X) > pairs. Figure 2.7 illustrates this representation for initial database and intermediate results on anextended version of our sample database. The minimum support equivalent of 3 transactions is marked by avertical line. TIDs are required to preserve the association between items of a transaction. The TID-lists for ak-candidate can be computed easily by intersecting the TID-lists of two of its (k-1)-subsets. All TID-lists aresorted so that this intersection can be computed e�ciently with a merge-join, which only requires traversingthe two lists once.Like candidate-lists, TID-lists change in every pass and may have to be swapped to disk if there is notenough memory available to store them. Again, the size of intermediate results can be larger than the original24

Database:

TID

1
2

1, 3, 4, 5
2, 3, 4
1, 2, 3, 4

Items

3
4 2, 3, 5, 6

Minimum Support:

5 1, 2, 3, 6

3 occurrences

TID-Representation

1-itemset TIDs

{1} 1, 3, 5
{2}
{3}
{4}
{5}
{6}

2, 3, 4, 5
1, 2, 3, 4, 5
1, 2, 3
1
4, 5

2-itemsets TIDs

{1,2}
{1,3}
{1,4}

3, 5
1, 3, 5
1, 3

{2,3}
{2,4}
{3,4}

2, 3, 4, 5
2, 3
1, 2, 3

Jo
in

No 3-candidatesFigure 2.7: TID-list data representationdata size and this �gure is not known. The reason is the same as for candidate-lists (Section 2.3.3), with thedi�erence that ins PARTITION, TIDs are replicated for every candidate set instead of replicating candidateidenti�ers for every transaction. The size problem is less severe for TID-lists because candidate generationand counting are done together in the merge-join operation. If a candidate is found to be infrequent itsitemlist can be dropped immediately. In the example shown in Figure 2.7, these lists have been crossedout. Figure 2.8 shows an example how the size of intermediate data structures changes depending on theminimum support. The data originate from runs of SETID, which is our implementation of PARTITION, ona 4.4MBytes database with 1000 di�erent items and 100,000 transactions of average size 10. As can be seen,the data size grows by 20% for the lowest minimum support level, while data sizes decrease continuously forall other minimum support values.Although increases in data size are not as severe for TID-lists, the problem remains that the amount ofthe increase cannot easily be estimated beforehand | at least not at the moment.A second and more important disadvantage, according to our experiments with SETID, is that the merge-join is signi�cantly more costly in early passes of the algorithm than comparable steps in other representations.We will explain this problem in more detail in Section 4.3.2.TID-lists, on the other hand, permit the removal of all useless data, because TID-lists of infrequent itemscan be dropped easily and TIDs of transactions that do not support an itemset are omitted automatically inthe merge-join. As seen in Figure 2.8, data sizes drop quickly in later passes for all minimum support levels.The following paragraphs comment on individual aspects of PARTITION, namely the problem of choosingthe size of one partition, the details of candidate generation (where Apriori-gen is used in a slightly di�erentway) and how the counting phase is carried out.Choice of Partition SizePARTITION is negatively impacted by data skew, which causes the local frequent sets to be very di�erentfrom each other. In this event, the global candidate set CG will be very large, which renders the countingphase more expensive. The smaller the partitions, the more likely are negative e�ects due to data skew,since more itemsets are likely to be frequent either in only a few partitions, or in all but a few partitions.25

0.0 M

1.0 M

2.0 M

3.0 M

4.0 M

5.0 M

6.0 M

1 2 3 4 5 6 7 8 9

si
ze

 (
by

te
s)

pass number

1.0%
0.75%
0.5%
0.2%

0.15%
0.1%

data size

Figure 2.8: Size of intermediate data for various minimum support valuesBoth cases adversely e�ect performance because they increase the number of sets that have to be counted inphase II9.On the other hand, the partition size should not be chosen too large because the risk increases thatintermediate results will exceed the available bu�er space and necessitate swapping data to disk, slowingdown the algorithm. Unfortunately, the size of intermediate data structures is not known and heuristics haveto be applied for choosing the partition size. These heuristics are not detailed in [34].Any such heuristic must take into account the memory size, the average transaction size, the currentminimum support threshold and the number of items m. Both the number of items and minimum supportare necessary to estimate the number of frequent sets. To understand this dependency, consider that theexpected frequency of 1-itemsets is nm , with n being the total number of transactions. While this is assuming auniform distribution, which is usually not the actual item distribution, it serves to illustrate that a minimumsupport of 1% results in many more and larger frequent sets for a database with 100 di�erent items than forone with 1000. These estimates are still very inaccurate because the actual decisive factors are the size andnumber of frequent sets, which are known only from the result of the algorithm.One possible improvement is the use of adaptive strategies that can exploit the knowledge gathered inpreceeding partitions and adjust the partition size dynamically. We do not pursue this issue further and leaveit to further research.Candidate Generation and Counting Local SupportCandidates are generated in the same way as in Apriori-gen, but counting support for a candidate is doneimmediately after its creation, as is shown in Algorithm 2.2. If a candidate C has been created as the unionof two frequent itemsets X and Y , its support in the current partition is jT (C)j = jT (X)\ T (Y)j which canbe obtained through a merge-join of the sorted TID-lists T (X) and T (Y). If C is frequent, T (C) is stored tobe used later in building further larger candidates.9Note that partition sizes for the counting phase can be di�erent from the sizes in phase I and partitions do not even have tobe of equal size. 26

Counting Global Support in Phase IIAs soon as the global candidate set is available, global supports can be counted. Candidates that werefrequent in every partition need not be counted any more and can be removed from CG. This phase also usesTID-lists and merge-joins to obtain the support values.In general, the counting phase is much less expensive than phase I, because only sets, that are alreadyknown to be frequent, have to be counted. During phase I, however, TID-lists have to be generated for everycandidate, and as mentioned repeatedly, that number is much greater than the number of frequent sets.This concludes the list of previous algorithms and we continue to describe our own work in the nextchapter.

27

Chapter 3Sequential AlgorithmsIn order to investigate the e�ects of di�erent data representations and the bene�ts of partitioning, we imple-mented several algorithms as listed in Table 1.1.To study the tradeo�s between the item-list and TID-list data representation, we implemented the SEARalgorithm, which uses item-lists in conjunction with a new pre�x-tree structure for storage of frequent setsand candidates. SEAR also implements an optimization we call pass bundling1 , the bene�ts of which havenot been examined in the literature previously. SEAR is compared to SPTID, which is based on TID-lists.In fact, SPTID uses partitioning as well, but the number of partitions was set to 1 for these experiments toexclude this inuence.To study the e�ects of partitioning, we implemented SPEAR, a partitioned version of SEAR, and a newincremental partitioning algorithm we call SPINC, which reduces IO even more than regular partitioning.Both algorithms use the item-list representation and the pre�x-tree structure to make them comparable tothe non-partitioning SEAR algorithm. We included SETID in this comparison as well.This chapter describes SEAR and the pre�x-tree structure in Section 3.1, followed by SPTID in Section 3.2and SPEAR in Section 3.2. The explanation of SPINC in Section 3.4 concludes this chapter. Performanceresults are reported in Chapter 4.3.1 SEAR : Modifying AprioriLike Apriori, each pass of SEAR consists of a candidate generation phase followed by a counting phase. AnApriori-gen-like procedure is used to create candidates. In fact, the pseudo-code for SEAR (Algorithm 3.1) isthe same as for Apriori. However, SEAR uses the pre�x-tree data structure for itemsets, which we developedto improve the data structure used by Apriori, and the pass bundling optimization, which is mentioned brieyin the literature [4, 28], but has not been investigated more closely. Pre�x-trees and pass bundling are bothdescribed below.3.1.1 Pre�x Trees: Storage for Sets and CandidatesRecall how Apriori stores candidates in the tree-like data structure depicted in Figure 2.4. Candidate setsare stored in leaf nodes, each of which accommodates several candidates. The purpose of internal nodes isto direct the search for a candidate to the proper leaf.In contrast, SEAR employs a pre�x-tree structure, which makes is no distinction between internal andleaf nodes. In this structure, nodes do not contain sets, but only information about sets (e.g. counters). Eachedge in the tree is labeled with an item, and each node contains the information for the set of items labeling1In [4, 28] this optimization is mentioned, but not given a speci�c name.28

Algorithm 3.1 SEARL0 = ;; k = 1C1 = ffigji 2 Ig fall 1-itemsetsgwhile (Ck 6= ;) dofcount supportgforall transactions T 2 Dforall k-subsets t � Tif (9c 2 C : c = t) then c:count++Lk = fc 2 Ckjc:count � n smingCk+1 =generate candidates(Lk)k++return L = Sk Lkendthe edges of its path to the root. An example is shown in Figure 3.1, where the set f1; 3; 4g is marked bya thickened path. The items in a set X can be understood as a path descriptor to reach the node for X .Sorting items is required in order to avoid ambiguity; otherwise several nodes would correspond to the sameset.
24

0 0 0

0

00 0

00

1
2

5
43

554

5 5

5

5

5 4 5 5543

2 3 4 5

4 5 5 5

0

28

99

31

25 4

0 0 0000

51313458

34 27

3 54

4

15 6 7 8

Frequent Sets

CandidatesFigure 3.1: Pre�x tree storage for sets and candidatesAnother di�erence between the two structures is that pre�x-trees store both frequent sets and candidatesets in the same tree. Once candidates are counted and determined to be frequent, they simply remain intheir proper position in the tree and become frequent sets. In Figure 3.1 every node in the tree contains thefrequency counts for its corresponding set. The root represents the empty set, and so its counter is equal tothe number of transactions in the database, since all transactions support the empty set. Candidate sets havea count equal to zero before being processed. Figure 3.1 shows a complete tree, containing all the subsets off1; : : : ; 5g, but under normal conditions only frequent sets and candidate sets will be stored in the tree, whileinfrequent sets are either not created in the �rst place or deleted immediately. Normally, only one level ofcandidates would be expanded in an actual run of SEAR. In the �gure, all candidates are shown in order toillustrate the unbalanced shape of the tree, which is an immediate result of traversing edges in sorted orderof items.Some properties can be stated about this storage structure when it is used to store frequent sets:29

Property 3.1 (Reformulation of Property 2.1)The counts of nodes along a path are non-increasing.Property 3.2 (Reformulation of Property 2.3)If a set is frequent and therefore present in the tree, then all its subsets have to be in their proper placein the tree also.For Property 3.1, consider that the parent of a node has the count for one of the node's subsets, becausethe parent's path is missing the last edge of the path to the node; and a set cannot occur more frequently inthe database than any of its subsets. This property is used in computing the con�dence of a rule.Note that Property 3.2 is not restricted to the sets on the path to the root which naturally have to exist.For example, if set f1; 2; 3g is in the tree, f1; 2g and f1g are clearly present because they are along the path,but by Property 3.2, f1; 3g and f2; 3g must also be in the tree.To illustrate the di�erences between pre�x-trees and the Apriori structure, we use an example whichshows how support for candidates is counted. Consider the transaction T = f1; 4; 6; 7; 9g and assume thatthe candidates c1 = f1; 4; 6; 7g and c2 = f1; 4; 7; 9g are the only candidates supported by T . Assume furtherthat Apriori has stored c1 and c2 in a leaf along with several other 4-candidates (f1,4,5,6g;f1,4,5,9g; : : :) thatalso have the pre�x f1; 4; : : :g, but are not supported by T . This node can be reached from the root bytraversing �rst the edge labeled with item 1 and then the one for item 4. Apriori tests items 1 and 4 onceto reach the leaf, then has to check for all the candidates there if they are supported by T or not. The �rsttwo items (1 and 4) do not have to be considered any more, but for all the larger items I in a candidate setwe have to check if I 2 T . If sets are stored as itemlists, this means two comparisons per candidate in ourexample. If sets are stored as bit-masks, Apriori needs 32 integer comparisons per candidate (in the case of1000 items and 4 Bytes to an integer) .SEAR reaches node f1; 4g like Apriori, but then selects the edge for item 6 directly, then the one for item7 and increments the count for c1. The attempt to �nd edge 9 leaving node f1; 4; 6g fails because f1; 4; 6; 9gis not a candidate. SEAR therefore returns to node f1; 4g, selects edge 7, then edge 9, and increments thecount for c2. That amounts to a total of 5 edge selection operations which can be implemented e�cientlyas hash table look-ups. While more operations are necessary for larger transactions, Apriori will also needadditional comparisons to �nd candidate items in the transaction. Note that in both algorithms, overheadcan be reduced by removing items that are not part of any candidate from a transaction.To summarize, the Apriori subset method uses a tree to reduce the number of candidates that have tobe tested against a transaction, while our method uses the tree to reach exactly the candidates that aresupported by the transaction.As mentioned above, pre�x-trees contain only frequent itemsets and the current candidates. Figure 3.2shows the tree from Figure 3.1 for a minimum support of 10% (equivalent to 10 items). Many sets have beenremoved, and fewer candidates are created during the candidate generation phase. Consider the set f1; 2; 5g,for instance. Since f1; 5g is not frequent, this set is never created as a candidate.3.1.2 Using Pre�x Trees for SEARDead Branches in the TreeStoring both candidate sets and frequent sets in the same tree can cause severe performance degradation whensupport for candidates is counted. Consider Figure 3.2 again. The set f3; 4g does not have any candidatesupersets. Keeping it in the tree means that for every transaction that contains the items 3 and 4, we will tryto modify the counts for non-existent candidates in that branch. This is clearly a waste of e�ort. However,the set is frequent, so we want to keep it in the tree in order to use it to generate rules later. Therefore,30

24

0

1
2

5
43

4

443

2 3 4

28

99

31

25

000

51313458

34 27

3 4

4

15

Frequent Sets

CandidatesFigure 3.2: Candidates generated in practicenodes that did not produce any candidates, which we call dead branches, are pruned from the tree and storedseparately in such a way that they can be \revived" easily when they are needed at a later point of time.
24

0

1
2

5
43

4

443

2 3 4

28

99

31

25

000

51313458

34 27

3 4

4

15
Frequent Sets

Candidates

dead branches

Figure 3.3: Same tree without dead branchesCandidate GenerationCandidate generation is performed as in Apriori-gen. However, the tree structure provides a fast test ofwhether subsets of prospective candidates are frequent or not. Furthermore, all sets needed to createprospective candidates are readily available; they are exactly all the direct siblings in the tree. To gen-erate the candidate extensions of set f1; 2g in Figure 3.2, we only need to consider its sibling items 3 and 4.No sorting of frequent itemsets is necessary as with other algorithms.The actual implementation optimizes candidate generation further by combining the tests for all candi-dates possibly produced by a node and its immediate siblings instead of testing a single prospective can-didate set at a time. The motivation for this optimization is that all these candidate have similar subsets,and accessing them all in the tree separately would be a repetition of e�ort. For candidates f1; 2; 3; 4; 5gand f1; 2; 3; 4; 6g, for example, the existence of subsets f2; 3; 4; 5g and f2; 3; 4; 6g has to be checked (amongothers). Combining these tests saves having to descend down the same branches repeatedly.Pass BundlingIn Figure 3.2, if only candidates f1; 2; 3g and f1; 2; 4g are frequent after the counting pass, a new candidatef1; 2; 3; 4g will have to be checked. In fact, this is the only candidate that is left, and an entire pass overthe database would be necessary to count just this one set. To avoid this waste of e�ort, SEAR allows theexpansion of several levels of the tree before counting candidates. Thus, all three candidates in our example31

will be created and counted together. This technique, which we call pass bundling, was �rst mentioned in[28] and [4], but its e�ects were not examined there.There is a tradeo� involved between the number of IO operations we save and the additional computationnecessary to count the additional candidates. Clearly, pass bundling of several levels is only desirable in laterpasses when the number of candidates is small. Expanding more than one level early on results in notpruning the candidate set. Therefore pass bundling is implemented by setting a lower limit to the number ofcandidates that have to be created before a counting step is allowed. By choosing this pass bundling factor assome low multiple of the number of items, we ensure that early passes are not e�ected (because the numberof candidates exceeds the the limit by far), while later passes are bundled together.Implementation of Pre�x-TreesTo provide fast selection of an edge while traversing a pre�x-tree, a hash-table is associated with each nodethat has children. As illustrated in Figure 3.4, entries in the hash buckets are records with count, itemnumber and a pointer to the child hash-table. Every hash-table has a dead-pointer to store a linked list ofdead items that are the roots of dead branches. Crucial in terms of resource usage and speed is the size ofthe hash-tables. While the root table has to be fairly large, tables deeper in the tree can be much smaller.Since all candidates from one leaf are generated simultaneously, their number is known and we can use it tocompute the size of the hash-table. The size of the hash table is a power of 2 to allow fast computation ofthe hash function using a simple AND operation.
hashtable dead

joint

representation

of an edge

and a node:

item count

sibling

children

Hash table

for fast edge

selection:Figure 3.4: Implementation of pre�x trees with internal hash-nodesIn addition to the pre�x-tree itself, a list of all items that are still in use (i.e. all the items that are stillmembers of candidate sets) is maintained during candidate generation. This list makes it possible to screenout all items of a transaction that are no longer relevant, thus reducing the number of failed hash operations32

during counting. In our experiments, typically between 30% and 60% of the items were not part of anycandidate in later passes.3.2 SPTID: A Partitioning AlgorithmThis short section describes the implementation details of SPTID, which we implemented according to thedescription of PARTITION in [34]. However, in our experiments, we were unable to obtain results comparableto those reported there. The reason was that the algorithm used to obtain the results in [34] uses importantoptimization which is not mentioned in the paper. This optimization basically skips the second pass, countingthe support for 2-candidates directly. Although we suspected this, we could not con�rm it early enough toinclude it in this report. We will return to this issue in the performance section on TID-lists (Section 4.3.2).To distinguish the two algorithms we refer to our implementation (conforming with the description in [34])as SPTID and use the name \PARTITION" for the optimized version of the algorithm.Being similar to PARTITION, SPTID works with the TID-list representation and partitions the data toensure the database is scanned at most two times. Support for a candidate is determined immediately afterit has been generated from two frequent sets. To compute the support, the TID-lists of the two frequent setsare joined using a merge-join.A minor di�erence between SPTID and the description in the original paper is that SPTID uses thesame pre�x-tree2 structure to store frequent sets and the same candidate generation technique as SEAR(Section 3.1). The pre�x-tree is important for SEAR, because fast access to candidates is indispensable forcounting their support in the database. This is not the case for SPTID, because support for candidates isgenerated by means of TID-lists, and fast access to frequent sets is not required. Thus, while pre�x-trees arevital to SEAR, they are merely and implementational detail for SPTID. Using the same candidate generationcode further simpli�es the comparison between TID-lists and item-lists, because our results are not obscuredby di�erent candidate generation procedures.A �rst implementation stored TID-lists in bu�er pages and used a database bu�er manager to handleswapping of pages to disk if necessary. While providing a robust storage interface that could easily cope withunexpectedly large intermediate results, the additional layer caused intolerable overhead. For this reason,we switched to a specialized bu�er manager that stores TID-lists as dynamic arrays and writes them todisk according to a LRU strategy if the memory used by all TID-lists exceeds the permitted bu�er size.This improved the performance signi�cantly and all results reported in Chapter 4 were obtained with thisoptimized version.We use just one tree to store all frequent sets, no matter in which partition they are frequent, but workonly on the subset relevant to the current partition. The advantage of this approach is that no additionalstructures have to be maintained, and getting the unused sets out of the way is accomplished easily bydeclaring those branches \dead".2Actually the nodes in the SPTID pre�x-tree are slightly di�erent from the SEAR tree, because they also contain the addressof the corresponding TID-list in addition to the frequency counters.
33

Algorithm 3.2 SPEARP = compute partition(D)fPhase Igforall partitions Pi doread in partition(Pi)k = 1C1 = ffigji 2 Ig fall 1-itemsetsgwhile (Ck 6= ;) doforall transactions T 2 Piforall k-subsets t � Tif (9c 2 Ck : c = t) then c:count++Lik = fc 2 Ckjc:count � ni smingCk+1 =generate candidates(Lik)k++Li = Sk LikCG = Si LifPhase IIgforall transactions T 2 Dforall t � Tif (9c 2 CG : c = t) then c:count++return LG = fc 2 CGjc:count � smin ngend3.3 The SPEAR AlgorithmThis section describes the SPEAR algorithm, which uses item-lists and pre�x-trees like SEAR3, but alsopartitions the database like SPTID. This algorithm is based on the realization that the partitioning principledoes not require the TID-list representation, and the combination is chosen to avoid the poor performance ofTID-lists (Section 2.3.4) but still reduce IO cost due to partitioning. Each partition is loaded into memoryand processed completely like SEAR would do with the entire database. As with SPTID, only two scans ofthe database are required. Algorithm 3.2 shows the pseudo-code for SPEAR.The advantage of using item-lists is that the data size does not grow during the course of the algorithm,so no bu�er management is required. A major disadvantage (as mentioned in Section 2.3.3) is that pruningtransactions is not possible to the same extent as in SPTID, leading to higher CPU-costs in later passes.The counting phase for SPEAR is basically a single counting pass of SEAR during which all active sets inthe tree are considered as candidates. Sets which were frequent in all partitions are hidden in dead branchesto avoid counting them again.3Actually, the data structure is a little di�erent from that used by SEAR, because nodes have to store counters for localand global support, and for the number of partitions in which a set was frequent. Furthermore, we use just one tree to storecandidates, frequent sets and sets that are not frequent in the current partition, and avoiding confusion in the tree is tricky, butthese implementation details are not signi�cant enough to be explained here.34

3.4 SPINC: An Incremental AlgorithmThe fourth algorithm we study is SPINC, a version of SPEAR which uses a new incremental partitioningtechnique. This incremental method does not process partitions independently like SPEAR, but uses thepartial results from preceeding partitions. The basic principle is to count a set in every partition followingthe one in which it was �rst found frequent.Recall that any set that was frequent in at least one partition is part of the global candidate set andhas to be counted in phase II of the SPEAR algorithm. Thus it may be a mistake to remove a set fromconsideration in the current partition, even if it is not frequent. If the set happened to be frequent in someprevious partition, it's support will have to be assessed in the current partition anyway during the countingphase.To be more speci�c, consider the following case: assume the database is divided into p partitions P1; : : : ;Ppand a set X is frequent in P2, but not frequent in all other partitions. Then SPTID (and SPEAR as well)will have the support for X only from partition 2 before the counting phase starts. But since X 2 CG, itmust be counted again in all partitions.But instead, once X is found frequent in P2, we could count the support for X during phase I in allsucceeding partitions (P3; : : : ;Pp) . At the end of phase I, the accumulated support for X is available from allpartitions but the �rst one. Therefore, during phase II, support for X need only be counted in the missing�rst partition.SPINC produces immediate savings in that a set will not be counted twice in the partitions in which itwas frequent. This directly reduces the amount of computation. Furthermore, the last partition does nothave to be counted at all in phase II, which saves the IO operations for this partition and allows the algorithmto use less than two passes over the data. The reason is that if a candidate c is an element of CG then c haseither been frequent in Pp for the �rst time, and its support is therefore available, or it was frequent in aprevious partition, in which case its support in the last partition has also been counted already.Generating Frequent ItemsetsPhase I for SPINC, which is outlined in Algorithm 3.3, does not di�er greatly from its counterpart forSPEAR. The sets of all previous frequent k-itemsets, Lk, grow from partition to partition as all new frequentsets are added to Lk after pass k of each partition.Candidates that are newly generated in a partition are labeled with the partition number (stored inc.�rst partition), so that it is known in phase II when a set was �rst frequent. The check whether a candidateis in Lk or not is very simple due to the fact that all sets are kept in one tree structure, so before inserting anew candidate into the tree, simply test if it is already there.While the basic idea of the algorithm is rather simple, it is complicated by the need to distinguishcandidates in the current partition (c 2 Ck) from those sets that are only counted because they were frequentin some earlier partition (l 2 Lk). Separating those sets is necessary, because candidates for the next passshould be generated only from actual candidates and not from the (possibly much larger) union of Ck andLk.Completing Global Support CountsCandidate sets are removed from CG prior to counting the partition in which they were �rst frequent. Thus,the number of sets counted decreases from partition to partition and reaches 0 just before the last partition(possibly earlier). Algorithm 3.4 shows more formally how this is accomplished. Note that, contrary toPARTITION and SPTID, the partitions for the counting phase must be exactly the same as in phase I toavoid missing or duplicate counts for candidates that were not removed from CG at the right time.35

Algorithm 3.3 SPINC { Phase IP = compute partition(D)forall k : Lk = ;forall partitions Pi doread in partition(Pi)C1 = ffigji 2 Ig fall 1-itemsetsgforall c 2 C1 n L1 : c:first partition = iwhile (Ck 6= ;) doforall transactions T 2 Piforall k-subsets t � Tif (9c 2 Ck : c = t) then c:count++fcount previously frequent sets alsogelse if (9l 2 Lk : l = t) then l:count+ +Lik = fc 2 Ckjc:count � ni smingfadd local frequent sets to previously frequent setsgLk = Lk SLik fcounts are added for sets l 2 Lk TLik gCk+1 =generate candidates(Lik)forall c 2 Ck+1 n Lk : c:first partition = ik++return CG = Sk LkendIf the data distribution is even, which can be expected for large randomized data sets, we could actuallyhope that no more new sets are found in several of the later partitions. None of those partitions would thenhave to be considered again in the counting phase. Thus several partitions are read only once.Lowering Minimum SupportOne possible extension to SPINC to increase the savings e�ect in the counting phase would be to lower theminimum support level slightly for phase I. This would cause more sets to be counted during phase I, butpossibly save IO in phase II. We illustrate the reason with an example. Given p partitions, assume a set X isthe only set that is only frequent in the last partition. Because of this single set, the entire partition p-1 hasto be read in the counting phase; all other sets were already counted for this partition in phase I. Chancesare that with a lower minimum support during phase I, X would have been frequent in some partition �p < p.Then reading partitions �p; : : : ; p� 1 would not be necessary in phase II.Note, however, that lowering the minimum support increases the computational cost for phase I, becausemore locally frequent sets are found. If smin is chosen too low, the savings in IO might easily be o�set by theincreased cost of counting. Therefore, lowering the minimum support level can be expected to be a delicatetrade-o� between IO savings and increased CPU-cost.Still, SPINC can be expected to reduce IO- as well as CPU-overhead compared to SPEAR. Results ofperformance tests that verify this expectation can be found in Section 4.4.
36

Algorithm 3.4 SPINC { Phase IIinput P, CGLG = ;; i = 1while (TRUE) dofprune global candidate setgH = H Sfc 2 CGjc:first partition = igCG = CG nHif (CG = ;) breakread in partition(Pi)forall transactions T 2 Dforall t � Tif (9c 2 CG : c = t) then c:count++i+ + fnext partitiongreturn LG = fc 2 H jc:count � n smingend
37

Chapter 4Experiments on Sequential AlgorithmsThis chapter reports the results of our sequential experiments. After a brief description of the data generationtechnique used to create all data sets, we show performance results for SEAR, in particular the e�ects ofpass bundling, which signi�cantly reduces both IO and CPU overhead.TID-lists and item-lists are then compared in the following section, focussing on the algorithms SEAR andSPTID-1 (SPTID for one partition). We will show that the TID-lists in SPTID are ine�cient in early passesof the algorithm and SEAR outperforms SPTID-1 for most parameter settings for this reason, although ituses multiple scans over the database.Section 4.4 investigates the usefulness of partitioning by comparing the algorithms SPTID, SEAR, SPEARand the incremental SPINC. The main comparison covers the three item-list-based algorithms (SEAR,SPEAR and SPINC), while SPTID is included for completeness; as will be shown, the use of TID-listsremains a handicap for SPTID as the number of partitions increases.All experiments are run on one SP2 thin node1, which is equipped with a 66 MHz RS/6000 processor, 64MB of main memory and three 2 GB SCSI disks, only one of which is used. Our experiments have shownthat about 6 MB/sec raw input performance can be obtained from one disk. No other tasks are present inthe system.The timing results show system time obtained by the program itself with the gettimeofday() systemcall. To keep the operating system from bu�ering the entire database, we ush the system bu�ers beforeevery scan by writing a 50 MB �le. Of course, the clock is turned o� for these writes.4.1 Synthetic Data GenerationAll the following experiments were performed on synthetic data generated according to the procedure outlinedin [4] which was designed to model the buying behavior of consumers in a retail environment. Note that ournotation varies slightly from the one used there.One of the main characteristics of retail data is that some items are sold much more frequently thanothers, and some sets of items are often purchased together. To achieve this grouping, items are not put intransactions randomly, but are are taken from a set of maximal potentially frequent sets, or just maximalfrequent sets, F . The basic idea is to create transactions as unions of maximal frequent sets. Thus the ARMalgorithms rediscover the maximal frequent sets from the database | or rather combinations and subsets ofthem.To generate a transaction, its size is computed �rst according to a Poisson distribution with mean jT j,maximal frequent sets are then chosen from F based on a �xed probability assigned to each set. Thisprobability is chosen according to an Exp(1) distribution. Once a maximal frequent set is selected, most of1more information on the SP2 can be found in Section 5.1 38

F Maximal potentially frequent setsn = jDj Number of transactions in DjT j Average size of transactionsm = jIj Number of itemsjFj Number of maximal potentially frequent itemsetsjF j Average size of a set in Fx = 0:4 Corruption levelc = 0:5 Correlation levelTable 4.1: Parameters for synthetic data generationName Transaction Size of Max. Transactions Data Sizesize jT j Freq.Sets jF j jDjT5.I2.100K 5 2 100,000 2.2 MBT10.I2.100K 10 2 100,000 4.4 MBT10.I4.100K 10 4 100,000 4.4 MBT10.I6.100K 10 6 100,000 4.4 MBT20.I2.100K 20 2 100,000 8.4 MBT20.I4.100K 20 4 100,000 8.4 MBT20.I6.100K 20 6 100,000 8.4 MBlikewise for 300,000 transactions, data size triplesTable 4.2: Synthetic data setsits items are added to the transaction while some are discarded to introduce noise into the data set. Theprobability for an item to be dropped is determined by the corruption level x. The corruption level is �xed foreach set in F and chosen according to normal distribution with mean 0.4 and variance 0.1. Maximal frequentsets are selected and their items added to the transaction in this manner until the required transaction sizeis reached.The number jFj of sets in F is provided as a parameter to the generation algorithm. The size of a setF in F is is determined by a Poisson distribution with mean jF j. To take into account the observation thatsome frequent sets overlap, the sets for F are created incrementally, retaining a certain number of itemsfrom the previous set and adding the rest randomly. The portion of items that migrate into the next setis controlled by a Exp(c)-distributed random variable with c = 0:5. Since this distribution determines howsimilar frequent sets are, the parameter c is called correlation level.The e�ects of di�erent corruption levels and correlation levels were reported to be rather insigni�cant in[4], which is why we did not conduct experiments that investigate these issues and used the values proposedthere. Table 4.1 lists the di�erent parameters.A naming convention for data sets is customary for easier reference. According to this notation, T10.I4.100Kdescribes a dataset with 10 items as average transaction size, an average size of maximal frequent itemsetsof 4 and 100,000 transactions. Table 4.2 summarizes the parameters for the data sets we used.39

4.2 SEAR Pass BundlingBefore comparing SEAR to any of the other algorithms, we examine its behavior more closely in this section.Most importantly, the bene�ts of pass bundling are presented. We use SEAR without pass bundling, i.e. apass bundling factor B = 0, as reference and call this algorithm SEAR plain.An experiment with varying minimum support was chosen, because it illustrates best how pass bundlinge�ects mainly later passes. To con�rm these results, a size-up experiment for an increasing number oftransactions is included in the second part of this section. Further experiments varying the average transactionsize and the number of items are provided in Section 4.3 when we compare TID-lists and item-lists.4.2.1 Varying Minimum SupportAs described in Section 3.1, a bundling factor is used by SEAR to allow an additional, but still limited,number of candidates to be created before the database is scanned to count their support. A value of B = 2on a database of m items, for example, has the e�ect that SEAR adds another level of candidates to thepre�x-tree only if less than 2 � m candidates have already been created in this pass. The correct choice ofthe bundling factor is important, because too small values can have little or even negative e�ects, and toolarge values can cause too many candidates to be created, leading to high CPU overhead for the countingstep.Figure 4.1 shows how the choice of this bundling factor B e�ects the running time for several minimumsupport levels. The range from 0.1% to 2.0% used in all minimum support experiments extends the range ofvalues used in the literature (0.25% to 2.0%) to include even \harder" mining problems with more frequentsets; at the upper limit of 2.0%, only a few 1-candidates are frequent, which do not even allow any rules tobe created, so exploring beyond this point is meaningless. B = 0 means that pass bundling is turned o�;B = 20 was chosen as an upper limit, because for this value a minimum of at most 3 passes is reached forall minimum support values. Higher bundling factors lead to performance degradation, because too manyuseless candidates are created and the e�ort to count their support exceeds the cost of additional passes. Forthe same reason, bundling passes 2 and 3 is not useful (the number of 2-candidates is too large). Thus 3passes constitutes an inherent barrier for the savings that can be achieved by pass bundling as implementedin SEAR2.While low bundling factors (B < 5) lead to little improvement or even worse performance over SEAR plain,which corresponds to a bundling factor of 0, higher values for B reduce the running time by almost one halffor lower minimum support levels. The highest bundling factor, B = 20 showed the greatest improvement,because all possible remaining candidates are generated after pass 2 and counted in a third scan over thedatabase. Table 4.3 lists the number of passes required and the number of candidates generated for each passbundling factor. Note, how the number of passes is reduced signi�cantly at the expense of comparatively fewadditional candidates for the lower minimum support level. This saves IO as well as computation time.Figure 4.1 shows very nicely how pass bundling e�ects mainly later passes which are only required forsmall minimum support values. In fact, there are only minor di�erences between the various bundling factorsuntil more than 3 passes are required.Note that, although this is not reected in Figure 4.1, high pass bundling factors can lead to worseperformance for higher minimum support values, if too many candidates are created. In our experimentthis is the case for smin = 2:0% and B = 50. Here the number of frequent 2-itemsets is so small, thatno 3-candidates are created without pass bundling. Therefore no third scan over the database is necessary.2Combining passes 1 and 2 is also possible, but is not implemented in SEAR, because special optimizations are required tocount the large number of 2-candidates in this case. As explained in Section 4.3, PARTITION follows this approach to avoid anexpensive second pass. 40

0

20

40

60

80

100

120

140

160

0.1 0.3 0.5 0.75 1.0 1.5 2.0
tim

e
(

se
c

)

minimum support (%)

T10.I4.300K 0.0
0.5
1.0
5.0

20.0

Figure 4.1: SEAR running times for various bundling factorsWith a high pass bundling factor, however, a large number of 3-candidates is added to the tree in pass 2(because the knowledge of which 2-candidates are frequent is not available), resulting in an unnecessary wasteof counting time. Table 4.3 shows exactly how the number of candidates is e�ected in our case. Given thesmall number of 2-candidates for high minimum support levels, this scenario is highly probable.Unless stated otherwise, we use a pass bundling factor of 20 for our experiments since it performs bestfor low minimum support values.Bundling Factor smin = 2:0% smin = 0:15%B Passes Candidates Passes Candidates0.0 2 2,891 9 482,5591.0 2 2,891 6 482,5955.0 2 40,711 4 483,58120.0 2 40,711 3 485,46550.0 2 598,556 3 485,465Table 4.3: Number of passes and number of candidates for di�erent pass bundling factors4.2.2 Increasing the Number of TransactionsFor the T10.I4 database and minimum support values of 0.75% and 0.3% we ran SEAR and SEAR plainon di�erent database sizes ranging from 250,000 to 10 million transactions. The running times are depictedin Figure 4.2. We expect a linear growth in running times because the work done per transaction remainsconstant. The results con�rm this expectation and our previous observation that SEAR and SEAR plaindo not di�er for smin = 0:75%, while the lower minimum support level of smin = 0:3% requires many morepasses for SEAR plain. Here, SEAR runs about twice as fast as its plain counterpart.4.3 Comparing TID-Lists and Item-ListsThis section investigates hwo TID-lists compare to item-lists used in conjunction with pre�x-trees and passbundling. The algorithms are SPTID-1 (SPTID with only one partition) and SEAR; SEAR plain is also41

0

200

400

600

800

1000

1200

1400

1600

1800

1M 2.5M 5M 7.5M 10M
tim

e
(

se
c

)

number of transactions

T10.I4.10M SEAR - 0.3%
SEAR - 0.75%

SEAR_plain - 0.3%
SEAR_plain - 0.75%

Figure 4.2: SEAR transaction scale-up for T10.I4.xxxKincluded to help distinguish the e�ects caused by item-lists form those caused by the pass bundling optimiza-tion.First, we report the experiments for varying minimum support in Section 4.3.1. These results are explainedin the subsequent section. It is then possible to understand the results of experiments that vary the numberof items and the average transaction size, which follow in Sections 4.3.3 and 4.3.4. At the end of this section,results of experiments conducted on various other data sets to con�rm our results are described briey andthe results of this section are summarized.The number of partitions is set to 1 for SPTID, because in this section we are not interested the e�ectsof partitioning, but only in comparing the data structures. Using just one partition avoids the overheadof a larger global candidate set and obviates the need for the counting phase. Unless stated otherwise, thedatabase was created as T10.I4.100K with 1000 items and 2000 maximal frequent sets. With a data size of4.4 MBytes the data and intermediate results �t in memory easily, so distortions of our results by operatingsystem page swapping are precluded. All algorithms generate approximately the same number of candidates,except for SEAR, which creates slightly more due to pass bundling. SEAR plain and SPTID work withexactly the same number of candidates.4.3.1 Varying Minimum SupportThe �rst experiment examines the performance for di�erent minimum support levels, the results of which aredepicted in Figure 4.3. The running time of SEAR and SEAR plain is determined by the number of passes,which accounts for the di�erence in running time between the two algorithms for minimum support less than0.75%. With decreasing minimum support, the size of the largest frequent set grows, which is the numberof passes SEAR plain has to perform. For SEAR the number of passes increases much slower, because itcombines several passes into one as shown in Section 4.2.For low minimum support levels SPTID is much slower than both SEAR versions, and SEAR is up to 3times faster than SPTID. Even SEAR plain retains its edge over SPTID. SPTID is comparable to SEAR forlarge minimum supports, but for these values only 1-itemsets are frequent and therefore the results rathertrivial, because no rules can be generated. The reason is that the number of those frequent 1-itemsets isextremely small, and thus, so is the number of candidates during these runs. For minimum supports of 2.0%and 1.0%, out of 1000 items only 62 and 171 respectively were actually frequent. This reduces the numberof TID-lists SPTID has to join, while SEAR does not pro�t as much from the small number of candidates42

0

20

40

60

80

100

120

0.1 0.3 0.5 0.75 1.0 1.5 2.0

tim
e

(
se

c
)

minimum support (%)

T10.I4.100K SEAR
SEAR_plain

SPTID-1

Figure 4.3: Total running times depending on minimum support
0

1e+08

2e+08

3e+08

4e+08

5e+08

6e+08

7e+08

8e+08

9e+08

1e+09

0.1 0.3 0.5 0.75 1.0 1.5 2.0

co
m

pa
ris

on
s

minimum support (%)

T10.I4.100K SPTID comparisons

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

550000

0.1 0.3 0.5 0.75 1.0 1.5 2.0

ca
nd

id
at

es

minimum support (%)

T10.I4.100K Candidates for SPTID

Figure 4.4: SPTID: Number of compar-isons depending on minimum support Figure 4.5: SPTID: Candidates depend-ing on minimum supportbecause it still has to look at every transaction in the database.Timing experiments have shown that SPTID spends between 80% and 90% of its running time joiningTID-lists. The number of elementary integer comparisons (TID-comparisons) is shown in Figure 4.4 asperformed by SPTID to join TID-lists in the course of this experiment. The number of candidates that werecreated for each minimum support level are shown in Figure 4.5 for comparison. The strong similarity ofthe two graphs suggests that the number of candidates is a decisive factor in the running time of SPTID.The reason is that SPTID has to join two lists of TIDs per candidate. We will explain and support thishypothesis further below.4.3.2 Explanation of Performance ResultsTo shed more light on the causes for the di�erences between SPTID and the SEAR algorithms observed inthe last section, Figures 4.6, 4.7 and 4.8 show measurements on a per-pass basis on a logarithmic scale. Forthe SEAR versions, a \pass" means one database scan, while it denotes one combined candidate generationand counting phase for SPTID. We chose a low minimum support level of smin = 0:1% because the di�erencesbetween both algorithms become more apparent for more di�cult mining problems. Note further that allgraphs use a logarithmic scale. The database (T10.T4.100K) and all other parameters were chosen as in theprevious section. 43

Total SEAR SEAR plain SPTIDs = 0:75%Hash Operations 5,278,990 5,264,380Comparisons 509,959,088Time (sec) 14.5 12.6 53.4s = 0:3%Hash Operations 10,897,962 12,311,939Comparisons 900,479,343Time (sec) 22.7 31.5 90.9s = 0:1%Hash Operations 18,814,116 30,110,862Comparisons 990,241,735Time (sec) 38.2 43.2 109.1Table 4.4: Total statistics for minimum support experimentConsider Figure 4.6 which shows the number of candidates created in each pass. As would be expected,most candidates are generated for the second pass. Note that the pass bundling e�ect for SEAR creates morecandidates than SEAR plain in the third pass, but does not require any passes after that.Figure 4.7 shows the time each algorithm spends in every pass. The �gure in the timing graphs for pass1 of SPTID is the time it takes to load the database and transform it into TID-list representation, whichturns out not to vary signi�cantly from the time taken by SEAR for the �rst pass.The most important observation in these graphs is that SPTID spends about 90% of its time in the secondpass, while the algorithm is extremely fast in all subsequent passes. In contrast, the amount of time neededby SEAR and SEAR plain in every pass does not vary greatly. While the decreasing number of candidatesin later passes would lead us to expect decreasing times for the SEAR algorithms as well, this is not the case,because the smaller number of candidates is o�set by their larger size, which causes more hash operations toreach a candidate at a leaf of the pre�x-tree. Again, SEAR is slower in pass 3 due to pass bundling but doesnot have to perform all subsequent passes.Figure 4.8 (a) shows the number of integer comparisons for SPTID, while Figure 4.8 (b) depicts thenumber of hash operations performed by SEAR for every pass. Since SEAR uses powers of 2 for the sizeof its hash tables, computing the hash function is reduced to an AND operation and is therefore roughlycomparable to the integer comparisons performed by SPTID. There is no pass 1 for SPTID because thecounting of 1-itemsets is combined with the loading of the database. The graphs con�rm our observationsfrom the previous paragraphs that the amount of work done by SPTID is highly concentrated in the secondpass, while SEAR spreads this work more evenly across all passes. Table 4.4 contains the total statisticsfor three di�erent minimum support levels. Note the di�erence between the number of hash operations forSEAR and the number of comparisons for SPTID.For SPTID, we �nd again the correlation between the number of candidates that have to be counted, thenumber of integer operations and the time spent in each pass. Note that the correlation between candidatesand the amount of work cannot be observed for SEAR. This e�ect can be explained as follows. Consider adatabase of m = 1000 items all of which we assume to be frequent3. This means that all 2-combinations3This is a reasonable assumption because almost all items are frequent quite often for small minimum support values as 0.1%in our example. 44

1

10

100

1000

10000

100000

1e+06

1 2 3 4 5 6 7

ca
nd

id
at

es

pass number

SEAR_plain and SPTID
SEAR

Figure 4.6: Candidates per passsmin = 0:1% 0.1

1

10

100

1 2 3 4 5 6 7

tim
e

(
se

c
)

pass number

SEAR
SEAR_plain

SPTID-1

Figure 4.7: Running time per passsmin = 0:1%
1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1 2 3 4 5 6 7

co
m

pa
ris

on
s

pass number

SPTID comparisons

(a) 10000

100000

1e+06

1e+07

1 2 3 4 5 6 7
ha

sh
 o

pe
ra

tio
ns

pass number

SEAR hash operations
SEAR_plain hash operations

10000

100000

1e+06

1e+07

1 2 3 4 5 6 7
ha

sh
 o

pe
ra

tio
ns

pass number

SEAR hash operations
SEAR_plain hash operations

(b)Figure 4.8: Work per pass smin = 0:1% (a) integer comparisons for SPTID (b) hash operations for SEARof those items, m(m�1)2 � 500; 000 candidates have to be evaluated by SPTID in pass 2. Assume furtherthat there are 100,000 transactions with an average of 10 items. The average length of a TID-list for a1-itemset is therefore 100; 000 � 10=1000 = 1000 TIDs. One merge-join to count a candidate requires asmany comparisons as there are items in the longer list, thus 500; 000 � 1000 = 500 million comparisons arenecessary during pass 2. This �gure is usually even larger, because the lists that are longer than averagecause more comparisons than assumed here.We can estimate the number of hash operations performed by SEAR (regardless of pass bundling) duringpass 2. SEAR tries to locate every 2-subset of every transaction in the pre�x tree. Again, we assume thatall items are frequent, and that the transaction size follows a Poisson distribution4 with average � = 10. LetX be the random variable for the transaction size. The average number of subsets per transaction isZ 11 x2!p (X = x) dx = Z 11 x(x� 1)2 �xe�x! dx = �22 + � = 60:Therefore, with 2 hash operations per subset, a total of 2 � 60 � 100; 000 = 12 million hash operations isnecessary.4The actual distribution is not required in the calculation for SPTID, because the error introduced by using the mean iscomparatively small. 45

0

20

40

60

80

100

120

140

160

180

200 400 600 800 1000 1200 1400 1600 1800 2000

tim
e

(
se

c
)

number of items

SEAR
SEAR_plain

SPTID-1

0

200000

400000

600000

800000

1e+06

1.2e+06

200 400 600 800 1000 1200 1400 1600 1800 2000

ca
nd

id
at

es

number of items

candidates for SPTID

Figure 4.9: Total running times depend-ing on the number of items Figure 4.10: SPTID: Candidates depend-ing on the number of itemsSince the poor performance of TID-lists is con�ned to the second pass, TID-list-based algorithms can beoptimized by counting the support for 2-candidates directly, using TID-lists only for generating candidatesof size 3 and larger. This is in fact the undocumented optimization used by PARTITION. Because of thisundocumented optimization we do not know how PARTITION compares to SEAR. While a detailed analysisis left to future research, rough estimates are possible, and we state these expectations at the end of thischapter, after the e�ects of partitioning have been discussed.To summarize, we note that for SPTID the number of comparisons is strongly dependent on the numberof candidates. This explains the increase in running time for SPTID for decreasing minimum support inFigure 4.3. The work done by SEAR, on the other hand, is not dependent on the number of candidates andtherefore not as sensitive to the minimum support level.4.3.3 Varying the Number of ItemsWe are now able to explain the e�ects that occur when the total number of items jIj is increased. Theresults of this second experiment are shown in Figure 4.9. The minimum con�dence was again 0.3%, and thedatabase size stayed constant because the number of items per transaction remained unchanged. As in theprevious experiment, we show the number of candidates generated for these runs in Figure 4.10. As before,a correlation can be observed between the number of candidates and the execution time for SPTID.The e�ect of increasing the number of items is that fewer frequent sets are found the larger I gets, whichwould lead us to expect the algorithms to run faster for more items. But this e�ect is outweighed by theincreased number of candidates, most of which are created in the second pass. As explained in the lastsection, SPTID is highly sensitive to the number of candidates, which causes its bad performance for largernumbers of items. In fact, SPTID is only better than SEAR plain for 200 items and always outperformed bySEAR. For larger sizes of I, SPTID is up to 4 times slower than SEAR, and even the plain SEAR version isconsiderably faster for these values of jIj.Furthermore, both SEAS and SEAS plain are not signi�cantly e�ected by the number of items, and theslight rise in running time for greater numbers of items can be attributed to the increased e�ort duringcandidate generation.4.3.4 Increasing the Transaction SizeThe third experiment compares SPTID and the SEAR algorithms as size of a transaction is varied whilethe overall data size is kept constant. Figure 4.11 shows the results for this experiment for two di�erent46

0

20

40

60

80

100

120

5 10 15 20 25 30 35 40 45 50
tim

e
(

se
c

)

average transaction size

SEAR
SEAR_plain

SPTID-1

Figure 4.11: Total running times depending on the average transaction size,minimum support: 250 transactionsminimum support levels. The product of transaction size and number of transactions is kept constant atit = 10; 000; 000. Thus there are 200,000 transactions of average size 5 down to 20,000 transactions of size 50.This adjustment ensures that each itemset has approximately the same frequency in the database, regardlessof the number of transactions. Since our de�nition of minimum support is based on relative frequency,maintaining a �xed minimum support throughout this experiment would produce distorted results. Thereason is that, for a smaller number of transactions, the relative minimum support corresponds to feweroccurrences of a set in the databases. Therefore the number of frequent sets would increase e�ecting ourresults. Consequently, we use an absolute minimum support value expressed in the number of transactionsthat support a set and ensure that both the number of candidates and the number of frequent sets remainsconstant throughout the experiment. A rather low level of 250 transactions (equivalent to 0.25% for 100K)was chosen, all other parameters staying the same. A higher value of 750 transactions (an equivalent of 0.75%for 100K) leads to similar behavior.For SEAR, a roughly linear rise in running time is observed as is to be expected according to the followingcalculation. Since jDj � jT j = it and the work done for each transaction is approximately jT j22 , the overallwork is described by jDj � jT j22 = it2 � jT j, which is linear in the transaction size. For SEAR plain, theslope is steeper because the additional cost for more items per transaction has to be paid for each of theadditional passes necessary without pass bundling.The work done by SPTID does not depend on the average transaction size at all, but only on the numberof candidates and the average length of the TID-lists. Both values do not change in this experiment, whichis why we observe the constant running time regardless of transaction size.While the running times for SEAR stay well below the times for SPTID in both minimum support levels(250 and 750 transactions), SEAR plain performs worse than SPTID for large transaction sizes. Clearly,SPTID will eventually perform better than SEAR if the average transaction size grows even further, butsuch databases are less likely to occur in practice.4.3.5 Other Data Setsto complete the comparison between SPTID and SEAR, we have conducted a series of experiments onother data sets (T5.I2.100K, T10.I2.100K, T10.I6.100K, T20.I2.100K, T20.I4.100K and T20.I6.100K). Theminimum support level was varied form 0.1% to 2.0% like in the previous minimum support experiment. In47

general, SPTID performs well if both transaction sizes are small and large minimum support is high, butis clearly outperformed for most other settings by both SEAR and SEAR plain. A small size of maximalfrequent sets puts SPTID at the disadvantage of having to perform the expensive second pass without theopportunity to gain ground again in later passes where SEAR is slower. For large maximal frequent sets,however, both SEAR algorithms have the disadvantage that the pre�x tree becomes very deep and all theselevels have to be traversed to count the candidates at the leaves. For SEAR plain these expensive operationsare repeated every time the tree is expanded by one level while pass bundling avoids this repeated waste ofe�ort to some extent for SEAR. In spite of this disadvantage, SEAR is at least twice as fast as SPTID forminimum support below 1.5% and all databases listed above.4.3.6 SummaryThe three main experiments conducted in this section (varying minimum support, number of items and theaverage transaction size) showed that the performance of algorithms using TID-lists is mainly determined bythe number of candidates, which leads to ine�ciencies in the second pass, where most candidates are created.Therefore, these algorithms are sensitive to the number of items and the minimum support level.In contrast, item-list-based algorithms are not greatly e�ected by the number of candidates in the secondpass, but rather by the number of passes, which is determined by the maximal size of frequent sets and thenumber of items per transaction.The poor performance of TID-lists during the second pass can be avoided by counting 2-candidatesdirectly. In fact, this optimization is necessary to use TID-lists e�ciently. How an optimized TID-basedalgorithm like PARTITION compares to the item-list algorithms presented here will be determined by futureresearch when the optimizations are implemented.4.4 PartitioningAfter investigating item-lists and TID-lists in the last section, this section focuses on the question howpartitioning algorithms compare to non-partitioning, but more IO-intensive algorithms. Contrasting SEARwith SPEAR, its partitioned counterpart, SPINC, which uses incremental partitioning, and SPTID, wewill see that partitioning does not ful�ll the hopes for improved performance, but causes constant CPUoverhead for each additional partition instead. The secondary objective is to compare the performance ofthe partitioning algorithms. Here, the bene�ts of SPINC over SPEAR were smaller than expected. SPTIDremains handicapped by the ine�ciency of TID-lists in the second pass (Section 4.3.2), but is included herefor completeness.To �nd out whether partitioning leads to improvement over the non-partitioning SEAR algorithm a set ofexperiments was conducted on the same data base with di�erent numbers of partitions. Varying the numberof partitions corresponds to di�erent bu�er sizes available to the partitioning algorithms to store a partition.These results are compared with the running time of SEAR.We ran all algorithms on a larger database of 300K transactions to avoid extreme cases for many partitionswhen the local minimum support in a partition drops to just a few transactions. On the other hand this sizecan still be processed in memory, so that we could also conduct our tests on just one partition. The databaseswere T5.I2.300K, T10.I2.300K, T10.I4.300K and T10.I6.300K and minimum support was varied from 0.1% to2.0% as in the previous experiments; 1000 items and 2000 maximal frequent sets were the other parameters.All partitioning algorithms have comparable memory requirements for bu�ering the partitions which is whywe do not include various bu�er sizes in the comparison but focus on the di�erences that appear when thenumber of partitions is increased. This means in particular, that that SPTID does not swap intermediate48

results to disk5.Relevance of IOSince reducing IO cost is one important objective of partitioning algorithms, a few remarks on this issue arein order before we present the performance results. Our experiments show that for SEAR, disk IO accountsfor at most 20% of the running time for high minimum support levels with little computation and as littleas 5% for low minimum support. The percentages for the partitioned algorithms are even smaller, with aminimum of 2% for the most compute-intensive runs. Recall that all IO operations are sequential scans ofthe database which are much faster than random accesses. Thus, all algorithms are CPU-bound and IO hascomparatively little inuence on their performance. For this reason, saving IO at the expense of additionalcomputation does not lead to improvements, as we will see shortly when comparing partitioning and non-partitioning algorithms. Since the amount of computation required per transaction is constant, both IO andCPU cost increase at the same rate as the database size grows, so the fraction of time due to IO does notchange.For SPTID, bypassing the second pass clearly reduces the amount of computation, so one could suspectthat IO would become much more important. This is not likely, however, as we can infer from the timingresults per pass for SPTID-1 shown in Figure 4.7. Assuming that the optimization reduces the cost of thesecond pass from 82 to 10 seconds, which is a lower estimate, the total running time is 18 seconds. Thedatabase is only read once at an IO rate of 6 MB/sec measured in initial experiments, which means thatall 4.4 MB are read in less than 1 second, in other words, in about 6% of the running time. For more thanone partition, the database is read twice, but the additional counting phase and the partitioning overheadincrease the amount of computation. Hence, we can expect SPTID to be CPU-bound in our environment,even with the bypass optimization.Performance ComparisonsFirst, the number of partitions is set to 1 to assess the results of reducing the number of IO operations bybu�ering the entire database, we then increase the number of partitions to examine the partitioning overhead.Figure 4.12 shows the typical behavior when only one partition is used, i.e. when the entire database �tsin memory. The partitioning algorithms only read the database once and work in memory for later passes,while SEAR is deliberately put at the disadvantage of having to read the entire database from disk in eachpass. The object of this experiment is to quantify the e�ect of this disadvantage. Furthermore, although thedatabase would easily �t into memory, SEAR cannot not expect this for larger databases.The observation common to all data sets we tested is that SPTID-1 falls far behind for low minimumsupport values (as was seen previously), while all pre�x-tree-based algorithms perform equally well. This isin line with our expectations that IO is of minor relevance for the execution time. Moreover, SEAR requiresonly 3 passes due to pass bundling, and in terms of computation there are no basic di�erences between SEAR,SPEAR and SPINC in the 1-partition case.The results when 2 and 5 partitions are used on the T10.I6.300K database are shown in Figure 4.13. Thisdatabase was chosen because the di�erences between the algorithms are greater due to the high CPU costfor large maximal frequent sets | all experiments on other databases produced similar, but less dramaticresults. All partitioning algorithms perform worse than the non-partitioning SEAR indicating that additionaloverhead is associated with partitioning. In particular, this overhead would o�set any possible savingsresulting from fewer IO operations.5It would have been very di�cult to make sure that these accesses actually involve the disk, because of irregular accesspatterns, and we did not want to complicate the issue any further.49

0

50

100

150

200

250

300

0.1 0.3 0.5 0.75 1.0 1.5 2.0
tim

e
(

se
c

)

minimum support (%)

T10.I4.300K SEAR
SPEAR-1
SPINC-1
SPTID-1

Figure 4.12: Running times of all algorithms for 1 partition
0

50

100

150

200

250

300

0.1 0.3 0.5 0.75 1.0 1.5 2.0

tim
e

(
se

c
)

minimum support (%)

T10.I6.300K SEAR
SPEAR-2
SPINC-2
SPTID-2

(a) 0

50

100

150

200

250

300

350

0.1 0.3 0.5 0.75 1.0 1.5 2.0
tim

e
(

se
c

)

minimum support (%)

T10.I6.300K SEAR
SPEAR-5
SPINC-5
SPTID-5

(b)Figure 4.13: Running times for SEAR and the partitioning algorithms with (a) 2 partitions and (b) 5partitionsAs the number of partitions grows, the gap between SEAR and the partitioning algorithms widens, whichis the result of the additional overhead for partitioning. This additional time is in part due to the additionalcounting phase, which becomes necessary for more than 1 partition, and in part due to candidate generationwhich has to be repeated for every partition. Table 4.5 shows the time spent during candidate generation forSEAR and SPEAR as the number of partitions grows. The times for SPINC are comparable to the ones forSPEAR.For two partitions the incremental version displays noticeable improvements over its non-incrementalcounterpart SPEAR. The reason is that SPEAR processes the entire database twice, once to generate allpossible frequent sets, and the second time to count the global support for all those sets. In contrast, SPINCavoids counting the second partition a second time, thus processing the database only 1.5 times. This putsSPINC in the middle between SPEAR and SEAR that only processes the database once (although thisinvolves several scans of the data).The performance of SPINC for 5 partitions is rather disappointing: while still inbetween SEAR andSPEAR for higher minimum support levels, this improvement over SPEAR is less signi�cant than for 2partitions, because the partition size gets smaller the more partitions there are. Hence, the savings achievedby not having to process the last partition become less important. As noted when we described SPINC,50

smin = 0:75% smin = 0:3%SEAR 1.6 5.9SPEAR-1 1.6 3.6SPEAR-2 2.5 6.2SPEAR-5 5.7 13.9SPEAR-10 10.8 27.7Table 4.5: Time for candidate generation(in sec)lowering the minimum support for the �rst phase might improve the performance of the algorithm, but wedo not pursue this idea here. Furthermore, SPINC is always outperformed for more demanding problems.This e�ect, which was also present (although not as dramatically) for 2 partitions, is caused by the increasedoverhead required to manage old frequent sets and candidate sets in the tree.The slowing e�ect of an increased number of partitions for all partitioning algorithms is shown in Fig-ure 4.14. The graphs show that all algorithms are adversely e�ected.
0

50

100

150

200

250

300

350

400

0.1 0.3 0.5 0.75 1.0 1.5 2.0

tim
e

(
se

c
)

minimum support (%)

T10.I4.300K SPTID-1
SPTID-2
SPTID-5

SPTID-10

(SPTID) 0

20

40

60

80

100

120

140

160

0.1 0.3 0.5 0.75 1.0 1.5 2.0
tim

e
(

se
c

)

minimum support (%)

T10.I4.300K SPEAR-1
SPEAR-2
SPEAR-5

SPEAR-10

0

20

40

60

80

100

120

140

160

0.1 0.3 0.5 0.75 1.0 1.5 2.0
tim

e
(

se
c

)

minimum support (%)

T10.I4.300K SPEAR-1
SPEAR-2
SPEAR-5

SPEAR-10

(SPEAR)
0

20

40

60

80

100

120

140

160

180

200

0.1 0.3 0.5 0.75 1.0 1.5 2.0

tim
e

(
se

c
)

minimum support (%)

T10.I4.300K SPINC-1
SPINC-2
SPINC-5

SPINC-10

(SPINC)Figure 4.14: Times for di�erent numbers of partitionsIn summary SPTID is comparable to the pre�x-tree algorithms only for very high minimum supportparameters, regardless of the number of partitions. Furthermore, partitioning does not show the expectedimprovements due to reduced IO, but rather, the overhead due to several partitions outweighs any IO savings.Finally, the incremental SPINC achieves savings over the simple partitioned version for high minimum supportvalues, but the gains become less noticeable the more partitions are processed.51

4.5 SummaryComparing TID-lists and item-lists, our results indicate that SEAR is superior to SPTID with the exception ofa few marginal cases that rarely occur in practice. Even SEAR plain without the pass bundling optimizationwas found to be better in most cases. We explained the inuence of parameters on the performance of bothalgorithms, most importantly SPTID's sensitivity to large numbers of candidates that causes it to be twiceas slow as our SEAR algorithm on the average. The weaknesses of the TID-list representation in the secondpass was identi�ed as the major cause for the poor performance of SPTID. SEAR, on the other hand, dependsmuch more on the average transaction size than SPTID.All partitioning algorithms performed worse than SEAR; in particular, SPEAR and SPINC, which shouldbe comparable to SEAR because they all make use of the pre�x-tree structure, did not show the expectedimprovements due to reduced IO. This is in keeping with our observation that IO accounts for only between2% and 20% of the running time, and thus all algorithms are CPU-bound. The overhead due to additionalpartitions slowed down all partitioned algorithms even more. While partitioning algorithms might be justi�edin environments with extremely high IO cost or with a high priority to keep IO loads low, we did not �ndthem useful in our (admittedly high-end) environment.We showed that pass bundling reduces both IO and CPU overhead signi�cantly for item-list based al-gorithms. Therefore pass bundling is an alternative to partitioning. However, the question remains howitem-lists with pre�x-trees and pass bundling compare to TID-lists, if the expensive second pass is avoidedby counting support for 2-candidates directly. Since TID-lists are superior to the item-list algorithms inlater passes, it seems likely that SEAR is outperformed by this TID-list algorithm. On the other hand,pass bundling greatly reduces the number of passes, while TID-lists require partitioning large databases andincur the overhead associated with it. Furthermore, short-cutting the second pass causes some additionaloverhead. Therefore, item-lists may very well outperform TID-lists, but de�nitive answers to this questionrequire future research.Finally, the performance of the incremental SPINC was disappointing in that the savings achieved overSPEAR are not signi�cant for greater numbers of partitions. For more di�cult problems, SPEAR was foundeven to outperform SPINC, which is slowed by the overhead of managing di�erent sets in the pre�x-tree.

52

Chapter 5Parallel Algorithms5.1 Programming Environment and Data DistributionWe assume a shared-nothing parallel database architecture where each processor is equipped with its ownmain memory and its private disks. Remote data can only be accessed through the processing node that ownsit. The SP21([38, 24]) distributed memory/message-passing architecture suits this paradigm well because ofthe clear distinction between local and remote data. Communication has to be included explicitly by theprogrammer and does not occur automatically as the result of a memory access to a page that happens tobe located on another processor, as is the case with shared memory architectures. Message passing allows usto control nature and extent of communication, which is bene�cial in our case, as the results in Chapter 6demonstrate. The SPMD programming model provided on the SP2 requires the same program to run on allprocessor nodes, but, in contrast to SIMD, di�erent instructions can be executed concurrently. In fact, theprograms run independently unless communication is desired that may act as a barrier for the processorsthat participate in it. Figure 5.1 shows a 16-node SP2 switch.
Figure 5.1: SP2 High Performance SwitchThe transaction database is assumed to be partitioned horizontally between a set of p processing nodes,1Scalable POWERparallel System, Trademark by IBM. 53

Algorithm 5.1 PEARC1 = ffigji 2 Ig fall 1-itemsetsgk = 1while (Ck 6= ;) doforeach processor i = 1; : : : ; p do in parallelfcount local support for candidatesgforall transactions T 2 D(i)forall k-subsets t � Tif (9c 2 Ck : c = t) then c:count(i) ++fcompute global support for all candidatesgforeach c 2 Ckc:count =Ppi=1 c:count(i) fparallel combinegend parallelLk = fc 2 Ckjc:count � n smingCk+1 =generate candidates(Lk)k++return L = Sk Lkendand all partitions have approximately the same number of transactions to avoid load imbalances. The datashould also be assigned to processors randomly to couter possible load imbalances, for example by hashingon TID.Apart from these restrictions, the data to be processed in parallel are stored on disk as in the sequentialcase. No special data structures are used. We assume that every processor knows the number of distinctitems in the database, the number of transactions assigned to it and the average transaction size that isneeded to determine the partition size for partitioning algorithms.5.2 PEAR: The Parallel SEAR Algorithm5.2.1 Algorithm DescriptionRecall that SEAR alternates between candidate generation and support counting steps, a pair of whichwe call one pass. Counting support for candidates can easily be done in parallel, each processor evaluatingits private data. In contrast, the decision of which candidates to accept as frequent and which to discardcannot be done correctly without knowledge of the global support for these candidates, which has to becomputed by adding all the local support counts from every processor. Consider the code for PEAR, theparallel version of SEAR, in Algorithm 5.1 that shows how SEAR can be augmented with communicationto run in parallel. Statements that are not within the in parallel ... end parallel block are the \sequential"parts of the algorithm which means that all processors perform exactly the same operations on identical data.The data on node i is referred to as D(i) and should not be confused with partitions Pi in the sequential case.The algorithm starts with the set of 1-candidates (which can easily be created locally without any com-munication from the number of items in the database). Then each processor counts the support for thesecandidates individually in its portion of the database. The superscript (i) for count-variable c:count(i) refersto the processor number and indicates that the variable contains di�erent values for each processor.After the counting step, a global combine operation that adds all the local counts is used to determinethe global support of all candidates. The result is distributed to all processors, so that the global count for54

every candidate is available to every processor. Then each node can continue to compute L1, the set of allfrequent 1-itemsets, by removing all infrequent candidate sets, which completes the �rst pass. Note thatevery processor eliminates exactly the same candidates and comes up with the same set L1. Therefore allnodes also create the same candidate set C2 in the next pass. This procedure continues until an empty setLk indicates that no more frequent sets are found.
processor 1

pass 1

pass 2

pass k

. . .

combine

combine

combine

pass 1

pass 2

pass k

processor n

.

SEARFigure 5.2: PEAR algorithm schemeEssentially, the program running on the individual processors is the same as SEAR, with the exceptionthat after every pass (candidate generation and local support counting) the counts from each processor areadded to be able to proceed correctly to the next pass. This scheme is depicted in Figure 5.2.The combine is the only communication that is necessary to compute all frequent sets. It has the e�ectof a global barrier, because no processor can continue with the next pass until it has the counts to generatethe next set of candidates. Therefore, the amount of work each node has to perform during one pass has tobe roughly balanced to make sure that excessive idle times are avoided.The actual association rules are not computed in parallel but can be determined sequentially from allfrequent sets on any one of the nodes.5.2.2 ImplementationThe Message Passing Library (MPL)[23] combine operation, which is used to compute the global counts,accepts vectors for addition also, in which case the corresponding elements are added and their sum returnedto every processor as shown in Figure 5.3. To make e�cient use of this facility, we keep all local countsin an array and store an index into this array with each candidate-node in the pre�x-tree. The combine isperformed on this integer-array.If a candidate is found to be frequent after the combine, the index in the tree is replaced by the actualsupport count, and the memory used for the array can be freed. It is important to release this memory,because the large number of candidates can lead to huge bu�er requirements. For a (quite reasonable)number of 400,000 candidates and 4 Bytes to one integer, the array size is 1.6 MB. Furthermore, the combinedoes not work in-place, but requires separate input and output bu�ers. Therefore, a huge combine is splitinto several smaller combine operations to allow the use of a smaller output bu�er.55

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

3 6 9 12 15 18

3 6 9 12 15 18

3 6 9 12 15 18

processor 3

processor 2

processor 1

processor 3

processor 2

processor 1

before afterFigure 5.3: Example of an add-combine operation for an array of 6 integers5.3 PPAR: The Partitioned Parallel AlgorithmA potential problem with PEAR is that it needs large combine operations on many count variables. Thesecombines function as global barriers that reduce e�ciency because processors with a smaller load have towait idle.The partitioning approach allows a reduction in both the overall amount of communication and thenumber of synchronizations, as we describe in this section on PPAR, the parallel version of SPEAR. Thisparalel version of a partitioned algorithm was briey outlined along with the PARTITION algorithm in [34].5.3.1 Algorithm DescriptionSPEAR processes each partition independently; their order is not relevant, and results from one partitionare not needed in another. Therefore, the straightforward approach, and also the one we choose here, is toconsider the data given to a processor as one partition. All local frequent sets are determined in the �rstphase, and \local" means \local to each processor" in this case. Let L(i) be this set on processor i. Nocommunication is required at all during this phase. Then, to form the global candidate set CG, the unionof all L(i) has to be computed across processors in a second phase. The result is broadcast to all processors.The third phase corresponds to phase II of the sequential algorithm where each processor has to determinethe local support for all sets in CG. As in SPEAR, sets do not have to be counted again, for which globalcounts are available from Phase I already. As in phase I, no communication is needed in this phase. Finally,during phase IV, the global support counts for all sets in CG are coalesced with a combine operation, just asthe candidate counts were combined by PEAR. After discarding all globally infrequent sets, the �nal resultis available. The algorithm is outlined in Figure 5.4The explanation so far has assumed that all of the data local to one processor �ts into its memoryand can be processed as one partition. This is usually not the case, and data on each processor has to bepartitioned again, which we call local partitioning (as opposed to global partitioning amon processors). Theselocal partitions are processed in sequence, and phase I in the parallel case is in fact identical to phase I inSPEAR, with the only di�erence that it runs on each processor independently. See Algorithm 5.22 for the2Note that for clarity this code does not include the removal of candidates in phase III that don't have to be counted any56

Phase I

generate local

frequent sets

Phase I

generate local

frequent sets

Phase III

count local

support for candidates

Phase III

count local

support for candidates

discard

infrequent sets

discard

infrequent sets

processor 1 processor n

generate global

candidate set

Phase II

Phase IV

combine local

support counts

. . .

SPEARFigure 5.4: PPAR algorithm schemepseudo-code for this general case.PPAR has only two phases that involve communication, and thus only two barriers that may causeperformance degradation. Furthermore the size of the messages sent during both phases is smaller than thecombines used by PEAR. The reason is that PEAR needs to exchange counts for candidates, while PPARonly exchanges counts for locally frequent sets, the number of which is only a fraction of the number ofcandidates.Phase I and phase III are implemented in a manner similar to the corresponding phases in SPEAR andwe don't recount the details of the implementation. While the combine in phase IV is straightforward andidentical to the combines used in PEAR, the union of locally frequent sets in phase III is more interesting,which is why we use the following section to explain our solution.5.3.2 Computing the Union of Locally Frequent SetsCombine operations can be used as long as all processors know which array position belongs to which set.Then adding corresponding array elements adds the correct local support values. This is the case for PEAR,because all processors always create the same number of candidates in the same sequence. This is also thecase for phase IV in PPAR, because every processor knows CG and can determine the rank of every set inCG.This is not the case, however, for PPAR in phase II. Each processor has a di�erent set of locally largesets that is determined directly by its share of the data and the frequencies of itemsets therein. In fact, thewhole purpose of this phase is to establish a common understanding among the processors as to which setshave to be counted eventually.more. 57

Algorithm 5.2 PPARfPhase I | generate locally frequent itemsetsgforeach processor i = 1; : : : ; p do in parallelP = compute partition(D(i))forall partitions Pj 2 P doL(i)j = find frequent sets(Pj)L(i) = Sj L(i)jend parallelfPhase II | compute global candidate setgCG = Spi=1 L(i)Broadcast CG to every processorfPhase III | local support for global candidates gforeach processor i = 1; : : : ; p do in parallelforeach c 2 CGc:count(i) =count support(c)end parallelfPhase IV | global support for global candidatesgforeach c 2 Ckc:count =Ppi=1 c:count(i) fcombine countsgreturn LG = fc 2 CGjc:count � n smingendRecall further that all sets of sets are stored in pre�x trees, and therefore the L(i) are also representedas trees on each processor. Our solution is to linearize the tree according to a scheme that uses exactly twointegers per frequent set (PEAR needs 1 integer per candidate). To form the union of two sets of sets, oneprocessor linearizes its tree and sends it to the other node that compares the input with its own set andupdates it accordingly. If more than two nodes are involved, the recipient creates the linearization of itsupdated tree on-the-y and sends it to the third node (and so on). Thus every node receives the union ofthe sets on all its predecessors, and the last node has the complete union.This procedure is linear in the number of nodes involved and would be rather ine�cient if a node couldonly start once its predecessor is �nished. Therefore we adjust the message size such that processing can beoverlapped in pipeline fashion. Figure 5.5 illustrates the technique for 4 nodes. Communicating the result toall nodes can be done easily with a series of broadcasts as shown in the Figure.
58

processor 1 processor 2 processor 3 processor 4

broadcasting

the result

pipeline to

build union of

sets

L
L + L

L + L + L
(2) (4)(3)

(3) (4)
(4)

L + L + L + L
(1) (2) (3) (4)Figure 5.5: Union of sets of sets across processors

59

Chapter 6Parallel ExperimentsIn this chapter we report the results of the experiments with our parallel algorithms PEAR and PPAR. Weshow that both algorithms display near-optimal speed-up, scale-up and size-up behavior. These results aredue largely to the fact that communication overhead is small for both algorithms, moreover, it is constantwith respect to the number of transactions and varies only insigni�cantly with the number of processorsinvolved. Therefore it is not surprising that the partitioned PPAR algorithm performs worse than PEARalthough it needs less communication.Before we present the results in detail, we show the results of initial experiments with the combineoperation which is the most important communication operation for PEAR. All experiments were conductedon a 16-node SP2 multiprocessor equipped with a 66 MHz RS/6000 processor, 64 MB of main memory and2 GB SCSI disks. The data came from only one of the disks.6.1 Cost of the Combine OperationFigure 6.1 shows the results of tests we conducted to asses the e�ciency of the MPL combine operation forinteger vector addition. Recall that this operation can be performed on arrays of arbitrary size, as long assu�cient bu�er space is provided. The number of processor of processors was varied from 1 to 16, the numberof integers in the array ranged from 1,000 to 2 million. Figure 6.1 (a) shows the timing results depending onthe array size, Figure 6.1 (b) shows the same numbers depending on the number of processors. The timeswere obtained as an averages of 5 runs; the variance of the individual times was not signi�cant.
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.2 0.40.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

tim
e

(s
ec

)

array size (1,000,000 int)

1 node
2 nodes
4 nodes
6 nodes
8 nodes

10 nodes
12 nodes
14 nodes
16 nodes(a) 0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 4 6 8 10 12 14 16

tim
e

(s
ec

)

number of processors

1k
10k

100k
300k
600k
900k
1.5M
2.0M(b)Figure 6.1: Times for parallel combine operation (a) depending on array size (b) depending on the numberprocessing nodes 60

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 2 4 6 8 10 12 14 16
tim

e
(

se
c

)

number of processors

PEAR - 0.3%
PEAR - 0.75%

PPAR - 0.3%
PPAR - 0.75%

Figure 6.2: Running times for various numbers of processors on T10.I4.10MThree observations are important in our context. First of all, the operations are extremely fast, consideringthat the values from each processor have to be added and the result needs to be distributed again. Secondly,Figure 6.1 (a) shows nicely that the combine is linear in the number of array elements, and a rate of 1.1million elements can be processed per second for more than 3 processing nodes, at about twice the rate for 2processors. Note that the time for 1 processor is basically the time needed to copy the data from the inputbu�er to the output bu�er. Finally, as shown in Figure 6.1 (b), the time required for a combine does notvary signi�cantly with the number of processors, as long as this number is more than 2.The importance of these results for our algorithms is that we can expect low communication times thatare unlikely to vary with the number of processors involved.6.2 Speed-Up ExperimentsWe ran both algorithms on the T10.I4.10M data set, increasing the number of processors. Minimum supportwas set to 0.75% and 0.3%; the size of the data set was 440 MB. As for all other experiments in thischapter, the bu�er size for PPAR was set to a constant amount of 10 MB per node even when the number ofprocessors varies. Figure 6.2 shows the resulting running times, indicating that PEAR is superior to PPARfor more demanding low minimum support values. PPAR is slowed by the local partitioning overhead, whicho�sets the bene�ts of reduced communication due to global partitioning. Of course, the times for 0.75% areless than for the lower minimum support level of 0.3% for both algorithms. This does not change as thecomputation is distributed among an increasing number of nodes, indicating that both algorithms scale wellto larger numbers of processors. The speed-ups obtained by both algorithms in this experiment are shownin Figure 6.3. Both algorithms show almost linear speed-up. The exact values can be found in Table 6.1.smin 4 Nodes 12 Nodes 16 NodesPEAR 0.75% 3.7 10.7 12.2PEAR 0.3% 3.8 10.8 14.0PPAR 0.75% 3.9 11.3 14.6PPAR 0.3% 4.0 11.7 14.5Table 6.1: Exact speed-up numbers on T10.I4.10M61

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16
sp

ee
d-

up

number of processors

PEAR - 0.3%
PEAR - 0.75%

PPAR - 0.3%
PPAR - 0.75%

Figure 6.3: Speed-up for PEAR and PPAR on T10.I4.10MThe deviation from the optimal linear speed-up curve is due to the both the \sequential" portions ofthe algorithm and the communication overhead. The sequential parts of the algorithm are those that areperformed by each processor on exactly the same data, (i.e., the candidate generation step for PEAR). Theseparts of the algorithm are not done in parallel, and their relative portion of the running time grows as thenumber of processors increases. So does the time wasted due to communication. It is not so much the actualcommunication that slows the algorithm but the time spent waiting because the communication acts as abarrier.A �rst observation from Figure 6.3 is that PPAR obtains better speed-ups than PEAR. One reason isthat PEAR spends more time on communication (an average of 10 seconds as opposed to PPAR's 7 secondsfor 0.3% minimum support and less than 5 seconds for 0.75%). The di�erent times for communication areonly in part caused by the reduced amount of communication as listed in Table 6.2 (recall that PPAR onlyneeds to communicate support for frequent sets while PEAR does the same for all candidates). The di�erencein communication time is mainly caused by the fact that PPAR has only 2 communication operations, asopposed to 3 for PEAR, and spends less time waiting at these barriers.smin PEAR PPAR0.75% 769,088 10,8800.3% 1,681,140 82,080Table 6.2: Communication sizes for PEAR and PPAR (in bytes)Another reason for the better speed-ups achieved by PPAR lies with the fact that it repeats candidategeneration for every local partition. Candidate generation is therefore dependent on the number of localpartitions (and thus on the size of the local data), which causes the time for this task to decrease as the numberof processors grows, contributing to higher speed-ups. In contrast, the time spent for candidate generation byPEAR remains constant throughout the experiments. Ironically, the repeated e�ort for candidate generationdue to local partitioning is also the reason why PPAR is outperformed by PEAR for low minimum support.The second observation is that higher minimum support values achieve worse speed-ups. The speed-upsin Table 6.1 are mostly lower for 0.75% than for 0.3% because the amount of computation is smaller, whilecommunication overhead stays approximately the same regardless of the minimum support level. This is alsothe reason for the comparatively low speed-up of PEAR for 0.75% on 16 nodes.Note that for PEAR both communication overhead and the sequential parts are constant with respect to62

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16
tim

e
(

se
c

)

number of processors

PEAR - 0.3%
PEAR - 0.75%

PPAR - 0.3%
PPAR - 0.75%

Figure 6.4: Scale-up for PEAR and PPAR T10.I4, 1M transactions per nodethe number of transactions. Running larger problems will therefore raise the speed-up for this algorithm.To summarize, we note that both algorithms obtain good speed-ups that improve as the size of the database and the problem di�culty increases. PPAR obtains better speed-ups, but performs worse than PEAR.6.3 Scale-Up ExperimentsThe next experiment examines the behavior of the algorithms when the data size is increased along withthe number of processing nodes. Minimum support levels were 0.75% and 0.3% again, the database wasT10.I4 with 1 million transactions (44.0 MB) on each node. Figure 6.4 shows the running times for 1 to 16processors.PPAR is given 10 MB of bu�er space, which causes the database to be processed in 5 local partitions andleads to slightly worse performance than PEAR.Both algorithms display near-optimal scale-up behavior as the number for processors increases. Runningtimes are even slightly less for greater numbers of nodes, which we attribute to characteristics of this particulardata set.6.4 Size-Up ExperimentsOur last experiment, shown in Figure 6.5, investigates the e�ects of increasing the number of transactionswhile keeping constant the number of processors. This experiment was conducted on all 16 processors atminimum support levels of 0.75% and 0.3%. We mentioned earlier in Section 6.2 that growing problemsizes reduce the portion of the running time due to communication, which leads to the expectation thatour algorithms \size up"1 well, i.e. running times are linear in the problem size. Figure 6.5 con�rms thisexpectation for a range from 500,000 to 40 million transactions. All other parameters were chosen as above.1In addition to speed-up and scale-up, this term is used in [12] as third criteria to evaluate parallel database performance forthe case when the number of processors remains constant while the problem size is increased.63

0

50

100

150

200

250

300

350

400

450

500

5 M 10 M 20 M 30 M 40 M

tim
e

(
se

c
)

number of transactions

PEAR - 0.3%
PEAR - 0.75%

PPAR - 0.3%
PPAR - 0.75%

Figure 6.5: Size-up for PEAR and PPAR 500K to 40M transactions on 16 nodes
64

Chapter 7Extensions and Other Related WorkThe following sections outline the current work on concept hierarchies and parallel classi�cation, which isnot directly related to the subject of this report but belongs in its context. Especially the �rst section onEpisode Discovery is interesting in that it demonstrates how ARM algorithms, given some modi�cations, canbe applied to a completely di�erent problem.7.1 Discovering Episodes in Sequences7.1.1 Episodes in SequencesSurprisingly enough, discovering events in sequences that frequently occur together, i.e. within a given timeinterval, can easily be mapped to the ARM problem. Let I be the set of event types and let a \transaction"contain all the events that occurred within a time window of �xed length. In Figure 7.1, the transactioncorresponding to the window starting at 2 would be fA;B;Cg. The window has to slide over the sequenceto create the set of transactions. After this simple preprocessing step, all ARM algorithms could be used tosolve this problem without further modi�cation.
C BA

1 2 3 4 5 6 7

CB CBC A A B

Events:

Windows: Figure 7.1: Events and Windows in Episode DiscoveryUnfortunately, as simple as this solution may be, it does not take into account the most importantcharacteristic of sequences: the partial ordering of events, i.e. that events may occur before or after others orin parallel. Also, several occurrences of the same event within one window are not considered, as for exampleevent C in our example window.For these reasons, [29] de�ne an episode to be a partially ordered multi-set of events to capture the timerelation between events. Events that are not ordered with respect to each other are considered parallel.The episodes in our example window are fAg, fBg, fCg, fC kAg, fC kBg, fC kCg, fC < Ag, fC < Bg,65

fC < Cg, fA kBg, fA < Bg, fA < Cg, fB < Cg and numerous sequential and parallel compositions of theselike fA < (B kC)g or fA < B < Cg. To model the recursive nature of episodes, episodes can consist of othersub-episodes which can also be partially ordered with respect to each other.An episode is frequent, if it can be found more often than a prede�ned threshold. Similar propertieshold for frequent episodes and frequent itemsets, for example,that an episode can only be frequent if all itssub-episodes are frequent.Similar to association rules, prediction rules E ! F can be constructed that predict the occurrence of anepisode F if E took place. The con�dence of such rules is de�ned in a manner similar to association rules.7.1.2 AlgorithmLike the ARM algorithm, the algorithm presented in [29] alternates between candidate generation and count-ing steps. Candidate episodes are initially built from elementary events; the support is then counted, thefrequent episodes are used to create new candidate episodes, and so on.Candidate episodes are created in the same way candidate sets are built by Apriori-gen. Two episodesof size k that share k � 1 sub-episodes (atomic or compound) are joined to form a (k+1)-candidate. Thefrequency of all other k-sub-episodes is then tested as a mandatory prerequisite.Counting support for episodes is more tricky, because episodes can be present in the window more thanonce, because the detection of sequential episodes requires �nite state automata and because of the recursivestructure of episodes. Furthermore, the task is complicated by optimizations based on the fact that adjacentwindows do not di�er greatly and the episodes from the previous window are likely to be part of the next.Results show that a su�ciently small number of candidates is generated for the algorithm to be e�ective,and savings of up to a factor of 20 can be obtained by using incremental episode counting.7.2 Concept HierarchiesConcept hierarchies, or taxonomies, have been mentioned before as one way to use domain knowledge toeither speed up the mining process or improve the quality of its results. Usually a taxonomy is provided bydomain experts or may even be determined in a very straightforward manner as in the case of geographicaldata. If neither is feasible, methods are available to create concept hierarchies from data automatically andto modify existing hierarchies to suit the current mining task if for example only a part of the data is beingexamined [18]. This is necessary when the current structure is too general, speci�c or unbalanced and thuscauses distorted results.Concept hierarchies have been used in classi�cation mining before, the most prominent example of whichis attribute oriented induction that is realized in the DBLEARN system [7, 17]. Here aggregate relations arebuilt successively by replacing values by their ancestors in the hierarchy.In the context of association mining, concept hierarchies can be viewed as directed acyclic graphs, thenodes of which are labeled with the literals from I. Compared to the de�nition given in the last Section 2.1.1,I is augmented with literals for higher level concepts; for example, in addition to basic items like SkimMilkand LowFatMilk, Milk and Beverage are part of the universe of \items". An edge between two nodes in thegraph represents the is-a relationship between them. The notion of ancestors and descendants of items isde�ned in terms of edges in the transitive closure of the taxonomy graph. Sets and rules in which one ormore items were replaced by their ancestors are called antcestors of the original set or rule respectively.In the presence of multiple levels of a concept hierarchy, association rules may contain literals from severallevels in the hierarchy or may be restricted to one level only. These generalized association rules are de�nedlike one-level rules, but require additionally that no literal in the consequent be an ancestor of any literal inthe antecedent to avoid trivial rules. 66

Further insight can be gained by the use of multiple taxonomies that may be based on price, per-item-pro�t for the store or based on brand/producer.Reasons for the use of taxonomies include the following:� Rules at the leaf level may not have minimum support.There may be too many di�erent brands of one good, like the confusing variety of cereals, and whileCereal ! Milk is a likely association, KelloggsSmacks ! Dairyland2%Milk might not be, becauseKelloggsSmacks does not have minimum support.� Pruning of redundant rules is possible.Continuing the example, we can expect to �nd many rules that link individual cereal brands to milkwhen mining is restricted to the leaf level. None of these brands need to be especially popular, in whichcase all those rules only express the fact that some cereal is often bought together with milk. Clearly,they could easily be subsumed under one rule Cereal ! Milk.� Fast aggregate analysis is possible.If the discovery process can be conducted on di�erent levels independently, users can start the discoveryat a higher level and focus on con�ned areas of interest on lower levels. Looking only for a certain groupof items in a database reduces the amount of work signi�cantly and speeds up the mining process,especially in interactive mining sessions.� More items are possibleRemoving all items on entire branches of the taxonomy from consideration if a higher-level conceptis not frequent can reduce the number of literals in lower levels. Therefore larger numbers of itemsbecome tractable.The content of this chapter is based on [19, 37]where di�erent algorithms to include concept hierarchies1.After general remarks we provide a short sketch of these algorithms in Section 7.2.27.2.1 New De�nitions for InterestingnessBased on concept hierarchies new criteria for the interestingness of a rule can be applied. The general idea isthat a rule is interesting only if it reveals information that could not be expected based on the ancestors ofthis rule. Since the ancestor rule is more general, it should be preferred. Recalling the cereal example, rulesinvolving individual cereal brands can be considered redundant unless their con�dence or support deviatesigni�cantly from the ancestor rule Cereal ! Milk. Details can be found in [37].[19] introduce the notion of strong rules to focus the search in several hierarchy levels. A rule is strongif every ancestor of every item in its antecedent and consequent is frequent on its level in the taxonomy.This can be strengthened even more to require the antecedent and consequent sets (i.e. their equivalent afterreplacing each item by its antecedent) to be frequent on the previous level. This is possible because di�erentminimum support and con�dence levels are permitted on the various levels.7.2.2 AlgorithmsThe basic approach in [37] is to add ancestor literals to each transaction and run the algorithms used formining single level rules. This can dramatically increase the size of transactions and the number of possible1[37] refer to their treatment of taxonomies as generalized association rules while [19] use the term multiple-level associationrules are proposed. The two are used synonymously here, along with hierarchical association rules.67

frequent sets. Therefore several methods including sampling are proposed to prune the candidate set andavoid unnecessary passes over the database due to the large number of candidates.The algorithms in [19] encode the hierarchy in the representation of the leaf literal and work on thisencoded transaction table after the initial translation step. In its original version the basic algorithm schemefrom Section 2.2 is applied repeatedly to mine rules of one level of the hierarchy after the other, starting withthe most general level. Modi�cations of the algorithms are provided to allow rules with items from di�erentlevels and multiple concept hierarchies. One major drawback of this approach seems to be the large numberof scans required due to the separation of hierarchy levels. The advantage is that di�erent minimum supportand con�dence values are possible on each level.7.3 Parallel Discovery of Classi�cation RulesAlthough the contents of this Section are not directly applicable to the problem of parallel ARM, they belonginto the general context of parallel KDD.7.3.1 Classi�cation Rule MiningThis section attempts only a brief introduction to the work done on classi�cation in Machine Learning andKDD. The reader is referred to [1, 2, 14, 31] for more information.A basic familiarity with decision trees as constructed by classi�cation algorithms and general AI searchtechniques is assumed. The supervised learning case is presupposed because both approaches presented heresolve this problem. Each data object is labeled with a class identi�er, usually as an additional attribute tothe relation.
Age

Car Price

25>=25 and <65<25 >= 65

>=20,000<20,000

Safe Driver Safe DriverDangerous Driver Dangerous Driver

Safe Driver

Truck

Type of Car

SportscarFigure 7.2: Example of Decision Trees Used in Classi�cationThe dominant operation in building decision trees such as the one in Figure 7.2 is the gathering ofhistograms on attribute values. The conjunction of attribute restrictions along the path to a leaf selects oneportion of the database, and all paths partition the relation horizontally in disjoint subsets. Histograms haveto be built for each subset, on each attribute and for every class individually.Based on this information and information theoretic measures, nodes are added to leaves of the tree tothe e�ect of splitting the partition associated with the parent node. Then histograms have to be built anew68

for all new sub-partitions. The process continues until the classi�cation performance of the tree or its depthreach prede�ned thresholds. It is an open question as to which methods are optimal for deciding which leavesto expand and when to stop expanding the tree altogether to avoid poor performance due to over-�tting onthe one hand or incomplete trees on the other [5, 27, 35, 39].Two approaches are presented here: one parallel system features a sequential external mining tool thatuses a parallel databases server, and the other approach, called meta-learning, allows the actual mining tobe done in parallel.7.3.2 A Parallel Mining EngineThe classi�cation tool developed at CWI [20] merely directs the discovery process; the expensive histogrambuilding procedures are incorporated into the extendable parallel DBMS Monet, which is designed to exploitlarge amounts of main memory on shared-memory multi-processors. Experiments were run on a 6-node SGImachine with 256 MBytes of main memory.The database is completely partitioned vertically into Binary Association Tables in accordance to theassumed column-oriented nature of the access patterns. Hence, selection to create partitions and the con-struction of histograms can be done in parallel. Also the successive subdivision of horizontal partitionssuggests assigning individual processors to di�erent partitions.Results in [20] show \considerable", although not linear speed-up (factor 2.5 on 4 nodes on a 25K database), but the authors are rather brief on this issue. In particular, issues like scalability, skew and load balancingand the impact of communication overhead are not addressed.Since we assume a shared-nothing architecture and the ARM algorithms are more row- than column-oriented, vertical partitioning of the database is unlikely to yield satisfactory results for association mining.7.3.3 Meta-Learning and Multi-Strategy-LearningUnlike the previous approach, meta-learning [8, 9, 10]2 does not parallelize the mining algorithm itself butinvolves horizontally dividing the database into subsets and applying sequential learning algorithms to eachsubset. The result is a set of di�erent decision trees each depending on the data it was trained on. To avoidlosing classi�cation reliability due to the smaller size of the subsets, an arbiter combines the votes of eachclassi�er into one single result. This is where the actual meta-learning part begins: The arbiter is trained tocorrectly decide between conicting votes from the individual classi�ers. This concept is extended to use notjust one arbiter but a binary tree of arbiters (as shown in Figure 7.3) to resolve conicting results. Adjustingthe arbiter tree to the set of classi�ers involves further learning from the data, i.e. further passes over variousparts of the database. Therefore, while building the individual classi�ers in parallel is done e�ciently, aconsiderable amount of time has to be spent to build a suitable arbitrator.Theoretical speedups of O(p= lgp) can be obtained on p processors and results reported in [10] reach thisboundary. Apart from the rather moderate speedups, we see two shortcomings of this approach: One is thatusing the classi�er for unseen data is slow, because all classi�ers have to be applied to the data item, andthese results have to be processed by the arbiter tree. While this can be done in parallel, it is certainly note�cient. Secondly, the discovered knowledge is hidden inside the classi�er-arbitrator set much in the way itis hidden in neural nets. This makes database retrieval of class members rather ine�cient because the use ofindexes is precluded.Nevertheless, the strength of this approach lies in the possibility to incorporate di�erent classi�cationmethods as \leaf"-classi�ers to improve classi�cation performance by means of diversity. This version ofmeta-learning is then referred to as multi-strategy-learning.2Sequence analysis in [8] refers to discovery in DNA sequences, but classi�cation algorithms are used.69

Classifiers

A14

A12 A34

C1 C2 C3 C4

T1 T2 T2 T4
Training
Database

Arbiters

Figure 7.3: Example of Arbiter Tree in Meta-LearningTo our knowledge, no attempts have been made to apply the meta-learning principle to ARM, andalthough the partitioning principle is used in PARTITION (see Section 2.3.4), intermediate and not �nalresults are coalesced here which constitutes a fundamental di�erence between the two principles.

70

Chapter 8Conclusion and Future WorkWe have studied the association rule mining problem and have made the following contributions related tosequential algorithms:� We have shown that partitioning, although it reduces IO cost, does not lead to performance improve-ments but introduces constant CPU overhead per partition instead. Therefore, algorithms that use itare slowed considerably, unless IO cost is extremely high. All algorithms are CPU-bound in our envi-ronment, even for very large databases, and trying to save IO operations at the expense of additionalcomputation is not bound for success.� This report provides the �rst performance analysis of the item-list based pass bundling technique andshows that it reduces both CPU and IO cost signi�cantly without the overhead caused by partitioning.� We have shown that TID-lists perform very well in later phases of the algorithms, but are highlyine�cient in early phases, resulting in poor performance overall, which can only be avoided by specialoptimizations that do not use TID-lists for the early phases.� We describe a new incremental partitioning algorithm, which produced slight improvements over thestandard partitioning technique, but incurs the same overhead due to partitioning. Therefore incremen-tal partitioning, like its standard counterpart, performed worse than algorithms with pass bundling.The conclusions from our studies are therefore, that partitioning, which is currently considered the bestsolution to the ARM problem, does not reduce the execution time of ARM algorithms, but, in fact, can leadto worse performance as the number of partitions grows. Partitioning may be bene�cial in conjunction withTID-lists, which greatly reduce CPU cost (provided the optimization of bypassing early phases is used), buteven these bene�ts are lessened by the partitioning overhead. In contrast, item-lists with pass bundling alsoachieve low IO and CPU cost without the partitioning overhead. Because the bypassing optimization wasnot mentioned in the paper on PARTITION [34], both techniques could not be compared directly to �nd ade�nitive answer to the question which performs better. However, we plan to conduct future research on thisissue, which requires implementing the bypass optimization for SPTID and SEAR.In the second part of this report we described parallel versions of the SEAR and SPEAR algorithmsthat di�er in the amount of communication they require. Although PPAR, SPEAR's parallel counterpartuses about 1=10 of the communication necessary for parallel SEAR due to a global partitioning scheme, itperforms worse due to local partitioning.Nevertheless, we show that both algorithms display near-optimal scale-up and size-up behavior; speed-ups are almost linear, and a speed-up factor of 14 was obtained on a 16-node SP2 multi-processor for mostproblems tested. Moreover, speed-ups improve further as the database size is increased and the miningproblem is made more di�cult. 71

Unfortunately, we were limited to experiments on synthetic data sets (like many other previous studies[19,32, 34]), so the next task is to evaluate the performance of our algorithms against a real-life data set.Integrating these algorithms into existing DBMS is also likely to lead to additional problems related togenerating the proper input format for the mining algorithms and query optimization for queries involvingdata mining operations, to mention only a few of theses di�culties.Other issues that have to be investigated more closely in the future are the re-use of results for subsequentruns of the algorithms on the same database with di�erent minimum support values, a situation which islikely to occur in interactive mining.

72

AcknowledgementsThis report is a version of my Master Thesis, and I want to thank Dr. Mike Franklin for his guidance,encouragement and support that made this this study possible.

73

Bibliography[1] Rakesh Agrawal, Sakti Ghosh, Tomasz Imielinski, and Arun Swami. An interval classi�er for databasemining applications. In 18th Int'l Conf. on Very Large Databases (VLDB), Vancouver, Canada, pages560{573, 1992.[2] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Database mining: a performance perspective.IEEE Transactions on Knowledge and Data Engineering, Vol. 5, No. 6, December 1993:914 { 925, 1993.[3] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Mining association rules between sets of itemsin large databases. In SIGMOD, Washington D.C., pages 207{216, May 1993.[4] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules in largedatabases. In 20th Int'l Conf. on Very Large Databases (VLDB), Santiago, Chile, Sept. 1994. Ex-panded version available as IBM Research Report RJ9839, June 1994.[5] Marko Bohanec and Ivan Bratko. Trading accuracy for simplicity in decision trees. Machine Learning,15:223{250, 1994.[6] H. Boral, W. Alexander, L. Clay, G. Copeland, S. Danforth, M. Franklin, B. Hart, M. Smith, andP. Valduriez. Prototyping bubba, a highly parallel database system. IEEE Transactions on Knowledgeand Data Engineering, 2(1), March 1990.[7] Yandong Cai, Nick Cercone, and Jaiwei Han. Attribute-oriented induction in relational databases. InGregory Piatetsky-Shapiro and William J. Frawley, editors, Knowledge Discovery in Databases, pages213{228. AAAI/MIT, 1991.[8] Philip K. Chan and Salvatore J.Stolfo. Toward multi-strategy parallel and distributed learning in se-quence analysis. In Proc. First Intl. Conf. Intel. Sys. Molecular Biology, pages 65{73, 1993.[9] Philip K. Chan and Salvatore J.Stolfo. Toward parallel and distributed learning by meta-learning. InWorking Notes AAAI Work. Knowledge Discovery in Databases, pages 227{24, 1993.[10] Philip K. Chan and Salvatore J. Stolfo. Toward scalable and parallel learning: A case study in splicejunction prediction. Technical Report CUCS-032-94, Columbia University, 1994.[11] David K. Chiu, Andrew K.C. Wong, and Benny Cheung. Information discovery through hierarchicalmaximum enthropy discretization and synthesis. In Gregory Piatetsky-Shapiro and William J. Frawley,editors, Knowledge Discovery in Databases, pages 125{140. AAAI/MIT, 1991.[12] David DeWitt and J. Gray. Parallel database systems: The future of database processing or a passingfad? sigmod, 19(4):104{112, December 1990. 74

[13] David J. DeWitt, Shaharm Ghandeharizadeh, Donovan A. Schneider, Allan Bricker, Hui i Hsiao, andRick Rasmusen. The gamma database machine project. IEEE Transactions on Knowledge and DataEngineering, 2(1):44{62, March 1990.[14] Tapio Elomaa. In defense of c4.5: Notes on learning one-level decision trees. In W.Cohen and H. Hirsh,editors, Machine Learning: Proc. 11th Int'l Conference, pages 62{60. Morgan Kaufmann, July 1994.[15] William J. Frawley, Gregory Piatetsky-Shapiro, and Christopher J. Matheus. Knowledge discovery indatabases: An overview. In Gregory Piatetsky-Shapiro and William J. Frawley, editors, KnowledgeDiscovery in Databases, pages 1{30. AAAI/MIT, 1991.[16] Jiawei Han, Yandong Cai, and Nick Cercone. Knowledge discovery in databases: An attribute-orientedapproach. In 18th Int'l Conf. on Very Large Databases (VLDB), Vancouver, Canada, 1992.[17] Jiawei Han, Yandong Cai, and Nick Cercone. Data-driven discovery of quantitative rules in relationaldatabases. IEEE Transactions on Knowledge and Data Engineering, 5(1), Feb. 1993.[18] Jiawei Han and Yongjian Fu. Dynamic generation and re�nement of concept hierarchies for knowledgediscovery in databases. In AAAI'94 Workshop on Knowledge Discovery in Databases (KDD'94), Seattle,WA, July 1994.[19] Jiawei Han and Yongjian Fu. Discovery of multiple-level association rules from large databases. In 21stInt'l Conf. on Very Large Databases (VLDB), Z�urich, Switzerland, Sept. 1995. To appear.[20] Marcel Holsheimer and Arno P.J.M. Siebes. Architectural support for data mining. Technical ReportCS-R9429, CWI, 1994.[21] Marcel Holsheimer and Arno P.J.M. Siebes. Data mining: the search for knowledge in databases.Technical Report CS-R9406, CWI, January 1994.[22] Houtsma and Arun Swami. Set-oriented mining of association rules. Technical Report RJ 9567, IBMResearch Report, Oct. 1993.[23] IBM Corporation, Kingston, NJ 12401-1099. IBM AIX Parallel Environment, Release 2.0, 1994.[24] IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598. The SP2 Com-munication Subsystem, Aug. 1994. Also available via http://ibm.tc.cornell.edu/bm/pps/doc/css/css.ps.[25] Kenneth Kaufman, Ryszard S. Michalski, and Larry Kerschberg. Mining for knowledge in databases:Goals and general description of the inlen system. In Gregory Piatetsky-Shapiro and William J. Frawley,editors, Knowledge Discovery in Databases, pages 449{464. AAAI/MIT, 1991.[26] Mika Klemettinen, Heikki Mannila, Pirjo Ronkainen, Hannu Toivonen, and A. Inkeri Verkamo. Findinginteresting rules from large sets of discovered association rules. In 3rd Internat. Conf. on Informationand Knowledge Management, Maryland. ACM Press, Nov. 1994.[27] Wei Zhong Liu and Allan P. White. The importance of attribute selection measures in decision treeinduction. Machine Learning, 15:25{41, 1994.[28] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Improved methods for �nding associationrules. In AAAI Worshop on Knowledge Discovery, Seattle, Washington, pages 181{192, July 1994.75

[29] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Discovering frequent episodes in sequences.In Proc. Knowledge Discovery and Data Mining (KDD'95), (to appear), 1995. Also: Technical ReportC-1995-10, University of Helsinki, Department of Computer Science, Finland, March 1995.[30] Christopher J. Matheus, Philip K.Chan, and Gregory Piatetsky-Shapiro. Systems for knowledge discov-ery in databases. IEEE Transactions on Knowledge and Data Engineering, 5(6), Dec. 1993.[31] G�ur-Ali �Ozden and William A. Wallace. Induction of rules subject to a quality constraint: Probabilisticinductive learning. IEEE Transactions on Knowledge and Data Engineering, 5(6), Dec. 1993.[32] Jong Soo Park, Mink-Syan Chen, and Philip S. Yu. An e�ective hash-based algorithm for miningassociation rules. In SIGMOD, San Jose, CA, pages 175{186. ACM, 1995.[33] Arun Swami Rakesh Agrawal, Christos Faloutsos. E�cient similarity search in sequence databases.In 4th Int'l Conf. on Foundations of Data Organization and Algorithms, Chicago, Oct. 1993. Also inLecture Notes in Computer Science 730, Springer Verlag, 1993, 69-84.[34] Ashok Sarasere, Edward Omiecinsky, and Shamkant Navathe. An e�cient algorithm for mining associa-tion rules in large databases. In 21st Int'l Conf. on Very Large Databases (VLDB), Z�urich, Switzerland,Sept. 1995. Also Gatech Technical Report No. GIT-CC-95-04.[35] Cullen Scha�er. Over�tting avoidance as bias. Machine Learning, 10:153{178, 1993.[36] Padhraic Smyth and Rodney M. Goodman. Rule induction using information theory. In GregoryPiatetsky-Shapiro and William J. Frawley, editors, Knowledge Discovery in Databases, pages 159{176.AAAI/MIT, 1991.[37] Ramakrishnan Srikant and Rakesh Agrawal. Mining generalized association rules. In 21st Int'l Conf.on Very Large Databases (VLDB), Z�urich, Switzerland, Sept. 1995. To appear.[38] Craig B. Stunkel, Denis G. Shea, Don G. Grice, Peter H. Hochschild, and Michael Tsao. The sp1 high-performance switch. In Proc. 1994 Scalable High-Performance Computing Conference, pages 150{157,May 1994.[39] Allan P. White and Wei Zhong Liu. Bias in information-based measures in decision tree induction.Machine Learning, 15:321{329, 1994.[40] Beat W�uthrich. Knowledge discovery in databases. Draft course manuscript, Hong Kong University ofScience and Technology, May 1994.
76

