
CS-TR-3514 August, 1995A Survey of Information Retrievaland Filtering Methods �Christos FaloutsosDepartment of Computer ScienceandDouglas W. OardElectrical Engineering DepartmentUniversity of MarylandCollege Park, MD 20742christos@cs.umd.edu, oard@eng.umd.edu
AbstractWe survey the major techniques for information retrieval. In the �rst part, we provide an overviewof the traditional ones (full text scanning, inversion, signature �les and clustering). In the second partwe discuss attempts to include semantic information (natural language processing, latent semanticindexing and neural networks).�This work was partially funded by the National Science Foundation under Grants IRI-9205273 and IRI-8958546 (PYI),with matching funds from EMPRESS Software Inc. and Thinking Machines Inc.

1



1 IntroductionThis survey is divided in two parts. In the �rst part, we survey the traditional methods for text retrieval.There are two reasons for that: (a) knowledge of these methods is useful as the background informationfor the newer developments and (b) variations or extensions of these methods are in the heart ofnewer methods. Speci�cally, we examine full text scanning with recent developments on approximatesearching; inversion-based methods, which are the fastest available and which will probably be used asthe search engine in any information-retrieval system; methods using signature �les; and methods usingclustering, which is the traditional approach in library science.After all the above background information, in the second part we survey some recent e�orts to mergeNLP and IR methods, including the 'Latent Semantic Indexing' method and neural networks.The survey ends with conclusions, the highlights of each method, and recommendations.2 Traditional text retrieval2.1 Full text scanningThe most straightforward way of locating the documents that contain a certain search string (term) isto search all documents for the speci�ed string (substring test). "String" is a sequence of characterswithout "Don't Care Characters". If the query is a complicated Boolean expression that involves manysearch strings, then we need an additional step, namely to determine whether the term matches foundby the substring tests satisfy the Boolean expression (query resolution).We shall not examine searching methods for general regular expressions. This subject is discussed inAutomata Theory [Hopcroft and Ullman 1979, pp. 29-35]. [31] Given a regular expression, a �nite stateautomaton can be built, which is able to detect the occurrence of the given expression in a document.The search time for this automaton is linear on the document size, but the number of states of theautomaton may be exponential on the size of the regular expression.However, if the search patterns are restricted to strings, methods more e�cient than the �nite au-tomaton approach can be applied. Next we shall discuss these methods.The obvious algorithm for the substring test is as follows:- Compare the characters of the search string against the corresponding characters of the document.- If a mismatch occurs, shift the search string by one position to the right and continue until eitherthe string is found or the end of the document is reached.Although simple to implement, this algorithm is too slow. If m is the length of the search string andn is the length of the document (in characters), then it needs up to O(m � n) comparisons.2



Knuth, Morris and Pratt [37] proposed an algorithm that needs O(m+ n) comparisons. Their mainidea is to shift the search string by more than one characters to the right, whenever a mismatch ispredictable. The method needs some preprocessing of the search string, to detect recurring sequencesof letters. The time required for preprocessing is O(m).The fastest known algorithm was proposed by Boyer and Moore [5]. Their idea is to perform charactercomparisons from right to left; if a mismatch occurs, the search string may be shifted up to m positionsto the right. The number of comparisons is n+m in the worst case and usually it is much less: for arandom English pattern of length m=5, the algorithm typically inspects i=4 characters of the document(where i is the starting position of the match). Again, it requires some (O(m)) preprocessing of thesearch string.Recent variations on the basic algorithm have been suggested by Sunday [71].Another approach to this problem is based on automata theory. Aho and Corasick [1975] [1] proposeda method that is based on a �nite automaton and allows searching for several strings simultaneously.The search time is O(n) and the construction time of the automaton is linear on the sum of charactersin the strings.Searching algorithms that can tolerate typing errors have been developed by Wu and Manber [78].The idea is to scan the database one character at a time, keeping track of the currently matchedcharacters in a clever bit-encoding. The method is fast (a few seconds for a few Megabytes of text ona SUN-class workstation) and exible. Moreover, its source code is available through anonymous ftpfrom the University of Arizona - Tucson.In general, the advantage of every full text scanning method is that it requires no space overhead andminimal e�ort on insertions and updates (no indices have to be changed). The price is the bad responsetime. This might be severe for large data bases. Therefore, full text scanning is usually carried outby special purpose hardware [Hollaar et al. 1983] [30] or it is used in cooperation with another accessmethod (e.g., inversion) that would restrict the scope of searching.2.2 Signature FilesThe signature �le approach has attracted much interest. In this method, each document yields a bitstring ('signature'), using hashing on its words and superimposed coding. The resulting documentsignatures are stored sequentially in a separate �le (signature �le); which is much smaller than theoriginal �le, and can be searched much faster. Files and Huskey [26] applied this method on a databaseof bibliographic entries. They used a stop list to discard the common words and an automatic procedureto reduce each non-common word to its stem. They also used a numeric procedure as a hashingfunction, instead of a look-up table. Harrison [28] used the signature �le approach in order to speedup the substring testing. He suggests using consecutive letters ("n-grams") as input to the hashing3



function. Barton et al. [1974] [3] suggest using equi-frequent text segments instead of n-grams. Thus,the distribution of "1"s in the signature will be uniform. The method proposed by Tsichritzis andChristodoulakis [73] tries to use signature �les without superimposed coding. There, the signature ofthe document consists of the concatenation of each word signature. This way, the positioning informationis preserved. Rabitti and Zizka [48] report that this method is expected to be more heavily CPU boundthan superimposed coding.Other researchers have adopted similar approaches for formatted records. Some of these paperssuggest ideas potentially useful for text retrieval.Roberts [1979] [52] used a one-level signature �le for a telephone directory application. He discussesmany interesting implementation details, two of which can be applied to text retrieval:- The signature �le is stored in a "bit-slice" manner, that is the �rst bits of all the signatures arestored consecutively, then the second bits and so on. Although this structure makes updatesdi�cult, it reduces the I/O cost for retrieval.- He suggests creating the signatures in such a way that terms that appear frequently in queries aretreated specially.However, Roberts did not try to provide any mathematical analysis towards this direction. Such anattempt can be found in [23] where it is shown that if the access patterns and occurrence frequenciesof words are known in advance and are skewed enough (80-20 rule), the signature �le can be designedin such a way that we can avoid approximately 50% of the false drops of an ordinary signature �le ofthe same size.Two-level signature �les have been suggested [55, 54], with improved search speed; trees of signa-tures [14] and partitioning based on signatures [39] have also been proposed, without timing results onreal databases, though.Research on the design and performance of superimposed coding methods started long ago. The �rstwho applied superimposed coding for retrieval is C.N. Mooers [46]. He invented an ingeniousmechanicaldevice that was based on edge-notched cards and needles. This device was able to handle conjunctivequeries on a database of bibliographic entries very fast. The keyword extraction was performed manuallyand the hashing function utilized a look-up table.This method of edge-notched cards attracted a lot of interest. Stiassny [68] suggested using pairsof letters to create each word signature. He also proved that, for a given signature size, the falsedrop probability is minimized if the number of "1"'s is equal to the number of "0"'s in the documentsignatures. Orosz and Tackacs [47] used Jordan's theorem and gave a closed form formula for theprobability distribution of the number of "1"'s in a document signature. Kautz and Singleton [35]discussed the problem of designing a system of signatures that will not have false drops. They attackedthe problem from the point of view of coding and information theory. Although theoretically interesting,4



their method has practical drawbacks: it needs a look-up table, it can not handle a growing vocabularyeasily and it needs much overhead to design the set of signatures.In concluding this discussion on the signature �le approach, we should mention that the main disad-vantage of this method is the response time when the �le is large. The advantages are the simplicity ofits implementation, the e�ciency in handling insertions, the ability to handle queries on parts of words,ability to support a growing �le, and tolerance of typing and spelling errors. In addition, the method iseasily parallelizable (see [67] for an implementation on the Connection Machine).2.3 InversionEach document can be represented by a list of (key)words, which describe the contents of the documentfor retrieval purposes. Fast retrieval can be achieved if we invert on those keywords. The keywordsare stored, eg., alphabetically, in the 'index �le'; for each keyword we maintain a list of pointers tothe qualifying documents in the 'postings �le'. This method is followed by almost all the commercialsystems [61].More sophisticated methods can be used to organize the index �le, such as: B-trees, TRIEs, hashingor variations and combinations of these (e.g., see [36] pp. 471-542). STAIRS [32] uses two levels forthe index �le. Words that start with the same pair of letters are stored together in the second level,while the �rst level contains pointers to the second level, one pointer for each letter pair. Lesk [40]uses an over-loaded hash table with separate chaining, in order to achieve fast retrieval in a databaseof bibliographic entries.The disadvantages of this method are: the storage overhead (which can reach up to 300% of theoriginal �le size [29]), the cost of updating and reorganizing the index, if the environment is dynamic,and the cost of merging the lists, if they are too long or too many.The advantages are that it is relatively easy to implement, it is fast, and it supports synonyms easily(e.g., the synonyms can be organized as a threaded list within the dictionary). For the above reasons,the inversion method has been adopted in most of the commercial systems (DIALOG, BRS, MEDLARS,ORBIT, STAIRS [61] ch. 2).Recent developments and challenges include the following:� the skeweness of the distribution (Zipf's law) [82] of the postings lists. This means that a fewvocabulary words will appear very often, while the majority of vocabulary words will appear onceor twice. To remedy this problem, there have been proposed hybrid methods [24], as well asalgorithms to grow the postings lists adaptively [25].� the fact that the indices may be huge, spanning several Megabytes or even GigaBytes. Despitetheir size, we want to have fast insertions. Techniques to achieve fast insertions incrementallyinclude the work by Tomasic et al., [72]; Cutting and Pedersen [12] and Brown et. al. [6].5



These e�orts typically exploit the skewness of the distribution of postings lists, treating the shortlists di�erent than the long ones. Compression methods have also been suggested, to managethe problem of index size: Zobel et al. [83] use Elias's [22] compression scheme for postings lists.Finally, the `glimpse' package [44] uses a coarse index plus the `agrep' [78] package for approximatematching.2.4 Vector Model and ClusteringThe basic idea in clustering is that similar documents are grouped together to form clusters. Theunderlying reason is the so-called cluster hypothesis: closely associated documents tend to be relevantto the same requests. Grouping similar documents accelerates the searching.Clustering has attracted much attention in information retrieval and library science [61] [75] as well asin pattern recognition [16]. Although the emphasis in pattern recognition is not on document clustering,it uses some methods and ideas that are applicable to our environment.Note that clustering can be applied to terms, instead of documents. Thus, terms can be groupedand form classes of co-occurring terms. Co-occurring terms are usually relevant to each other and aresometimes synonyms. This grouping of terms is useful in automatic thesaurus construction and indimensionality reduction. Automatic thesaurus construction is based on statistical criteria and thus itis conceptually identical with the document clustering methods. However, Salton [58] states that thee�ectiveness of automatic term grouping algorithms is in doubt and he recommends semi-automaticmethods.Document clustering involves two procedures: The cluster generation and the cluster search. Firstwe discuss the cluster generation methods and classify them. The problem of cluster search is easierand it will be discussed afterwards.2.4.1 Cluster generation methodsA cluster generation procedure operates on vectors or points of a t�dimensional space. Each documentis represented as a vector; it is processed and some keywords are assigned to it. This is the "indexing"procedure and it can be carried out either manually or automatically. Comparison performed by Salton[59] shows that simple automatic indexing methods perform at least as well as manual methods in thelaboratory environment.An automatic indexing procedure usually uses the following dictionaries ([57], p. 117, 144-145):- A negative dictionary that is used to remove the common words ('and', 'the' etc.)- A su�x and pre�x list that help to reduce each word to its stem.- A dictionary of synonyms that helps to assign each word-stem to a concept class.6



In this way each document is represented by a t�dimensional vector, where t is the number ofpermissible index terms (concepts). Absence of a term is indicated by a 0 (or by -1 [9]). Presence of aterm is indicated by 1 (binary document vectors) or by a positive number (term weight), which reectsthe importance of the term for the document. Several weighting functions have been proposed:- FREQik : the occurrence frequency of term k in document i. It is easy to obtain and moree�ective than the binary weight.- "Term speci�city" [66] : logN �log(DOCFREQk) +1 where DOCFREQk is the number ofdocuments that contain the term k and N is the total number of documents. It is relatively easyto obtain and it is more e�ective than the binary weight.- Inverse Document Frequency: FREQik/DOCFREQk. Similar to the previous weights, but seemsto be more e�ective ([61] p. 105).- FREQik � TERMRELk, where TERMRELk = rk=(R � rk)sk=(I � sk)is the "term relevance factor". R is the total number of relevant documents, rk is the numberof relevant documents that contain term k, I is the total number of irrelevant documents and skis the number of irrelevant documents that contain term k. Under certain conditions, this is thetheoretically optimal weight [79] and experimental evidence ([61], p. 207) seems to con�rm it. Aproblem with this approach is that it requires relevance assessments for every possible term overthe whole document collection, which requires human experts and takes much time.The above procedure is used for representing documents as points in a t-dimensional space. Thenext step in the cluster formation is to partition these points into groups. The partitioning procedureshould ideally meet two goals: it should be theoretically sound and e�cient. The criteria of theoreticalsoundness are ([75], p. 47):- The method should be stable under growth, i.e., the partitioning should not change drasticallywith the insertion of new documents.- Small errors in the description of the documents should lead to small changes in the partitioning.- The method should be independent of the initial ordering of the documents.The main criterion for e�ciency is the time required for clustering. Space requirements are usuallyneglected in the performance analysis of the cluster generation methods.Many cluster generation methods have been proposed. Unfortunately, no single method meets bothrequirements for soundness and e�ciency. Thus, we have two classes of methods:7



- "sound" methods, that are based on the document-document similarity matrix.- iterative methods, that are more e�cient and proceed directly from the document vectors.Methods based on the similarity matrix: These methods usually require O(n2) time (or more)and apply graph theoretic techniques. (n is the number of documents). A document-to-documentsimilarity function has to be chosen. This function measures how closely two documents are related.A number of such functions has been proposed (e.g., see ([61] pp. 202-203) but it has been pointed out([75], p. 38) that the above functions give almost identical retrieval performance, as long as they areproperly normalized.Given the document-document similarity matrix, a simpli�ed version of such a clustering methodwould work as follows ([16], p. 238): An appropriate threshold is chosen and two documents with asimilarity measure that exceeds the threshold are assumed to be connected with an edge. The connectedcomponents (or the maximal cliques) of the resulting graph are the proposed clusters.Retrieval is usually accelerated if we create hierarchies of clusters, by grouping clusters to form super-clusters and so on. One way to achieve this is by applying the above method for several decreasingvalues of the threshold. A better algorithm that builds such a hierarchy can be found in [74]. Thismethod uses the single-link (nearest neighbor) criterion for clustering. Experiments with 200 documentsindicate that the execution time for the proposed algorithm is quadratic.A disadvantage of the above methods (and probably of every cluster-generation method) is that theyrequire (at least) one empirically decided constant: A threshold on the similarity measure or a desirablenumber of clusters. This constant greatly a�ects the �nal partitioning and therefore imposes a structureon the given data, instead of detecting any existing structure.The method proposed by Zahn [81] is an attempt to circumvent this problem. He suggests �ndinga minimum spanning tree for the given set of points (documents) and then deleting the "inconsistent"edges. An edge is inconsistent if its length l is much larger than the average length lavg of its incidentedges. The connected components of the resulting graph are the suggested clusters. Again, the method isbased on an empirically de�ned constant (threshold in the de�nition of "inconsistent" edge). However,the results of the method are not very sensitive on the value of this constant. In his paper, Zahndemonstrates the e�ectiveness of his method in diverse environments, on real, two-dimensional data:Overlapping Gaussian clusters, elongated clusters (nuclear particle tracks), clusters created by biologicalspecies etc. No experiments with documents are reported, but the method seems promising.Iterative methods This class consists of methods that operate in less than quadratic time (that is,O(nlogn) or O(n2=logn)) on the average. These methods are based directly on the object (document)descriptions and they do not require the similarity matrix to be computed in advance. The price forthe increased e�ciency is the sacri�ce of the "theoretical soundness"; the �nal classi�cation dependson the order that the objects are processed and the results of errors in the document descriptions8



are unpredictable. The proposed algorithms are based on heuristics and they also need a number ofempirically determined parameters, such as:- The number of clusters desired.- A minimum and maximum size (i.e., number of documents) of each cluster.- A threshold on the document-to-cluster similarity measure, below which a document will not beincluded in the cluster.- The control of overlap between clusters.- An arbitrarily chosen objective function to be optimized.The general approach in these methods is roughly as follows:- Determine an initial partitioning.- Iterate and re-assign documents to clusters, until there is not any other "good" re-assignment todo.Many iterative methods have appeared in the literature. A brief survey can be found in ([75], pp.51-53). The simplest and fastest one seems to be the "single pass" method [62]. Each document isprocessed once and is either assigned to one (or more, if overlap is allowed) of the existing clusters, orit creates a new cluster.Hybrid methods may be used. Salton and McGill [61] suggest using an iterative method to create arough partition of the documents into clusters and then applying a graph-theoretic method to subdivideeach of the previous clusters. Another hybrid approach is mentioned by Van-Rijsbergen [75]. Somedocuments are sampled from the document collection and a core-clustering is constructed using anO(n2) method for the sample of documents. The remainder of the documents are assigned to theexisting clusters using a fast assignment strategy.Analysis on the execution time of some iterative cluster generation methods has been carried out bySalton [60] Assuming that the average number of clusters is logn or n=logn, he shows that the methodsoperate in O(nlogn) or O(n2=logn ) on the average. However, their worst case behavior is O(n2).2.4.2 Cluster searchingSearching in a clustered �le is much simpler than cluster generation. The input query is representedas a t�dimensional vector and it is compared with the cluster-centroids. The searching proceeds fromthe most similar clusters, i.e., those whose similarity with the query vector exceeds a threshold. Acluster-to-query similarity function has to be selected; a popular choice is the cosine function [57]9



Yu and Luk [80] proposed a modi�cation to the above search strategy: Given a (binary) query vectorand (binary) cluster vectors, they derive a formula for the expected number of qualifying documents ineach speci�c cluster. Then they suggest continuing the search in those clusters that seem to containenough qualifying documents. Experimental results of their method are presented in [62] where it can beobserved that the proposed method performs almost the same as the cosine similarity function (whichis simpler).Croft [11] uses pattern recognition methods and derives a linear discriminant function, which isessentially a cluster-to-query similarity function. He uses the logarithm of the document frequency as aweight for each term in a cluster. He compares his function against the cosine function experimentallyand he reports that his method performs better.The vector representation of queries and documents allows the so-called relevance feedback, whichincreases the e�ectiveness of the search [53] The user pinpoints the relevant documents among theretrieved ones and the system re-formulates the query vector and starts the searching from the beginning.The usual way to carry out the query re-formulation is by adding (vector addition) to the query vectorthe (weighted) vectors of the relevant documents and by subtracting the non-relevant ones.Experiments indicate that the above method gives excellent results after only two or three iterations[56].3 Using Semantic InformationThe information retrieval techniques we have described use only a small amount of the informationassociated with a document as the basis for relevance decisions[42]. Despite this inherent limitation, theyoften achieve acceptable precision because the full text of a document contains a signi�cant amount ofredundancy. Next we survey recent methods that try to capture more information about each document,to achieve better performance.These methods form three classes: (a) methods using parsing, syntactic information and naturallanguage processing in general (b) the 'Latent Semantic Indexing' method and (c) methods using neuralnetworks and speci�cally spreading activation models.3.1 Natural Language ProcessingNatural language processing techniques seek to enhance performance by matching the semantic contentof queries with the semantic content of documents [33, 49, 76]. Natural language techniques have beenapplied with some success on the large Text Retrieval Conference (TREC) corpus [70, 41, 69]. Althoughit has often been claimed that deeper semantic interpretation of texts and/or queries will be requiredbefore information retrieval can reach its full potential, a signi�cant performance improvement fromautomated semantic analysis techniques has yet to be demonstrated.10



The boundary between natural language processing and shallower information retrieval techniques isnot as sharp as it might �rst appear, however. The commonly used stoplists, for example, are intendedto remove words with low semantic content. Use of phrases as indexing terms is another exampleof integration of a simple natural language processing technique with more traditional informationretrieval methods. Croft et. al. [10] suggest using a coarse parser [7] to detect sentences, and thenuse sentences for indexing (as oppose to single terms). The bene�t of using phrases as terms is thatphrases carry greater semantic content, but the risk is that the greater speci�city of a phrase can reducethe performance of ranking or matching algorithms which depend on generality. In the same vein, Rauand Jacobs [50] suggest grouping the keywords to achieve better precision/recall, with the help of alexicon for the parsing. Mauldin [45] used a "skimming" parser (ie., a 'quick-and-dirty' parser) to turndocuments in to 'case frames'; compared to a simple keyword system, the method typically improvesthe precision/recall performance, although it sometimes o�ers worse results. Salton et. al. [63] suggestusing document vectors for a �rst �ltering, followed by a comparison of section, paragraph and sentencevectors.The �rst step in a more complete natural language processing information retrieval system would likelybe automatic syntactic analysis. Considerable advances have been made in recent years in syntacticmodeling of natural language, and e�cient parsers with a broad domain have recently become avail-able [43]. Semantic analysis is less well understood, but progress is being made with a syntax-directedsemantic technique called lexical compositional semantics. Deeper semantic interpretation appears torequire extensive knowledge engineering, limiting the breadth of systems which depend on natural lan-guage processing. Case frame analysis, an arti�cial intelligence technique, has been successfully appliedin limited domains [51].3.2 Latent Semantic IndexingLatent Semantic Indexing (LSI) is a vector space information retrieval method which has demonstratedimproved performance over the traditional vector space techniques used in Salton's SMART system.Next we present a brief but rigorous description of the mathematical details of LSI.Readers interested in the principles underlying the development of LSI or the existence and uniquenessof the singular value decomposition are encouraged to consult Deerwester, et.al. for details which havebeen omitted here for brevity[13]. Applications of LSI to information �ltering and retrieval are reportedin [27, 21, 19] and the technique is further developed in [17, 18, 2].We begin with a basic implementation which captures the essence of the technique. From the com-plete collection of documents a term-document matrix is formed in which each entry consists of aninteger representing the number of occurrences of a speci�c term in a speci�c document. The SingularValue Decomposition (SVD) of this matrix is then computed and small singular values are eliminated.11



X = T0 � S0 � DT0
Figure 1: Singular Value Decomposition for XThe resulting singular vector and singular value matrices are used to map term frequency vectors fordocuments and queries into a subspace in which semantic relationships from the term-document matrixare preserved while term usage variations are suppressed. Documents can then be ranked in order ofdecreasing similarity to a query by using normalized inner products on these vectors to compute thecosine similarity measure.3.2.1 NotationWe have adopted the notation introduced by Deerwester, et.al.[13]. The term-document matrix X hast rows (one for each term that appears in the selected set of documents) and d columns (one for eachdocument in the set). The SVD X = T0S0DT0 results in a t�m matrix T0, the orthonormal columns ofwhich are called left singular vectors, an m�m diagonal matrix S0 of positive \singular values" sortedin decreasing order, and an m�d matrix D0, the orthonormal columns of which are called right singularvectors. The value m is the rank of the matrix X. Figure 1 depicts the SVD of X.With the T0; S0, and D0 matrices, X can be reconstructed precisely. The key innovation in LSI isto retain only the k largest singular values in the S0 matrix and set the others to zero. The value of kis a design parameter. Values between 100 and 200 are typically used. The original matrix X is thenapproximated by X̂ = TSDT , where T is a t � k matrix with orthonormal columns, S is a positivede�nite k � k diagonal matrix, and D is a d � k matrix with orthonormal columns. Figure 2 depictsthe SVD of X̂.3.2.2 Document MatchingThe e�ectiveness of LSI depends on the ability of the SVD to extract key features from the termfrequencies across a set of documents. In order to understand this behavior it is �rst necessary todevelop an operational interpretation of the three matrices which make up the SVD. In the originalvector space representation, XTX is a d � d symmetric matrix of inner products between document12



X̂ = T � S � DT
Figure 2: Singular Value Decomposition for X̂vectors, where each document is represented by a vector of term frequencies. One use for such a matrixwould be to support cluster analysis on an collection of documents. Each column of the XTX matrixis a set of inner products between the document vector in the corresponding column of the X matrixand every document in the collection. The cosine similarity measure for documents i and j can then becomputed as: (XTX)(i;j)(XTX)(i;i) � (XTX)(j;j) (1)Thus, we can view the XT matrix as a linear function from a column vector Xq which describes asingle document to a column vector of inner products that can be used to compute cosine similaritymeasures. Expanding the XT matrix using the SVD, XTXq = D0S0T T0 Xq. It is useful to consider thisas the composition of the linear functions de�ned by D0S 120 and S 120 T T0 . Consider �rst S 120 T T0 Xq. Thisoperation projects the query vector into the m-dimensional space spanned by the left singular vectors.Essentially, the T T0 matrix projects a document vector from the t-dimensional \document vector space"to an m-dimensional \document feature space." Because every singular value is positive, S 120 is a realdiagonal matrix. So the S 120 matrix rescales the document vector within this document feature spaceby scaling each feature individually. Viewed together, the m � t matrix S 120 T T0 is a projection fromdocument vector space to document feature space which incorporates the idea that some features aremore important than others when evaluating document similarity.Once the document feature vector is available, the d�m matrix D0S 120 can be used to compute theinner products that we seek. It does so by computing the inner product between the m-dimensionalS 120 T T0 Xq vector in document feature space and each row of D0S 120 . The rows of D0S 120 can this beinterpreted as document vectors which have been projected into the document feature space and rescaledin the same way as Xq.The only change introduced by LSI is the elimination of small singular values from S0. This amountsto a judgment that the features associated with small singular values are practically irrelevant whencomputing document similarities, and that their inclusion would reduce the accuracy of the relevance13



judgments. The features which are retained are those which have the greatest inuence on the positionof the document vector in m-space. Deerwester, et.al. suggest that this choice captures the underlyingsemantic structure (i.e. the concepts) in the term-document matrix while rejecting the \noise" thatresults from term usage variations[13]. In other words, the elimination of the small singular valuesreduces the document feature space into a \document concept space."Removing these small singular values reduces the SVD to X̂ = TSDT . We can then compute theinner product vector for a document as X̂TXq = DST TXq. Since S 12T T has a nontrivial nullspacewhile DS 12 does not, it is through the S 12T T matrix that LSI seeks to suppress the e�ect of term usagevariations by reducing the rank of the X̂ matrix from m to k. This is done by ignoring the vectorcomponents described by the left singular vectors in T0 that were associated with the small singularvalues in S0.This analysis motivates the description of S 12T T as a linear function from a vector of terms to a vectorof concepts, and each row of DS 12 as a vector of concepts associated with the corresponding documentin the collection. That a cosine similarity measure computed using the inner product of concept vectorsis more reliable than one based on the original document vectors is the central tenant of LSI.We can treat a natural language query as if it were a document and compute the vector of normalizedinner products between the query and every document in the collection. The closest documents couldbe presented to the user. Of course, the query might contain concepts which are not preserved by LSIon the existing document collection, so the alignment of the concept space may not be well-suited to aparticular query. Dumais reports promising results using this technique on the large TREC-2 documentcollection[20].3.2.3 Term MatchingBefore examining the consequences of this interpretation, it is also useful to interpret the adjoints ofthese functions in a meaningful way. The matrix XXT is composed of inner products of vectors of termfrequencies across documents. For convenience I refer to these vectors as \term vectors" to distinguishthem from the document vectors discussed above. There is some potential for confusion here becauseboth term vectors and document vectors contain term frequency information. The distinction is thatdocument vectors are used to compare documents, while term vectors are used to compare terms.Each column of XXT is a vector of inner products between the term vector in the correspondingcolumn of XT and the term vector for each term in the collection. These inner products can be used tocompute cosine similarity measures between terms in the same way that document vectors were usedin equation (1). Applying the SVD and reducing the rank to perform LSI, XYq = T0S0DT0 Yq, whereYq refers to row q of the X matrix. Reducing the rank by eliminating the small singular values yieldsX̂Yq = TSDTYq. Here S 12DTYq is a projection from \term vector space" to \term concept space" which14



Matrix Row ColumnTS 12 Term Concept Vector Term Vector Space Basis VectorDS 12 Document Concept Vector Document Vector Space Basis VectorFigure 3: Singular value decomposition row and column interpretationseeks to preserve concepts while suppressing term usage variations. The rows of the matrix TS 12 cantherefore be interpreted as term vectors projected into term concept space and rescaled.3.2.4 Concept SpaceFigure 3 summarizes the interpretation of the rows and columns of DS 12 and TS 12 . It turns out thatthe document and term concept spaces are identical. This is easily seen by considering the case ofa document composed of a single term. In that case Dq is a vector which selects a single column ofS 12T T . This is exactly the row of TS 12 that corresponds to the single term, and that row containsthat term's concept vector. But every document vector is simply a sum of such single-term documentvectors and Since S 12T T is a linear operator. So every document concept vector is a linear combinationof the term vectors for each term in the document. Furthermore, the document concept vector speci�esthe coe�cient applied to each term vector in this linear combination. In other words, the term anddocument concept spaces are identical, and documents are placed at the centroid of the positions of theterms in those documents.3.3 Neural NetworksThe main idea in this class of methods is to use the spreading activation methods. The usual techniqueis to construct a thesaurus, either manually or automatically, and then create one node in a hidden layerto correspond to each concept in the thesaurus. Johannes Scholtes's 1993 doctoral dissertation at theUniversity of Amsterdam is the most recent comprehensive treatment of spreading activation methodsfor information retrieval. An earlier technical report he produced contains an excellent research reviewand extensive references [65]. Earlier work on the topic includes the papers by Doszkocs et. al. [15],Kwok [38], Belew [4], Salton and Buckley [64] and Cohen and Kjeldsen [8].Implementation details are discussed in [77]. Jennings and Higuchi have reported results for a systemdesigned to �lter USENET news articles in [34]. Their implementation achieves reasonable performancein a large-scale information �ltering task.
15



4 Conclusions - RecommendationsWe have discussed the traditional methods for information retrieval (IR), along with some recent devel-opments that try to capture semantic information. >From the traditional methods, the recommendationsare as follows:� full text scanning is recommended for small databases (up to a few Megabytes); 'agrep' is therecommended search package.� inversion is the industry work-horse, for larger databases� the major ideas from clustering are two: (a) the relevance feedback and (b) the ability to provideranked output (ie, documents sorted on relevance order)For the more recent developments, there are no concrete conclusions yet. Indexing on phrases providessome small improvements (from negative up to 20% savings [10]) on the precision/recall performance,at the expense of more elaborate preprocessing of the documents (full or partial parsing and syntaxanalysis). LSI provides improvements on precision/recall, requiring (a) the availability of a trainingcorpus, on which to build the term-document matrix and perform the SVD and (b) a large amount ofcomputer time, since the SVD of an m� n matrix is worse than quadratic on the smallest dimension.Thus, the overall conclusion is that the more recent methods (NLP, LSI, neural networks etc) seempromising. However, it is not clear yet how to extract the maximum bene�ts from them. A lot ofon-going research is exactly concentrating on this issue.References[1] A.V. Aho and M.J. Corasick. Fast pattern matching: an aid to bibliographic search. CACM,18(6):333{340, June 1975.[2] Brian T. Bartell, Garrison W. Cottrell, and Richard K. Belew. Latent semantic indexing is anoptimal special case of multidimensional scaling. In Nicholas Belkin et al., editors, Proceedingsof the Fifteenth Annual International ACM SIGIR Conference on Research and Development inInformation Retrieval, pages 161{167. ACM, June 1992.[3] I.J. Barton, S.E. Creasey, M.F. Lynch, and M.J. Snell. An information-theoretic approach to textsearching in direct access systems. CACM, 17(6):345{350, June 1974.[4] Richard K. Belew. Adaptive information retrieval: Using a connectionist representation to retrieveand learn about documents. In N. J. Belkin and C. J. van Rijsbergen, editors, Proceedings of theTwelfth Annual International ACMSIGIR Conference on Research and Development in InformationRetrieval, pages 11{20. ACM, June 1989. 16



[5] R.S. Boyer and J.S. Moore. A fast string searching algorithm. CACM, 20(10):762{772, October1977.[6] Eric W. Brown, James P. Callan, and W. Bruce Croft. Fast incremental indexing for full-textinformation retrieval. Proc. of VLDB Conf., pages 192{202, September 1994.[7] K. Church. A stochastic parts program and noun phrase parser for unrestricted text. Proc. of theSecond Conf. on Applied Natural Language Processing, pages 136{143, 1988.[8] Paul R. Cohen and Rick Kjeldsen. Information retrieval by constrained spreading activation insemantic networks. Information Processing and Management, 23(4):255{268, 1987.[9] W.S. Cooper. On deriving design equations for information retrieval systems. JASIS, pages 385{395, November 1970.[10] W. Bruce Croft, Howard R. Turtle, and David D. Lewis. The use of phrases and structured queriesin information retrieval. Proc. of ACM SIGIR, pages 32{45, October 1991.[11] W.B. Croft. A model of cluster searching based on classi�cation. Information Systems, 5:189{195,1980.[12] Doug Cutting and Jan Pedersen. Optimizations for dynamic inverted index maintenance. Proc.SIGIR, pages 405{411, 1990.[13] Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and Richard Harsh-man. Indexing by latent semantic analysis. Journal of the American Society for InformationScience, 41(6):391{407, 1990.[14] U. Deppisch. S-tree: a dynamic balanced signature index for o�ce retrieval. Proc. of ACM"Research and Development in Information Retrieval", pages 77{87, September 1986.[15] Tamas E. Doszkocs, James Reggia, and Xia Lin. Connectionist models and information retrieval.In Martha E. Williams, editor, Annual Review of Information Science and Technology (ARIST),volume 25, pages 209{260. Elsevier, 1990.[16] R.O. Duda and P.E. Hart. Pattern Classi�cation and Scene Analysis. Wiley, New York, 1973.[17] Susan T. Dumais. Enhancing performance in latent semantic indexing (LSI) retrieval. TechnicalMemorandum TM-ARH-017527, Bellcore, September 1990.[18] Susan T. Dumais. Improving the retrieval of information from external sources. Behavior ResearchMethods, Instruments and Computers, 23(2):229{236, 1991.17



[19] Susan T. Dumais. LSI meets TREC: A status report. In D. K. Harman, editor, The First TextRetrieval Conference (TREC-1), 500-207, pages 137{152, Gaithersburg, MD, March 1993. NIST,NIST. Special Publication 500-207.[20] Susan T. Dumais. Latent semantic indexing (LSI) and TREC-2. Technical Memorandum TM-ARH-023878, Bellcore, 445 South St., Morristown, NJ 07960, January 1994.[21] Susan T. Dumais and Jacob Nielsen. Automating the assignment of submitted manuscripts toreviewers. In Nicholas Belkin et al., editors, Proceedings of the Fifteenth Annual InternationalACM SIGIR Conference on Research and Development in Information Retrieval, pages 233{244.ACM Press, June 1992.[22] P. Elias. Universal codeword sets and representations of integers. IEEE Trans. on InformationTheory, IT-21:194{203, 1975.[23] C. Faloutsos and S. Christodoulakis. Design of a signature �le method that accounts for non-uniform occurrence and query frequencies. In Proc. 11th International Conference on VLDB,pages 165{170, Stockholm, Sweden, August 1985.[24] C. Faloutsos and H.V. Jagadish. Hybrid index organizations for text databases. EDBT '92, pages310{327, March 1992. Also available as UMIACS-TR-91-33 and CS-TR-2621.[25] Christos Faloutsos and H.V. Jagadish. On b-tree indices for skewed distributions. In 18th VLDBConference, pages 363{374, Vancouver, British Columbia, August 1992. Also available as.[26] J.R. Files and H.D. Huskey. An information retrieval system based on superimposed coding. Proc.AFIPS FJCC, 35:423{432, 1969.[27] Peter W. Foltz. Using latent semantic indexing for information �ltering. In Frederick H. Lochovskyand Robert B. Allen, editors, Conference on O�ce Information Systems, pages 40{47. ACM, April1990.[28] M.C. Harrison. Implementation of the substring test by hashing. CACM, 14(12):777{779, December1971.[29] R.L. Haskin. Special-purpose processors for text retrieval. Database Engineering, 4(1):16{29,September 1981.[30] L.A. Hollaar, K.F. Smith, W.H. Chow, P.A. Emrath, and R.L. Haskin. Architecture and operationof a large, full-text information-retrieval system. In D.K. Hsiao, editor, Advanced Database MachineArchitecture, pages 256{299. Prentice-Hall, Englewood Cli�s, New Jersey, 1983.18



[31] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Computation.Addison Wesley, Reading, Mass., 1979.[32] IBM. IBM System/370 (OS/VS), Storage and Information Retrieval System / Vertical Storage(STAIRS/VS). IBM World Trade Corporation.[33] Paul S. Jacobs and Lisa F. Rau. Natural language techniques for intelligent information retrieval.In Yves Chiaramella, editor, 11th International Conference on Research and Development in Infor-mation Retrieval, pages 85{99, Grenoble, France, June 1988. Presses Universitaires de Grenoble.[34] Andrew Jennings and Hideyuki Higuchi. A user model neural network for a personal news service.User Modeling and Uaer-Adapted Interaction, 3(1):1{25, 1993.[35] W.H. Kautz and R.C. Singleton. Nonrandom binary superimposed codes. IEEE Trans. Inform.Theory, IT-10:363{377, October 1964.[36] D.E. Knuth. The Art of Computer Programming, Vol. 3: Sorting and Searching. Addison-Wesley,Reading, Mass, 1973.[37] D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings. SIAM J. Comput,6(2):323{350, June 1977.[38] K. L. Kwok. A neural network for probabilistic information retrieval. In N. J. Belkin and C. J.van Rijsbergen, editors, Proceedings of the Twelfth Annual International ACMSIGIR Conferenceon Research and Development in Information Retrieval, pages 21{30. ACM, June 1989.[39] D.L. Lee and C.-W. Leng. Partitioned signature �le: Designs and performance evaluation. ACMTrans. on Information Systems (TOIS), 7(2):158{180, April 1989.[40] M.E. Lesk. Some Applications of Inverted Indexes on the UNIX System. Bell Laboratories, MurrayHill, New Jersey, 1978.[41] David Lewis and Alan Smeaton. Workshop on: Use of natural language processing at TREC. InD. K. Harman, editor, The First Text Retrieval Conference (TREC-1), pages 365{366, Gaithers-burg, MD, March 1993. NIST, U. S. Department of Commerce.[42] David Dolan Lewis. Representation and Learning in Information Retrieval. PhD thesis, Universityof Massachusetts, February 1992.[43] Dekang Lin and Randy Goebel. Context-free grammar parsing by message passing. In Proceedingsof PACLING 93, 1993. 19



[44] Udi Manber and Sun Wu. Glimpse: a tool to search through entire �le systems. Proc. of USENIXTechn. Conf., 1994. Also available as TR 93-94, Dept. of Comp. Sc., Univ. of Arizona, Tucson, orthrough anonymous ftp (ftp://cs.arizona.edu/glimpse/glimpse.ps.Z).[45] Michael L. Mauldin. Performance in ferret: a conceptual information retrieval system. Proc. ofACM SIGIR, pages 347{355, October 1991.[46] C. Mooers. Application of random codes to the gathering of statistical information. Bulletin 31,Zator Co, Cambridge, Mass, 1949. based on M.S. thesis, MIT, January 1948.[47] G. Orosz and L. Tackacs. Some probability problems concerning the marking of codes into thesuperimposed �eld. J. of Documentation, 12(4):231{234, December 1956.[48] F. Rabitti and J. Zizka. Evaluation of access methods to text documents in o�ce systems. Proc.3rd Joint ACM-BCS Symposium on Research and Development in Information Retrieval, 1984.[49] Ashwin Ram. Interest-based information �ltering and extraction in natural language understandingsystems. In Proceedings of the Bellcore Workshop on High Performance Information Filtering,November 1991.[50] Lisa F. Rau and Paul S. Jacobs. Creating segmented databases from free text for text retrieval.Proc. of ACM SIGIR, pages 337{346, October 1991.[51] Ellen Rilo�. Using cases to represent context for text classi�cation. In Bharat Bhargava, TimothyFinin, and Yalena Yesha, editors, Proceedings of the Second International Conference on Informa-tion and Knowledge Management, pages 105{113. ACM, November 1993.[52] C.S. Roberts. Partial-match retrieval via the method of superimposed codes. Proc. IEEE,67(12):1624{1642, December 1979.[53] J.J. Rocchio. Performance indices for document retrieval. In G. Salton, editor, The SMARTRetrieval System - Experiments in Automatic Document Processing. Prentice-Hall Inc, EnglewoodCli�s, New Jersey, 1971. Chapter 3.[54] R. Sacks-Davis, A. Kent, and K. Ramamohanarao. Multikey access methods based on superimposedcoding techniques. ACM Trans. on Database Systems (TODS), 12(4):655{696, December 1987.[55] R. Sacks-Davis and K. Ramamohanarao. A two level superimposed coding scheme for partial matchretrieval. Information Systems, 8(4):273{280, 1983.[56] G. Salton. Relevance feedback and the optimization of retrieval e�ectiveness. In G. Salton, editor,The SMART Retrieval System - Experiments in Automatic Document Processing. Prentice-HallInc, Englewood Cli�s, New Jersey, 1971. Chapter 15.20



[57] G. Salton. The SMART Retrieval System - Experiments in Automatic Document Processing.Prentice-Hall Inc, Englewood Cli�s, New Jersey, 1971.[58] G. Salton. Experiments in automatic thesaurus construction for information retrieval. InformationProcessing 71, pages 115{123, 1972.[59] G. Salton. Recent studies in automatic text analysis and document retrieval. JACM, 20(2):258{278,April 1973.[60] G. Salton. Dynamic Information and Library Processing. Prentice-Hall Inc, Englewood Cli�s, N.J,1975.[61] G. Salton and M.J. McGill. Introduction to Modern Information Retrieval. McGraw-Hill, 1983.[62] G. Salton and A. Wong. Generation and search of clustered �les. ACM TODS, 3(4):321{346,December 1978.[63] Gerard Salton, James Allan, and Chris Buckley. Automatic structuring and retrieval of large text�les. Comm. of ACM (CACM), 37(2):97{108, February 1994.[64] Gerard Salton and Chris Buckley. On the use of spreading activation methods in automatic in-formation retrieval. In Yves Chiaramella, editor, 11th International Conference on Research andDevelopment in Information Retrieval, pages 147{160. ACM SIGIR, June 1988.[65] J. C. Scholtes. Neural nets and their relevance for information retrieval. ITLI PrepublicationCL-91-02, University of Amsterdam, Institute for Language, Logic and Information, Departmentof Computational Linguistics, October 1991.[66] K. Sparck-Jones. A statistical interpretation of term speci�city and its application in retrieval. J.of Documentation, 28(1):11{20, March 1972.[67] C. Stan�ll and B. Kahle. Parallel free-text search on the connection machine system. CACM,29(12):1229{1239, December 1986.[68] S. Stiassny. Mathematical analysis of various superimposed coding methods. American Documen-tation, 11(2):155{169, February 1960.[69] Tomek Strzalkowski and Jose Perez Carballo. Recent developments in natural language text re-trieval. In D. K. Harman, editor, The Second Text Retrieval Conference (TREC-2), pages 123{136,Gaithersburg, MD, March 1994. NIST.
21



[70] Tomek Strzalowski. Natural language processing in large-scale text retrieval tasks. In D. K. Harman,editor, The First Text Retrieval Conference (TREC-1), pages 173{187, Gaithersburg, MD, March1993. NIST, U.S. Department of Commerce.[71] D.M. Sunday. A very fast substring search algorithm. Comm. of ACM (CACM), 33(8):132{142,August 1990.[72] Anthony Tomasic, Hector Garcia-Molina, and Kurt Shoens. Incremental updates of inverted listsfor text document retrieval. ACM SIGMOD, pages 289{300, May 1994.[73] D. Tsichritzis and S. Christodoulakis. Message �les. ACM Trans. on O�ce Information Systems,1(1):88{98, January 1983.[74] C.J. Van-Rijsbergen. An algorithm for information structuring and retrieval. Computer Journal,14(4):407{412, 1971.[75] C.J. Van-Rijsbergen. Information Retrieval. Butterworths, London, England, 1979. 2nd edition.[76] Edgar B. Wendlandt and James R. Driscoll. Incorporating a semantic analysis into a documentretrieval strategy. In A. Bookstein, Y. Chiaramella, G. Salton, and V. V. Raghavan, editors,Proceedings of the Fourteenth Annual International ACM/SIGIR Conference on Research and De-velopment in Information Retrieval, pages 270{279. ACM, October 1991.[77] Ross Wilkinson and Philip Hingston. Using the cosine measure in a neural network for documentretrieval. In A. Bookstein, Y. Chiaramella, G. Salton, and V. V. Raghavan, editors, Proceedingsof the Fourteenth Annual International ACM/SIGIR Conference on Research and Development inInformation Retrieval, pages 202{210. ACM, October 1991.[78] Sun Wu and Udi Manber. Agrep - a fast approximate pattern searching tool. In USENIX Confer-ence, January 1992.[79] C.T. Yu, K. Lam, and G. Salton. Term weighting in information retrieval using the term precisionmodel. JACM, 29(1):152{170, January 1982.[80] C.T. Yu and W.S. Luk. Analysis of e�ectiveness of retrieval in clustered �les. JACM, 24(4):607{622,October 1977.[81] C.T. Zahn. Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans.on Computers, C-20(1):68{86, January 1971.[82] G.K. Zipf. Human Behavior and Principle of Least E�ort: an Introduction to Human Ecology.Addison Wesley, Cambridge, Massachusetts, 1949.22



[83] Justin Zobel, Alistair Mo�at, and Ron Sacks-Davis. An e�cient indexing technique for full-textdatabase systems. VLDB, pages 352{362, August 1992.

23



Contents1 Introduction 22 Traditional text retrieval 22.1 Full text scanning : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22.2 Signature Files : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 32.3 Inversion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 52.4 Vector Model and Clustering : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 62.4.1 Cluster generation methods : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 62.4.2 Cluster searching : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 93 Using Semantic Information 103.1 Natural Language Processing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 103.2 Latent Semantic Indexing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 113.2.1 Notation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 123.2.2 Document Matching : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 123.2.3 Term Matching : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 143.2.4 Concept Space : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 153.3 Neural Networks : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 154 Conclusions - Recommendations 16

i


