
1

CAR-TR-770 April 1995
CS-TR-3472
ISR-TR-95-52

A Family of
User Interface Consistency Checking Tools

Rohit Mahajan and Ben Shneiderman1

Human-Computer Interaction Laboratory
Center for Automation Research

1Department of Computer Science
Institute for Systems Research

University of Maryland, College  Park, MD 20742-3255  USA
email: mahajan@cs.umd.edu, ben@cs.umd.edu

ABSTRACT

Incorporating evaluation metrics with GUI development tools will help designers create

consistent interfaces in the future. Complexity in design of interfaces makes efficient

evaluation impossible by a single consistency checking evaluation tool. Our focus is on

developing a family of evaluation tools in order to make the evaluation process less

cumbersome. We have developed a dialog box typeface and color table to facilitate

detection of anomalies in color, font, font size, and font style. Concordance tools have been

developed to spot variant capitalization and abbreviations globally in the interface and

specifically in the button widgets. As buttons are frequently used widgets, a button layout

table has been created to spot any inconsistencies in height, width and relative position

between a given group of buttons if present.  Finally, a terminology basket tool has been

created to identify unwanted synonyms of computer related terms used in the interface

which may be misleading to the end user.



2

KEYWORDS: Automated metrics, consistency checking tools, concordance tools, spatial

and textual evaluation tools, user interface

Proc. of the Twentieth Annual Software Engineering Workshop, SEL-95-004 (Greenbelt,

MD, Dec. 1995) NASA Pub., 169-188.



3

1.  INTRODUCTION AND PREVIOUS RELATED RESEARCH

Creating user interfaces is a composite procedure involving iterative design, usability

testing and evaluation processes (Shneiderman, 1992).  Iterative refinement methods like

Formative Evaluations can be used to design/redesign  the interface from early

development stages through completion stage ( Hix & Hartson, 1993).  Interactive tools

like IDEAL (Interface Design Environment Analysis Lattice) support procedures like

Formative Evaluations (Ashlund & Hix, 1992).  Recent advances in powerful user

interface development tools have expedited the interface development process helping both

novice and experienced developers.  However these expeditiously created designs may  be

clogged with  spatial and textual inconsistencies that may have a subtle and negative impact

on interface usability.

Inconsistencies in spatial and textual style of an interface designed by several designers'

may result in a chaotic layout. Each designer may have different interpretation of

terminology and uses his/her own style of abbreviations and computer terms. Furthermore

designers personal preferences on fonts and colors add to the problem in  group designs.

Such anomalies in terminology and format lead to poor design, ultimately misleading and

confusing the user (Chimera & Shneiderman, 1993). Although many organizations are

adopting more stringent usability testing standards to monitor quality and layout of the

design, better automated evaluation tools are needed which would scan for inconsistencies

in the interface layout at early design and development stages thereby decreasing the

complexity of usability testing.

Usability testing is a highly beneficial but costly process when compared with automated

evaluation. Prerequisites for these tests may include availability of developed working

prototypes, test users and expert evaluators (Sears, 1994).  These requirements are

hindrances in this very powerful evaluation method.  Alternative techniques like Heuristic

Evaluations (Nielsen & Molich, 1990) can decrease but not eliminate these requirements.

Furthermore usability testing works best for  smaller applications. It is practically

impossible to analyze every dialog box in an application with thousands of dialog boxes.

Finding anomalies or differences while reviewing thousands of dialog boxes is even hard

for expert reviewers who may leave undetected flaws and inconsistencies. In contrast

automated evaluation tools can be used in early prototypes (or later iterations) and can

detect anomalies across thousands of dialog boxes.



4

Automated evaluation tools can be made independent of platform and development tool, as

textual and spatial properties are independent of these constraints. Research in automated

design and evaluation tools in recent years has resulted in development of first generation

test models and systems based on metrics. Spatial metrics to check consistencies in

alignment, screen symmetry, screen balance, average distance between groups of items,

percentage of screen used to display information, average size of groups of items were

introduced by Strevler and Wasserman (1987) and were later implemented by

Tullis(1988).  Furthermore Kim and Foley (1993) used metrics as a constraint for design

space and layout style. They developed a tool which generated potential designs for an

interface when provided with design specifications and guidelines for metrics.

Effectiveness of their metrics has not yet been evaluated.

Evolution of modern user interfaces like multimedia interfaces has sparked research in

automated evaluation based on visual techniques. Vanderdonckt and Gillo (1994) proposed

five visual techniques: physical, composition, association, ordering and photographic

which identified more spatial properties than traditional balance, symmetry and alignment.

These visual properties also include proportion, neutrality, singularity, repartion, grouping,

sparing, simplicity etc. Dynamic strategies for automated evaluation using these visual

techniques have been introduced. (Bodart, Hennebert, Leheureux and Vanderdonckt,1994).

Visual metrics introduced above for traditional layout grids and multimedia layout frames

have not yet been tested.

Sears (1993, 1994) has developed a first generation tool using automated metrics for both

design and evaluation using Layout Appropriateness metrics. The tool AIDE (semi-

Automated Interface Design and Evaluator) allows designers to create, evaluate and

modify an interface using a single tool.  Layout Appropriateness compares layout based on

user's task sequences and frequencies. AIDE has demonstrated its effectiveness in

analyzing simple interfaces.

2. METRICS EVALUATION USING CANONICAL FORMAT

Our research evolved from the concept of converting interface form files generated by

Visual Basic into canonical format files and feeding them as input to the evaluation

program. The canonical format is an organized set of GUI object descriptions. These object

descriptions are enclosed in curly braces and embrace information in a sequence of

attribute-value pairs. The canonical format is advantageous because of its lucidity and



5

extendibility characteristics. It can be easily modified to include any new attribute

encompassing interface description information  in the form files.

A metrics evaluation program takes the canonical format file and first does preprocessing

for two basic reasons, to extract relevant information and possibly to expand objects'

descriptions (e.g., absolute coordinates, sibling information, etc.). Any class hierarchy or

other related specifications are not part of the canonical format.  Such things exist as

separate documents.

The canonical format file uses unique keys for all objects that are constructed via parent-

self ID pairs.  (If a parent-self ID pair is not unique, then all non-unique occurrences get

enlarged to be parent-parent-self ID triples, and so on until uniqueness is achieved.)  The

attribute called "unique-id" is provided in the event that the originating system has the

capability to supply unique numbers for objects.  If not supplied, this value can be filled in

by expansion programs. Each object is completely self contained and has no information

about child objects, except for menus.  Menu objects describe their child objects within the

menu's own description in a hierarchical fashion. A generic object can list any of the

following attribute-value pairs. Those marked with an asterisk (*) are required.

{*type Object-value
 *parent ID
 *resource-id String
  name String
  variable-reference String
  unique-id Number
 *top Coordinate (relative to parent)
 *left Coordinate (relative to parent)
 *width Coordinate
 *height Coordinate
 *unit-of-measure-width Unit-value
 *unit-of-measure-height Unit-value
 *border-is-visible Boolean
 *background-color Color
 *foreground-color Color
  font-family String
  font-size Number
  font-is-bold Boolean
  font-is-italic Boolean
  font-is-underline Boolean
  font-is-serif Boolean
  label-type Label-value
  label String
  label-background-color Color
  label-foreground-color Color
  label-justification Justification-value
  label-placement Placement-value
  label-font-family String
  label-font-size Number
  label-font-is-bold Boolean
  label-font-is-italic Boolean
  label-font-is-underline Boolean



6

  label-font-is-serif Boolean
  margin-top Coordinate (relative to attribute "top")
  margin-left Coordinate (relative to attribute "left")
  margin-bottom Coordinate (relative to calculated "bottom")
  margin-right Coordinate (relative to calculated "right")
  navigation-order Number
  navigation-type Navigation-value
  help-text String
  is-default Boolean (uses window origin)
  is-cancel Boolean (uses window origin)
  is-help Boolean (uses window origin)
  mnemonic Character
  menu-accelerator Key-value (type Menu-item only)
  menu-is-pinnable Boolean (type Menu only)
  menu-content Menu-value (big hierarchical description)
  task String
  comments String
}

We feel that attribute names are self-explanatory, but many of the value types appearing in

the canonical format are abstractions. The following table specifies value types that are not

completely obvious.

Number ::= nonnegative integer
ID ::= String | Number
Coordinate ::= real number (uses top-left origin)
Unit-value ::= Unit-pixel | Unit-point | Unit-MSWindows dialog-unit | ...
Color ::= String | Color-specification
Color-specification ::= RGB-triple | HSB-triple
Label-value ::=  String | Icon | String-and-icon
Justification-value ::= Justify-left | Justify-center | Justify-right
Placement-value ::= Place-left | Place-right | Place-top | Place-bottom
Navigation-value ::= Nav-parent | Nav-window (whether navigation is

relative to parent or entire window)
Character ::= a single alphanumeric character value
Modifier ::= Shift-key | Control-key | Alt-key
Key-value ::= Character + Modifier | Function-key + Modifier
Object-value ::= Window | PopupWindow | ModalPopupWindow |

   PushButton | CheckButton | RadioButton |
   Container | StaticLabel |
   ScrollingListOneSelection | ScrollingListMultipleSelection
   ScrollingListContiguousSelection |
   MenuHighestLevel | Menu | MenuItem | MenuSeparator |
   TextPane | TextPaneReadonly |
   TextPaneOneLine | TextPaneOneLineReadonly | ....
   (basically responsibility of metric conversion
   program to know about these values)

Menu-value ::= hierarchical object description of only
 Object-types  Menu | MenuItem | MenuSeparator

Our evaluation tools convert the Visual Basic form files into  canonical format through a

translator which distills relevant information from the form files. These canonical formats

are platform independent and may be created for other interface tools like Power Builder,

Galaxy and XVT by writing a translator program for these tools. So our evaluation

programs are not specific to Visual Basic and can be used for evaluating interfaces

developed by other tools.



7

2.1 Our Previous Method

This research is an extension of previous work (Shneiderman, Chimera, Jog, Stimart and

White, 1995) in which we developed spatial and textual evaluation tools. The spatial tool

was a dialog box summary table which gave  an overview of spatial and visual properties.

Each dialog box corresponded to a distinct row and each column a metric. The metrics

Aspect Ratio, Widget Totals, Non-Widget Area, Widget Density, Margins, Griddedness,

Top-Bottom Balance, Left-Right Balance and Distinct Typefaces  formed our metrics

column set. This list of metrics was developed by consultation between analysts at

University of Maryland and General Electric Information Services to evaluate categories

such as spatial layout, alignment, clustering, cluttering, fonts, etc.  The textual tool was a

concordance built to extract all the words that appear in labels, menus, buttons, etc. in every

dialog box. These words were sorted in one file with reference to the dialog boxes

containing them. The concordance was to help designers in appropriate word use such as

spelling, abbreviation, tense consistency, case consistency, passive/active voice etc.

The objective of developing  the dialog box summary table and  the concordance was to

provide interface designers rapid feedback on possible flaws and inconsistencies from early

prototyping to advanced development stages.  The gist of the tools is to help designers spot

inconsistencies  by providing a compact overview. Thus, assisting them in determining

which screens needed redesign/modifications. Our programs allowed the designers to

check  the dialog boxes for inconsistencies and the output of the dialog box summary table

revealed interesting anomalies. For example the margins were irregular and aspect ratio

(ratio of the height of a dialog box to its width) was surprisingly variant. The non-widget

area (ratio of the non-widget area to the total area of the dialog box, expressed as a

percentage) and widget density ( number of top level widgets divided by the total area of

the dialog box and multiplied by 100,000 to normalize it) varied from single digits to lower

hundreds. Numbers closer to 100 and higher for Non-Widget Area indicated high screen

utilization and  for Widget Density indicated crowding of widgets. The concordance table

revealed terms used in the interface which had variant forms including capitalization and

abbreviations. The results were useful but required too much interpretation. The

concordance report being twenty pages long made it hard for designers to spot anomalies

quickly and efficiently. The dialog box summary table was also too cumbersome to

interpret inconsistencies at a glance.



8

2.2 Modification of Previous Method

Our  new approach is to modify the large dialog box summary table and the concordance

 tools by dividing them into smaller tools, plus adding new tools. The family of

consistency checking tools was constructed by modifying our previous tools. These new

tools  perform exception reporting by outputting the possible anomalies and irregularities in

textual layout.  The reports generated by these mini tools require little interpretation, thereby

expediting the quick evaluation process and providing feedback to the designer.  The

designer then must decide whether the spotted inconsistencies are relevant to the particular

prototype. We have developed six consistency checking tools:

• dialog box typeface and color table to spot any anomalies in color, font, font size and

font style.

• interface concordance to spot variant capitalization and abbreviation in the interface.

• button concordance to spot variant capitalization and abbreviation in button widgets.

• button layout table to spot any inconsistencies in height, width and relative position

among a given group of buttons.

• interface speller to detect terms used in the interface that are nonexistent in the

dictionary.

• terminology basket to provide the interface designer with the feedback on misleading

synonym computer terms.

2.2.1 Dialog Box Typeface and Color Table

The dialog box typeface and color table was developed to provide designers feedback on

inconsistencies in fonts and colors, two of the most striking appearance features of the

interface. Each row represents a single dialog box and the columns represent dialog name,

distinct typefaces and distinct background colors.

Dialog Name: Name of the file in which dialog is contained.

Distinct Typefaces:

Typeface consists of a font, font size, bold and italics information. Each distinct typeface in

all the dialog boxes is randomly assigned an integer and is described in detail at the end of

the table.  For each dialog box all the integers representing the distinct typefaces are listed

so that the typeface inconsistencies can be easily spotted locally within each dialog box and

globally among all the dialog boxes. The idea is that a small number of typefaces should be



9

used for all the dialog boxes. Occurrence of multiple typefaces within a dialog box is not

desired.

Distinct Background Colors:

All the distinct background colors in a dialog box are displayed. Each distinct color is

randomly assigned to an integer for display and comparison convenience and is described

in detail at the end of the table. The purpose of this metric is to check if all the dialog boxes

have the same background colors. Multiple background colors in a dialog box may indicate

inconsistency.

This tool was tested with two interfaces containing 30 (small interface) and 140 (large

interface) dialog boxes respectively. Inconsistencies in fonts and colors were revealed in

both the test interfaces. The results with the smaller interface were surprising. The

designers used 17 distinct typefaces and 6 distinct colors in the small interface with only 30

dialog boxes. These inconsistencies were brought to the attention of the designers who

were amazed by the results.  A portion of the table is shown below:

No.   Dialog Name       Distinct Typefaces      Distinct Background Colors
  1 cover.cft             1 2 3 4 5 6          1
  2 coveraf.cft               1 3 4 7 8             1 
  3 coveruf.cft               1 3 4 7 8            1
  4 feed.cft            3 7 9          2 3
  5 frmcompaz.cft              3 5         1
  6 frmcompu.cft                     3 5           1
  7 frmhand.cft                     3 5                1
  8 frmlogin.cft                     3 5                   1
  9 frmlogo.cft        3 9 10 11       1 4 5
 10 frmmatch.cft                       9                1

DISTINCT TYPEFACES:
1 = MS Sans Serif 13.5        2 = Symbol 13.5 Bold
3 = MS Sans Serif 12 Bold 4 = MS Sans Serif 24 Bold Italic
5 = MS Sans Serif 13.5 Bold 6 = MS Sans Serif 18
7 = MS Sans Serif 9.75 Bold 8 = Symbol 9.75 Bold
9 = MS Sans Serif8.25 Bold 10 = Arial 18 Bold
11 = Symbol 8.25 Bold 12 = MS Sans Serif 16.5
13 = Times New Roman 24 Bold Italic 14 = Times New Roman 30 Bold
Italic
15 = System 9.75 Bold 16 = MS Sans Serif 9.75 Bold Italic
17 = MS Sans Serif 8.25

DISTINCT BACKGROUND COLORS:

1 = ffffffff80000005 2 = c0c0c0 3 = e0ffff 4 = ffffff 5 = c000006

2.2.2 Interface Concordance



10

The interface concordance tool checks for variant capitalization for all the words that appear

in buttons, labels , menus, etc. in every dialog box of the interface. This tool outputs strings

which have variant capitalization, listing all the variant formats of the string and  its dialog

box sources.  These variant forms are spelling differences and may be acceptable, but they

may be something that should be reconsidered. For example the words "Item" , "items"

and "Items:" are Variant Capitalization forms of the same word. A portion of the

concordance output is shown below:

Items
         reconly.cft    reconly.cft     reconly.cft     reconly.cft
         sendrec.cft    sendrec.cft     sendrec.cft     sendrec.cft
Items:
         moreinfo.cft
items
         wastedef.cft
Ship
         create.cft     create.cft      dp.cft          dp.cft
         invoice.cft    po.cft          po.cft          po.cft
SHIP
         invoice.cft
Execute
          exnow.cft     sched.cft       sched.cft       sched.cft
          sched.cft     sview.cft
Execute:
          scriptor.cft

2.2.3 Button Concordance

This tool is a further filtration of the interface concordance. As buttons are one

of the most frequently used widgets performing vital functions like "Save", "Open",

"Delete", "Exit" checking variant capitalization in them becomes more important. The

button concordance tool checks for variant capitalization for all the words that appear in

buttons in every dialog box of the interface. This tool outputs button labels which have

variant capitalization, listing all the variant formats and their dialog box sources.

Considerable variant capitalization in button labels was detected in both our test interfaces.

The most frequently used button labels such as "OK", "Cancel", "Exit" were not

consistently used in the same case. A portion of the button concordance output is shown

below:

Cancel
        frmcompaz.cft   frmcompu.cft    frmquesaz.cft   frmquesu.cft
CANCEL
        frmmatch.cft    l_login.cft     passwd.cft      r_login.cft
DONE
        feed.cft        graph.cft       ibm_az.cft      ibm_um.cft

        infoas.cft      infoums.cft     mulq.cft        omp.cft
Done
        info2ums.cft
Exit



11

        cover.cft       coveraf.cft     coveruf.cft     frmhand.cft
        frmlogin.cft
EXIT
        syllabus.cft

2.2.4 Button Layout Table

Given a set of buttons that frequently occur together (e.g. OK Cancel  Help), if the first

button  in the set is detected in the dialog box then the program prints the height, width and

position relative to the first button of every button detected in the list. The relative position

of every button detected in the set is outputted as (x + offset,  y+ offset) to the first button,

where offset is in pixels. Buttons stacked in rows would yield (x+ offset, y) relative

position and those stacked in columns would yield (x, y+ offset). These button columns

enable us to spot highly inconsistent sizes and relative positions of buttons within a set.

Dividing the button analysis into a family of button sets expedites inconsistency checking

process. Designers can determine  inconsistencies while browsing each button set output in

a single glance.

Our program reads an ASCII file containing different sets of buttons. These button sets

were constructed after analyzing many previously developed interfaces. Variations in

terminology were considered while constructing these button sets. Button set (Start Stop

Exit) is incomplete as designers may use "Close" , "Done" or "Cancel" instead of "Exit".

The set ( Start Stop End Pause Halt Exit Done Cancel Close)  forms  a much better button

detector set. The button sets may be easily updated as more interfaces are analyzed in the

future. Some of the sample button detector sets are:

• OK       Cancel      Help
• Start    Stop        End       Pause      Halt      Exit       Done

Cancel Close
• Cut      Copy        Paste
• Add      Remove      Delete    Copy       Clear     Cancel     Close  Exit
• Help     Close       Cancel    Exit

Output of the button detector set (Add Remove Delete Copy Clear Cancel Close Exit)

tested with the larger prototype is shown below. Inconsistency in height and relative button

positions within a button set  can be checked by moving across the rows of the table.

Inconsistency in height and relative position for a given button can be spotted by moving

down in columns. For example, the height of all the "Add" buttons are constant (25 pixels)

but the width varies from 65 pixels to 97 pixels. Also, the relative position between "Add"

and "Remove" buttons varies in all the three files in which they occur together. In the files

"archive.cft" and "autoff.cft" the "Remove" button is 15 pixels and 39 pixels down



12

respectively from the "Add" button, but in the file "dp.cft"  the buttons occur next to each

other in the same row. Also, both the buttons "Remove" and "Delete" have been used with

the button "Add" which is a terminology inconsistency.

    Add    Remove     Delete        Cancel     Close
   (H,W)  (H,W)  Rel. Pos.  (H,W)  Rel. Pos.  (H,W) Rel. Pos.  (H,W)

Rel. Pos.

archive.cft
   25,65   25,65  x, y+15        25,73  x-9,y+151     

autoff.cft
   25,73   25,73  x, y+39           25,73  x, y+71

dp.cft
   25,97   25,89  x+1,y           25,81  x+351,y

famdef.cft
   25,89         25,89  x+1, y           25,97  x+87, y

standard.cft

   25,89                25,89  x+1, y           25,89  x+175,y

2.2.5 Interface Speller

Interface Speller is a tool which reads all the terms used in widgets including menus,

buttons, list boxes, combo boxes etc. throughout the interface and outputs  words that are

not found in the dictionary. The spell checking operation is performed within the code and

all the possible misspelled words are stored in a file. This file can be reviewed by the

designer to detect possible misspelled and abbreviated words which may create confusion

for the end users. The file may also contain proper names, esoteric words or computer

words which are valid computer science terms, but are not found in the dictionary.

Interface speller was tested on the two prototypes outputting words not found in the

dictionary and their corresponding dialog boxes. The tool detected many misspelled,

incomplete and abbreviated words such as "App", "Trans", "Quik", "Provence", "Interchg"

which are spelling errors or potentially confusing abbreviations. A small portion of the

output is shown below:

addfamdf.cft
                Doc             Msg
addr.cft
                App             EDI             HDLR            UNDA

WDGT
admpwd.cft
                ADMIN           EDI
contacts.cft
                Provence        Quik
docsearc.cft
                ILOG            Interchg
dp.cft
                NAD             Trans



13

profile.cft
                Ctrl            FAX             Provence

2.2.6 Terminology Baskets

A terminology basket is a collection of computer task terms including their different tense

formats which may be used as synonyms by the interface designers. Our goal is to

construct different sets of terminology baskets by constructing our own computer

thesaurus and then search for these baskets in every dialog box of the interface. The

purpose of terminology baskets is to provide interface designers with feedback on

misleading synonym computer terms, e.g. Search, Retrieve, Query and Select.

Our program reads an ASCII file containing the basket list. The baskets are sorted

alphabetically and for each basket all the dialog boxes containing any of the basket terms

are outputted. Occurrence of labels in different cases are not preserved as unique

occurrences of terms so the labels like "VIEW", "View" and "view " are considered the

same. Any punctuation characters are stripped before comparing the labels and the basket

terms. The list of baskets may be easily updated as more interfaces are analyzed in the

future. Some of the idiosyncratic baskets are:

•  Remove Removes Removed Removing Delete Deletes Deleted Deleting Clear Clears Cleared
   Clearing Purge Purges Purged Purging Cancel Cancels Canceled Canceling Refresh Refreshed
   Refreshing
•  Execute Executes Executed Executing Run Runs Running Start Starts Started Starting Enable
   Enables Enabled Enabling Begin Begins
•  Item Items Entry Entries Record Records Segment Segments Segmented Segmenting Field Fields
•  Add Adds Added Adding Insert Inserts Inserted Inserting Create Creates Creating
•  Message Messages Note Notes Letter Letters Comment Comments

Our basket browser revealed some interesting terminology anomalies after analyzing the

large interface that led to reconsideration of designs.  As shown below terms like "record",

"segment", "field" and "item" were used in similar context in different dialog boxes. Other

interesting anomalies included use of "start", "execute" and "run" for identical tasks in

different dialogue boxes.

------------------------------------------------------------------------------- -
------Entries      Entry        Field        Fields      Item       Itemized
Itemizing       Items       Record       Records      Segment     Segmented
Segmenting   Segments
------------------------------------------------------------------------------- -
------
Field
        search.cft



14

Items
        reconly.cft             reconly.cft             reconly.cft
        reconly.cft             sendrec.cft             sendrec.cft
        sendrec.cft             sendrec.cft             wastedef.cft
Record
        ffadm.cft               profile.cft
Segment
        addr.cft                search.cft

------------------------------------------------------------------------------- -
------
Enable    Enabled    Enables    Enabling    Execute   Executed   Executes
Executing
Run       Running    Runs       Start       Started   Starting   Start
------------------------------------------------------------------------------- -
------
Enable
        admpwd.cft              admpwd.cft              eepwd.cft
        logger.cft              preferen.cft            preferen.cft
Execute
        exnow.cft               sched.cft               sched.cft
        sched.cft               sched.cft               scriptor.cft
        sview.cft
Run
        sched.cft
Start
        addr.cft                docsearc.cft

3.  Testing Our Evaluation Tools

Effectiveness of these consistency checking tools has been determined by evaluating two

commercial prototype applications developed in Microsoft Visual Basic. Our testing

method incorporates a sequence of steps beginning with applying the tools to the prototype

application followed by analysis and review of the interface screen shots and outputs

generated by our tools. Furthermore test results and interpretations were shown to

developers to elicit feedback and reactions. One prototype application was a 140 dialog box

Electronic Data Interchange Interface developed at GE Information Services and the other

was a small 30 dialog box interface developed at the University of Maryland for teaching

courses remotely via networked PC's. Our evaluation tools were not created with reference

to any particular test prototype and can evaluate any interface that is converted to the

canonical format.

The interface textual and spatial descriptions of the prototypes were inputted to the

evaluation tools in canonical format after running the translator program on the Visual

Basic form files. To facilitate analysis of the prototypes, screen shots of the interface dialog

boxes were printed. The results generated by these family of consistency checkers show

possible anomalies or irregularities in textual and spatial layout of the interface. These

evaluation tools act as consistency patrollers reporting exceptions and anomalies, making



15

interpretation easier for the developers. Developers at the University of Maryland, College

of Business & Management were surprised to know that their 30 dialog box interface had

17 distinct typefaces plus terminology inconsistencies in button labels. It was discovered

that these inconsistencies occurred as the interface was created by two developers.

Developers at GE Information Services are adapting the reports to fit their development

environment and to ensure that their internal guidelines are being adhered to. They plan to

apply these automated evaluation tools to all their projects. Our consistency checking team

is in the process of testing more complex commercial prototypes created by GE

Information Services.

4.  Limitations

Our evaluation tools are designed to aid the interface evaluation process by providing a

compact overview of possible inconsistencies and anomalies on certain textual and spatial

characteristics of the interface. The designer must decide what to do, if anything with these

possible inconsistencies. Certain issues like efficiency in screen layout including proper

placement of widgets on the dialog box, violation of any design constraints, use of

inappropriate widgets types are not evaluated by our tools. Other evaluation methods, such

as usability testing and heuristic evaluation, are needed to locate typical user interface

design problems such as inappropriate metaphors, missing functionality, confusing

terminology, chaotic screen layouts, unexpected sequencing of screens, misleading menus,

excessive demands on short-term memory, poor error messages, or inadequate help

screens. Currently, the evaluation is limited to Visual Basic applications, but any

experienced programmer can write a translator to convert interface form files  created by

other development tools to a canonical format read by our evaluation tools.

5.  Future Directions

Currently, the printouts provided by our tools showing the possible anomalies and

inconsistency patterns need to be compared manually with the interface dialog boxes.

Checking back and forth between the printouts and dialog boxes to make corrections can be

time consuming for large interfaces. It would be good to have these mini evaluation tools

in  the form of interactive evaluation and modification tools. This would help developers  to

interactively make changes to the prototype while creating it rather than amassing printouts.

In the future, we plan to incorporate the canonical format file translator and the evaluation



16

tools into a single tool  in Visual Basic.  We also plan to diversify the metrics set of our

evaluation tools to perform more detailed interface evaluation.

Acknowledgments

We appreciate the support for this project from GE Information Services and the Maryland
Industrial Partnerships program.  We thank Ren Stimart and David White at GE
Information Services for their help in every part of this project. We thank  Mun Yi at
University of Maryland, College of Business & Management for providing the test
prototype. We are grateful for draft comments from Richard Chimera, Catherine Plaisant,
Anne Rose, Andrew Sears and Zhijun Zhang. We thank Eser Kandogan and Adil Rajput
for providing programming assistance.

References

Ashlund, S. and Hix, D. (1992), "IDEAL: A tool to Enable User- Centred Design",  Proc.
   of CHI' 92 (Posters and short talk supplement to proceedings) , ACM, New York, 119-
   120.
Bodart, F., Hennebert, A.-M., Leheureux, J.-M., and Vanderdonckt, J.  (1994),
   “Towards a dynamic strategy for computer-aided visual placement”,  In Catarci, T.,
   Costabile, M., Levialdi, S., and Santucci, G. (Editors), Proc. Advanced Visual I
   nterfaces Conference ‘94, ACM Press, New York, 78-87.
Chimera, R. and Shneiderman, B. (1993),  “User interface consistency: An evaluation of
   original and revised interfaces for a videodisk library”, In Shneiderman, B. (Editor),
   Sparks of Innovation in Human-Computer Interaction , Ablex Publishers, Norwood, NJ,
   259-271.
Hix, D. and Hartson, H. R. (1993), Developing User Interfaces: Ensuring Usability
   Through Product & Process, John Wiley & Sons, New York, NY.
Kim, W. and Foley, J. (1993),  “Providing high-level control and expert assistance in the
   user interface presentation design”, Proc. of CHI’93, ACM, New York, 430-437.
Nielsen, J.  and  Molich, R., (1990)  "Heuristic evaluation of user interfaces", Proc. of
   CHI'90 , ACM, New York, 249-256.
Sears, A. (1993),  “Layout Appropriateness: A metric for evaluating user interface widget
   layouts”, IEEE Transactions on Software Engineering 19, 7, 707-719.
Sears, A. (1994),  “Using automated metrics to design and evaluate user interfaces”,
   DePaul University Dept of Computer Science Technical Report #94-002, Chicago, IL.
Shneiderman, B. (1992), Designing the User Interface: Strategies for Effective Human-
   Computer Interaction: Second Edition, Addison-Wesley Publ. Co., Reading, MA.
Shneiderman, B.,  Chimera, R., Jog, N.,  Stimart, R. and White, D.  (1995),
   "Evaluating spatial and textual style of displays", Proc. of Getting the Best from State-of
   the-Art Display Systems ‘95, London.
Streveler, D. and Wasserman, A. (1987), “Quantitative measures of the spatial properties
   of screen designs”, Proc. of INTERACT ‘87, Elsevier Science, Amsterdam, 125-133.
Tullis, T. S. (1988a),  “Screen design”, In Helander, M. (Editor), Handbook of Human-
   Computer Interaction, Elsevier Science, Amsterdam, The Netherlands, 377-411.
Tullis, T. S. (1988b),  “A system for evaluating screen formats: Research and application”,
   In Hartson, H. Rex and Hix, Hartson, Advances in Human-Computer Interaction:
   Volume 2, Ablex Publishing Corp., Norwood, NJ, 214-286.



17

Vanderdonckt, J. and Gillo, X. (1994), “Visual techniques for traditional and multimedia
   layouts”, In Catarci, T., Costabile, M., Levialdi, S. and Santucci, G. (Editors), Proc.
   Advanced Visual Interfaces Conference ‘94, ACM Press, New York, 95-104.


