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Abstract

In this paper, we extend the generalized fair reachability notion to cyclic protocols
with nondeterminism and internal transitions. By properly incorporating internal tran-
sitions into the formulation of fair progress vectors, we prove that most of the results
established for cyclic protocols without nondeterminism and internal transitions still
hold even if nondeterminism and internal transitions are allowed. We identify indefi-
niteness as a new type of logical error resulting from reachable internal execution cycles
and show that indefiniteness can also be detected for the class of cyclic protocols with
finite fair reachable state spaces with finite extensions.

1 Introduction

It is well-known that state explosion is one of the major obstacles for validating complex
protocols modeled as communicating finite state machines. As a result, many techniques
have been proposed to tackle this problem (please refer to [10] for a survey). It is observed
that in most cases, significant state reduction can be achieved if one could eliminate as
much redundancy as possible by limiting the amount of interleaving of equivalent execution
sequences during state exploration. However, care must be taken to ensure that the reduced
state space still maintains competitive, if not the same, logical error detecting capability as
the original reachable state space.

Fair reachability analysis was originally proposed as one such improved state exploration
technique for protocols with two machines [9, 6]. By forcing the two machines in a protocol
to make progress at the same time, whenever possible, only fair progress states are generated
during state exploration. If the fair reachable state space of a protocol is finite, detection of
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deadlock and unspecified reception are decidable within the fair reachable state space [9],
while unboundedness detection is decidable with finite extension on the fair reachable state
space [6].

In [7, 8], we generalized the fair reachability notion to cyclic protocols with n > 2
machines, where each machine is deterministic but partially defined and does not have
internal transitions. We showed that for a cyclic protocol P, its fair reachable state space
F is exactly the set of reachable states with equal channel length and F is finite if and only
if (iff for short) P is not “simultaneously unbounded”. Moreover, we proved that for P, the
class of cyclic protocols whose F’s are finite, deadlock detection is decidable within F [7],
while detection of other logical error, such as unspecified reception, unboundedness, and
nonexecutable transition, are all decidable via finite extension of F [8]. We also showed that
for any P € P, P is logically correct iff its F does not contain any logical errors [8]. As a
result, for class P, our generalized fair reachability analysis technique not only can achieve
substantial state reduction, but also maintains very competitive fault coverage. Therefore,
it is a very useful technique for the analysis of a wide variety of cyclic protocols.

In this paper, we are going to extend our generalized fair reachability notion to the
analysis of cyclic protocols where a process in a protocol can be nondeterministic but par-
tially defined and can have internal transitions. By incorporating internal transitions into
the formulation of fair progress vectors, we are able to show that all the aforementioned
results for cyclic protocols without nondeterminism and internal transitions still hold for
cyclic protocols with nondeterminism and internal transitions. Moreover, we observe that
the inclusion of internal transitions into the model results in a new type of logical error
called “indefiniteness”, meaning that a protocol could reach a state from which one of the
processes could indefinitely execute internal transitions without communicating with other
processes in the protocol. However, we will show that indefiniteness can also be detected
for the class of cyclic protocols whose F’s are finite, although sometimes finite extension of
F is necessary. Therefore, our generalized fair reachability technique works equally well for
the analysis of cyclic protocols with nondeterminism and internal transitions.

In [2, 3], Cacciari and Rafiq proposed a technique called reduced reachability analysis
that can handle internal transitions for protocols with two machines. However, unlike fair
reachability analysis, two machines can proceed at the same time only if the “parallelwise”
condition is satisfied. They showed that detection of deadlock and unspecified reception are
decidable for a protocol with a finite reduced reachable state space. Since their approach
is closely related to ours, we will defer the comparison of these two methods to Section 5,
after our method is presented.

The rest of the paper is organized as follows. In the following section, the communicating
finite state machine model is introduced. In Section 3, we extend the generalized fair
reachability notion to cyclic protocols with nondeterminism and internal transitions and
study the basic properties of fair reachable state space. We study the logical error detection



capability of fair reachable state space in Section 4, where we show how finite extension
can be performed on a finite fair reachable space so that logical errors other than deadlock,
including indefiniteness, can be detected effectively and efficiently. We conclude the paper
with future work in Section 6.

Due to space limitations, lemmas and theorems in this paper are stated without proofs.
Please refer to the full paper for details.

2 The CFSM Model

Notation: (1) We use - to denote concatenation. Given a set M. M™* denotes its reflexive
and transitive closure under concatenation. |M| denotes its cardinality. 2" denotes the
power set of M. For Y € M*, |Y| denotes its length. € denotes an empty string, |¢| = 0. (2)
Given n, forany 1 <i<n,0<j<n,itdj=i+jifi+j<nelseidj=(i+j)modn;
icj=i—jifi> jelseioj =1i—j+n, where mod stands for the modulo operation. (3)
An interval [i..j] is an ordered set of at most n consecutive integers ¢,i¢ B 1,...,i1 & k = j,
where (1 < ¢ <n)A(0 <k < n). The corresponding (unordered) set is denoted as {i..j}.
Let ['..7'] and [i..j] be two intervals, [¢'..5"] C [i..5] iff {¢'..;'} C {7..7}. Unless specified as
[1..n], we assume |[i..j]| < n. (4) We designate n as the number of processes in a protocol.
Unless otherwise specified, we assume n > 2 and let 7, j range over [1..n].

In the communicating finite state machine (CFSM) model, a protocol is specified as a
set of n processes P = (P, P,,..., P,), where each process P, is a finite state machine that
can communicate with other processes via F'1FO channels. For each P, S; denotes the set
of local states in P,. The initial local state of P, is denoted as s. A channel from P; to
P;,i # j,is denoted as ;. The set of messages that P, can send to P, is denoted as M,;,.
The content of '
is empty, ¢;; = €.

Let M, = (U, {—m|m € M’{}) U (U, {+m|m € M;;}). 7 denotes the partially defined
transition function: |J7_ (S, X M; — 2%). For each P;, a transition defined at local state

s; € S, is denoted as 7(s;, ), where ¢ € M,. Tt is a sending (receiving) transition if ¢ = —m

denoted as ¢, is a sequence of messages sent from P; to ;. When C;
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(o = +4m). As a convention, we use 7/ = 7(s,;,0) to give a name 7' for this transition, and
use 8! € 7(s;,0)to mean that s/ is alocal state resulting from the execution of the transition.
Similarly, 1 denotes the partially defined internal transition function: |J!'_ (S, — 2%). For
each P, an internal transition defined at s; is denoted as pu(s,;). We also use s/ € u(s;) to
mean that s/ is a local state resulting from the execution of u at s;. By definition, each P,
is nondeterministic but partially defined.

A transition cycle in P;, denoted as C,, is a cycle in the transition graph of P,. It is
an internal cycle if each transition in the cycle is an internal transition. It is a sending
(receiving) cycle in P; if it is not an internal cycle and each transition in the cycle is either
a sending (receiving) transition or an internal transition. s, is a sending (receiving) local



state iff all transitions defined in s, are sending (receiving) transitions.

A protocol P = (P, P,,..., P,) is cyclic iff each P, has exactly one input channel C;g;
and exactly one output channel C;4,. From now on, we are dealing with cyclic protocols.
For results established later in this paper, it should be clear that they apply to cyclic
protocols only. For ease of reference, we call a cyclic protocol P a D-cyclic protocol if each
P, in P is deterministic and does not contain any internal transitions.

For a cyclic protocol P = (P, P,,..., P,), a global state (state for short) S is repre-
sented as a 2n-tuple (S, 8, ..., 8,€,1,C - C,_,.), Where s; is the local state of P;, and
Cig1i is the content of channel C,g,,. In particular, the initial state S° is denoted as
(89,85 ...,8%€66...,€). S is of equal channel length iff all channel contents in S are of
the same length. For convenience, we use s; € 5 to denote that s; is a local state of 5, and
(m,s;) € S to denote that s; € S and m is at the head of channel C;5,; in 5. S is in a
sending cycle iff there is a local state s; € .5 that is in a sending cycle of P,. As a convention,
we use capital letters S, X to denote a state and small letter s; to denote a local state of P;.

The reachability relation among states is formulated as follows. Given two states S =
(81,82 v ey SnsCniy CrayeeoyCn_1n) and S = (81,85, 8l c,, .o el ). S is directly
reachable from S, denoted as 5 — S’  iff 3i € [1..n] such that the elements of 5 can
be derived from 5 by executing one of the following transitions: (1) s/ € 7(s;,—m) and
Cligi = Cign - M. (2) s, € T(s;,+m) and ¢,00; = m - €l5y,;. (3) s, € 7(s;). Except for the
elements affected by the one transition applied, all other elements of S’ remain the same as
those in 5.

Denote —* as the reflexive, transitive closure of —. S’ is reachable from S iff § —* 5.
When 5 = 5°, we say S’ is a reachable state. The set of reachable states in P is denoted as
R, called the reachable state space of P. A local state s! is reachable (from 5') iff there is a
state §” such that 5° —* 5" (5 +—* 5') and s! € 5’. (m,s!) is reachable (from 5) there is a
state S’ such that S° —* 5 (5 —* 5') and (m,s!) € §". A cycle C, in P, is reachable (from
S') if one of the local states in C; is reachable (from 5).

Suppose S° —* 57 (5 —* S’). An execution sequence of 5’ (from S to S’), denoted
as e = {e,€,,...,€,}, is a sequence X° nxr o X% k > 0, such that X° = §°
(X°=9), Xr=5 andVI:1 <1<k, X"+~ X'via transition 7', where each e, is the
corresponding (possibly empty) transition sequence in Pi. {e,e,,...,¢€,} is called a local
execution sequence set of S” (from S to S”). The length of e, denoted as |e|, is defined as the
number of transitions in e, i.e., |e| = k > 0. An execution cycle of S is a nonempty execution
sequence from S to 5, denoted as C = {C,,(C,,...,C,}, where each C, is the corresponding
(possibly empty, not necessarily elementary) transition cycle in P;. {C,,C,,...,C,} is called
a local execution cycle set of §. By definition, at least one C; is not empty. C is an internal
execution cycle of § iff each nonempty C; is an internal cycle in P,.

For protocol validation, we check R against common errors such as deadlock, unspecified

reception, nonexecutable transition, and unboundedness. (For definitions of these concepts,



please refer to [1].) The inclusion of internal transitions in the model introduces a new type
of logical error resulting from internal execution cycles. By definition, P has an internal
execution cycle iff one of the processes in P has a reachable internal cycle. A reachable
state 5" is an indefinite state iff there is an s; € S that is in an internal cycle of P, meaning
that from S and on, there is a process that could loop indefinitely through its internal
cycle without communications with its neighbors. A protocol P is indefinite iff it has an
indefinite state. It should be clear that indefiniteness is also a syntactic error that can
be checked in the same way as other aforementioned errors by inspecting each reachable
state during state exploration. Deadlock, unspecified reception, nonexecutable transition,
unboundedness, and indefiniteness are called logical errors. P is logically correct iff R is
free of logical errors. It can be shown that none of the logical errors is decidable for cyclic

protocols in general using the results established in [1].

3 Generalized Fair Reachability Analysis

Fair reachability was generalized to D-cyclic protocols with n > 2 machines in [7, 8]. In this
section, we first show how the fair reachability notion for D-cyclic protocols can be extended
to cope with nondeterminism and internal transitions for general cyclic protocols. Then we
show that the fair reachable state space still maintains the equal channel length property
and satisfies the same necessary and sufficient condition for being finite. For the sake of
space, we will be expanding on the modification part of the formulation and be brief on the
part that is unchanged. Please refer to [7, 8] for a complete treatment. For conciseness, we
use “fair reachability” for “generalized fair reachability” from now on.

Given a cyclic protocol P = (P, Py,..., P,). Let S = (5,85 .. 48,5 Cim--C,_q,) be
a state of P. Denote E7 as the set of sending transitions defined at s;. Define Ef =
{7(s8i,+m)} if (m,s;) € §; Ef = 0 otherwise. Let E, = F7 U Ef. Then E, is the set of
executable transitions at s, in 5. We also define E}* as the set of enabled transitions at s,
in 5. (7(s;,0) is enabled iff 0 = +m, c;51; = ¢, and 7(s,5,, —m) is defined.)

Denote A as the null transition, indicating no state change in a process. Let TV = {t =
(ti,ty, ... t,)} such that (i) Vi€ [l.n]: ¢, € E;U EXTif B, U EXT £ (; t;, = A otherwise,
and (i) Vi € [1.n], if t; = (s;,+m) € EXT, then {,0, = (8,01, —m) € E,. From TV, we
can compute two sets V. and V., whose elements are in the form of v = (v,,v,,...,v,) and
v € TV. For each v € V_, either Vi € [l..n] : v, € E- or Vi € [l.n] : v, € E}. In this case,
v is called a concurrency vector in 5. For each v € V,, there is at least one send-receive
pair (v;,v;g,) in which v; € E7 and v,g, € Y, U Eff. On the other hand, if v, is not
in a send-receive pair, then », = A. In this case, Vv is called a synchronization vector in 5.
Loosely speaking, in a concurrency vector, either all processes are sending or all processes
are receiving; in a synchronization vector, some processes are grouped into send-receive
pairs while the rest do not progress at all. For details, please refer to [7, 8].



To cope with internal transitions, we let E* = {u(s;,)} if p is defined at s;; Ef =
otherwise. For each E! # 0, we construct an internal vector v in 9 as follows: set v, =
p(s;) and set v; = A for each j # i. Denote V, as the set of internal vectors in §. Let
V=V.uV,uUV,. Each v € V is called the fair progress vectorin S.

The fair reachability relation is defined as follows. Given two states S = (sy,S,,.. ., Sp,
Cots Crage o s Cuyp) and S" = (8], 8, ..., 80, by, Aoy oo oy€yy,), S —5 STiff 3V € V(9) that
leads the system from S to S’. There are four cases to consider:

(1) v € V.(5). For each send-receive pair (v;,v;g,),¢ € [1..n], there are two subcases
to consider: (a) ¢e, = €. Let v; = 7(s;,—m) and v,g, = 7(S;5:1,+m). Execu-
tion of (v;,v,4,) Will cause transition 7(s,, —m) to be taken, followed by transition
7(S;g1,+m), where s € 7(s;,—m) and si;, € 7(s;51,+m). (b) ¢ # € Let
v; = T(S:, =), Vg1 = T(Sigr, +m'), and ¢, = m' - iy,
cause transitions 7(s,, —m) and 7(s,4,,+m’) to be taken in arbitrary order, where

Execution of (v;,v,4,) will

1 1 1 ! .
S, € T(Siv_m)v 5i@1 € T(Si@lv‘l'm )7 and Cu‘@1 - Cu‘@1

affected by the transitions applied in each of the send-receive pairs, all other elements

-m. Except for the elements

of S’ remain the same as those in 9.

(2) Ve V(S)AN(Vie[l.n] v, = 7(s;,—m;) € £7). The result of applying ¥ on S is
such that Vi € [1.n] : 8] € 7(s;, —m;) and ¢}, = ciig1 - M.

(3) Ve V(S)A (Vi€ [l.n]: v, = 7(s;,+m,;) € EF). Assume that before applying v,
Vi [l.n]:cigu = m,-cly,,. The result of applying v on .S is such that V¢ € [1..n]
sp € T(si,+m;) and ¢y, =l

(4) v € V,(S5). Suppose v; = pu(s;). The result of applying v on 5 is such that Vj €

[1.n]:s) € p(s;)if i = j; s = s; otherwise.

Denote —7 as the reflexive, transitive closure of . 5" is fair reachable from S iff S =% S7.
When S = 5° 5" is fair reachable. We can also define fair reachability (from ) for s/,
(m,s)), and cycle C;, respectively. The set of fair reachable states, denoted as F, is called
the fair reachable state space of P.

Note that ~— is defined in the same way as that for D-cyclic protocols [7, 8] except
for two modifications: First, internal vectors are added into V' during fair progress state
exploration. Second, due to nondeterminism, the resulting local state s/ of a transition
T(s;,0) ((p(s;) ) is written as s! € 7(s;,0) (8] € pu(s;) ) instead of 5, = 7(s;,0) (8] = p(s;) ).

Since 5° € Fis a state with equal channel length of zero and any fair progress vector in 5°
maintains the equal channel length property in the resulting state, it is not difficult to show
by induction that each fair reachable state is a reachable state with equal channel length.
Conversely, suppose 9 is a reachable state with equal channel length. Let {e,,¢,,...,¢,} bea
local execution sequence set from S° to 5. We construct a partial fair execution sequence for
S with respect to (w.r.t for short) {e,, e,,...,€,}, denoted as pfs = X° oY % X*,
such that £ > 0, X° = 5°, V0 <! <k :X'"'+—; X'via fair progress vector v,, and no



fair progress vector can be derived from {e,,e,,...,e,} in state X*. X* is called the fair
c? ). It is not

precursor of S w.r.t {e,,e,,...,e,}, denoted as fp = (88,85 ..., 85 B Py B

T Tnld
difficult to show that fp is unique w.r.t {e,,e,,...,¢e,}, although pfs is not always unique.
Note that fp € F. If fp = 9, then we are done. Suppose fp(S) # 5, then the following

lemma holds for fp.

Lemma 3.1 Let fp be the fair precursor for a reachable state S w.r.t {e;,e,,...,e,}.
If fp # 5, then the following statements are true in fp: (1) 3k € [l.n] : |ex] # 0. (2)
dk € [l.n] : |ex] = 0. (3) If |ex| # 0, let 77 be the transition from e, at s}, then 77 is
executable and 7§ # p(sh). (4) fp—* S via the remaining transitions from {e,, e,,...,€,}
in fp.

Based on this lemma, we can show that each reachable state with equal channel length
is fair reachable.

Theorem 3.1 F is exactly the set of reachable states with equal channel length.

We are primarily interested in cyclic protocols whose fair reachable state spaces are
finite. In [7], we show that for a D-cyclic protocol, F is finite iff it is not “simultaneously
unbounded”. (A cyclic protocol P is simultaneously unbounded iff VK > 03 K’ > K such
that there is a state S € R where each channel has length no less than K’.) By similar
arguments, we can also show that the same necessary and sufficient condition holds for
cyclic protocols in general, although it is also undecidable.

Lemma 3.2 Given a cyclic protocol P without reachable sending cycles. If P is un-
bounded, then P is simultaneously unbounded.

Lemma 3.3 If a cyclic protocol P is simultaneously unbounded, then its F is infinite.

Theorem 3.2 Given a cyclic protocol P with a finite F. P is unbounded iff it has a
reachable sending cycle.

Theorem 3.3 Given a cyclic protocol P. F is finite iff P is not simultaneously un-

bounded.
Theorem 3.4 It is undecidable whether a cyclic protocol P has a finite F.

In [8], we use P to denote the class of D-cyclic protocols whose F’s are finite. In this
paper, we use Q to denote the class of cyclic protocols whose F’s are finite. From the
preceding discussion, we know that Q maintains the same equal channel length property
and membership function as P. From now on, we will restrict our study to class Q. In the
rest of the paper, unless otherwise stated explicitly, when we mention a cyclic protocol P,

we mean P € Q; when we mention F, we mean that it is finite.



4 Fault Coverage of F

As with states in R, we define logical errors for states in F in a similar way. Give a state
S € F. §is a fair deadlock state if it is a deadlock state. S is a fair unspecified reception
state iff there is a receiving local state s; € S such that (i) ¢;51; = m - ¢y, and 7(s;, +m)
is not defined, or (ii) ¢;1; = €, T(8,51, —m) is defined, and 7(s;,+m) is not defined. 5 is
a fair unbounded state iff it is in a sending cycle. 5 is a fair indefinite state iff it is in an
internal cycle. The set of fair deadlock (unspecified reception, unbounded, indefinite) states
is denoted as Fy (F,,,F,,, F,;). By Theorem 3.2, a fair unbounded state is well-defined
(recall that we assume F is finite). Note that a fair unspecified reception state is not an
unspecified reception state when ¢,o;; = €. Moreover, there might be “dead end” states
in F whose V = (). However, as for D-cyclic protocols, it can be shown that the notion
of fair unspecified reception is sufficient for detecting unspecified receptions in F and the
occurrence of dead end states does not introduce new types of logical errors in F [8].

Let’s study the logical error detection capability of F. First, notice that all deadlock
states are of equal channel length zero. By Theorem 3.1, we have the following result on
deadlock detection:

Theorem 4.1 Deadlock detection is decidable for Q.

However, as for D-cyclic protocols, it is not difficult to see that for detection of logical
errors other than deadlock, F is not sufficient, and thus finite extension of F is needed.
Following the same formulation as [8], we reduce the detection of logical errors other than
deadlock in @ to two local state reachability problems as follows:

P-1 Given a local state s;, decide whether s, is reachable.
P-II Given a local state s; and a message m € M,s,;, decide whether (m, s,;) is reachable.

It should be clear that for Q, if we can solve P-I, then we can solve unboundedness
and indefiniteness detection; if we can solve P-1I, then we can solve unspecified reception
detection; if we can solve both P-I and P-II, then we can solve detection of nonexecutable
transitions. Although neither P-I nor P-II is decidable in general (using the results es-
tablished in [1]), we will show that both of them are decidable for Q@ via finite extension
of F. The line of reasoning is almost identical to that for showing them decidable for P in
[8]. As a result, we will be quite informal in the arguments we make and only highlight the
differences along the way. Interested readers should consult [8] for details.

As we have already seen, the need for finite extension in F results from the fact that
some of the reachable local states are not fair reachable. Therefore, the purpose of finite
extension is to uncover those local states. Suppose s, is reachable but not fair reachable.
Then none of the reachable states containing s, is in F. Let 5 be any reachable state with
s, € 9, and {ey,e,,...,e,} be a local execution sequence set for S. Let pfs and fp be a

partial fair execution sequence and the fair precursor for S w.r.t {e;,e,,...,€,}, respectively.



By Lemma 3.1, we can find a maximal interval [i..k] in fp such that Vj € [i..k] : |¢;] # 0.
Moreover, let 77 be the transition from e; at s%, then 777 # p(s?) and is executable in fp.
Starting from fp, we construct the set of states fair reachable from fp as follows: In
each such state 97, each fair progress vector v is computed as usual except that v; must
take on the transition from e; if (j € [i..k]) A (le;] # 0). Without loss of generality, let’s
assume that none of the e,’s becomes empty during the construction. Let F*}; be the set
of states from the construction whose sum of the remaining transitions in {e,, €41, .., €}
is minimum. Note that if §" € F7*}; and 5" is fair reachable from S’ by the construction,
then $” € F*yy. More importantly, S” is fair reachable from S without progress in [i..k].
Let U, ,; = (U, gy, u,) be the transition vector associated with a state 5" € Fp,
then 1, ,; is a proper incompatible transition vector (pitv) in §. (u, ,, is a pitvin 5 iff it
satisfies the following four conditions: (1) Each transition in the vector is executable in §
and is not an internal transition. (2) S does not have a concurrency vector. (3) There is
no send-receive pair in @ ,,. (4) neither u, nor u, appears in a send-receive pair in any
synchronization vector in §.) In fact, W, ,; is the same for any S" in F{"}, and thus is a
persistent proper incompatible transition vector (ppitv) in S. (A pitv 6, ,, is persistentin §
iff it is also a pitvin any state fair reachable from S without progress in [i..k].) Denote U}, j
(Wi k) as the set of pitv’s (ppitv’s) in 5. Notice that although the preceding discussion is
based on reachability of s,, it also applies to the reachability of (m,s,). To sum up, we

have the following lemma:

Lemma 4.1 A local state s, ( (m,s,) ) is reachable but not fair reachable only if there
is a state 5" € F such that Wy, ;; # 0in 57, k € [i..j], and s, ( (m,s) ) is reachable from 5’

Therefore, the extension of F should be based on the set of states in F whose Wy, ;; # 0
for some interval [i..j]. To reduce the cost of extension, we want to compute a extension set
F, C F such that its membership can be easily decided and there is a state S € F whose
Wy # 0 only if Fr # 0.

Let’s see how F; can be computed. Given a state S € F whose W, ;; # (). We construct
a graph FRGy; ;; where 5 is the initial node and each node in the graph stands for a state
fair reachable from S without progress in [i..j]. Then we construct the quotient graph
QFRG, ;, such that each node is a strongly connected component (SCC') in FRGy,_j,
denoted as [5], where §' is a state in that SCC. Then QFRG, , is a directed acyclic
graph (DAG). The initial node is denoted as [S]. Let TN be the set of terminal nodes
in QFRG, ;. By definition of ppitv, it is clear that W, ;;(5') = W ;(5") if [57] = [5”].
Denote W, ;1([9']) as the set of ppitv’s in any state in [S’]. Then it is also obvious that
Wi a(S) = Nisn e o Wi ([97])- Since we assume Wy, () # 0, it follows that V[S'] €
TN : Wy 4([97) # 0. As a result, we only need to focus on those nodes in TN. Given a
node [S'] € TN, there are two cases to consider: (1) [S’] contains only one state S’ but

no outgoing edges. (2) There is a fair execution cycle (i.e., a cycle in the corresponding



SCC in FRGy, ;;) among states in [S’]. Unlike D-cyclic protocols, a fair execution cycle
might consist of internal transitions only. In any case, the following lemma shows that [S']

contains some error state. Note that W, ; C Uy ;; for any ' and [i..5].

Lemma 4.2 Given S € F and an interval [i..j]. If U}, ;; # 0 in S and S does not have
any fair progress vector without progress in [i..j], then S is a fair unspecified reception state.
If S is in a fair execution cycle without progress in [i..j], then § is either a fair unbounded
state or a fair indefinite state.

Let ¥ = F,, UF,, UF,,. Clearly, F; can be easily computed during the construction
of F. From Lemma 4.1 and 4.2, F; is exactly the extension set we want. Thus to solve both
P-1 and P-II for Q, we only need to finitely extend those states in F.

Given a state S € F,. An interval [i..j] is an incompatible interval in S if Uy ;;(5) # 0.
Let I.J be the set of incompatible intervals in S, then ([.J,C) is a partially odered set.
Denote I'm.J as the set of maximal elements in (I.J, C). Our finite extension procedure is
based on the finite extension of part of a state S indexed by each [i..j] € ImJ of § for
each § € F,. Similar to the approach used for D-cyclic protocols, we can show that such
extension can be done in a finite way so that both P-I and P-II is solvable for 5. The
formulation of the reachability relation among partial states is the same as that in [8] except
for two modifications, as were pointed out in the formulation of fair reachability relation in

Section 3. For details, please refer to [8].

Theorem 4.2 Both P-I and P-II are decidable for Q. Therefore, detection of unspeci-
fied reception, unboundedness, nonexecutable transition, and indefiniteness are all decidable

for Q.

During the process, we have also found out a fault coverage characterization for F similar
to that for F of a D-cyclic protocol [8]. The only difference is that we need to take fair
indefinite states into account.

Theorem 4.3 Given a cyclic protocol P € Q. P has a deadlock iff F,, # (. P has an
unspecified reception but F,, = ¢ only if F,, UF,, # 0. P is unbounded but F,, = () only
if F,, UF,, # 0. P is indefinite but F,;, = § only if F,, UF,, # 0. P has a nonexecutable
transition that is not detectable via F only if F,, UF,, UF,; # (. P is logically correct iff
F does not contain any logical errors.

As a result, F not only offers substantial state reduction over R but also is very compet-
itive in fault coverage. Furthermore, the decision procedures can be optimized for efficiency
in a similar way as for P. We refer the interested readers to [8] for details.

A final remark on indefiniteness is in order here. Given a reachable internal execution

cycle C = {C,,C,,...,C,}, there is a nonempty C; that is an internal cycle of P,. A special
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case is when each C; is an internal cycle of P,. Suppose C is such an execution cycle of
S, then once P enters state 5, each process could execute internal transitions indefinitely
without any communications occur in P. In this case, we say P is globally indefinite. If
we define a function ¢ that marks each normal transition in P, as “progress” and marks
each internal transition in P; as “nonprogress”, then global indefiniteness becomes a special
case of livelock defined in [4, 5, 7]. In [7], we generalized the results of [4, 5] from n = 2 to
n > 2 and showed that livelock is decidable within F for class P. With the fair reachability
notion formulated in Section 3 of this paper, it is not difficult to show that livelock is also
decidable for Q within F. As a result, global indefiniteness is also decidable for @ without
finite extension on F.

5 Discussion

Through this study, it is clear that the adaptation to nondeterminism in the model can
be done without much modification in the original formulation. The inclusion of internal
transitions, on the other hand, has several implications: First, internal transitions must
be incorporated into the formulation of fair progress vectors. In order to ensure that each
reachable state with equal channel length is also fair reachable, each internal transition
in a state must be executed individually, which leads us to treat normal transitions and
internal transitions in a state separately when computing the set of fair progress vectors in
that state. Second, the clean separation between normal and internal transitions allows us
to adapt our approach in the augmented model with little effort. However, allowing each
process to execute only one (internal) transition at a time is inconsistent with the general
philosophy of fair progress state exploration. As a result, more redundancy is introduced
in the state exploration process due to the interleaving of equivalent execution sequences.
Third, the existence of a reachable internal cycle in a process results in a new type of logical
error called indefiniteness. Since the set of fair indefinite states is a subset of the extension
set, finite extension is in general more costly than the one in [8] for D-cyclic protocols.

A closer look at indefiniteness leads to the following generalization: A cyclic protocol P
is k-indefinite iff P has a reachable internal execution cycle C = {C,,C,,...,C,} in which there
are at least k € [1..n] nonempty C,’s in C. Clearly, indefiniteness and global indefiniteness
represent the two ends of the k-indefiniteness spectrum and we know that both of them
are decidable for Q. We can also generalize the livelock notion in [4, 5, 7] to k-livelock
for cyclic protocols in a similar way. We already know that n-livelock is decidable for Q.
Moreover, P-1 being decidable for Q implies that 1-livelock is also decidable for Q. Now the
question is whether k-indefiniteness, or more generally k-livelock, can be decided effectively
and efficiently based on F for cyclic protocols in @ when n > 2 and 1 < k < n. We are
currently working on this issue.

While the notion of internal transitions has been used extensively in other models such
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as the labeled transition systems (LTS for short) model, the study of this notion in the CF'SM
model has been limited. The reduced reachability analysis approach by Cacciari and Rafiq
[2, 3] seems to be most closely related to the present work in that reduced progress is
quite similar to fair progress and internal transitions are allowed in their model. However,
there are several differences between their approach and ours: First, reduced reachability
analysis was proposed for protocols with n = 2 machines. It remains to be shown whether
this technique can be generalized to protocols with n > 2 machines. In addition, they
assumed no internal cycles in the protocols. Although it seems that their technique can
also handle internal cycles, it is not clear why such restriction was made in their formulation.
Second, the “parallelwise” condition imposed on reduced transitions implies that it is not
always possible for the two machines to proceed simultaneously. Thus not every reduced
reachable state is of equal channel length. This, we feel, makes it more difficult to find a
(sufficient) condition for the class of protocols with finite reduced reachable state spaces.
Third, since each channel is empty in the initial state and only one machine is allowed to
proceed when both channels are empty in reduced state exploration, the reduced reachable
state space properly includes the fair reachable state space if the protocol has more than one
reachable state, as is the case for most protocols. For n = 2, although their approach can
detect deadlocks and unspecified receptions without extending the reduced reachable state
space, fair reachability analysis can accomplish the same task without finite extension and
generates much fewer states for most protocols. Even if their technique can be generalized
to cyclic protocols with n > 2 machines and can still detect unspecified receptions within
the reduced reachable state space, it is not clear whether the saving in finite extension can
be paid off by generating more states. Besides, it remains to be seen whether detection of
unboundedness and nonexecutable transitions can be done using their approach. To sum
up, compared with reduced reachability analysis, our approach has the advantage that it
can be applied to a much larger class of protocols, can detect more types of logical errors
in a protocol, and is quite efficient in terms of both space and time.

6 Conclusion

In this paper, we extended the generalized fair reachability analysis technique to cyclic
protocols with nondeterminism and internal transitions. We showed that most of the results
established for cyclic protocols without nondeterminism and internal transitions in [7, §]
can be carried over to cyclic protocols with nondeterminism and internal transitions. We
identified indefiniteness as a new type of logical error and showed that its detection is also
decidable for @ via finite extension of the fair reachable state space. As a result, our
technique works equally well for the class of cyclic protocols with finite fair reachable state
spaces even if nondeterminism and internal transitions are allowed.

As for future work, we are going to address the following issues: (1) k-indefiniteness and
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k-livelock; (2) More general and yet regular protocol communications topologies; and (3)

Other formal models such as the extended finite state machines model.
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Appendix: Proofs of Lemmas and Theorems

Lemma 3.1 Let fp be the fair precursor for a reachable state S w.r.t {e;,e,,...,e,}.
If fp # 5, then the following statements are true in fp: (1) 3k € [l.n] : |ex] # 0. (2)
dk € [l.n] : |ex] = 0. (3) If |ex| # 0, let 77 be the transition from e, at s}, then 77 is
executable and 7§ # p(sh). (4) fp—* S via the remaining transitions from {e,, e,,...,€,}
in fp.

Proof: {€1,€,,...,€,} being a local execution sequence set for S implies that there
is no deadlock or unspecified reception during the execution of transitions in {e;, e,,...,€,}
from S° to 5. Since fp # 9, there must be some transitions in {e,,e,,...,e,} remained
to be executed in fp, i.e., 3k € [l..n] : |e,] # 0. Thus, (1) holds. Suppose |e,| # 0,
then 77 cannot be an internal transition, otherwise an internal vector can be found in fp.
If 77 is a sending transition, then it is executable. Hence, 7¥ is not executable only if it
is a receiving transition and cj,, = €, otherwise there will be an unspecified reception
along {e,,e,,...,e,}. In this case, there must be at least one such 77, |e;| # 0, that is a
sending transition; otherwise the protocol cannot precede beyond fp to reach 5. As a
result, a send-receive pair can be derived from the transitions in fp, which contradicts the
assumption that no fair progress vector can be derived from fp based on the remaining
transitions in {e,, €,,...,€,}. Therefore, if |e,| # 0, then 7§ must be executable, i.e., (3)
holds. Suppose now Vi € [1..n] : |e;| # 0, then each 77 is executable. As a result, either
a concurrency vector or a synchronization vector can be derived from t = (TP, 7F, ..., TE),
which also contradicts the assumption that no fair progress vector can be derived from fp
based on the remaining transitions in {e,,€,,...,e,}. Thus, 3k € [1..n] : |e,| = 0, i.e., (2)
holds. Finally, by induction on the number of remaining transitions in {e,,e,,...,e,} from

fp to S, it is obvious that S is reachable from fp via those remaining transitions, i.e., (5)

holds. H

Theorem 3.1 F is exactly the set of reachable state with equal channel length.

Proof:  We need to show that 5 is fair reachable iff it is a reachable state with equal
channel length.

(Only If:) Suppose S is fair reachable. Then S is reachable. Let fs be a fair execution
sequence for S. Denote fs = X° BB N X* k>0, where X° = §° Vje€[l.k]:
X?7" ¢ X’ via fair progress vector v;, and X* = 5. We claim that § is of equal channel
length by induction on k.

Basis: k = 0. In this case, S = 5°. The claim holds trivially.

Induction: Suppose S is of equal channel length for & = &’ > 0. We want to show for
k = k' + 1. Note that X*~! is fair reachable via a fair execution sequence of length &’. By
induction hypothesis, X*~' is of equal channel length. Now, X*~* —; § via fair progress
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vector V. If v, is a concurrency vector, then it will either increase each channel length by
one or decrease each channel length by one when applied to X*~*. If ¥, is a synchronization
vector or an internal vector, then it will not change the length of any channel when applied
to X’~'. Hence, S is also of equal channel length. The claim holds for & = &’ + 1.

Therefore, S is a reachable state with equal channel length.

(If:) Suppose S is a reachable state with equal channel length K > 0. We want to show
that §' is fair reachable. Let {e, e,,.. ., €,} be alocal execution sequence set for S and fp be
the fair precursor of S w.r.t {e;,e,,...,e,}. Then fp is fair reachable. From the preceding
argument, fp is of equal channel length. Let K’ be the channel length in fp. Let [i..j] be
an interval in fp such that V& € [i..j] : |ex] # 0 and |e;0:| = |€;6:] = 0. By Lemma 3.1,
such an interval exists. Moreover, Vk € [i..j] : 77 # u(sh) and is executable in fp. Note
that in this case, either 77 is a receiving transition or 77 is a sending transition. Otherwise,
a send-receive pair can be derived from (77, 7fy,,...,7/), which contradicts the assumption
that no fair progress vector can be derived from fp. There are three cases to consider:
(1) K’ < K. Note that the length of channel C;,, cannot be increased. By the time
the protocol gets to 5, the length of channel C;o;; will be less than K.

(2) K’ > K. Note that the length of channel C};4, cannot be decreased. By the time
the protocol gets to .5, the length of channel C},,, will be greater than K.

(3) K’ = K. There are two subcases to consider:

(a) 77 is areceiving transition. Then after the execution of 77, the length of channel
Cig1; Will be K — 1. Note that the length of channel C;5;; cannot be increased.
By the time the protocol gets to S, the length of channel C;4;; will be no greater
than K — 1.

(b) 77 1is a sending transition. Then after the execution of 77, the length of channel
Ci;e1 will be K + 1. Note that the length of channel cannot be decreased. By
the time the protocol gets to 5, the length of channel will be no less than K + 1.

In all cases, there will be a channel whose length is not K when the protocol gets to 9,
which contradicts the assumption that 5 is of equal channel length K. Hence, § is fair

reachable.

Lemma 3.2 Given a cyclic protocol P without reachable sending cycles. If P is
unbounded, then P is simultaneously unbounded.

Proof:  Since P is unbounded, P has at least one unbounded channel. Without loss
of generality, suppose channel ('}, is unbounded.

Since (', is unbounded, there must exist an infinite execution sequence e={e,, e,,...,¢€,}
such that for any k£ > 0, there is a state reachable via a prefix of e such that |¢j,| > K.
Moreover, since each process P, has no reachable sending cycles, each e; is composed of

15



infinitely many sends and receives, and there can only be at most |S;| — 1 consecutive
receives before a send in e,, where |S,| is the number of states in P,. As a result, there
must be at least one such execution sequence along which P can proceed indefinitely, i.e.,
no unspecified reception can occur along this sequence, otherwise ', will be bounded. Fix
e ={e, e, .., 6,} as such an execution sequence.

Define a function f :[0..n — 1] — N, N being the set of natural numbers, as follows:

. 1 ife=0
fl) = . : :
L+ |Snecen| X f201) f0<i<n

Based on the preceding argument, for any K > 0, there is a state S = (81,82, .., 8, €1y
€124+, Cn_1,) Teachable via a prefix of e such that |¢,] = f(n S 1) X K', where K’ > K.
If all other channels have more than K messages, we are done. Suppose not, starting from
S, in the order from P, to P,, each process P,,i € [2..n], can receive |S;| X f(n & i) x K’
messages from channel C,oy;, and as a result, send at least f(n & j) messages to channel
Ciigr- In the end, the protocol must arrive at a reachable state such that each channel
should have at least K’ messages. Therefore, there is a reachable global state in which each
channel length is greater than K, i.e., P is simultaneously unbounded. W

Lemma 3.3 If a cyclic protocol P is simultaneously unbounded, then its F is infinite.

Proof: = We first show the following: if there is a reachable state S = (51,85, ..,8,, €15
€129y Cn_1,) Such that Vi € [1..n] 1 |¢iiq:] > K for some constant K > 0, then there exists
a fair reachable state 5" = (S, Sy, . . .y Sy Copy Crp - s C_y) such that Vi € [Ln] :|cyg,| > K.

First,if § € F, then let $” = S, we are done. Second, if K = 0, then let §/ = 59,
and we are done. Now suppose S ¢ F and K > 0. Let e = {e,,e,,...,€,} be an
execution sequence for 5. Based on {e,,e,,..., e,}, we construct the partial fair
execution sequence for S to get to fp, the fair precursor of 5. Clearly, fp € F
and is of equal channel length by Theorem 3.1. Suppose fp is of channel length
K'. If K’ > K, then let ' = fp, and we are done. Suppose not, by Lemma 3.1,
Jk € [l..n] : |e,] = 0. Note that from state fp and on, the length of channel
Cirg1 cannot be increased with the execution of remaining transitions in e by
other processes. Therefore, at the end of the execution of e, i.e., in state 9,
the length of channel .4, will be less than K, which contradicts the fact that
every channel length in 5 is no less than K. Hence, fp must have channel length
no less than K. In summary, we can find a fair reachable state whose channel
length is no less than K.

Now since P is simultaneously unbounded, ¥ K > 0, there exists a K’ > K such that there
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is a reachable state S in which each channel length is no less than K’. As a result, there is
a fair reachable state S’ whose channel length is no less than K’. Therefore, F is infinite. B

Theorem 3.2 Given a cyclic protocol P with a finite F. P is unbounded iff it has a
reachable sending cycle.

Proof:  Obviously, if P has a reachable sending cycle, then P is unbounded. Suppose
P is unbounded but does not have a reachable sending cycle. Then By Lemma 3.2, P is
simultaneously unbounded. By Lemma 3.3, F is infinite. A contradiction. W

Theorem 3.3 Given a cyclic protocol P. F is finite iff P is not simultaneously un-

bounded.

Proof:  Suppose F is infinite, then F = [J72 | F, is infinite. Thus, VK >0 3K’ > K :
F,/ # 0. Since any state in F is of equal channel length, P is simultaneously unbounded.
On the other hand, by Lemma 3.3, if P is simultaneously unbounded, then F is infinite. H

Theorem 3.4 It is undecidable whether a cyclic protocol P has a finite F.

Proof:  Since it is undecidable whether a D-cyclic protocol has a finite fair reachable
state space [7], it follows that it is also undecidable whether a (general) cyclic protocol P
has a finite F. il

Lemma 4.2 Given S € F and an interval [i..j]. If Uy ;; # 0 in S and S does not have
any fair progress vector without progress in [i..j], then S is a fair unspecified reception state.
If S is in a fair execution cycle without progress in [i..j], then § is either a fair unbounded
state or a fair indeterminate state.

Proof: By definition, U, ;; # 0 in S implies that Y& € [i..j]: E, # 0 in 5. Thus 5 is
not a deadlock state. Denote [i..j] as the complement interval of [i..j] w.r.t [1..n]. Suppose

S is not a fair unspecified reception state. Then V& € [i..j]: E, U EfTUEL # (. As a
result, a fair progress vector can be derived from each t € TV. Let U, ; bea pitvin . Let

t be a pseudo transition vector in TV such that Yk € [i..j] : u, = t,. Then a fair progress
vector ¥ can be derived from t and Yk € [i..j] : v, = A. Hence ¥ is a fair progress vector
in S without progress in [i..j]. A contradiction. Therefore, S is a fair unspecified reception
state.

Now suppose 9 is in a fair execution cycle fe without progressin [i..j]. Let {C,,C,,...,C,}
be the corresponding local execution cycle set of S. Then Yk € [i..j] : C, is empty. Since
fe is not empty, there must be a nonempty interval [h..[] in S such that {i..5} N {h..l} = 0,
Vk € [h.l]:C,is nonempty, and C,o, and C,4, are empty. If there is a C;, k € [h..[], that
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is an internal cycle of P,, then 5 is an indeterminate state. Otherwise, we claim that C, is
a sending cycle in P,. Suppose not. Then there is at least one receiving transition in C,.
Assume 5 is of channel length K. Then going through fc once will decrease the length of
channel )5y, by one. On the other hand, P, o, is idle during the execution of fc. As a
result, executing fe once will not lead the system back to 5, contradicting the assumption
that fc is a fair execution cycle. Therefore, C, must be a sending cycle in P,, i.e., S must
be a fair unbounded state. l

Theorem 4.2 Both P-I and P-II are decidable for Q. Therefore, detection of un-
specified reception, unboundedness, nonexecutable transition, and indeterminacy are all

decidable for Q.

Proof:  The proof requires the formulation of partial state reachability and the finite
extension construction of partial states, both of which are omitted in this paper due to
space limitations. Please refer to [8] for details. l

Theorem 4.3 Given a cyclic protocol P € Q. P has a deadlock iff F; # (). P has an
unspecified reception but F,, = ¢ only if F,, UF,, # (. P is unbounded but F,, = 0 only if
F, UF,, # 0. Pis indeterminate but F;;, = § only if F,, UF,, # . P has a nonexecutable
transition that is not detectable via F only if F,, UF,, UF,; # (. P is logically correct iff
F does not contain any logical errors.

Proof:  The deadlock case is obvious from Theorem 3.1. Suppose P has an unspecified
reception but F,, = (). Then there is a reachable state S such that (m,s,) € 9, s, is local
receiving state, and 7(s,, +m) is not defined. Since F,, = 0, (m, s;) is reachable but not
fair reachable. By Lemma 4.1 and Lemma 4.2, F; # 0. Since ¥, = F,, UF, UF,,, we
must have F,, UF,, # (. The proofs for unboundedness, indeterminacy, and nonexecutable
transition can be carried out in a similar way.

Now suppose P is logically correct, then there is no reachable error states in F. Con-
versely, if F is free of logical errors, then F; = (). P cannot have a deadlock since all
deadlock states are included in F. Based on the discussion in the preceding paragraph, P
cannot have any other logical errors either since otherwise we will have F, # (). Hence, P
is logically correct. li
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