
Generalized Fair Reachability Analysis for Cyclic Protocols�Hong Liu Raymond E. MillerDepartment of Computer ScienceUniversity of Maryland at College ParkCollege Park, MD 20742AbstractIn this paper, the notion of fair reachability is generalized to cyclic protocols with n � 2machines. Substantial state reduction can be achieved via fair progress state exploration. Itis shown that the fair reachable state space is exactly the set of reachable states with equalchannel length. As a result, deadlock detection is decidable for P, the class of cyclic protocolswhose fair reachable state spaces are �nite. The concept of simultaneous unboundedness isde�ned and the lack of it is shown to be a necessary and su�cient condition for a protocolto be in P. Through �nite extension of the fair reachable state space, it is also shown thatdetection of unspeci�ed receptions, unboundedness, and nonexecutable transitions are alldecidable for P. Furthermore, it is shown that any protocol P is logically correct if and onlyif there is no logical error in its fair reachable state space. This study shows that for theclass P, our generalized fair reachability analysis technique not only achieves substantialstate reduction but also maintains very competitive logical error coverage. Therefore, it isa very useful technique to prove logical correctness for a wide variety of cyclic protocols.1 IntroductionOne of the most popular models for protocol speci�cation and validation is the communicat-ing �nite state machine model. In this model, processes are modeled as �nite state machinescommunicating with each other via FIFO channels. Reachability analysis can be employedto systematically explore the entire protocol state space to validate the logical correctness ofa protocol against some common errors, such as deadlocks, unspeci�ed receptions, unbound-edness, and nonexecutable transitions. However, for general protocols, �nding out whether alogical error exists is not always decidable [1]. Furthermore, even when decidability is ensured,the explosion of state space during reachability analysis renders its use impractical for most realworld protocols. As a result, much of the research has been devoted to identifying the class ofprotocols with decidable logical errors and devising state reduction techniques to overcome thestate explosion problem during state space exploration. For a survey of these methods, pleaserefer to [17].Fair reachability analysis was proposed as one of the improved reachability analysis tech-niques for protocols with two machines [16, 5]. In fair reachability analysis, two machines areforced to make progress at the same time whenever possible. State reduction is achieved byonly generating those fair progress states. More importantly, if the reduced state space is �-nite, logical correctness of a protocol can be decided, although in some cases, �nite extension�Research reported in this paper was supported by NASA Center of Excellence in Space Data and InformationSciences Under USRA Subcontract No. 550-66 and by NASA Grant No. NAG 5-2648.1

of the reduced state space is necessary [5]. However, the concept of fair reachability and itse�ectiveness for general protocols with more than two machines have not yet been studied. To�ll this gap, we investigate the generalization of this technique to cyclic protocols with n � 2machines. Through the study, its e�ectiveness for cyclic protocol validation is shown.The rest of the paper is organized as follows. In the following section, we briey reviewprevious research on fair reachability analysis and cyclic protocols, and highlight the resultspresented in this paper. Then the communicating �nite state machine model is introduced. InSection 4, we generalize the fair reachability notion for cyclic protocols and study the basicproperties of fair reachable state space. It is shown that for the class of cyclic protocols with�nite fair reachable state spaces, deadlock detection is decidable; however, for detection ofother logical errors, fair reachable state space is not su�cient. In Section 5, we show how�nite extension can be performed on a �nite fair reachable space so that logical errors otherthan deadlock can be detected e�ectively and e�ciently. We summarize the paper with openproblems in Section 6. The proofs of some lemmas and theorems in this paper are given in theappendix.2 Previous WorkFair reachability analysis was proposed as a strategy for reducing state explosion during val-idation of protocols modeled as two communicating �nite state machines. Rubin and West�rst observed the redundancy of state exploration in reachability analysis due to equivalentsequences of interleaving transitions [16]. Based on this observation, they proposed a canonicalsequence technique that forces the two machines to progress at the same speed during stateexploration. They reported a large percentage reduction in state generation when this tech-nique was incorporated into reachability analysis. In [5], Gouda and Han named this techniquefair reachability analysis. For protocols whose fair reachable state spaces are �nite, detectionof deadlock and unspeci�ed reception were shown to be decidable in [16], while detection ofboundedness was proved to be decidable in [5]. Gouda et al also showed that if one of thechannels is bounded, then the protocol has a �nite fair reachable state space [4].Recently, Cacciari and Ra�q extended the above idea to protocols with \internal" transitionsusing a technique called reduced reachability analysis [2]. In their approach, two machines areallowed to proceed at the same time only if the parallelwise condition is satis�ed. They showedthat detection of deadlock and unspeci�ed reception are decidable for protocols whose reducedreachable state spaces are �nite. However, it is not clear under what conditions a protocol canhave a �nite reduced reachable state space.One important aspect about fair reachability analysis is that in each fair reachable state, thelength of each channel is equal [16, 4]. We call this property the equal channel length propertyof fair reachable state space. A reduced reachable state space generated in [2] does not alwayshave this property. This is, we feel, one of the major reasons that makes it more di�cult to�nd a (su�cient) condition for the class of protocols with �nite reduced reachable state spaces.Fair reachability analysis is of importance not only because it can reduce the number ofglobal states explored, but also because it has the capability to handle some protocols withunbounded channels [5]. Although in [16], the authors claimed to extend this technique toprotocols with n � 2 communicating �nite state machines, so far, we have not seen any follow-up reports on this issue.It should be noted that for bounded protocols, the classic reachability technique can beused for protocols with n � 2 communicating �nite state machines. But research in analysis2

of protocols with unbounded channels has been mostly limited to only cyclic protocols [11,12, 14, 15]. Jan Pachl is probably the �rst person who formalized and investigated the class ofcyclic protocols, though many of his important results are contained in his unpublished researchreport [11]. His method is based on the channel expression concept. In [11], he showed that thedetection of deadlock and unspeci�ed reception are decidable for the class of cyclic protocolswith one channel whose channel expressions are recognizable. However, he wrote in [11] thatthe decision procedure is hopelessly ine�cient for any practical purpose.In [14], Peng and Purushothaman showed that for the class of cyclic protocols with exactlyone unbounded channel, deadlock detection problem is decidable. Their method relied on theconstruction of a \stable cover set" and the construction of a �nite automaton to recognize thestable cover set. It is not clear, however, whether this procedure can be automated e�ciently.In [15], they proposed a data ow approach to analyzing deadlock and unspeci�ed reception fora protocol with n � 2 machines by computing a superset of the set of reachable states as anapproximate solution for a set of data ow equations. While this approach works for generalprotocols, the results of the analysis are incomplete. It is unknown for what class of protocolsthe data ow analysis can yield an exact solution. Furthermore, this approach also su�ers fromstate explosion, as stated by the authors in [15].In summary, for the analysis of cyclic protocols with n � 2 communicating �nite state ma-chines, only the decidability aspect has been studied. The complexity of decision procedures hasbeen largely ignored. For practical analysis, it is highly desirable that the decision procedure bee�cient. Moreover, none of these techniques were targeted to the detection of unboundednessand nonexecutable transitions. In addition, all the methods proposed for cyclic protocol vali-dation analyze global states from the channel language perspective [10]. Reachability analysis,which has been a main focus in the analysis of protocols with two machines, has not beenfully integrated into any of these approaches. As a matter of fact, it seems that there is a gapbetween protocols with two machines and protocols with more than two machines. Most of themethods, if not all, that have been proposed for the two machine case have not yet been carriedover to the n � 2 case.In this paper, we bridge this gap by looking into the possibility of applying the fair reach-ability technique to the validation for cyclic protocols with n � 2 communicating �nite statemachines. This study produces many interesting new results. Our contributions in this paperare summarized as follows: First, we show that the set of fair reachable states is exactly theset of reachable states with equal channel length. As a result, deadlock detection is decidablefor the class of cyclic protocols whose fair reachable state spaces are �nite. Second, we showthat the fair reachable state space of a cyclic protocol is �nite if and only if (i� for short) thechannels of the protocol are not simultaneously unbounded. For the �rst time, the class of cyclicprotocols with �nite fair reachability graphs can now be exactly characterized. Even for then = 2 case, this condition is weaker than the one in [5]. For completeness, we also show thatthis condition is undecidable for cyclic protocols. Third, for logical errors other than deadlock,we show how a �nite fair reachable state space can be �nitely extended so that these errorscan be detected e�ectively and e�ciently. As a result, all logical errors are decidable for theclass of cyclic protocols with �nite fair reachable state spaces. During the study, we also dis-cover a complete characterization of fair reachable state space in terms of logical error coverage.Fourth, regarding the class of cyclic protocols whose deadlock and unspeci�ed reception detec-tion are decidable, for n = 2, our result properly includes the ones studied in [16, 5]; for n � 2,our result properly contains the one examined in [14] and complements the ones investigatedin [15, 11, 12]. More importantly, our decision procedure is much more straightforward ande�cient for practical analysis, which was lacking in both [14, 15] and [11, 12]. Furthermore,3

we also show the decidability of unboundedness and nonexecutable transition detection for theclass of cyclic protocols with �nite fair reachable state spaces, which are not addressed in anyprevious approaches except the one in [5] for unboundedness in the n = 2 case.Generalized fair reachability analysis for cyclic protocols was �rst reported in [7], alongwith the decidability result of deadlock detection for the class of cyclic protocols with �nitefair reachability graphs. Then, the fair reachability notion was revised to achieve further statereduction and allow for easier proofs. The results on basic formulation and deadlock detectionwere given in PSTV'94 [8], while the results on detection of other logical errors were presentedin ICNP'94 [9]. This paper is the combination of results in [8] and [9] with a few modi�cations.3 The CFSM ModelNotation: (1) We use � to denote concatenation. Given a set M . M� denotes its reexive andtransitive closure under concatenation. jM j denotes its cardinality. For Y 2M�, jY j denotes itslength. � denotes an empty string, j�j = 0. (2) Given n, for any 1 � i � n, 0 � j < n, i�j = i+jif i+ j � n else i� j = (i+ j) mod n; i	 j = i� j if i > j else i	 j = i� j + n, where modstands for the modulo operation. (3) An interval [i::j] is an ordered set of at most n consecutiveintegers i; i� 1; : : : ; i� k = j, where (1 � i � n)^ (0 � k < n). The corresponding (unordered)set is denoted as fi::jg. Let [i0::j 0] and [i::j] be intervals, [i0::j0] � [i::j] i� fi0::j0g � fi::jg.Unless speci�ed as [1::n], we assume j[i::j]j< n. (4) We designate n as the number of processesin a protocol. Unless otherwise speci�ed, we assume n � 2 and let i; j range over [1::n].In the communicating �nite state machine (CFSM) model, a protocol is speci�ed as a setof n processes P = (P1; P2;: : :; Pn), where each process Pi is a �nite state machine that cancommunicate with other processes via FIFO channels. For each Pi, Si denotes the set of localstates in Pi. The initial local state of Pi is denoted as s0i . A channel from Pi to Pj; i 6= j, isdenoted as Cij. The set of messages that Pi can send to Pj is denoted as Mij . The content ofCij, denoted as cij, is a sequence of messages sent from Pi to Pj. When Cij is empty, cij = �.Let ~Mi = (Sj 6= if�mjm 2 Mijg) [(Sj 6= if+mjm 2 Mjig). � denotes the partially de�nedtransition function: Sni=1(Si� ~Mi ! Si). For each Pi, a transition de�ned at local state si 2 Siis denoted as �(si; �), where � 2 ~Mi. It is a sending (receiving) transition if � = �m (� = +m).A transition cycle Ci in Pi is a cycle in the transition graph of Pi. It is a sending (receiving) cyclein Pi i� all the transitions in Ci are sending (receiving) transitions. si is a sending (receiving)local state i� all transitions de�ned in si are sending (receiving) transitions. We use the notation� 0 = �(si; �) to give a name � 0 for this transition, and use the notation s0i = �(si; �) to denotethat s0i is the local state resulting from the execution of the transition. By de�nition, each Piis deterministic but partially de�ned.A protocol P = (P1; P2;: : :; Pn) is cyclic i� each Pi has exactly one input channel Ci	1i andexactly one output channel Cii�1. From now on, we are dealing with cyclic protocols. Forresults established later in this paper, it should be clear that they apply to cyclic protocolsonly.Example: A cyclic protocol with four processes is depicted in Figure 1. This protocol willbe used as the example throughout this paper.For a cyclic protocol P = (P1; P2;: : :; Pn), a global state (state for short) S is represented as a2n-tuple (s1; s2; : : :; sn; cn1; c12; : : :; cn�1n), where si is the local state of Pi, and ci	1i is the contentof channel Ci	1i. In particular, the initial state S0 is denoted as (s01; s02; : : :; s0n; �; �; : : :; �). S is ofequal channel length i� all channel contents in S are of the same length. For convenience, we4

P4

1

2

-d +e

P1

1

2

-a -b

P3

1

2

-c

-c

1

2

+a +b

P2

P1

P2

P3

P4

C12
C23

C34C41 Figure 1: A Cyclic Protocol with 4 Machinesuse si 2 S to denote that si is a local state of S, and (m; si) 2 S to denote that si 2 S and mis at the head of channel Ci	1i in S. S is in a sending cycle i� there is a local state si 2 S thatis in a sending cycle of Pi. As a convention, we use capital letters S;X to denote a state andsmall letters si; xi to denote a local state of Pi.The reachability relation among states is formulated as follows. Given two states S = (s1; s2,: : : ; sn; cn1; c12; : : : ; cn� 1n) and S 0 = (s01; s02; : : :, s0n; c0n1; c012; : : : ; c0n� 1n). S0 is directly reachablefrom S, denoted as S 7! S 0, i� 9i 2 [1::n] such that the elements of S 0 can be derived fromS by executing one of the following transitions: (1) s0i = �(si;�m) and c0ii�1 = cii�1 �m, (2)s0i = �(si;+m) and ci	1i = m � c0i	1i. Except for the elements a�ected by the one transitionapplied, all other elements of S0 remain the same as those in S.Denote 7!� as the reexive, transitive closure of 7!. S0 is reachable from S i� S 7!� S0.When S = S0, we say S 0 is a reachable state. The set of reachable states in P is denoted as R,called the reachable state space of P . A local state s0i is reachable (from S) i� there is a stateS0 such that S0 7!� S0 (S 7!� S0) and s0i 2 S0; (m; s0i) is reachable (from S) i� there is a stateS0 such that S0 7!� S 0 (S 7!� S0) and (m; s0i) 2 S0. A sending cycle Ci in Pi is reachable (fromS) if one of the local states in Ci is reachable (from S).Given a reachable state S. S is a deadlock state i� it is a receiving state and each channelis empty. S has an unspeci�ed reception i� there is a receiving local state si 2 S such thatci	1i = m � c0i	1i and �(si;+m) is not de�ned. A transition �(si; �) de�ned at si is executable ifthere is a reachable state S such that (i) � = �m and si 2 S, or (ii) � = +m and (m; si) 2 S;otherwise it is nonexecutable. P is unbounded i� for each K � 0 there is a reachable statein which there is a channel whose length is greater than K. Deadlock, unspeci�ed reception,nonexecutable transition, and unboundedness are called logical errors. P is logically correct i�R is free of logical errors. For protocol validation, we check states in R against logical errors.This state exploration technique is called reachability analysis. However, it was shown in [1]that even for n = 2, none of the logical errors is decidable for (cyclic) protocols. As a result,none of the logical errors is decidable for cyclic protocols in general. For completeness, we listthis result as a theorem below.Theorem 3.1 Detection of deadlock, unspeci�ed reception, nonexecutable transition andunboundedness are all undecidable for cyclic protocols.5

4 Generalized Fair Reachability AnalysisIn this section, we generalize the fair reachability notion to cyclic protocols with n � 2 machinesby incorporating the concepts of synchronization and concurrency into the formulation of fairprogress vectors. With that, we show that the set of fair reachable states is exactly the setof reachable states with equal channel length. Then, we establish a necessary and su�cientcondition for a cyclic protocol to have a �nite fair reachable state space. We also study thelogical error detection capability of fair reachable state space. For conciseness, we use \fairreachability" for \generalized fair reachability" from now on.4.1 Basic FormulationGiven a cyclic protocol P = (P1; P2;: : :; Pn). Let S = (s1; s2; : : :; sn; cn1; c12; : : :; cn�1n) be a stateof P . The set of all executable transitions at si in S is denoted as Ei = E�i [E+i , where E�iand E+i stand for the set of executable sending and receiving transitions at si in S, respectively.We also denote E++i as the set of enabled transitions at si in S. (�(si; �) is enabled i� � = +m,ci	1i = �, and �(si	1;�m) is de�ned.)Convention: The notations de�ned above are implicitly bound to a state S. For brevity,S is dropped from the notations when S is given and no confusion arises. This convention isadopted throughout the paper when a new notation is introduced. Whenever distinction isnecessary, the binding arguments, such as S, will be put into the notation. For example, whenwe talk about the set of executable transitions in Pi in both S1 and S2, we will use Ei(S1) andEi(S2), respectively.Given a state S and an interval [i::j]. A pseudo transition vector in S is a tuple ~t[i::j] =(ti; ti�1; : : : ; tj) such that 8 k 2 [i::j] : tk 2 Ek [E++k [f�g, where � stands for a null transitionin Pk . ~t[i::j] is a transition vector in S i� 8 i 2 [1::n] : Ei 6= ; and 8 i 2 [1::n] : ti 2 Ei. We drop[i::j] from the notation when fi::jg= f1::ng.Let TV = f~t = (t1; t2; : : : ; tn)g such that (i) 8 i 2 [1::n] : ti 2 Ei[E++i if Ei[E++i 6= ;; ti = �otherwise, and (ii) 8 i 2 [1::n], if ti = (si;+m) 2 E++i , then ti	1 = (si	1;�m) 2 E�i	1. For eachpseudo transition vector ~t 2 TV , we compute a pseudo transition vector ~v = (v1; v2; : : : ; vn)from ~t according to one of the following three cases:(1) ~t 2 (�nk=1E�k) [(�nk=1E+k). In this case, set ~v = ~t. In other words, ~v has either allprocesses sending or all processes receiving. ~v is called a concurrency vector in S.(2) 9j : (tj 2 E�j) ^ (tj�1 2 E+j�1 [E++j�1). (ti	1; ti) is called a send-receive pair in ~t. Foreach i 2 [1::n], if ((ti 2 E�i) ^ (ti�1 2 E+i�1 [E++i�1)) _ ((ti	1 2 E�i	1) ^ (ti 2 E+i [E++i)),then set vi = ti; else set vi = �. In other words, ~v retains all the send-receive pairs in ~t.~v is called a synchronization vector in S.(3) Neither condition (1) nor condition (2) holds. In this case, set each vi = �. The resultingpseudo transition vector is called the null vector, indicating no progress from any processPi in S.For each ~v thus computed, ~v is a fair progress vector in S i� it is either a concurrency vectoror a synchronization vector in S. Denote Vc (Vs) as the set of concurrency (synchronization)vectors in S. Let V = Vc[Vs. V is called the fair progress vector space in S. It should be clearthat if 8 i 2 [1::n] : Ei [E++i 6= ;, then a fair progress vector can be derived from each ~t 2 TV .The fair reachability relation can be de�ned as follows. Given two states S=(s1; s2;: : :; sn,cn1; c12;: : :; cn�1n) and S 0 = (s01; s02; : : : ; s0n; c0n1; c012, : : : ; c0n�1n), S 7!f S0 i� 9~v 2 V (S) that leadsthe system from S to S 0. There are three cases to consider:6

(-a,+a, λ, λ) (-b,+b, λ, λ)

(1, 1, 1, 1, ε, ε, ε, ε)

(2, 2, 1, 1, ε, ε, ε, ε)Figure 2: Fair Reachability Graph(1) ~v 2 Vs(S). For each send-receive pair (vi; vi�1); i 2 [1::n], there are two subcases toconsider:(a) cii�1 = �. Let vi = �(si;�m) and vi�1 = �(si�1;+m). Execution of (vi; vi�1) willcause transition �(si;�m) to be taken, followed by transition �(si�1;+m), wheres0i = �(si;�m) and s0i�1 = �(si�1;+m).(b) cii�1 6= �. Let vi = �(si;�m), vi�1 = �(si�1;+m0), and cii�1 = m0 �c00ii�1. Executionof (vi; vi�1) will cause transitions �(si;�m) and �(si�1;+m0) to be taken in arbitraryorder, where s0i = �(si;�m), s0i�1 = �(si�1;+m0), and c0ii�1 = c00ii�1 �m.Except for the elements a�ected by the transitions applied in each of the send-receivepairs, all other elements of S0 remain the same as those in S.(2) ~v 2 Vc(S) ^ (8 i 2 [1::n] : vi = �(si;�mi) 2 E�i). The result of applying ~v on S is suchthat 8 i 2 [1::n] : s0i = �(si;�mi) and c0ii�1 = cii�1 �mi.(3) ~v 2 Vc(S) ^ (8 i 2 [1::n] : vi = �(si;+mi) 2 E+i). Assume that before applying ~v,8 i 2 [1::n] : ci	1i = mi � c00i	1i. The result of applying ~v on S is such that 8 i 2 [1::n] : s0i =�(si;+mi) and c0i	1i = c00i	1i.Denote 7!�f as the reexive, transitive closure of 7!f . S0 is fair reachable from S i� S 7!�f S0.When S = S0, S 0 is fair reachable. We can also de�ne fair reachability (from S) for s0i, (m; s0i),and sending cycle Ci, respectively. The set of fair reachable states, denoted as F, is called thefair reachable state space of P .Example (Cont'd): Figure 2 shows the fair reachability graph for the protocol in Fig-ure 1. In this case, F = fS0; S1g, where S0 = (1; 1; 1; 1; �; �; �; �) is the initial state whileS1 = (2; 2; 1; 1; �; �; �; �) is another fair reachable state. The fair progress vectors in S0 and S1are (�a;+a; �; �) and (�b;+b; �; �), respectively. Note that this protocol is unbounded sinceboth P1 and P3 have a reachable sending cycle. However, F is �nite.Note that S0 2 F is a state with equal channel length of zero. Furthermore, any fairprogress vector in S0 maintains the equal channel length property in the resulting state. Usingthis argument inductively, we can conclude that F is included in the set of reachable stateswith equal channel length. In the following subsection, we show that the converse is also true.Denote Fk; k � 0, as the set of fair reachable states whose channel length is k. The followinglemma is straightforward.Lemma 4.1 Given a fair reachable state space F, the following statments hold: (1) 8 k; k0; k6= k0 : Fk \ Fk0 = ;. (2) F = S1k=0 Fk. (3) 8S 2 Fk, if S 7!f S0, then S 0 2 F0 [F1 when k = 0;S0 2 Fk�1 [Fk [Fk+1 otherwise. (4) Fk is �nite. In fact, jFkj � (Qni=1 jSij) � (Qni=1 jMii�1jk).(5) F is �nite i� 9K : K � 0;FK+1 = ;. 7

4.2 Partial Fair Execution SequenceLet S and S0 be two states such that S 7!� S 0. An execution sequence from S to S 0, denotedas e, is a sequence X0 �1! X1 �2! : : : �k! Xk; k � 0, such that X0 = S, 8 j 2 [1::k] : X j�1 7! X jvia transition � j, and Xk = S0. The length of e, denoted as jej, is de�ned as the number oftransitions in e, i.e., jej = k � 0. The corresponding local execution sequence in Pi is denotedas ei. The length of ei, denoted as jeij, is de�ned as the number of transitions in ei. We use thenotation e 4= fe1; e2; : : : ; eng to denote the correspondence among an execution sequence and itslocal execution sequences. fe1; e2; : : : ; eng is called a local execution sequence set from S to S 0.When S = S0, fe1; e2;: : :; eng is called a local execution sequence set for S 0. For each reachablestate S, there exists at least one execution sequence. Let e and e0 be two execution sequencesfor S, e � e0 i� they have the same local execution sequence set. It is obvious that � is anequivalence relation over the set of execution sequences for S. Each local execution sequenceset characterizes a set of execution sequences for S. For state exploration, it is su�cient toexamine these local execution sequence sets for each reachable state.Similarly, if S0 is fair reachable from S, then there is a sequence X0 ~v1! X1 ~v2! � � � ~vk! Xk; k �0, such that X0 = S, 8 j 2 [1::k] : X j�1 7!f X j via fair progress vector ~vj, and Xk = S0.Such a sequence is called a fair execution sequence from S to S 0, denoted as fs. The lengthof fs, denoted as jfsj, is de�ned as the number of fair progress vectors in the sequence, i.e.,jfsj = k � 0. We also use the notation fs 4= fe1; e2; : : : ; eng to denote the correspondenceamong a fair execution sequence and its local execution sequences. fe1; e2; : : : ; eng is called afair local execution sequence set from S to S0. When S = S0, fe1; e2;: : :; eng is called a fairlocal execution sequence set for S 0. Note that if S 2 F, then 8 j 2 [0::k] : X j 2 F.Given a reachable state S. Let fe1; e2; : : : ; eng be a local execution sequence set for S.We construct a fair execution sequence seq = X0 ~v1! X1 ~v2! � � � ~vk! Xk; k � 0, such thatX0 = S0, 8 j 2 [1::k] : X j�1 7!f X j via ~vj, and no fair progress vector can be derived fromthe remaining transitions from fe1; e2; : : : ; eng in state Xk. It is not di�cult to show that bothseq and Xk are unique w.r.t fe1; e2; : : : ; eng. seq and Xk are called the partial fair executionsequence and the fair precursor for S w.r.t fe1; e2; : : : ; eng, respectively, denoted as pfs andfp = (sp1; sp2; : : :; spn; cpn1; cp12; : : :; cpn�1n).Lemma 4.2 Let fp be the fair precursor for a reachable state S w.r.t fe1; e2; : : : ; eng. IfS 62 F, then fp 6= S and the following statements are true in fp: (1) 9k 2 [1::n] : jekj 6= 0. (2)9k 2 [1::n] : jekj = 0. (3) If jekj 6= 0, then � pk , the transition from ek at spk, is executable. (4)fp 7!� S via the remaining transitions from fe1; e2;: : :; eng in fp.Based on this lemma, we can show that each reachable state with equal channel length isfair reachable.Theorem 4.1 F is exactly the set of reachable states with equal channel length.An important implication of this theorem is that the notion of fair reachability is consistentwith the notion of fair execution sequence in the sense stated in the following theorem.Theorem 4.2 Let fe1; e2;: : :; eng be a local execution sequence set for S. If fe1; e2;: : :; eng isa fair local execution sequence for S, then any other local execution sequence set fe01; e02; : : : ; e0ngfor S is also a fair execution sequence for S. In other words, if S is fair reachable, then it is fairreachable via any execution sequence for S. 8

4.3 Finiteness of FGiven a cyclic protocol P . We perform fair reachability analysis for P by generating the fairreachable state space F. In order for the procedure to terminate, F has to be �nite. For n = 2,a su�cient condition has been established for P to have a �nite F, namely, one of the channelsbeing bounded [4]. However, no necessary and su�cient condition, even for n = 2, has beenestablished so far. On the other hand, it is known that F can be �nite even if P has a reachablesending cycle. This motivates us to look for other factors for causing F to become in�nite.We �rst investigate the class of cyclic protocols without reachable sending cycles. We noticethat for a cyclic protocol without sending cycles, the notion of unboundedness is equivalent tothat of \simultaneous unboundedness".De�nition 4.1 A cyclic protocol P is simultaneously unbounded if for any constant K � 0,there exists a reachable state S = (s1; s2; : : : ; sn; cn1; c12; : : : ; cn�1n) such that 8 i 2 [1::n] :jcii�1j > K; otherwise, it is not simultaneously unbounded.Lemma 4.3 Given a cyclic protocol P without reachable sending cycles. If P is unbounded,then P is simultaneously unbounded.Then, we show that for a simultaneously unbounded cyclic protocol, we can �nd a fairreachable state whose channels are simultaneously unbounded.Lemma 4.4 Given a cyclic protocol P = (P1; P2; : : : ; Pn), if there is a reachable stateS = (s1; s2; : : : ; sn; cn1; c12; : : : ; cn�1n) such that 8 i 2 [1::n] : jcii�1j � K for some constantK � 0, then there exists a fair reachable state S 0 = (s01; s02; : : : ; s0n; c0n1; c012; : : : ; c0n�1n) such that8 i 2 [1::n] : jc0ii�1j � K.With these two lemmas, we can establish an equivalence between the �niteness of R and�niteness of F for the class of cyclic protocols without sending cycles.Theorem 4.3 Given a cyclic protocol P without reachable sending cycles. F is �nite i� Ris �nite.A rephrase of this theorem gives us a necessary and su�cient condition for a cyclic protocolwith a �nite F to be unbounded, a generalization of the result in [5] for n = 2 to n � 2.Theorem 4.4 Given a cyclic protocol P with a �nite F. P is unbounded i� it has a reach-able sending cycle.Now we can con�rm that simultaneous channel unboundedness is the fundamental factor incausing F to become in�nite.Theorem 4.5 Given a cyclic protocol P . F is �nite i� P is not simultaneously unbounded.This necessary and su�cient condition provides an exact description of the class of cyclicprotocols with �nite fair reachable state spaces from the protocol operational semantics view-point. To the best of our knowledge, this is the �rst necessary and su�cient condition for acyclic protocol to have a �nite fair reachable state space. However, as expected, the decidabil-ity aspect of this condition is negative, as is stated in the following theorem. The proof of thetheorem is based on showing it is true for n = 2, an easy reduction by using the decidabilityresult of boundedness detection established in [5].9

Theorem 4.6 It is undecidable whether a cyclic protocol P has a �nite F.The next theorem says that if a cyclic protocol has a �nite F, then we will be able to �ndthe least upper bound K � 0 such that each reachable state has at least one channel whoselength is bounded by K.Theorem 4.7 Given a cyclic protocol P with a �nite F. Let K be the longest channellength among all the states in F. Then each reachable state of P has at least one channel whoselength is bounded by K.Denote P as the class of cyclic protocols whose F's are �nite. From now on, we will restrictour study to class P . In the rest of the paper, unless otherwise stated explicitly, when wemention a cyclic protocol P , we mean P 2 P ; when we mention F, we mean that it is �nite.4.4 Fault Coverage of FAs with states in R, we de�ne logical errors for states in F in a similar way. Give a state S 2 F.S is a fair deadlock state i� S is a receiving state and all the channels are empty. S is a fairunspeci�ed reception state i� there is a receiving local state si 2 S such that (i) ci	1i = m � c0i	1iand �(si;+m) is not de�ned, or (ii) ci	1i = �, �(si	1;�m) is de�ned, and �(si;+m) is notde�ned.Several comments are in order here. A fair unspeci�ed reception state S is not an unspeci�edreception state when ci	1i = �. However, let S0 be the following state by executing transition�(si	1;�m) in S, S 0 will be an unspeci�ed reception state. In other words, in fair reachabilityanalysis, unspeci�ed reception is sometimes detected in a \look-ahead" manner due to theincorporation of enabled transitions in fair progress vectors. Second, there might be \deadend" states in F whose V = ;. However, it is not di�cult to show that in this case S is eithera fair deadlock state or a fair unspeci�ed reception state. Thus the occurrence of dead endstates does not introduce new types of logical errors in F. Third, for unboundedness detection,we know from Theorem 4.4 that we only need to detect reachable sending cycles. As a result,we de�ne a reachable state S as an unbounded state i� it is in a sending cycle. S is a fairunbounded state i� it is an unbounded state in F.State reduction achieved by fair reachability analysis is measured by the factor R n F. Ingeneral, F is much smaller than R, thus the saving is substantial. However, the study of logicalerror coverage of F is crucial to evaluating the usefulness of fair reachability analysis. For n = 2,it was shown that both deadlock and unspeci�ed reception are detectable within F [16], andthat unboundedness can be detected via �nite extension of F [5]. Note that even for n = 2,nonexecutable transition detection has not been studied in the context of F. For n � 2, weknow that F is exactly the set of reachable states with equal channel length. Since all deadlockstates are of equal channel length zero, we have the following theorem on deadlock detection.Theorem 4.8 Deadlock detection is decidable for P .In fact, we showed in [8] that livelock detection is also decidable for P . However, it is notdi�cult to see that for detection of logical errors other than deadlock, F is not su�cient, andthus �nite extension of F is needed.Example (Cont'd): In Figure 2, both S0 and S1 are fair unbounded states. However, justinspecting F cannot detect unboundedness caused by P3 and an unspeci�ed reception in channel10

C34. In this case, the behavior of P3 and P4 were not explored during state generation. As wewill see in the following section, this is caused by the sending cycle in P1, and this is not acoincidence.Following the same formulation as [5], we reduce the detection of logical errors other thandeadlock in P to two local state reachability problems as follows:P-I Given a local state si, decide whether si is reachable.P-II Given a local state si and a message m 2Mi	1i, decide whether (m; si) is reachable.It should be clear that for P , if we can solve P-I (P-II), then we can solve unboundedness(unspeci�ed reception) detection, and if we can solve both P-I and P-II, then we can solvedetection of nonexecutable transitions. Although neither P-I nor P-II is decidable in general[1], we will show that both of them are decidable for P in the following section.5 Finite Extension of FIn this section, we study the �nite extension of F to detect logical errors other than deadlockfor P . For brevity, we use the term \ logical errors" for \logical errors other than deadlock" inthe rest of this section, unless otherwise explicitly stated.Intuitively, there is a simple argument that shows that both P-I and P-II, and thus alllogical errors, are decidable for the class of cyclic protocols P via fair reachability plus �niteextension. Then the only issue remaining is how e�cient the process is. The argument goes asfollows: If a local state sk is reachable, then there is a reachable stateX such that sk 2 X . Thus,there is a local execution sequence set fe1; e2;: : :; eng from S0 to X in R. From fe1; e2;: : :; eng,a partial fair execution sequence pfs can be derived to get to fp. Note that fp is in the pathof the execution sequence from S0 to X and fp 2 F. If sk 2 fp, then we are done. Otherwise,from fp, a �nite extension in R exists { simply the remainder of the execution sequence fromfp to X . Hence, sk is locatable by �nite extension from F. A similar argument can be used forthe reachability of (m; sk).What are the problems with this argument? First, it only shows existence but no algorithm.Secondly, it provides no upper bound on how far to extend when the execution sequence in R isunknown (as is generally the case). Yet, the preceding argument can serve as a general guidelinein understanding the formality presented below.As we have already seen, the need for �nite extension in F results from the fact that someof the reachable local states are not fair reachable. Therefore, the purpose of �nite extensionis to uncover those local states. In what follows, we �rst identify a necessary condition for theexistence of such local states. Then we show how to minimize the size of the extension set, i.e.,the set of states in F that need to be extended. In Subsection 5.2, we present a �nite extensionprocedure based on partial states from the extension set. In the last subsection, we summarizethe discussions with the decidability results for P-I and P-II, and a characterization of F interms of logical error coverage.5.1 Identifying the Extension SetSuppose sk is reachable but not fair reachable. Then none of the reachable states containingsk is in F. Let X be any reachable state with sk 2 X , and fe1; e2;: : :; eng be a local executionsequence set for X . Let pfs and fp be the partial fair execution sequence and the fair precursorfor X w.r.t fe1; e2;: : :; eng, respectively. Based on the preceding discussion, it is clear thatspk 6= sk and thus jekj 6= 0. Furthermore, we can �nd a maximal interval [i::k] in fp such that11

8j 2 [i::k] : jejj 6= 0. Note that each � pj from ej at spj is executable. When i 6= k, the executionof remaining transitions in ek depends only on the execution of transitions in ej , j 2 [i::k	 1].Starting from fp, we construct the set of states fair reachable from fp as follows: In eachsuch state S, each fair progress vector ~v is computed as usual except that vj must take on thetransition from ej if (j 2 [i::k]) ^ (jejj 6= 0). Note that during the construction, some of theej's may become empty when (j 2 [i::k]) ^ (i 6= k). However, not in any of these states canek become empty since sk is not fair reachable. Without loss of generality, let's assume thatnone of the ej's becomes empty during the construction. Let Fmin[i::k] be the set of states from theconstruction whose sum of the remaining transitions in fei; ei�1;: : :; ekg is minimum. Obviously,Fmin[i::k] � F, and is closed by the above construction, i.e., if S 2 Fmin[i::k] and S 0 is fair reachablefrom S by the construction, then S0 2 Fmin[i::k]. More importantly, S 0 is fair reachable from Swithout progress in [i::k]. Let ~u[i::k] = (ui; ui�1;: : :; uk) be the transition vector associated witha state S 2 Fmin[i::k], then ~u[i::k] is a proper incompatible transition vector (pitv) in S. (~u[i::k] is apitv in S i� S does not have a concurrency vector, there is no send-receive pair in ~u[i::k], andneither ui nor uk appears in any synchronization vector in S.) In fact, ~u[i::k] is the same for anyS0 in Fmin[i::k], and thus is a persistent proper incompatible transition vector (ppitv) in S. (A pitv~u[i::k] is persistent in S i� it is also a pitv in any state fair reachable from S without progressin [i::k].) Denote U[i::k] (W[i::k]) as the set of pitv's (ppitv's) in S. Notice that although thepreceding discussion is based on reachability of sk, it also applies to the reachability of (m; sk).To sum up, we have the following lemma:Lemma 5.1 A local state sk ((m; sk)) is reachable but not fair reachable only if there isa state S 2 F such that W[i::j] 6= ; in S, k 2 [i::j], and sk ((m; sk)) is reachable from S.As a result, the �nite extension of F should be based on those states in F whose W[i::j] 6= ;for some interval [i::j]. However, there are two problems we need to consider. First, there couldbe many states in F whose W[i::j] 6= ;. Finitely extending all such states can be costly andmight incur considerable redundant work. Secondly, testing whether W[i::j] 6= ; in S can also becostly because it involves checking all the states fair reachable from S without progress in [i::j].Thus, instead of computing all the states whose W[i::j] 6= ;, we want to compute a extensionset FT � F such that its membership can be easily decided and there is a state S 2 F whoseW[i::j] 6= ; only if FT 6= ;.Let's see how FT can be computed. Given a state S 2 F whose W[i::j] 6= ;. We constructa graph FRG[i::j] such that the set of the nodes in the graph corresponds to the set of statesfair reachable from S without progress in [i::j] and S is the initial node of the graph. Then weconstruct the quotient graph QFRG[i::j] such that each node is a strongly connected component(SCC) in FRG[i::j]. From graph theory, this graph is a directed acyclic graph (DAG). Eachnode in QFRG[i::j] is denoted as [S0], where S0 is a state in that SCC. The initial node isdenoted as [S]. Let TN be the set of terminal nodes in QFRG[i::j]. Observe that W[i::j](S 00) �W[i::j](S0) if S 00 is fair reachable from S0 without progress in [i::j]. Thus, W[i::j](S 00) = W[i::j](S 0)if S0 and S 00 are in the same SCC of QFRG[i::j]. Hence, we can use the notation W[i::j]([S 0])to represent the set of ppitv's in any state in [S0]. In addition, it is not di�cult to show thatW[i::j](S) = T[S0] 2 TN W[i::j]([S 0]). Since we assume W[i::j](S) 6= ;, it follows that 8[S 0] 2 TN :W[i::j]([S 0]) 6= ;. As a result, we only need to focus on those nodes in TN . Given a node[S 0] 2 TN , there are two cases to consider: (1) [S 0] contains only one state S 0 but no outgoingedges. (2) There is a fair execution cycle (i.e., a cycle in the corresponding SCC in FRG[i::j])among states in [S 0]. In either case, the following lemma shows that [S 0] contains some errorstate. Note that W[i::j] � U[i::j] for any S and [i::j].12

Lemma 5.2 Given S 2 F and an interval [i::j]. If U[i::j] 6= ; in S and S does not have anyfair progress vector without progress in [i::j], then S is a fair unspeci�ed reception state. If Sis in a fair execution cycle without progress in [i::j], then S is a fair unbounded state.Let FT = Fur [Fub, where Fur and Fub are the set of unspeci�ed reception states andunbounded states in F, respectively. Clearly, the extension set FT for F can be easily computedduring the construction of F. Furthermore, based on the preceding discussion, we have thefollowing lemma:Lemma 5.3 There is a state S 2 F whose W[i::j] 6= ; only if there is a state S0 2 FT whoseU[i::j] 6= ; and W[i::j](S) � U[i::j](S 0).Therefore, to solve both P-I and P-II for P , we only need to extend those states in FT .Now the question becomes how states in FT can be extended in a �nite way.5.2 Partial State ExplorationFrom the previous subsection, we know that in order to solve both P-I and P-II, we only needto extend parts of a state S indexed by an interval [i::j] whenever U[i::j] 6= ;, for each S 2 FT .Such an interval [i::j] is called a proper incompatible interval in S. Denote IJ as the set ofproper incompatible intervals in S. Clearly, (IJ;�) is a partial order set. Let ImJ be the setof maximal elements in (IJ;�). Each element in ImJ is called a maximal proper incompatibleinterval in S. As will be clear shortly, for �nite extension on S, we only need to consider thoseintervals in ImJ .Our �nite extension procedure is based on the �nite extension of part of a state S indexedby each [i::j] 2 ImJ of S for each S 2 FT . Given a state S and an interval [i::j]. A partialstate in S indexed by [i::j] is the set of local states and input channel contents of the processesindexed by [i::j] in S, denoted as PS[i::j] = (ci	1i; si;: : :; cj	1j; sj). PS 0[i::j] � PS[i::j] i� ([i0::j 0] �[i::j])^ (8k 2 [i0::j0] : (sk = s0k) ^ (ck�1 = c0k�1)). We also use PS[i::j] � S to denote PS[i::j] is apartial state of S.The reachability relation among partial states is de�ned as follows. PS[i::j] 7![i::j]PS 0[i::j] i�9k 2 [i::j] such that one of the following three conditions holds: (1) k = j and �(sj;�m) isde�ned. Then s0j = �(sj;�m). (2) k 6= j and �(sk;�m) is de�ned. Then c0kk�1 = ckk�1 �mand s0k = �(sk;�m). (3) ck	1k = m � c00k	1k and �(sk;+m) is de�ned. Then c0k	1k = c00k	1kand s0k = �(sk ;+m). Except for the changes made above, all other elements of PS 0[i::j] remainthe same as PS[i::j]. The reexive, transitive closure of 7![i::j] is denoted as 7!�[i::j]. PS 0[i::j] isreachable from PS[i::j] i� PS[i::j] 7!�[i::j]PS 0[i::j]. We can also de�ne the reachability from PS[i::j]for sk, (m; sk), and sending cycle Ck, respectively.The following lemma justi�es that we only need to perform �nite extension on those partialstates indexed by maximal proper incompatible intervals for each state in FT . When we set[i::j] = [1::n], it also explains why we can base our �nite extension of F on reachability amongpartial states.Lemma 5.4 Given two partial states PS[i0::j0] and PS 0[i0::j0]. Suppose PS[i0::j0] � PS[i::j].Then PS[i0::j0] 7!�[i0::j0] PS 0[i0 ::j0] only if 9PS 0[i::j] : (PS 0[i0::j0] � PS 0[i::j]) ^ (PS[i::j] 7!�[i::j]PS 0[i::j]).It should be noted that the set of partial states reachable from PS[i::j] can be in�nite.Thus, care must be taken in order to obtain a �nite extension of PS[i::j]. Denote PS[i::j] =(ci	1i; si;: : :; cj	1j; sj). Let Kk = jck	1k j; k 2 [i::j]. PS 0[i::j] satis�es the channel constraint w.r.t13

PS[i::j] i� 8k 2 [i::j] : jc0k	1kj � MAX(Kk; 1). PS[i::j] 7!m[i::j]PS 0[i::j] i� PS[i::j] 7![i::j]PS 0[i::j] andPS 0[i::j] satis�es the channel constraint w.r.t PS[i::j] . Denote 7!�m[i::j] as the transitive, reexiveclosure of 7!m[i::j]. PS 0[i::j] is m-reachable from PS[i::j] i� PS[i::j] 7!�m[i::j]PS 0[i::j]. We can alsode�ne the m-reachability from PS[i::j] for sk, (m; sk), and sending cycle Ck, respectively. Byinduction on the number of transitions executed from PS[i::j] to PS 0[i::j] , it can be shown thatPS[i::j] 7!�m[i::j]PS 0[i::j] only if PS 0[i::j] satis�es the channel constraint w.r.t PS[i::j].To obtain a �nite extension of PS[i::j], we construct a m-reachability graph MRGk for eachPS[i::k]; k 2 [i::j], where the set of nodes corresponds to the set of m-reachable partial statesfrom PS[i::k] and PS[i::k] is the initial node of the graph. By the channel constraint of PS[i::k],it follows that each MRGk is �nite, and so is MRG[i::j] = Sk 2 [i::j] MRGk. Keep in mind thatwe are to solve the local reachability problems P-I and P-II. With the �nite extension graphMRGk for PS[i::k], it should be clear that if sk ((m; sk)) is m-reachable from PS[i::k], then itis reachable from PS[i::k]. The question is whether the converse is also true.To answer this question, we adopt a technique called maximal progress partial state explo-ration similar to the ones proposed in [6, 11]. Suppose PS[i::j] 7!�[i::j]PSd[i::j] via local executionsequence set fei; ei�1;: : :; ejg. For any sdk 2 PSd[i::j]; k 2 [i::j], we want to construct a partial statePSb[i::k] = (cbi	1i; sbi ;: : :; cbk	1k; sbk) such that (sdk = sbk) ^ (PS[i::k] 7!�m[i::k]PSb[i::k]) by rearranging theexecution order of the transitions in fei; ei�1;: : :; ekg. Speci�cally, we let Pk maximally progressalong ek to reach sdk . In the following procedure, � 0l ; l 2 [i::k], is the transition at s0l from el inPS 0[i::k]. Denote ~� 0[i::k] = (� 0i ; � 0i	1; : : : ; � 0k). For brevity, we de�ne max(~� 0[i::k]) = l if l is the �rstexecutable transition in the order from k to i from ~� 0[i::k] in PS 0[i::k]; max(~� 0[i::k]) = 0 if no suchtransition can be found in PS 0[i::k].Algorithm 1 Maximal-Progressbegin1 PS0[i::k]:=PS[i::k]2 while s0k 6= sdk do3 l:=max(~� 0[i::k])4 let PS00[i::k]:= apply � 0l in PS0[i::k]5 PS0[i::k]:=PS00[i::k]6 end while7 PSb[i::k]:=PS0[i::k]8 return PSb[i::k]end Maximal-ProgressThe correctness of the algorithm can be argued informally as follows. At each iteration fromLine 2 to Line 6, if s0k 6= sdk, then ~� 0[i::k] has at least one executable transition in PS 0[i::k]. Afterthe execution of one iteration, the total number of transitions remained in fei; ei�1;: : :; ekg isreduced by one. Therefore, the algorithm must terminate within �nite number of iterations,and when it terminates, sbk = sdk in PSb[i::k]. By induction on the number of iterations from line 2to line 6, it is not di�cult to show that PS[i::k] 7!�m[i::k]PS 0[i::k]. Thus at the end of the algorithm,PS[i::k] 7!�m[i::k]PSb[i::k].As for (m; sdk), we �rst use the above algorithm to get to PSb[i::k]. If (m; sdk) 2 PSb[i::k],then we are done. Otherwise, since there is no transition left in ek in PSb[i::k], we must havei 6= k, cbk	1k = �, and the �rst sending transition in the remaining transitions in ek	1 must be�(s0k	1;�m) for some local state s0k	1 in Pk	1. Let s00k	1 = �(s0k	1;�m). Then we apply theabove algorithm from PSb[i::k	1] based on the remaining transitions in fei; ei�1;: : :; ek	1g to getto PSc[i::k	1] such that PSb[i::k	1] 7!�m[i::k	1]PSc[i::k	1] and sck	1 = s00k	1. Let cck	1k = m and sck = sbk.14

(ε,1,ε,1)

(ε, 1)2,c, (ε,1,ε,2)

(ε,2,c,2)
(ε,2)

(ε,1)

-c

MRG3
MRG4

-c -d

-d -cFigure 3: Finite Extension of Paritial StateThen PSb[i::k] 7!�m[i::k]PSc[i::k] and (m; sdk) 2 PSc[i::k]. Thus PS[i::k] 7!�m[i::k]PSc[i::k]. To summarize, wehave the following result:Theorem 5.1 Given a partial state PS[i::j]. Let k 2 [i::j]. sdk is reachable from PS[i::j] i� itis m-reachable from PS[i::k]. (m; sdk) is reachable from PS[i::j] i� it is m-reachable from PS[i::k].Therefore, both P-I and P-II are decidable for any partial state via �nite extension on PS[i::j].Example (Cont'd): In Figure 2, we have FT = Fub = F. It should be clear that thereis only one ppitv in the protocol, namely ~u[3::4] = (�c;�d). Hence, only one partial statePS[3::4] = (�; 1; �; 1) needs to be extended. The partial state m-reachability graph is shown inFigure 3, in which the \hidden local states" 2 in P3 and (c; 2) in P4 are uncovered.End of Example.5.3 Fault Coverage of F RevisitedLet's recapitulate the discussion so far on �nite extension of F. We began by observing that Fitself is not su�cient for detection of logical errors, and then reduced the logical error detectionproblems to two local reachability problems P-I and P-II. We found that the major obstacleto solving these two problems is the existence of ppitv's in some states in F since these ppitv'sprevent the fair progress state exploration procedure from reaching some reachable local states.However, we noticed that it su�ces to do �nite extension in those states in FT in order touncover all the \hidden" reachable local states. We further observed that only those partialstates in each S 2 FT indexed by some interval in ImJ of S are needed for extension in orderto solve both P-I and P-II for P . Finally, we showed that both problems are solvable forany partial state via �nite extension. Hence, we are able to establish the following decidabilityresult:Theorem 5.2 Both P-I and P-II are decidable for P . Therefore, detection of unspeci�edreception, unboundedness and nonexecutable transition are all decidable for P .During the process, we have also discovered the following important characterization of Fin terms of fault coverage. 15

Theorem 5.3 Given a cyclic protocol P 2 P . P has an unspeci�ed reception but Fur = ;only if Fub 6= ;. P is unbounded but Fub = ; only if Fur 6= ;. P has a nonexecutable transitionthat is not detectable via F only if Fur [Fub 6= ;. Therefore, P is logically correct i� F doesnot contain any logical errors.Combined with the result that deadlock detection is decidable via F in Subsection 4.4, wecan see that F is very competitive in fault coverage, quite to the contrary of the pessimisticsuspicion from the surface at the beginning of this section. For iterative validation, we may stopstate exploration whenever an error state is found in F, �x that error, and repeat the processuntil no more errors are found in F. In this way, �nite extension of F is not necessary. If wewant to detect all the errors in one{phase generation of F, then F might need to be �nitelyextended if FT 6= ;. In this case, the �nite extension procedure can be optimized for e�ciency.We have already seen how time complexity can be reduced by limiting �nite extension to onlythose states in FT , and for each such state, to only those partial states indexed by intervalsfrom ImJ of that state. In fact, we can do better by �ne-tuning the decision procedures.For example, if we are to detect unspeci�ed reception, �nite extension is necessary only whenFur = ; and Fub 6= ;, and is only performed on those states in Fub. Detection of other errorscan be �ne-tuned in a similar way. As for space complexity, F itself already o�ers substantialreduction of R. When �nite extension is needed, the additional space for an extension graphMRGk is usually small compared to the size of F due to the channel constraint. Moreover,afterMRGk is generated, we can check logical errors in MRGk, mark the corresponding stateaccordingly if there is an error, and then discard it for good. Using this strategy, considerablespace can be saved, especially when n gets larger. This is in contrast to the approach taken in [5]for n = 2, which keeps all the extension graphs during unboundedness detection. In summary,for the class of cyclic protocols P , generalized fair reachability analysis has very competitiveerror-detection capability, and can be carried out both e�ectively and e�ciently.6 ConclusionIn this paper, we generalized the fair reachability analysis technique to cyclic protocols withn � 2 communicating �nite state machines. Given a cyclic protocol P , we showed that its fairreachable state space F is exactly the set of reachable states with equal channel length, andestablished the lack of simultaneous unboundedness in P as a necessary and su�cient conditionfor P 2 P , the class of cyclic protocols whose F's are �nite. The e�ectiveness of generalized fairreachability analysis was demonstrated by showing for class P , deadlock is detectable withinF while all other logical errors are detectable via �nite extension of F. More importantly, wediscovered a characterization of F in terms of fault coverage, namely P is logically correct i� Fis free of logical errors.Fair reachability analysis was originally proposed as a technique to tackle state explosionduring reachability analysis [16]. The same argument also applies to our work reported in thispaper. By forcing the system to progress through a fair execution sequence, we have cut downthe redundancy of state exploration due to equivalent execution sequences. We also showed how�nite extension can be carried out e�ciently in terms of both time and space by minimizingthe extension set and the number of partial states needed to be extended for each state in theextension set.The strength of our approach lies in the natural generalization of the existing fair reachabilitytechnique and its simple, straightforward, and e�cient decision procedures, which were missingin both [14, 15] and [11, 12]. This study shows that generalized fair reachability analysis not16

only achieves substantial state reduction, but also maintains very competitive logical errordetection capability. Therefore, it is a very useful technique to prove logical correctness for awide variety of cyclic protocols.During the write-up of this paper, we were informed of the independent work by Peng onextending fair reachability to a model called \single-link communicating �nite state machines"[13]. In this model, each process can have multiple output channels but has only one commoninput channel to store messages from other processes. Although cyclic protocols are includedin this model, the notion of fair reachability in this model is quite di�erent from ours in thatonly two machines are allowed to make progress at one time restricted by the so-called \weight-balance" constraint in [13]. It is not clear, however, what class of protocols in his model isamendable for his analysis technique. For cyclic protocols, our fair reachability formulation hasthe following advantages: First, our fair reachability state space maintains the same nice equalchannel length property as for n = 2 [16, 5]. Second, both concurrency and synchronizationvectors in our fair reachability notion allow more than two machines to progress at the sametime. As a result, for most cyclic protocols, our analysis achieves greater state reduction thanthe one in [13]. Third, aside from deadlock, our approach can also detect other logical errorssuch as unspeci�ed reception, nonexecutable transition, and unboundedness, which are notcovered in [13].Many open problems remain concerning our approach. First, although we have found anecessary and su�cient condition for the class of cyclic protocols whose logical correctnessis decidable, we are not sure how general it is in terms of tightening the boundary of cyclicprotocols whose logical correctness is decidable. Further investigation of this aspect is necessaryin order to fully evaluate its role in the decidability hierarchy. Second, a cyclic protocol is stillsimple in topology. It would be bene�cial to look into the possibility of generalizing our workto protocols with more complicated and yet regular network topologies. Third, it is possible toincorporate internal transitions into the fair progress vector formulation to allow our techniqueto handle cyclic protocols with internal transitions and still achieve good state reduction. We arecurrently working on this issue. Fourth, fair reachability analysis is only one type of improvedreachability analysis techniques studied in the two machine case. In this paper, the collectivepower of both fair progress and maximal progress state exploration is illustrated in the �niteextension process, and has produced encouraging results. The results reported here shouldencourage more research on extending other existing techniques to the analysis of protocolswith more than two machines. Finally, it would be interesting to investigate the possibility ofcarrying the fair reachability analysis technique over to other speci�cation models, such as theextended �nite state machine model.References[1] D. Brand and P. Za�ropulo, \On Communicating Finite-State Machines," Journal of ACM, Vol. 30,No. 2, April 1983, pp. 323{342.[2] L. Cacciari and O. Ra�q, \On ImprovingReduced Reachability Analysis," FORTE'92, Perros-Guirec,France, October 13-16, 1992, M. Daiz and R. Groz (Ed.), 1992, pp. 137{152.[3] T.Y. Choi and R.E. Miller, \Protocol Analysis and Synthesis by Structured Partitions," ComputerNetworks and ISDN Systems, Vol. 11, 1986, pp. 367{381.[4] M.G. Gouda, C.H. Chow, and S.S. Lam, \Livelock Detection in Networks of Communicating FiniteState Machines," Technical Report, TR-84-10, Dept. of Computer Science, Univ. of Texas at Austin,April 1984. 17

[5] M.G. Gouda and J.Y. Han, \Protocol Validation by Fair Progress State Exploration," ComputerNetworks and ISDN Systems, Vol. 9, 1985, pp. 353{361.[6] M.G. Gouda and Y.T. Yu, \Protocol Validation by Maximal Progress State Exploration," IEEETransactions on Communications, Vol. COM-32, No. 1, 1984, pp. 94{97.[7] H. Liu and R.E.Miller, \Deadlock Detection for Cyclic Protocols Using Generalized Fair ReachabilityAnalysis," Technical Report CS-TR-3135, Dept. of Computer Science, Univ. of Maryland at CollegePark, September 1993.[8] H. Liu and R.E. Miller, \Generalized Fair Reachability Analysis for Cyclic Protocols: Part 1,"PSTV'94, S.T. Vuong (Ed.), Vancouvor, B.C. Canada, June 1994, pp. 271-286.[9] H. Liu and R.E. Miller, \Generalized Fair Reachability Analysis for Cyclic Protocols: Decidabilityfor Logical Correctness Problems," ICNP'94, Boston, Massachusetts, October 25{28, pp. 100{107.[10] K. Okumura, \Protocol Analysis from Language Structure," PSTV'88, S. Aggarwal and K. Sabnani(Ed.), 1988, pp. 113{124.[11] J. Pachl, \Reachability Problems for Communicating Finite State Machines," Research Report,CS-82-12, Dept. of Computer Science, Univ. of Waterloo, May, 1982[12] J. Pachl, \Protocol Description and Analysis Based on a State Transition Model with ChannelExpressions," PSTV'87, J. Rubin and C.H. West (Ed.), 1987, pp. 207{219.[13] W. Peng, "Single-Link and Time Communicating Finite State Machines," ICNP'94, Boston, Mas-sachusetts, October 25{28, pp. 126{133.[14] W. Peng and S. Purushothaman, \A Uni�ed Approach to the Deadlock Detection Problem inNetworks of Communicating Finite State Machines," CAV'90, New Brunswick, N.J., June, 1990,E.M. Clarke and R.P.Kurshan (Ed.), LNCS Vol. 531, pp. 243{252.[15] W. Peng and S. Purushothaman, \Data Flow Analysis of Communicating Finite State Machines,"ACM Transactions on Programming Languages and Systems, Vol. 13, No. 3, 1991, pp. 399{442.[16] J. Rubin and C.H. West, \An Improved Protocol Validation Technique," Computer Networks andISDN Systems, Vol. 6, 1982, pp. 65{73.[17] D. Sidhu, A. Chung, and T.P. Blumer, \Experience with FormalMethods in Protocol Development,"ACM SIGCOMM, Computer Communication Review, Vol. 21, No. 2, April, 1991, pp. 81{101.Appendix: Proofs of Lemmas and TheoremsLemma 4.2 Let fp be the fair precursor for a reachable state S w.r.t fe1; e2; : : : ; eng. IfS 62 F, then fp 6= S and the following statements are true in fp: (1) 9k 2 [1::n] : jekj 6= 0. (2)9k 2 [1::n] : jekj = 0. (3) If jekj 6= 0, then � pk , the transition from ek at spk, is executable. (4)fp 7!� S via the remaining transitions from fe1; e2;: : :; eng in fp.Proof: Obviously, fp 6= S, otherwise S will be fair reachable. Since fe1; e2;: : :; eng isa local execution sequence set for S, there is no deadlock or unspeci�ed reception during theexecution of transitions in fe1; e2;: : :; eng from S0 to S. Since fp 6= S, there must be sometransitions in fe1; e2;: : :; eng remained to be executed in fp, i.e., 9k 2 [1::n] : jekj 6= 0. Thus,(1) holds. Suppose jekj 6= 0. If � pk is a sending transition, then it is executable. Hence, � pkis not executable only if it is a receiving transition and cpk	1k = � since otherwise there willbe an unspeci�ed reception along fe1; e2;: : :; eng. In this case, there must be at least one such� pi ; jeij 6= 0, that is a sending transition; otherwise the protocol cannot precede beyond fp toreach S. As a result, a send-receive pair can be derived from the transitions in fp, whichcontradicts the assumption that no fair progress vector can be derived from fp based on theremaining transitions in fe1; e2;: : :; eng. Therefore, if jekj 6= 0, then � pk must be executable, i.e.,18

(3) holds. Suppose now 8 i 2 [1::n] : jeij 6= 0, then each � pi is executable. As a result, either aconcurrency vector or a synchronization vector can be derived from ~t = (� p1 ; � p2 ; : : : ; � pn), whichalso contradicts the assumption that no fair progress vector can be derived from fp based onthe remaining transitions in fe1; e2;: : :; eng. Thus, 9 k 2 [1::n] : jekj = 0, i.e., (2) holds. Finally,by induction on the number of remaining transitions in fe1; e2;: : :; eng from fp to S, it is obviousthat S is reachable from fp via those remaining transitions, i.e., (5) holds.Theorem 4.1 F is exactly the set of reachable state with equal channel length.Proof: We need to show that S is fair reachable i� it is a reachable state with equalchannel length.(Only If:) Suppose S is fair reachable. Then S is reachable. Let fs be a fair executionsequence for S. Denote fs = X0 ~v1! X1 ~v2! � � � ~vk! Xk; k � 0, where X0 = S0, 8 j 2 [1::k] :X j�1 7!f X j via fair progress vector ~vj, and Xk = S. We claim that S is of equal channellength by induction on k.Basis: k = 0. In this case, S = S0. The claim holds trivially.Induction: Suppose S is of equal channel length for k = k0 � 0. We want to show fork = k0 + 1. Note that Xk�1 is fair reachable via a fair execution sequence of length k0. Byinduction hypothesis, Xk�1 is of equal channel length. Now, Xk�1 7!f S via fair progress vector~vk. If ~vk is a concurrency vector, then it will either increase each channel length by one ordecrease each channel length by one when applied to Xk�1. If ~vk is a synchronization vector,then it will not change the length of any channel when applied to X j�1. Hence, S is also ofequal channel length. The claim holds for k = k0 + 1.Therefore, S is a reachable state with equal channel length.(If:) Suppose S is a reachable state with equal channel length K � 0. We want to show thatS is fair reachable. Let fe1; e2;: : :; eng be a local execution sequence set for S and fp be the fairprecursor of S w.r.t fe1; e2;: : :; eng. Then fp is fair reachable. From the preceding argument,fp is of equal channel length. Let K0 be the channel length in fp. Let [i::j] be an interval in fpsuch that 8 k 2 [i::j] : jekj 6= 0 and jei	1j = jej�1j = 0. By Lemma 4.2, such an interval existsand 8 k 2 [i::j] : � pk is executable. Note that in this case, either � pi is a receiving transition or� pj is a sending transition. Otherwise, a send-receive pair can be derived from (� pi ; � pi�1; : : : ; � pj),which contradicts the assumption that no fair progress vector can be derived from fp. Thereare three cases to consider:(1) K 0 < K. Note that the length of channel Ci	1i cannot be increased. By the time theprotocol gets to S, the length of channel Ci	1i will be less than K.(2) K 0 > K. Note that the length of channel Cjj�1 cannot be decreased. By the time theprotocol gets to S, the length of channel Cjj�1 will be greater than K.(3) K 0 = K. There are two subcases to consider:(a) � pi is a receiving transition. Then after the execution of � pi , the length of channelCi	1i will be K � 1. Note that the length of channel Ci	1i cannot be increased. Bythe time the protocol gets to S, the length of channel Ci	1i will be no greater thanK � 1.(b) � pj is a sending transition. Then after the execution of � pj , the length of channelCjj�1 will be K + 1. Note that the length of channel Cjj�1 cannot be decreased.By the time the protocol gets to S, the length of channel Cjj�1 will be no less thanK + 1. 19

In all cases, there will be a channel whose length is not K when the protocol gets to S, whichcontradicts the assumption that S is of equal channel length K. Hence, S is fair reachable.Lemma 4.3 Given a cyclic protocol P without reachable sending cycles. If P is un-bounded, then P is simultaneously unbounded.Proof: Since P is unbounded, P has at least one unbounded channel. Without loss ofgenerality, suppose channel C12 is unbounded.Since C12 is unbounded, there must exist an in�nite execution sequence e 4= fe1; e2;: : :; engsuch that for any k � 0, there is a state reachable via a pre�x of e such that jc12j > K. Moreover,since each process Pi has no reachable sending cycles, each ei is composed of in�nitely manysends and receives, and there can only be at most jSij � 1 consecutive receives before a sendin ei, where jSij is the number of states in Pi. As a result, there must be at least one suchexecution sequence along which P can proceed inde�nitely, i.e., no unspeci�ed reception canoccur along this sequence, otherwise C12 will be bounded. Fix e 4= fe1; e2;: : :; eng as such anexecution sequence.De�ne a function f : [0::n� 1]! N , N being the set of natural numbers, as follows:f(i) = (1 if i = 01 + jSn	(i	1)j � f(i	 1) if 0 < i < nBased on the preceding argument, for any K � 0, there is a state S = (s1; s2; : : : ; sn; cn1; c12,: : : ; cn�1n) reachable via a pre�x of e such that jc12j = f(n 	 1) � K 0, where K 0 > K. If allother channels have more than K messages, we are done. Suppose not, starting from S, inthe order from P2 to Pn, each process Pi; i 2 [2::n], can receive jSij � f(n 	 i) �K 0 messagesfrom channel Ci	1i, and as a result, send at least f(n 	 j) messages to channel Cii�1. In theend, the protocol must arrive at a reachable state such that each channel should have at leastK 0 messages. Therefore, there is a reachable global state in which the length of each channelgreater than K, i.e., P is simultaneously unbounded.Lemma 4.4 Given a cyclic protocol P . If there is a reachable state S = (s1; s2; : : : ; sn; cn1,c12; : : : ; cn�1n) such that 8 i 2 [1::n] : jcii�1j � K for some constant K � 0, then there exists afair reachable state S 0 = (s01; s02; : : :; s0n; c0n1; c012; : : :; c0n�1n) such that 8 i 2 [1::n] : jc0ii�1j � K.Proof: First, if S 2 F, then let S 0 = S, we are done. Second, if K = 0, then let S0 = S0,and we are done. Now suppose S 62 F and K > 0. Let e 4= fe1; e2;: : :; eng be an executionsequence for S. Based on fe1; e2;: : :; eng, we construct the partial fair execution sequence forS to get to fp, the fair precursor of S. Clearly, fp 2 F and is of equal channel length byTheorem 4.1. Suppose fp is of channel length K0. If K 0 � K, then let S0 = fp, and we aredone. Suppose not, by Lemma 4.2, 9k 2 [1::n] : jekj = 0. Note that from state fp and on,the length of channel Ckk�1 cannot be increased with the execution of remaining transitions ine by other processes. Therefore, at the end of the execution of e, i.e., in state S, the lengthof channel Ckk�1 will be less than K, which contradicts the fact that every channel in S haslength no less than K. Hence, fp must have channel length no less than K.In all cases, we can �nd a fair reachable state whose channel length is no less than K.20

Theorem 4.3 Given a cyclic protocol P without reachable sending cycles. F is �nite i�R is �nite.Proof: R being �nite implies that F is �nite since F � R. Suppose F is �nite but R isin�nite, then P is unbounded. By Lemma 4.3, P is simultaneously unbounded. By Lemma 4.4,for any K � 0, we can �nd a fair reachable state whose channel length is greater than K. Onthe other hand, F being �nite implies that the channel length of any fair reachable state isbounded by some constant K0 � 0. Choosing any K > K 0 will result in a contradiction.Theorem 4.4 Given a cyclic protocol P with a �nite F. P is unbounded i� it has areachable sending cycle.Proof: Obviously, if P has a reachable sending cycle, then P is unbounded. SupposeP is unbounded but does not have a reachable sending cycle. Then By Lemma 4.3, P issimultaneously unbounded. By Lemma 4.4, there is a fair reachable state S whose channellength is greater than K for any K � 0. Hence, F is in�nite for P . A contradiction.Theorem 4.5 Given a cyclic protocol P . F is �nite i� P is not simultaneously unbounded.Proof: If Part. Suppose F is in�nite, then S1k=0 Fk is in�nite. Thus, 8K � 09K 0 > K :FK0 6= ;. Since any state in F is of equal channel length, P is simultaneously unbounded.Only If Part. If P is simultaneously unbounded, then for any K � 0, there is a reachablestate S such that the length of each channel in S is greater than K. By Lemma 4.4, there is afair reachable state S 0 such that each channel length in S0 is greater than K. In other words,8K � 09K 0 > K : FK0 6= ;. As a result, F = S1k=0 Fk is in�nite.Theorem 4.6 It is undecidable whether a cyclic protocol P has a �nite F.Proof: We claim that for n = 2, it is undecidable whether a (cyclic) protocol P has a�nite F. We prove this claim by contradiction. In the proof, we make use of the decidability ofboundedness detection for protocols with �nite F's for n = 2, a result established in [5].Suppose for n = 2, it is decidable whether a protocol has a �nite F. Then the followingalgorithm will decide whether P is bounded:Step 1: Check if F is �nite for P .Step 2: If F is in�nite, output \P is unbounded".Step 3: If F is �nite, determine if P is bounded and output the result.Step 4: End of procedure.On the other hand, we know that boundedness detection is undecidable for protocols with n = 2machines [1]. A contradiction.Now that it is undecidable, for n = 2, whether a cyclic protocol has a �nite F, it is straight-forward that the theorem holds for n � 2.Theorem 4.7 Given a cyclic protocol P with a �nite F. Let K be the longest channellength among all the states in F. Then each reachable state of P has at least one channel whoselength is bounded by K. 21

Proof: Suppose there is a reachable state S in which each of its channel length is greaterthan K. Then by Lemma 4.4, there is a fair reachable state whose channel length is greaterthan K, which contradicts the selection of K.Lemma 5.2 Given S 2 F and an interval [i::j]. If U[i::j] 6= ; in S and S does not have anyfair progress vector without progress in [i::j], then S is a fair unspeci�ed reception state. If Sis in a fair execution cycle without progress in [i::j], then S is a fair unbounded state.Proof: By de�nition, U[i::j] 6= ; in S implies that 8 k 2 [i::j] : Ek 6= ; in S. Thus S isnot a deadlock state. Denote [i::j] as the complement interval of [i::j] w.r.t [1::n]. Suppose Sis not a fair unspeci�ed reception state. Then 8 k 2 [i::j] : Ek [E++k 6= ;. As a result, a fairprogress vector can be derived from each ~t 2 TV . Let ~u[i::j] be a pitv in S. Let ~t be a pseudotransition vector in TV such that 8 k 2 [i::j] : uk = tk. Then a fair progress vector ~v can bederived from ~t and 8 k 2 [i::j] : vk = �. Hence ~v is a fair progress vector in S without progressin [i::j]. A contradiction. Therefore, S is a fair unspeci�ed reception state.Now suppose S is in a fair execution cycle fc without progress in [i::j]. Let fe01; e02;: : :; e0ngbe the corresponding local execution sequence set from S to S. Then 8 k 2 [i::j] : je0kj = 0.Since jfcj 6= 0, there must be a nonempty interval [h::l] in S such that fi::jg \ fh::lg = ;,8 k 2 [h::l] : je0kj 6= 0, and je0h	1j = je0l�1j = 0. Note that 8 k 2 [h::l] : e0k is a cycle (notnecessarily elementary) in the state transition graph of Pk. We claim that e0h is a sending cyclein Ph. Suppose not. Then there is at least one receiving transition in e0h. Assume S is of channellength K. Then going through fc once will decrease the length of channel Ch	1h by one. Onthe other hand, Ph	1 is idle during the execution of fc. As a result, executing fc once willnot lead the system back to S, contradicting the assumption that fc is a fair execution cycle.Therefore, e0h must be a sending cycle in Ph. As a result, S is a fair unbounded state.Lemma 5.4 Given two partial states PS[i0 ::j0] and PS 0[i0 ::j0]. Suppose PS[i0::j0] � PS[i::j].Then PS[i0::j0] 7!�[i0::j0] PS 0[i0 ::j0] only if 9PS 0[i::j] : (PS 0[i0::j0] � PS 0[i::j]) ^ (PS[i::j] 7!�[i::j]PS 0[i::j]).Proof: The lemma is trivially true if [i0::j 0] = [i::j]. Suppose [i0::j0] � [i::j]. Letfei0 ; ei0�1;: : :; ej0g be a local execution sequence set from PS[i0 ::j0] to PS 0[i0::j0]. Let seq be thesequence of messages sent by the (sending) transitions in ej0 . Construct PS 0[i::j] such that (1)PS 0[i0::j0] � PS 0[i::j], (2) 8 k 2 (fi::jgnfi0::j0g) : s0k = sk, and (3) 8 k 2 (fi::jgnfi0::j0g) : ck	1k = seqif k = j 0 � 1; ck	1k = � otherwise. Then obviously, PS[i::j] 7!�[i::j]PS 0[i::j].Theorem 5.2 Both P-I and P-II are decidable for P . Therefore, detection of unspeci�edreception, unboundedness and nonexecutable transition are all decidable for P .Proof: We �rst show P-I is decidable for P . Let P be any protocol in P and sk be a localstate of Pk ; k 2 [1:n]. We want to decide if sk is reachable. Clearly, it is decidable whether sk isfair reachable by inspecting F, the �nite fair reachable state space of P . If sk is fair reachable,then it is reachable.Suppose sk is not fair reachable. Then, by Lemma 5.1 and Lemma 5.3, sk is reachable onlyif there is an S 2 FT such that k 2 [i0::j0], U[i0::j0] 6= ;, and sk is reachable from S. Morespeci�cally, from the discussion in Subsection 5.1, sk is reachable via partial state PS[i0::j0] � S.By Lemma 5.4, sk is reachable from PS[i::j], where [i::j] is a maximal proper incompatibleinterval in S and [i0::j0] � [i::j]. By Theorem 5.1, sk is m-reachable from PS[i::j] . Hence, if22

sk is reachable but not fair reachable, then it can be decided as reachable by checking eachMRG[i::j] for each maximal proper incompatible interval [i::j] in each S 2 FT . Since FT is�nite and MRG[i::j] is �nite for any PS[i::j], this can be done within �nite number of steps.On the other hand, if sk is not reachable, then it is not fair reachable. Furthermore, it cannotbe m-reachable from any PS[i::j] for any S 2 FT , where [i::j] is a maximal proper incompatibleinterval in S. Otherwise, by Theorem 5.1, sk is reachable from PS[i::j] for some S 2 FT . ByLemma 5.4, sk is reachable from S. Hence, sk becomes reachable. A contradiction. Therefore,if sk is not reachable, it can also be decided as not reachable by �rst examining F and thenchecking each MRG[i::j] for each maximal proper incompatible interval [i::j] in each S 2 FT .This also can be done within �nite number of steps.To sum up, the reachability of a local state sk can be decided within �nite number of steps.As a result, P-I is decidable for P . The decidability of P-II for P can also be shown in a similarway. Now that both P-I and P-II are decidable for P , it is straightforward that detection ofunspeci�ed reception, nonexecutable transition, and unboundedness are all decidable for P .Theorem 5.3 Given a cyclic protocol P 2 P . P has an unspeci�ed reception but Fur = ;only if Fub 6= ;. P is unbounded but Fub = ; only if Fur 6= ;. P has a nonexecutable transitionthat is not detectable via F only if Fur [Fub 6= ;. Therefore, P is logically correct i� F doesnot contain any logical errors.Proof: Suppose P has an unspeci�ed reception but Fur = ;. Then there is a reachablestate S such that (m; sk) 2 S, sk is local receiving state, and �(sk;+m) is not de�ned. SinceFur = ;, (m; sk) is reachable but not fair reachable. By Lemma 5.1 and Lemma 5.3, FT 6= ;.Since FT = Fur [Fub, we must have Fub 6= ;.The proofs for unboundedness and nonexecutable transition can be carried out in a similarway. Now suppose P is logically correct, then there is no reachable error states in F. Conversely,if F is free of logical errors, then FT = ;. P cannot have a deadlock since all deadlock statesare included in F. P cannot have any other logical errors either since otherwise we will haveFT 6= ; based on the discussion in the preceding paragraph. Hence, P is logically correct.
23

