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1 IntroductionThe recovery of the structure of a scene from multiple views and the transformation between theviews has been studied in the context of several visual tasks. Indeed, the problems of stereo, 3Dmotion estimation, calibration, obstacle detection, pose estimation for recognition, etc. can beregarded as special instances of the general recovery problem [6{10, 14, 20, 24, 25, 30, 32, 33].Approaches to various aspects of this problem that have appeared in the literature seek a solutionin two computational steps. First, a description that relates local measurements in multiple views isdeveloped; local descriptors include stereo disparity measurements, motion disparity measurements,motion �elds, partial disparity �elds such as those along the x- or y-axes, or normal motion �elds(the projections of motion �elds along the gradient direction) [3, 16, 18, 19, 28]. Second, knowledgeof the model of the geometric transformation between the multiple views provides constraints onthe local descriptors; these constraints are used to relate image measurements to the 3D scene andviewing geometry [11, 17, 20, 21, 23, 26, 29, 31].This paper deals with the case where the transformation between the views is described bya rigid motion. The rigid motion model imposes constraints on the local image measurements(disparity measurements, optical 
ow �eld, normal 
ow �eld), which thus have a certain structure.The goal of this study is to make explicit aspects of this structure that are due only to rigid motion.In the remainder of this paper we will use the terms motion vector and motion �eld to refer to the2D image displacements (local descriptors), and normal motion vector or normal motion �eld torefer to the motion vector components along the image gradients.1.1 What is to comeBefore we proceed, in order to provide the reader with an intuitive notion of the the global structureof rigid motion �elds, which is the subject of this study, we present in Figures 1 and 2 two simpleexamples. Figure 1 shows a motion �eld generated by an observer moving rigidly with regardto some surface. The analysis in this paper will show that the rigid motion, independently ofthe scene in view, constrains the locations of the motion vectors that have certain values. Forexample, all vectors (u = 0:5, v = 0:5) lie on the conic section C1. (This does not mean that allvectors on C1 have motion vector (0:5; 0:5); it means only that if there exists in the image a pointwith motion vector equal to (0:5; 0:5), this point will lie on the curve C1.) Similarly, curves C2and C3 contain all points with motion vectors (0:1; 0:7) and (�0:4;�0:4) respectively. This study1



investigates properties of the classes of curves which are loci of points where the motion vector hassome property. For example, we will show that all curves corresponding to vectors of �xed valueintersect in one point whose coordinates encode information about the translational component ofthe motion, i.e. the FOE.
FOE

C1

C2

C3Figure 1: The rigid motion constrains the motion vectors to lie on conic sections in the image plane.C1, C2 and C3 are curves containing the motion vectors of values (0.5, 0.5), (0.1, 0.7), and ({0.4,{0.4).Figure 2 shows a normal motion �eld (i.e. the component of the motion vector along the imagegradient at every point) resulting from the same rigid motion. Points in the image plane wherethe normal motion vector can have a particular length and direction are clustered in regions whoseboundaries depend on the 3D motion. To illustrate this in Figure 2 all normal motion vectorsparallel to the y-axis and of length 0:3 are shown to be in the area marked by vertical lines. Wewill study the relationships of such areas to each other and to the curves described above. Forexample, we will see that the intersection of the region boundaries provides the parameters of thetranslation as well as the rotation of the underlying 3D motion.The paper is divided in three parts. The �rst part (Sections 3 and 4) is devoted to the analysisof rigid motion �elds, the second part (Section 5) is concerned with rigid normal motion �elds, andin the last part applications to a variety of visual tasks, using the theoretical results, are outlined.In particular, Section 3 develops the well-known equations relating the image motion �eld to the3D motion for both planar and spherical retinae, and it explains the structure of the \iso-motioncurves" in the case of the sphere. An iso-motion curve Cu is a locus of points where the vector �eld2



Figure 2: For a normal motion �eld all vectors of certain value are constrained to lie within regions.The boundaries of these regions depend on the 3D motion.representing the image motion could take on a �xed value de�ned in terms of u. This �xed value isthe normal projection of the 3D vector u on the tangent plane at every point on the retina. Whilefor the spherical retina, the direction of the tangent plane depends on the location of the point, forthe planar retina it is the same everywhere, and thus also the normal projection gives the same valuefor every point. Section 4 is devoted to the development of equations describing the iso-motioncurves for a planar retina and to the analysis of the relationships between di�erent iso-motioncurves. Analogously, when dealing with normal 
ow, we encounter \iso-normal motion regions".Section 5 studies the relationship between such regions and the 3D motion parameters. The conceptof selecting vectors of certain lengths and directions is extended to certain vector valued functions.Finally, in the section on applications, we discuss how the concepts and structures introduced inthe paper could serve as the basis for a variety of perceptual mechanisms underlying visual tasks.2 Localization of motion measurementsThe 2D motion �eld on an imaging surface is the projection of the 3D motion �eld of the scenepoints moving relative to that surface. If this motion is rigid, it is composed of a translation tand a rotation !, with unit vectors t0 and !0 respectively. For the case of a moving camera ina stationary environment each scene point R = (X; Y; Z) measured with respect to a coordinate3



system OXYZ �xed to the camera moves relative to the camera with velocity Rt, whereRt = �t � ! �R: (1)Projecting the 3D motion vectors on a retina of a given shape gives the image motion �eld. Usuallya planar or a spherical retina is considered.If the center of projection is at the origin O and the image is formed on a plane orthogonal tothe Z-axis at distance f (focal length) from the nodal point (see Figure 3), the relation betweenthe image point r = (x; y; f) and the scene point R under perspective projection isr = fR � ẑR;where ẑ is a unit vector in the direction of the Z-axis and the \�" denotes the inner product ofvectors.If we now di�erentiate r with respect to time, and substitute for Rt, we obtain the followingequation for rt: rt = 1R � ẑ ((t � ẑ)r� ft)� 1f [r!ẑ]r� ! � r; (2)where [r!ẑ] = r � (! � ẑ) (triple product).Similarly, if we project on a sphere of radius f (see Figure 4 ), the image r of every point R isr = RfjRjwith jRj being the norm of the vector R; thus the motion vector rt can be expressed asrt = 1jRj( 1f (t � r)r� ft) � ! � r: (3)The �rst term for rt in equations (2) and (3) denotes the translational motion component whichdepends for the case of a planar retina on the depth Z = R � ẑ and for the case of a spherical retinaon the distance jRj, while the second term denotes the rotational component which does not dependon depth, but only on the three rotational parameters. As can be seen from the equations, usingperspective projection, only the scaled translation tZ or tjRj can be recovered. The points wherethe axis of translation pierces the spherical retina are called the Focus of Expansion (FOE) andthe Focus of Contraction (FOC), since at these points the translational motion components arezero and all translational motion vectors point away from or towards these points. Similarly, wecall the points where ! (the rotation axis) pierces the retina the Axis of Rotation points (AOR4
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Figure 3: Image formation using perspective projection on a planar retina.
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a translational component of which we know the direction but not the length). Since the distancefrom the scene to the image is positive, the possible space for the motion vector at every point isfurther reduced to a half-space.In order to separate the constraints on the motion �eld due to shape from those due to motion,we take the approach of studying answers to the following questions: Given a certain value v(p) fora motion vector at point p (de�ned as the projection of a 3D vector V on the local tangent planeat p) (or a vector valued function), where are the locations p on the retina, for which the motionvector rt at p (hereafter rt(p)) could take the value v(p). These concepts can be described moreclearly by examining a motion �eld on a spherical retina.2.1 Iso-motion contours for spherical projectionConsider the projection of the 3D motion on the unit sphere (f = 1). We are interested in thelocus of points on the sphere where the vector �eld could have a certain value (u � r)r� u, whichis the normal projection of u on the tangent plane at r. The following three theorems characterizethis locus.Theorem 1 For a rigid motion �eld on the sphere the geometrical locus of points at which themotion vector could have the value (u �r)r�u is described by a second order equation that in generalgives rise to one or two curves. These curve(s) pass through the FOE and the FOC (the pointswhere t pierces the sphere) and the points Ru (Ru1 and Ru2) (where the rotational component ofthe motion is equal to (u � r)r� u).Proof: For the locus of points r with motion vector (u � r)r� u using (3) we obtain1jRj((t � r)r� t) � (! � r) = (u � r)r� u: (4)If u = 0 we obtain ((t � r)r� t)� (! � r) = 0or � (t � r)(r � !)r+ (t � !)r = 0and thus t � ! � (t � r)(r � !) = 0: (5)Otherwise, projecting both sides of (4) on the vector ((! � r)r� !), provided that ! � r 6= 0, andon the vector u� r, provided that u� r 6= 0, gives1jRj(t �! � (t � r)(r �!)) = u �! � (u � r)(! � r) (6)6



and� 1jRjt � (u� r) = u �! � (u � r)(! � r) (7)Equating the left-hand side of equation (6) with the left-hand side of equation (7) we derive(r � !)(r � t)� (t �!) + (u� t) � r = 0 (8)Each of equations (5) and (8) describes a second order curve on the sphere and gives the locus ofpoints where the motion vector could take the value (u � r)r� u. To show that the points Ru lieon the curve(s) described by (8) let us denote by r1 the vector ~ORu. Then� ! � r1 = (u � r1)r1 � u: (9)From (8) we obtain the following constraint for the points r1:(t� (! � r1)) � r1 + (u� t) � r1 = 0 (10)Substituting in (10) for ! � r1 from (9), it can be veri�ed that r1 is a point on the curves. 2As can be seen from equations (5) and (8), for the case when u = 0 or when u� t = 0 (i.e. u isparallel to t) we always have two curves which pass through the FOE and the AOR. Hereafter, wewill refer to the curves corresponding to motion vectors, which result from the normal projectionof one 3D vector on the local tangent plane of the imaging surface, as iso-motion contours, inparticular as u iso-motion contours Cu (or (u; v; w) iso-motion contours C(u;v;w)) when denotingthe parameterization by the 3D vector u ((u; v; w)).Figures 5 and 6 show iso-motion curves for di�erent values of t, ! and u. In Figure 5 four zeroiso-motion contours (C1 to C4) are displayed, which are de�ned by the same t and di�erent vectors!, where the angle � between t and ! increases from C1 to C4. For � < 90� one of the curvescontains t0 and !0, and the other contains �t0 and �!0 (C1 and C2 in Figure 5a and b). For thecase when � = 90 the curves become two great circles, one orthogonal to t, the other orthogonalto ! (C3 in Figure 5c). This can also be seen from equation (5); t �! becomes zero, and thus r hasto be perpendicular to either t or !. When � > 90� one of the curves passes through t0 and �!0and the other through �t0 and !0 (C4 in Figure 5d).Figure 6 shows iso-motion contours de�ned by the same t and ! and parallel vectors u. As onecan see from equations (8) and (5), if u 6= 0 additional linear terms are introduced, and the locusbecomes either one or two curves. As the length of u becomes large with regard to ! and t, thecurve converges to the great circle ((t� u) � r = 0).7
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Theorem 3 All ku iso-motion contours, where k 2 < and u is a motion vector of unit length,intersect in the same points, which lie in a plane. For the general case, if (u � t) � (t � !) 6= 0these are four points. Two of them are the FOE and the FOC. The two other points, denoted byPku and �Pku, have coordinates t+�ujjt+�ujj and � t+�ujjt+�ujj with � = (u�!)t2�(t�u)(t�!)t�!�(t�u)(u�!) (Figure 8).
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-PkuFigure 8: For the general case all ku iso-motion contours intersect in four points: the FOE, theFOC, and the points Pku and �Pku.Proof: Let us intersect two elements of the family of ku iso-motion contours. Considering equa-tion (8) which describes the u iso-motion contours for the kiu and kju iso-motion contours, weobtain r � (u� t) = 0:The above equation describes a great circle independent of ki and kj . Thus all ku iso-motioncontours intersect in the same points. These points|in the general case, four|are obtained byintersecting the great circle with any iso-motion contour, for example the zero-motion contour. Ascan be veri�ed through substitution the FOE, the FOC, Pku, and �Pku lie on both the great circleand the zero-motion contour. 2If (u � t) = 0 (or u parallel to t) all the ku iso-motion contours are the same. If (t � !) = 0(t parallel to !) Pku becomes the FOE, and we only obtain two intersection points.It follows from Theorem 3 that the direction of the motion vector at the intersection points Pkuand �Pku is de�ned; since these points also lie on the zero-motion contour the vectors v at theintersection points are parallel to their translational and their rotational motion components.10



The next section studies the structure and form of the iso-motion contours for the case of aplanar retina.3 Iso-motion contours in the plane3.1 Characterization of the form of iso-motion contours in the planeIf the scene is projected on a planar retina the image velocity �eld is given by equation (2). Weexpress this equation in the more common component notation: rt = (r1t ; r2t ; r3t ). r3t is always zero.We denote r1t by u and r2t by v, t = (U; V;W ), ! = (�; �; 
). If we introduce new coordinates forthe direction of translation (x0; y0) = (UfW ; V fW ), we obtain the well-known equations [22]u = utrans + urot == (�x0 + x)WZ + �xyf � �(x2f + f) + 
y (13)v = vtrans + vrot == (�y0 + y)WZ + �(y2f + f)� �xyf � 
x (14)The projection of a 3D vector u = (u; v; w) on the image plane results in the same vector (u; v; 0)at every point on the image plane. Thus we are interested in the locus of points with motion vector(u; v; 0). From now on we drop the third component and denote by u = (u; v) the motion vectorunder consideration. To obtain the locations (x; y) in the image plane for which the motion vectorhas some constant value (u; v), we bring the rotational components in equations (13) and (14) tothe left side and divide (13) by (14): u� urotv � vrot = utransvtransu� (�xyf � �(x2f + f) + 
y)v � (�(y2f + f)� � xyf � 
x) = x� x0y � y0 (15)which results in the equationf(x; y; u; v) = y2(�x0f + 
)� xy(�x0f + �y0f ) + x2(�y0f + 
)�x(�f + 
x0 � v)� y(�f + 
y0 + u) + x0(�f � v) + y0(�f + u) = 0 (16)describing a second order curve in the image plane. Since the values of u and v do not appear inthe quadratic terms, but only in the linear and constant terms, the nature of the curve (i.e. whetherit is an ellipse, hyperbola, or parabola) is independent of u, v, and thus is the same for all such11



parametrized curves of a given motion �eld. The axes of the conics are all parallel to each otherwith slopes m and �1m , where m is the positive of the two values [27](�y0 � �x0)�q(�2 + �2)(x20 + y20)(�x0 + �y0) :The nature of the iso-motion contours depends on the values of the translation and rotation.Depending on the value l, wherel = (�x0f + �y0f )2 � 4(�x0f + 
)(�y0f + 
)the contour is a hyperbola if l > 0, an ellipse if l < 0, or a parabola if l = 0. Figures 9a and b showtwo classes of iso-motion curves for two di�erent motion �elds.
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only degree of freedom lies in the variability of the depth. At point P(x; y) the motion vector cantake the value u(x; y) = urot(x; y) + �utr(x; y); (17)where utr(x; y) = (x�x0; y� y0) and � is the scaled depth value WZ . The iso-motion contours thatpass through P(x; y) have to correspond to the motion vectors given by equation (17), and thusevery point can be considered as the intersection of the family of u(x; y) iso-motion contours, asde�ned in (17).Let us now consider, as before, the iso-motion contours of parallel motion vectors, i.e. let usconsider the iso-motion contours of values k(u; v), where (u; v) is a unit vector and k a scalar 2 <.These can be obtained from equation (16) by substituting ku for u and kv for v.Equation (16) can be written as a sum of a quadratic expression q(x; y) and a linear expressionp(x; y) multiplied by k:f(x; y; u; v; k) = q(x; y) + kp(x; y) = 0= y2(�x0f + 
)� xy(�x0f + �y0f ) + x2(�y0f + 
)� x(�f + 
x0)�y(�f + 
y0) + x0�f + y0�f+k(xv � yu� x0v + y0u) = 0 (18)Independently of k, the two intersection points of q(x; y) and p(x; y) are elements of all the (ku; kv)iso-motion contours f(x; y; u; v; k). Thus the family of contours has two common intersection points.Both these points, since they lie on f(x; y; u; v; k) for every k, also lie on the zero motion contour.Thus all families f(x; y; u; v; k) of iso-motion contours intersect at two points on the zero motioncontour (see Figure 10). One of them is the FOE. The other one is denoted by Pk(u;v).Since Pk(u;v) lies on all f(x; y; u; v; k) iso-motion contours the value of the motion vector atPk(u;v) will certainly be k(u; v) for some k. Thus the direction of the motion vector for every pointon the zero motion contour is de�ned. Since Pk(u;v) lies on the zero motion contour, and thus fromequation (17) it follows that utr = �urot(i.e. the translational component is parallel to the rotational one), we �nd that the motion vectorfor every point on the zero motion contour is along the direction of its translational component andthus lies on a line connecting the point with the FOE (see Figure 11).If we look at points on general u motion contours, where u is any 2D vector, we can makethe following statement about the direction of the motion vector there. Since any point P is the13
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with circles.
-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

FOE

AOR

R(0.5, 0.5)

C(0.5, 0.5)

C0

Figure 13: Two of a family of ku iso-motion contours (C0 and C0:5;0:5): The curve segments forwhich the depth is positive are marked by circles. The endpoints of these segments are the FOEand the points Rku.3.4 Fixating stereoThe image displacement �eld due to binocular disparity measurements obtained by a stereo system�xating at a point deserves some separate discussion. This con�guration has often been studiedin the psychophysical literature [15]. In particular, a concept has been investigated that can beregarded as a special case of the iso-motion contours: The locus of points in space that yield zerodisparity, the so-called horopter . For a general stereo system in �xation (see Figure 14) the horopterconsists of two intersecting curves, the �rst being a circle in the plane de�ned by the two opticalaxes of the two cameras passing through the two nodal points and the �xation point, and the secondbeing orthogonal to the plane of the circle and passing through the �xation point.Let us �x a coordinate system to the left camera and let us describe the disparity (motion)of the right camera with respect to left one. We assume that the baseline is in the XZ-plane.To obtain a uni�ed notation, we use here the small baseline approximation in order to be able toemploy the same di�erential equations as before. Our concern here is the study of the structureof disparity �elds, and the structure itself is not a�ected by this assumption. The center of theright camera is in the XZ-plane and the rotation, if the two cameras �xate at one point, is onlyaround the Y -axis. Therefore, there are only two unknown motion parameters for a �xating stereo16
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Figure 14: Binocular viewing geometry under �xation: The dotted circle through the �xation pointand the eyes and the dotted line perpendicular to this circle indicate the horopter, i.e. the locus ofpoints in 3D that yield zero disparity.con�guration, namely x0 and �. We thus obtain the following equation for the iso-motion contoursof a �xating stereo in the image plane:x0f �xy � xv1 + y(�f + u1)� x0v1 = 0 (20)The iso-motion contours are hyperbolas. Their axes are parallel to the medians, and the centerof their axes is [27] (xc; yc) = ((�� � u1)f�x0 ; v1f�x0 ):The zero motion contour, which is the projection of the horopter on the image plane, is de�ned as�y�(x0xf + f) = 017



which is the equation of two lines, one being the x-axis, the other a line parallel to the y-axis withx-coordinate x = �f2x0 . These lines, of course, constitute a degenerate hyperbola. The families ofiso-motion contours corresponding to parallel measurements (i.e. the k(u; v) iso-motion contours)have the FOE as one intersection point and as the other a point Pk(u;v) which lies on the part ofthe zero motion contour contour for which x = �f2x0 . Thus for every point along the line x = �f2x0the direction of the 
ow is in the direction of the translational motion component (see Figure 15).
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Figure 15: Iso-motion contours for �xating stereo: For all points along a line parallel to the y-axisthe motion vectors are in the direction of their translational motion components.4 Normal motion constraintsThe vector �eld which represents the components of the motion �eld perpendicular to edges isreferred to as the normal motion �eld [1, 34]. It is uniquely de�ned by local image measurements andcan be derived without confronting the aperture problem. Although a normal motion �eld seemsto contain less information than the exact motion �eld, the motion involved is still manifested in it.In particular, if the normal motion �eld is due to a rigid motion, it possesses a certain structure.In this section we investigate the locus of points in the image plane where the normal motionvector can take on a certain value. We �rst deal with the case of a normal motion vector ofconstant value, and later generalize to certain vector-valued functions linear and quadratic in theimage coordinates. It will be shown that the only constraint for the location of these image pointsoriginates from the fact that the depth has to be positive. As a result the possible locations are18



found to be connected areas in the image plane. The shapes of these areas are de�ned by the rigidmotion.4.1 Iso-normal motion areasIf u is the motion vector at a point (x; y) and n = (nx; ny) is a unit vector in gradient direction,the normal motion un is un = (u � n) � n:Substituting for the components of u from (13) and (14), we obtain un for the value of the vectorun along the gradient direction:un = urotnx + utransnx + vrotny + vtransny (21)and thusWZ ((x� x0)nx+ (y� y0)ny) = un� (�xyf � �(x2f + f) + 
y)nx� (�(y2f + f)� �xyf � 
x)ny: (22)We are concerned with the question: Where in the image plane can the normal motion �eldtake on a certain constant value un? (i.e., where could normal motion vectors of a certain lengthun and direction (nx; ny) be?) The depth has to be positive. If we assume W > 0, we obtain thefollowing inequality:"un � (�xyf � �(x2f + f) + 
y)nx � (�(y2f + f)� �xyf � 
x)ny# �[(x� x0)nx + (y � y0)ny] > 0h(un; �; �; 
; x; y) � g(x0; y0; x; y) > 0 (23)h(un; �; �; 
; x; y) = un� (�xyf ��(x2f + f)+
y)nx� (�(y2f + f)�� xyf �
x)ny and g(x0; y0; x; y) =(x�x0)nx+(y�y0)ny . The equation h(x; y) = 0 describes a hyperbola that splits the image planeinto an area where h(x; y) > 0 and an area where h(x; y) < 0. The equation g(x; y) = 0 describesa line through the FOE, which is perpendicular to (nx; ny), and which separates the plane into anarea where g(x; y) is positive and an area where g(x; y) is negative. Thus, through this inequalitya region Iun consisting of two areas bounded by a hyperbola and a line are de�ned as the locationswhere the normal motion could take on a certain value un. The two areas meet at one point, theintersection of the hyperbola and the line. This point, which contains information about the wholepattern, will be denoted by Sun (see Figure 16).19
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Figure 16: Iso-normal motion regions are bounded by a line (g(x; y) = 0) and a hyperbola (h(x; y) =0). In the other areas of the image plane the value of the motion vectors in direction (nx; ny) isconstrained. Where h(x; y) < 0 we have un > urot �n (i.e. the rotational component of the normalmotion is greater than un). Where g(x; y) > 0 the translational component of the normal motionis greater than zero. In the area where h(x; y) < 0 and g(x; y) > 0, we can thus conclude thatthe normal motion (the sum of the rotational and translational components) is greater than un.Similarly, where h(x; y) > 0 and g(x; y) < 0, the value of the normal motion has to be smaller thanun (see Figure 17).To summarize these results, considering for a given normal motion �eld due to rigid motion thevectors along the gradient direction (nx; ny), we �nd that the image plane is split by a hyperbolaand a line into four areas. All vectors which are of length un are in two opposite areas. One of thetwo other areas contains only values greater than un, and the other only values smaller than un.The line (g(x; y) = 0) is de�ned by the translational motion; it passes through the FOE and isperpendicular to the gradient (nx; ny) of the normal motion vector. Therefore, this line is describedby only one unknown parameter (its direction is known). Furthermore, the line is independent ofun, the value of the normal motion vector. For any general un the hyperbola (h(un; x; y)) is de�nedby the three rotational parameters. For the case when un = 0, the number of unknowns reduces totwo (�
 and �
 expressing the direction of the rotation axis). If we consider parallel normal motionvectors, i.e. normal motion vectors of value k(un; vn), where k any scalar, we �nd areas in the image20
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AOR(e) (f)Figure 22: (a) Normal motion �eld due to translation and rotation. Superimposed on the vector�eld are the boundaries of the two normal motion areas corresponding to the vectors of length zeroin direction n1 and n2. (b) The black and gray squares denote locations where in the normal motion�eld of (a) vectors of length zero in direction n1 and n2 were found. (c) and (d) Normal motion�eld due only to translation and corresponding normal motion vectors of length zero in directionsn1 and n2. The intersection of areas corresponding to di�erent normal motion vectors of lengthzero gives the FOE. (e) and (f) Normal motion �eld due only to rotation and corresponding normalmotion vectors of length zero in directions n1 and n2. The intersection of areas corresponding todi�erent normal motion vectors of length zero gives the AOR.25
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Figure 23: The normal motion bands corresponding to vectors of length zero intersect on the zeromotion curve (curve segment marked by circles).The copoint vectors are de�ned with respect to a point. The (r; s) copoint vectors are de�nedas the normal motion vectors which are perpendicular to straight lines passing through the point(r; s). A copoint vector (r; s) at a point (x; y) is parallel to the vector (s� y; x� r) (see Figure 24).
(r, s)Figure 24: Copoint vectors (r; s).The coaxis vectors are de�ned with respect to a direction in space. The coaxis vectors (A;B;C)are de�ned as follows: A line through the image formation center de�ned by the directional cosines(A;B;C) de�nes a family of cones with axis (A;B;C) and apex at the origin. The intersection of26



these cones with the image plane gives rise to conic sections. The normal motion vectors perpen-dicular to these conic sections are called coaxis vectors (A;B;C). At every point (x; y) a coaxisvector is parallel to the vector (�A(y2+ f2) +Bxy+Cx;Axy�B(x2+ f2) +Cy) (see Figure 25).
(A*f/C, B*f/C)

Figure 25: Coaxis vectors (A;B;C).As in the case of the iso-normal motion vectors, we choose vectors of a given length and directionand evaluate the regions with positive depth measurements. We consider the copoint vectors (r; s)and the coaxis vectors (A;B;C) of length un(x; y) (with un(x; y) a function in x and y). WhereWZ > 0 the following inequalities hold: [y(x0 � r)� x(y0 � s)� x0s + y0r]�"un(x; y)� (x2f (�s+ 
f)� y2f (�r + 
f) + xy(�sf + �rf )+y(
s+ �f) + x(
r+ �f)� (�fr + �fs) � > 0 (24)�un(x; y)� (y(C�f � A
f ) + x(B
f � C�f ) + A� �B�)(x2 + y2 + f2)� ��y2(Ax0f + C)� xy(Bx0f + Ay0f ) + x2(By0f + C)�y(Bf + Cy0)� x(Af + Cx0) + Ax0f +By0f � > 0 (25)For un(x; y) = 0 we obtain regions de�ned by a line and a conic section. In the case ofthe copoint vectors the line separates the translational components and the conic separates therotational components of the vectors. The line passes through the FOE and also through the27



point (r; s), and thus it can be described by only one unknown. The conic is speci�ed by onlytwo unknowns, �f
 and �f
 . In the case of the coaxis vectors, the line separates the rotationalcomponents. It passes through the AOR and through the point (r; s) and thus it is also describedby only one unknown. The conic separates the translational components. It is de�ned by the twocoordinates of the FOE, (x0; y0). The intersection of the lines and the conics lies on the zero motioncurve. One of the two other regions de�ned by the above described curves contains only vectors oflength greater than zero, and the other contains only vectors smaller than zero. An illustration isgiven in Figure 26, which shows these regions for the class of coaxis vectors displayed on Figure 25.
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Figure 26: Separation of (A;B;C) coaxis vectors whose directions are shown in Figure 25: Aline passing through the AOR separates the positive and negative rotational components. A conicthrough the FOE separates the positive and negative translational components. In the area markedby horizontal lines all (A;B;C) coaxis vectors are greater than zero. In the area marked by verticallines all (A;B;C) coaxis vectors are smaller than zero. The two other areas contain all the (A;B;C)coaxis vectors of length zero.It becomes clear that the normal motion vectors of same length and direction can be consideredas special cases of the copoint vectors. They represent the copoint vectors for which r and s bothare 1 and rs = �nynx . A special class of coaxis vectors, those which correspond to an axis parallelto the XY -plane, is very similar to the iso-normal motion vectors. For all classes of coaxis vectors(A;B; 0) the slope of the line separating the rotational components is AB and the conics are allhyperbolas. 28



5 ApplicationsThe constraints developed in this paper allow us to make explicit aspects of the structure of motion�elds and normal motion �elds which are due to rigid motion. These constraints are de�ned globallyon the image, as they relate motion measurements from di�erent parts of the image to each other.The globality gives the constraints the potential of being exploited in tasks related to the recoveryof the parameters describing the rigid motion con�guration. They may be used in algorithmscomputing the extrinsic as well as the intrinsic parameters of a rigid motion con�guration or stereosetting. They also may be exploited to verify that a vector �eld is only due to rigid motion andto locate areas in the image where this constraint does not hold|for example, in the detectionand localization of independently moving objects for a moving observer. They also may be used toaddress technical problems related to image stabilization. In the remainder of this section we willdescribe in more detail ideas that could be used in algorithmic procedures for 3D motion estimation.5.1 Using motion vectorsKnowledge of any single iso-motion contour is su�cient to derive the 3D motion. Thus the local-ization of any such contour provides the motion parameters. Iso-motion contours can be localizedwith simple matching techniques using �lters which are tuned to respond to image points in dif-ferent frames being a certain distance apart (see Figure 27). Finding motion vectors of a certainlength and direction by means of prede�ned �lters is a decision problem and thus easier and oflower complexity than computing a motion �eld.In addition, the various relationships between iso-motion contours described in Section 3 canbe used to increase the accuracy of the computation of iso-motion contours. We can describe everypoint as the intersection of a certain class of iso-motion contours: the FOE is the intersection ofall iso-motion contours; di�erent ku iso-motion contours intersect at a point on the zero motioncontour; and any point on a general Cu iso-motion contour can be considered as the intersectionof a family of iso-motion contours as described in equation (17).Furthermore, knowledge about the directions of the motion vectors along iso-motion contourscan be of use in the veri�cation of the contours' correct locations. As described in Section 3.2, forevery point along any u iso-motion contour the following holds: If we subtract u from the motionvector v at P, we obtain a vector v�, which is parallel to the translational motion component of v.In particular, for every point along the zero motion contour the motion vector is in the direction of29
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Figure 27: To test whether points A = (x; y) and B = (x+ u; y + v) correspond, we test how welltwo windows wA and wB placed around the point A and B match. With a set of correspondenceoperators tuned to di�erent values (u; v) the points on the (u; v) iso-motion contours are located.the translational motion component. The preceding discussion demonstrates that even if there isno iso-motion contour available, but we have at our disposal a set of points (at least two) with theirassociated motion vectors, and we know on which iso-motion contour each point lies, the positionof the FOE is uniquely determined (as shown in Figures 11 and 12).5.2 Using normal motion vectorsSimilarly, the iso-normal motion areas as well as the regions containing coaxis and copoint vectorsof a certain length and direction can be used in the recovery of the 3D motion. The normal motionregions can be obtained by localizing their boundaries. In particular, the normal motion vectorsof length zero are bounded by curves which can be described by only three parameters. Thus asimple search technique in a three-dimensional space, such as in [12, 13], could be employed to �ndthe 3D motion parameters.The iso-normal motion areas, however, also allow to obtain bounds on the solutions for themotion parameters in very simple ways. Computations of this kind might be used in combinationwith other techniques, such as the search techniques described above, for example as preprocessing30



modules to reduce the amount of search.A possible area for the FOE can be obtained by using iso-normal motion vectors in di�erentdirections. The normal motion vectors of a given value are located within the normal motion bands(see Figure 21). The normal motion bands consist of two areas meeting at the point Sun. ThroughSun and the FOE passes the boundary line of the iso-normal motion areas, which also separates thetranslational motion components (Figure 16). The slope of the line is known; it is perpendicular tothe direction of the normal motion. The exact position of the line is de�ned by the location wherethe normal motion band is thinnest. It may not be possible to locate one point and thus the exactline, but only a bounded area which contains the line. Since all iso-normal motion areas of di�erentlengths but the same direction de�ne the same line, this bounded area can be located by means ofa number of iso-normal motion bands corresponding to parallel motion vectors. The intersectionof at least two such bounded areas corresponding to normal motion vectors in di�erent directionsgives an area in which the FOE lies. This is demonstrated in Figure 29. Figure 28 shows thesynthetic normal 
ow �eld, which was used as input data for the localization of the translation androtation axis demonstrated in the following three �gures (Figures 29, 30, and 31). The image size is300�300, the focal length is 100 pixels, and the origin is at the center of the image. The translationwas (�0:1; 0:1; 0:5) and the rotation was (0:005�0:0020:01), where the depth was chosen randomlyin an interval between 20:0 and 70:0.
FOE

AOR

OFigure 28: Synthetic normal motion �eld used as input data for the localization of the FOE andAOR shown in the next three �gures. 31



FOE(a)
FOE(b)
FOE(c)Figure 29: Localization of FOE: (a): Normal motion band due to normal motion vectors of acertain length parallel to the x-axis and corresponding curves g(x; y) and h(x; y) de�ning thenormal motion area. By localizing where this normal motion band is thinnest, a bounded areafor the line separating the translational normal motion components is found (marked by diagonallines). (b): Normal motion band due to normal motion vectors of a certain length parallel to they-axis with overlaid curves g(x; y) and h(x; y) de�ning the normal motion area and localizationof bounded area for the line separating the translational normal motion components (marked bydiagonal lines). (c) The intersection of these areas gives a bounded area for the FOE.32



FOE

(a)
FOE

(b)Figure 30: Localization of FOE: The FOE cannot lie within the areas where the normal motionbands corresponding to parallel normal motion vectors intersect. (a) Normal motion vectors parallelto the y-axis of three di�erent lengths. (b) Polygonal approximation of the boundaries of normalmotion bands and localization of an area in which the FOE can lie.33



AOR(a)
AOR(b)Figure 31: Localization of the AOR with (A;B; 0) coaxis vectors: (a) (0:707;�0:707; 0) coaxis vec-tors of length zero and curves separating the positive from the negative translational and rotationalnormal motion components. (b) Localization of a bounded area in which the AOR lies.34



Instead of focusing on the thinnest parts of the normal motion bands, one could considervarious normal motion bands corresponding to di�erent lengths but the same direction. Two suchiso-normal motion areas cannot intersect in an area that contains the line. Thus an area for the linepassing through the FOE can be located as the region between regions where iso-normal motionareas intersect (see Figure 30).Just as a line passing through the FOE bounds the iso-normal motion regions, a line passingthrough the point where the rotation axis pierces the image plane (AOR) bounds regions separatingthe coaxis vectors (A;B; 0) of length zero. By �nding the locations where the areas separating the(A;B; 0) coaxis patterns are thinnest and intersecting di�erent such areas, a bounded region forthe AOR can be located (see Figure 31).5.3 Combined use of motion and normal motionOf course, the iso-motion and iso-normal motion constraints can also be used in a combined manner.To locate iso-motion contours normal motion vectors can be employed. For example, the intersectionof normal motion bands (belonging to normal motion vectors originating from one motion vector)gives a segment of the corresponding iso-motion contour (see Figure 19 and 20).6 ConclusionsThe motion �eld or the displacement �eld due to rigid motion on a system's retina possesses aglobal structure that is independent of the scene in view and depends only on the parameters of theunderlying 3D motion. In this paper we have studied this structure for the cases of a spherical anda planar retina by analyzing the geometry of the iso-motion contours and iso-motion regions, i.e.the loci on the retina where the motion vector (or the normal motion vector) could have a certainvalue. We found that the iso-motion curves and the boundaries of the iso-normal motion areas areof second order and their form depends on the 3D motion parameters. The theory described herecan �nd several applications in problems of visual motion interpretation as well as calibration, orin general, in problems related to the matching of two views and to its interpretation.References[1] J.Y. Aloimonos. Purposive and qualitative active vision. In Proc. DARPA Image Understand-ing Workshop, pages 816{828, 1990. 35
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