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Abstract

Image displacement fields—optical flow fields, stereo disparity fields, normal flow fields—due to
rigid motion possess a global geometric structure which is independent of the scene in view. Motion
vectors of certain lengths and directions are constrained to lie on the imaging surface at particular
loci whose location and form depends solely on the 3D motion parameters. If optical flow fields or
stereo disparity fields are considered, then equal vectors are shown to lie on conic sections. Similarly,
for normal motion fields, equal vectors lie within regions whose boundaries also constitute conics.
By studying various properties of these curves and regions and their relationships, a characterization
of the structure of rigid motion fields is given. The goal of this paper is to introduce a concept
underlying the global structure of image displacement fields. This concept gives rise to various
constraints that could form the basis of algorithms for the recovery of visual information from
multiple views.
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1 Introduction

The recovery of the structure of a scene from multiple views and the transformation between the
views has been studied in the context of several visual tasks. Indeed, the problems of stereo, 3D
motion estimation, calibration, obstacle detection, pose estimation for recognition, etc. can be
regarded as special instances of the general recovery problem [6-10, 14, 20, 24, 25, 30, 32, 33].
Approaches to various aspects of this problem that have appeared in the literature seek a solution
in two computational steps. First, a description that relates local measurements in multiple views is
developed; local descriptors include stereo disparity measurements, motion disparity measurements,
motion fields, partial disparity fields such as those along the z- or y-axes, or normal motion fields
(the projections of motion fields along the gradient direction) [3, 16, 18, 19, 28]. Second, knowledge
of the model of the geometric transformation between the multiple views provides constraints on
the local descriptors; these constraints are used to relate image measurements to the 3D scene and
viewing geometry [11, 17, 20, 21, 23, 26, 29, 31].

This paper deals with the case where the transformation between the views is described by
a rigid motion. The rigid motion model imposes constraints on the local image measurements
(disparity measurements, optical flow field, normal flow field), which thus have a certain structure.
The goal of this study is to make explicit aspects of this structure that are due only to rigid motion.
In the remainder of this paper we will use the terms motion vector and motion field to refer to the
2D image displacements (local descriptors), and normal motion vector or normal motion field to

refer to the motion vector components along the image gradients.

1.1 What is to come

Before we proceed, in order to provide the reader with an intuitive notion of the the global structure
of rigid motion fields, which is the subject of this study, we present in Figures 1 and 2 two simple
examples. Figure 1 shows a motion field generated by an observer moving rigidly with regard
to some surface. The analysis in this paper will show that the rigid motion, independently of
the scene in view, constrains the locations of the motion vectors that have certain values. For
example, all vectors (v = 0.5, v = 0.5) lie on the conic section . (This does not mean that all
vectors on (7 have motion vector (0.5,0.5); it means only that if there exists in the image a point
with motion vector equal to (0.5,0.5), this point will lie on the curve C7.) Similarly, curves Cj

and C3 contain all points with motion vectors (0.1,0.7) and (—0.4, —0.4) respectively. This study
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investigates properties of the classes of curves which are loci of points where the motion vector has
some property. For example, we will show that all curves corresponding to vectors of fixed value

intersect in one point whose coordinates encode information about the translational component of

the motion, i.e. the FOE.
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Figure 1: The rigid motion constrains the motion vectors to lie on conic sections in the image plane.
Cy, Cy and C5 are curves containing the motion vectors of values (0.5, 0.5), (0.1, 0.7), and (-0.4,

0.4).

Figure 2 shows a normal motion field (i.e. the component of the motion vector along the image
gradient at every point) resulting from the same rigid motion. Points in the image plane where
the normal motion vector can have a particular length and direction are clustered in regions whose
boundaries depend on the 3D motion. To illustrate this in Figure 2 all normal motion vectors
parallel to the y-axis and of length 0.3 are shown to be in the area marked by vertical lines. We
will study the relationships of such areas to each other and to the curves described above. For
example, we will see that the intersection of the region boundaries provides the parameters of the
translation as well as the rotation of the underlying 3D motion.

The paper is divided in three parts. The first part (Sections 3 and 4) is devoted to the analysis
of rigid motion fields, the second part (Section 5) is concerned with rigid normal motion fields, and
in the last part applications to a variety of visual tasks, using the theoretical results, are outlined.
In particular, Section 3 develops the well-known equations relating the image motion field to the
3D motion for both planar and spherical retinae, and it explains the structure of the “iso-motion
curves” in the case of the sphere. An iso-motion curve Cy is a locus of points where the vector field
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Figure 2: For a normal motion field all vectors of certain value are constrained to lie within regions.
The boundaries of these regions depend on the 3D motion.

representing the image motion could take on a fixed value defined in terms of u. This fixed value is
the normal projection of the 3D vector u on the tangent plane at every point on the retina. While
for the spherical retina, the direction of the tangent plane depends on the location of the point, for
the planar retina it is the same everywhere, and thus also the normal projection gives the same value
for every point. Section 4 is devoted to the development of equations describing the iso-motion
curves for a planar retina and to the analysis of the relationships between different iso-motion
curves. Analogously, when dealing with normal flow, we encounter “iso-normal motion regions”.
Section 5 studies the relationship between such regions and the 3D motion parameters. The concept
of selecting vectors of certain lengths and directions is extended to certain vector valued functions.
Finally, in the section on applications, we discuss how the concepts and structures introduced in

the paper could serve as the basis for a variety of perceptual mechanisms underlying visual tasks.

2 Localization of motion measurements

The 2D motion field on an imaging surface is the projection of the 3D motion field of the scene
points moving relative to that surface. If this motion is rigid, it is composed of a translation t
and a rotation w, with unit vectors tg and wg respectively. For the case of a moving camera in

a stationary environment each scene point R = (X,Y, 7) measured with respect to a coordinate



system OXY Z fixed to the camera moves relative to the camera with velocity Rg, where
th—t—wXR. (1)

Projecting the 3D motion vectors on a retina of a given shape gives the image motion field. Usually

a planar or a spherical retina is considered.

If the center of projection is at the origin O and the image is formed on a plane orthogonal to
the Z-axis at distance f (focal length) from the nodal point (see Figure 3), the relation between

the image point r = (2, y, f) and the scene point R under perspective projection is

r= Rf‘ -R,
where Z is a unit vector in the direction of the Z-axis and the “-” denotes the inner product of

vectors.

If we now differentiate r with respect to time, and substitute for Rt, we obtain the following

equation for rg:
1

R-z

rp = —((t-2)r — ft) - %[rwi]r _wxr, 2)

where [rwz] = r - (w x z) (triple product).
Similarly, if we project on a sphere of radius f (see Figure 4 ), the image r of every point R is

Ry
r=——
IR|

with |R| being the norm of the vector R; thus the motion vector ry can be expressed as

_ ﬁ(%(t P ft) —w xr. (3)

I

The first term for ry in equations (2) and (3) denotes the translational motion component which
depends for the case of a planar retina on the depth Z = R -z and for the case of a spherical retina
on the distance |R|, while the second term denotes the rotational component which does not depend
on depth, but only on the three rotational parameters. As can be seen from the equations, using
perspective projection, only the scaled translation % or |§T| can be recovered. The points where
the axis of translation pierces the spherical retina are called the Focus of Expansion (FOE) and
the Focus of Contraction (FOC), since at these points the translational motion components are
zero and all translational motion vectors point away from or towards these points. Similarly, we

call the points where w (the rotation axis) pierces the retina the Axis of Rotation points (AOR
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Figure 3: Image formation using perspective projection on a planar retina.

R

Figure 4: Image formation using perspective projection on a spherical retina.

and —AOR). At these points the rotational motion is zero, and every other motion vector lies on
a circle in a plane perpendicular to the rotation axis. For the case of a planar retina each of the
axes intersects the image at only one point.

We are concerned with how the fact that the motion is rigid constrains the image motion vector

field. Looking at a single measurement, we see that due to rigidity the motion vector at every

point is constrained to lie in a one-dimensional subspace (defined by the rotational component and



a translational component of which we know the direction but not the length). Since the distance
from the scene to the image is positive, the possible space for the motion vector at every point is
further reduced to a half-space.

In order to separate the constraints on the motion field due to shape from those due to motion,
we take the approach of studying answers to the following questions: Given a certain value v(p) for
a motion vector at point p (defined as the projection of a 3D vector V on the local tangent plane
at p) (or a vector valued function), where are the locations p on the retina, for which the motion
vector ry at p (hereafter ri(p)) could take the value v(p). These concepts can be described more

clearly by examining a motion field on a spherical retina.

2.1 Iso-motion contours for spherical projection

Consider the projection of the 3D motion on the unit sphere (f = 1). We are interested in the
locus of points on the sphere where the vector field could have a certain value (u - r)r — u, which
is the normal projection of u on the tangent plane at r. The following three theorems characterize

this locus.

Theorem 1 For a rigid motion field on the sphere the geometrical locus of points at which the
motion vector could have the value (u-r)r—u is described by a second order equation that in general
gives rise to one or two curves. These curve(s) pass through the FOE and the FOC (the points
where t pierces the sphere) and the points Ry (Ru; and Ru,, ) (where the rotational component of

the motion is equal to (u-r)r — u).

Proof: For the locus of points r with motion vector (u - r)r — u using (3) we obtain

1
m((t-r)r—t)—(wXr):(u-r)r—u. (4)
If u = 0 we obtain
(t-r)r—t)X(wxr) = 0
or —(t-r)r-wr+(t-wr = 0
and thus t-w—(t-r)(r-w) = 0. (5)

Otherwise, projecting both sides of (4) on the vector ((w - r)r — w), provided that w X r # 0, and

on the vector u X r, provided that u x r # 0, gives
1
m(t-w—(t-r)(r-w)) = uww—(u-r)w-r) (6)
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1
and—mt-(uxr) = uww—(u-r)w-r) (7)

Equating the left-hand side of equation (6) with the left-hand side of equation (7) we derive
(r-w)r-t)—(t-w)+(uxt)-r=0 (8)

Fach of equations (5) and (8) describes a second order curve on the sphere and gives the locus of
points where the motion vector could take the value (u-r)r — u. To show that the points Ry lie

on the curve(s) described by (8) let us denote by rq the vector ORy. Then
—wxr;=(u-ry)r; —u. (9)
From (8) we obtain the following constraint for the points ry:
(tx(wxry)) rp+(uxt) - rg =0 (10)

Substituting in (10) for w X ry from (9), it can be verified that ry is a point on the curves. 0

As can be seen from equations (5) and (8), for the case when u =0 or when uxt =0 (i.e. uis
parallel to t) we always have two curves which pass through the FOE and the AOR. Hereafter, we
will refer to the curves corresponding to motion vectors, which result from the normal projection
of one 3D vector on the local tangent plane of the imaging surface, as iso-motion contours, in
particular as u iso-motion contours Cy (or (u,v,w) iso-motion contours C',, ) When denoting

the parameterization by the 3D vector u ((u, v, w)).

Figures 5 and 6 show iso-motion curves for different values of t, w and u. In Figure 5 four zero
iso-motion contours (C7 to C4) are displayed, which are defined by the same t and different vectors
w, where the angle a between t and w increases from Cy to C4. For a < 90° one of the curves
contains tg and wg, and the other contains —tg and —wgo (C7 and Cy in Figure 5a and b). For the
case when a = 90 the curves become two great circles, one orthogonal to t, the other orthogonal
to w (C35 in Figure 5¢). This can also be seen from equation (5); t-w becomes zero, and thus r has
to be perpendicular to either t or w. When a > 90° one of the curves passes through tg and —wyg

and the other through —tg and wq (Cy in Figure 5d).

Figure 6 shows iso-motion contours defined by the same t and w and parallel vectors u. As one
can see from equations (8) and (5), if u # 0 additional linear terms are introduced, and the locus
becomes either one or two curves. As the length of u becomes large with regard to w and t, the
curve converges to the great circle ((t X u)-r =0).
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Figure 5: The locus of points on the sphere for which the motion vector could have the value
(u-r)r — u constitutes second order curve(s). For the case of u = 0 the locus is two curves which
pass through the FOE and the AOR (and FOC and —AOR). The four zero motion contours Cy to
Cy displayed are defined by the same direction of translation (t) and different directions of rotation
(w), with the angle a = /tw increasing in value from Cy to Cy4. In (a) and (b) for Cy and Cy we
have a < 90°, in (c) for C3 @ = 90°, and in (d) for Cy a > 90°.

Next we consider iso-motion curves corresponding to parallel vectors. We give a characterization
of such families of iso-motion contours by showing first where on the sphere the points Ry lie, and

second where these iso-motion contours intersect.

Theorem 2 For a family of ku iso-motion contours, where k € R and u is a vector of unit
length, the points Ryu (the points on each ku iso-motion contour for which the rotational motion
component is equal to k((u-r)r — u)) lie on second order curves that contain the points u, —u, w

and —w (see Figure 7).



Figure 6: General u iso-motion contours pass through the FOE, the FOC, and the points Ry—the
points where the rotational component of the motion is equal to (u-r)r — u. The curves displayed
in (a) and (b) are defined by the same t and w and parallel vectors u.

Figure 7: The points Ry (rq, re, rg) on the ku iso-motion contours (Cy, Cq, C3) lie on two curves
(small dark curves) described by a second order equation and contain the points u, —u, w and —w.

Proof: r at the points Ry on the ku iso-motion contours has to satisfy

E((u-r)r—u) = —wxr (11)
Thus, it follows that
(u-r)r—u)X(wxr) = 0
or uv-w—(u-r)w-r) = 0. (12)

Equation (12) describes a second order equation, which always gives two curves passing through u,

—u, w, and —w. a



Theorem 3 All ku iso-motion contours, where k € R and u is a motion vector of unit length,
intersect in the same points, which lie in a plane. For the general case, if (u X t)-(t X w) # 0

these are four points. Two of them are the FOF and the FOC. The two other points, denoted by

. . . t2_(t. t. .
Pru and —Pyy, have coordinates ﬁ and —ﬁ with \ = (utz)—(b(u)ﬁl(w‘;w (Figure 8).

Figure 8: For the general case all ku iso-motion contours intersect in four points: the FOLI, the
FOC, and the points Pry and —Pyy.

Proof: Let us intersect two elements of the family of ku iso-motion contours. Considering equa-
tion (8) which describes the u iso-motion contours for the k;u and kj;u iso-motion contours, we
obtain

r-(uxt)=0.

The above equation describes a great circle independent of k; and %;. Thus all £u iso-motion
contours intersect in the same points. These points—in the general case, four—are obtained by
intersecting the great circle with any iso-motion contour, for example the zero-motion contour. As
can be verified through substitution the FOE, the FOC, Py, and —Ppy lie on both the great circle

and the zero-motion contour. O

If (uxt) =0 (or u parallel to t) all the ku iso-motion contours are the same. If (t X w) =0

(t parallel to w) Py becomes the FOE, and we only obtain two intersection points.

It follows from Theorem 3 that the direction of the motion vector at the intersection points Py
and —Ppy is defined; since these points also lie on the zero-motion contour the vectors v at the

intersection points are parallel to their translational and their rotational motion components.

10



The next section studies the structure and form of the iso-motion contours for the case of a

planar retina.

3 Iso-motion contours in the plane

3.1 Characterization of the form of iso-motion contours in the plane

If the scene is projected on a planar retina the image velocity field is given by equation (2). We

express this equation in the more common component notation: ry = (r},rZ,r?). r? is always zero.

We denote 7} by u and r? by v, t = (U,V,W), w = (a, 3,7). If we introduce new coordinates for

the direction of translation (zg,y0) = (%, %), we obtain the well-known equations [22]

U = lUtrans T Urot =
1% Ty z?
_ T 1
(wo+w)Z+af (f+f)+7y (13)
v = Vtrans T Vrot =
W y? zy
_ _ 3% 14
( yo+y)Z+a(f+f) ﬁf va (14)

The projection of a 3D vector u = (u, v, w) on the image plane results in the same vector (u, v,0)
at every point on the image plane. Thus we are interested in the locus of points with motion vector
(u,v,0). From now on we drop the third component and denote by u = (u,v) the motion vector
under consideration. To obtain the locations (z,y) in the image plane for which the motion vector

has some constant value (u,v), we bring the rotational components in equations (13) and (14) to

the left side and divide (13) by (14):

U — Urot _ Utrans
U — VUrot B Vtrans
z z?
w—(aF = BF+ )+ - (15)
v—(a(%+ f) =B —yz) Y~

which results in the equation

b = B 42) - 5+ ) 4
_x(af+7x0_v)_y(ﬁf+7y0+u)+$o(af—v)—|—y0(ﬁf_|_u) - 0

(16)

describing a second order curve in the image plane. Since the values of u and v do not appear in
the quadratic terms, but only in the linear and constant terms, the nature of the curve (i.e. whether

it is an ellipse, hyperbola, or parabola) is independent of u, v, and thus is the same for all such
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parametrized curves of a given motion field. The axes of the conics are all parallel to each other

with slopes m and _?1, where m is the positive of the two values [27]

(Byo — axg) :F\/ 24 52)( 950‘|‘3/0)
(Bao + ayo)

The nature of the iso-motion contours depends on the values of the translation and rotation.

Depending on the value [, where

= (5204 0 a0 )

the contour is a hyperbola if [ > 0, an ellipse if [ < 0, or a parabola if [ = 0. Figures 9a and b show

+7)

two classes of iso-motion curves for two different motion fields.

60 b 60

a0t

201

20+

40+

60

(a) W

Figure 9: (a) Ellipses as iso-motion contours. (b) Hyperbolas as iso-motion contours.

3.2 The structure of iso-motion contours in the plane

In this section relationships between iso-motion contours in the plane are investigated. As before,
we are interested in studying the intersections of iso-motion contours and the relationship between
the iso-motion contours and the possible motion measurements along these curves. Qur results are
obviously of the same nature as those for the sphere; they are, however, derived in an algebraic

manner and are included for the sake of completeness.

To characterize the intersections of iso-motion contours, we look at the possible values the
motion vector can take at a point. For a given rigid motion the rotational component of the motion
vector and the direction of the translational component have fixed values for a specific point. The
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only degree of freedom lies in the variability of the depth. At point P(z,y) the motion vector can

take the value
u(x,y) = urot(xvy)—l_ /\utr(ac,y), (17)

where ugp(2,y) = (2 — 20,y — yo) and A is the scaled depth value % The iso-motion contours that
pass through P(z,y) have to correspond to the motion vectors given by equation (17), and thus
every point can be considered as the intersection of the family of u(z,y) iso-motion contours, as
defined in (17).

Let us now consider, as before, the iso-motion contours of parallel motion vectors, i.e. let us
consider the iso-motion contours of values k(u,v), where (u, ) is a unit vector and k a scalar € R.

These can be obtained from equation (16) by substituting ku for u and kv for v.

Equation (16) can be written as a sum of a quadratic expression ¢(z,y) and a linear expression

p(z,y) multiplied by k:

fle.y,u0.k) = q(z,y)+kp(z,y) =0
= PR 4 7) —ey(F 4+ 40 4 2B 4 q) — 2(af + ya0)
—y(Bf +vyo) + xoaf + yol3f
+k(azv — yu — 29v + You) =0

(18)

Independently of k, the two intersection points of ¢(z,y) and p(z, y) are elements of all the (ku, kv)
iso-motion contours f(z,y, u, v, k). Thus the family of contours has two common intersection points.
Both these points, since they lie on f(z,y,u,v,k) for every k, also lie on the zero motion contour.
Thus all families f(z,y,u,v,k) of iso-motion contours intersect at two points on the zero motion

contour (see Figure 10). One of them is the FOE. The other one is denoted by Phriuw)-

Since Py, lies on all f(z,y,u,v,k) iso-motion contours the value of the motion vector at
P(u,) will certainly be k(u,v) for some k. Thus the direction of the motion vector for every point

on the zero motion contour is defined. Since Py, ) lies on the zero motion contour, and thus from

u)
equation (17) it follows that
Uty = HUrot
(i.e. the translational component is parallel to the rotational one), we find that the motion vector
for every point on the zero motion contour is along the direction of its translational component and
thus lies on a line connecting the point with the FOE (see Figure 11).
If we look at points on general u motion contours, where u is any 2D vector, we can make

the following statement about the direction of the motion vector there. Since any point P is the
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Figure 10: The family f(z,y,u,v,k) of iso-motion contours intersect at two points on the zero
motion contour: the FOE and Py .-

401

=20+

-40f

-60[

-60 -40 -20 0 20 40 60

Figure 11: The motion vector in Py, ,) is parallel to (u,v). For every point on the zero motion
contour the motion vector lies on a line connecting the point with the FOE.

intersection of iso-motion contours of value u+ Augy, if we subtract u from the actual motion vector
v, we are left with a vector v_ which is parallel to the translational motion (v_ = v — u = Augy)

and thus lies on a line that passes through the FOE (see Figure 12).

14



60 b

401

20

-40f

€05, -0.5)
L L
-60 40 20 0 20 40 60

Figure 12: For any point P with motion vector v on a general u iso-motion contour the motion
vectors v_, where v_ = v — u, is parallel to the translational component v.

3.3 Depth positivity

A u iso-motion contour is defined by equation (15) as the geometrical locus of points for which
the direction of translation is equal to the direction of the difference between u and the rotational
component, not considering any constraints on the depth. Since the scene lies in front of the camera,
and thus an additional restriction is imposed on the values, only a part of the iso-motion contour

can contain motion vectors.

Let us assume that the translation along the Z-axis has positive sign and thus A = % > 0.
Therefore, from equation (17), we obtain two inequalities
(z —2o)(u—upt) > O
(¥ = 90)(v = vrot) > 0 (19)

These inequalities define a curve segment whose endpoints are those for which A = 0 and A = oco.
IfA=0,u=upt,if A = 00, u = Ugpang, Which means that the curve segment connects a point
Ry (for which the rotational motion is equal to u) to the FOE, the first point corresponding to
infinite depth, and the second to zero depth (i.e. a scene point on the image plane). Along the
curve segment the depth decreases continuously. This simple observation can give rise to qualitative
techniques for the estimation of structure. In Figure 13 two curves of a family of k(u, v) iso-motion

contours are displayed. The curve segments which correspond to positive depth values are marked
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with circles.

401

20

=20+ 4

-60f 4

-60 -40 -20 0 20 40 60

Figure 13: Two of a family of ku iso-motion contours (Cy and Cy50.5): The curve segments for
which the depth is positive are marked by circles. The endpoints of these segments are the FOE
and the points Rpy.

3.4 Fixating stereo

The image displacement field due to binocular disparity measurements obtained by a stereo system
fixating at a point deserves some separate discussion. This configuration has often been studied
in the psychophysical literature [15]. In particular, a concept has been investigated that can be
regarded as a special case of the iso-motion contours: The locus of points in space that yield zero
disparity, the so-called horopter. For a general stereo system in fixation (see Figure 14) the horopter
consists of two intersecting curves, the first being a circle in the plane defined by the two optical
axes of the two cameras passing through the two nodal points and the fixation point, and the second

being orthogonal to the plane of the circle and passing through the fixation point.

Let us fix a coordinate system to the left camera and let us describe the disparity (motion)
of the right camera with respect to left one. We assume that the baseline is in the X Z-plane.
To obtain a unified notation, we use here the small baseline approximation in order to be able to
employ the same differential equations as before. Our concern here is the study of the structure
of disparity fields, and the structure itself is not affected by this assumption. The center of the
right camera is in the X Z-plane and the rotation, if the two cameras fixate at one point, is only
around the Y-axis. Therefore, there are only two unknown motion parameters for a fixating stereo
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Figure 14: Binocular viewing geometry under fixation: The dotted circle through the fixation point
and the eyes and the dotted line perpendicular to this circle indicate the horopter, i.e. the locus of
points in 3D that yield zero disparity.

configuration, namely zo and 5. We thus obtain the following equation for the iso-motion contours
of a fixating stereo in the image plane:

Zo

7 Bry —xvr +y(Bf + w1) — wov1 =0 (20)

The iso-motion contours are hyperbolas. Their axes are parallel to the medians, and the center

of their axes is [27]
(=B —u)f vf
Bo " Bro

The zero motion contour, which is the projection of the horopter on the image plane, is defined as

(xcvyc) = ( )

Tox

—yp( 7

+1)=0
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which is the equation of two lines, one being the z-axis, the other a line parallel to the y-axis with
x-coordinate © = _x—f These lines, of course, constitute a degenerate hyperbola. The families of
iso-motion contours corresponding to parallel measurements (i.e. the k(u,v) iso-motion contours)
have the FOE as one intersection point and as the other a point Py, ) which lies on the part of

the zero motion contour contour for which =z = _x—f Thus for every point along the line z = _x—f

the direction of the flow is in the direction of the translational motion component (see Figure 15).
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Figure 15: Iso-motion contours for fixating stereo: For all points along a line parallel to the y-axis
the motion vectors are in the direction of their translational motion components.

4 Normal motion constraints

The vector field which represents the components of the motion field perpendicular to edges is
referred to as the normal motion field [1, 34]. It is uniquely defined by local image measurements and
can be derived without confronting the aperture problem. Although a normal motion field seems
to contain less information than the exact motion field, the motion involved is still manifested in it.

In particular, if the normal motion field is due to a rigid motion, it possesses a certain structure.

In this section we investigate the locus of points in the image plane where the normal motion
vector can take on a certain value. We first deal with the case of a normal motion vector of
constant value, and later generalize to certain vector-valued functions linear and quadratic in the
image coordinates. It will be shown that the only constraint for the location of these image points

originates from the fact that the depth has to be positive. As a result the possible locations are
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found to be connected areas in the image plane. The shapes of these areas are defined by the rigid

motion.

4.1 Iso-normal motion areas

If u is the motion vector at a point (z,y) and n = (n,,n,) is a unit vector in gradient direction,
the normal motion uy is

up =(u-n)-n.

Substituting for the components of u from (13) and (14), we obtain u, for the value of the vector

up along the gradient direction:

Up, = UrotNy + UtransTa + Urotny + vtransny (21)
and thus
w xy x? y? xy
7(($ - xO)nx + (y - yO)ny) = Up — (0‘7 - (7 + f) + Vy)nx - (04(7 + f) - ﬁ? - 7x)ny' (22)

We are concerned with the question: Where in the image plane can the normal motion field
take on a certain constant value up? (i.e., where could normal motion vectors of a certain length
uy, and direction (ng,n,) be?) The depth has to be positive. If we assume W > 0, we obtain the

following inequality:

i — (@2~ B ) 4 yy)ne — (al

2
7 7 y_‘|‘f)_ﬁﬁ—7x)ny

/ /
[(z —zo)ns + (¥ — yo)ny] > 0

h(un,a,ﬁ,’y,w,y)-g(xo,yo,w,y) > 0 (23)

Wty 0, 3,7, 2,9) = wn — (@ = B(E + F) +yy)ne — (a5 + f) = BZE —ya)n, and g(zo, yo, 7, y) =
(z —z0)nz + (y —yo)ny. The equation h(z,y) = 0 describes a hyperbola that splits the image plane
into an area where h(z,y) > 0 and an area where h(z,y) < 0. The equation g(z,y) = 0 describes
a line through the FOE, which is perpendicular to (n,,n,), and which separates the plane into an
area where g(z,y) is positive and an area where g(z,y) is negative. Thus, through this inequality
a region Iy, consisting of two areas bounded by a hyperbola and a line are defined as the locations
where the normal motion could take on a certain value uy. The two areas meet at one point, the
intersection of the hyperbola and the line. This point, which contains information about the whole

pattern, will be denoted by Sy, (see Figure 16).
19



-60 -40 -20 0 20 40 60

Figure 16: Iso-normal motion regions are bounded by aline (¢g(z,y) = 0) and a hyperbola (h(z,y) =
0).

In the other areas of the image plane the value of the motion vectors in direction (ng,n,) is
constrained. Where h(z,y) < 0 we have u,, > uyet - 1 (i.e. the rotational component of the normal
motion is greater than w, ). Where ¢g(z,y) > 0 the translational component of the normal motion
is greater than zero. In the area where h(z,y) < 0 and g(z,y) > 0, we can thus conclude that
the normal motion (the sum of the rotational and translational components) is greater than u,.
Similarly, where h(z,y) > 0 and g(z,y) < 0, the value of the normal motion has to be smaller than

Uy, (see Figure 17).

To summarize these results, considering for a given normal motion field due to rigid motion the
vectors along the gradient direction (n,,n,), we find that the image plane is split by a hyperbola
and a line into four areas. All vectors which are of length u,, are in two opposite areas. One of the

two other areas contains only values greater than wu,, and the other only values smaller than w,.

The line (g(x,y) = 0) is defined by the translational motion; it passes through the FOE and is
perpendicular to the gradient (7., n,) of the normal motion vector. Therefore, this line is described
by only one unknown parameter (its direction is known). Furthermore, the line is independent of
Uy, the value of the normal motion vector. For any general uy the hyperbola (h(u,,z,y)) is defined
by the three rotational parameters. For the case when w,, = 0, the number of unknowns reduces to

o

two (; and g expressing the direction of the rotation axis). If we consider parallel normal motion

vectors, i.e. normal motion vectors of value k(u,, v, ), where k any scalar, we find areas in the image
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Figure 17: Separation of the image plane into areas by the values of the normal motion vectors in
certain directions: In the area marked by horizontal lines all normal motion vectors in direction
(ng,ny) are greater than wu,. In the area marked by vertical lines all normal motion vectors in
direction (ng,n,) are smaller than u,. Vectors of length u, in direction (n;,n,) can only be in the
complementary areas (the region Iy, ).

plane which are bounded by a line that is the same for all values and hyperbolas which differ only

in their linear terms. (see Figure 18).

4.2 Relation between iso-normal motion regions and iso-motion contours

The intersection point of the line and the hyperbola Sy, is a salient point in the description of the
iso-normal motion areas. We describe here some relationships between the intersection points and

the iso-motion contours. Later these relations will be exploited in the development of algorithms.

First, let us consider the zero iso-normal motion areas only. For points on the line g(z,y) = 0 the
translational normal motion vector component in the direction of the gradient (n,,n,) is zero. For
points along the hyperbola h(z,y) = 0 the rotational normal motion component in direction (n,, n,)
is zero. Therefore, it follows that at the intersection point Sy, the translational motion component
is parallel to the rotational motion component, and thus for all zero iso-normal motion areas Sy, lies
on the zero iso-motion contour (see Figure 19). Sy, is also element of every k(—n,,n,) iso-motion

contour.

The following can be derived for the intersection point Sy,, of any general uy iso-normal motion

area: Since Sy, lies on the line g(z,y) = 0, the translational motion component at Sy,, is parallel
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Figure 18: Iso-normal motion regions corresponding to parallel normal motion vectors: The hyper-
bolas h(upg,,y), h(upi,z,y), and h(upe,z,y) correspond to the parallel normal motion vectors
Uno, Uni, and ups. The length of uyg is zero, thus A(upg,,y) passes through the AOR. The
line g(z,y) = 0 is independent of the length of the normal motion vector and thus the same for all
parallel normal motion vectors.

to the line and perpendicular to up, and the translational normal motion component along (7, n,)
is always zero. Therefore, through Sy, pass all those u iso-motion contours for which u,, = u-n (i.e.
all the motion vectors whose projections on the gradient direction yield the same normal motion

vector) (see Figure 20).

4.3 Bounded depth measurements

The constraints developed so far are only due to rigid motion. In most practical applications upper
and lower bound estimates of the distance from the image to the scene, or the scaled distance %, are
available. If in equation (22) we substitute Ty, for the minimum value and Tyax for the maximum
value of %, we obtain two equations of hyperbolas. These equations define the boundaries of the

area in which normal motion vectors of a certain length and direction can be found. We will refer

to these areas as normal motion bands; an illustration is given in Figure 21.

If the upper bound for the depth becomes infinity, the corresponding hyperbola approaches the
hyperbola of the iso-normal motion area. Such situations often occur in outdoor scenes. If the
lower bound for the depth becomes zero, the corresponding hyperbola approaches the line. Clearly,

the smaller the possible range for the depth estimates, the smaller the bounded area. In particular,
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Figure 19: The intersection points Sy, of the zero normal motion regions lie on the zero motion
contour.
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Figure 20: The iso-motion curves Cuy, Cuy, Cug, and Cuy, (where ug - n = u,, ug - n = wu,,
ug - n = u,,Uy -0 = u,) intersect on a line through the FOE perpendicular to n.

if the motion is only rotational, the measurements are only along the hyperbola of the iso-normal
motion area. Considering normal motion vectors of length zero, this hyperbola passes through the
AOR. If the motion is purely translational, all normal motion measurements of value zero are on
the line. An illustration is given in Figure 22. Figures 22a, ¢, d show synthetically created normal
motion fields. The fields in Figure 22¢ and f are due to only translation and only rotation, and the

normal motion field in Figure 22a is due to both these motions. Overlaid over the normal motion
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Figure 21: Bounds on the value % constrain the normal motion vectors to an area defined by two

hyperbolas, the so-called normal motion band.

field in 22a are vectors showing the gradient directions ny and ng, for which normal motion vectors
of length zero have been selected, and the corresponding boundaries of the normal motion areas.
In Figures 22b, d, and f the areas in the image plane where normal motion vectors of length zero

in direction 7y and ny were found are marked by black and gray squares.

The following can be concluded about the intersection of general iso-normal motion bands: For
different gradient directions n; we consider the normal motion vectors of length u,;, where u,; is
the projection of the same motion vector u (i.e. u,; = u-n;). Any scaled depth value 7 defines a
curve as the location of normal motion vectors of value u,;. For one 7 the curves corresponding
to different gradient directions intersect in one point. This point lies on the u iso-motion contour.
Thus the intersection of all u,; iso-normal motion bands is a curve segment that lies on the u
iso-motion contour. In particular, all iso-normal motion areas of value zero intersect on the zero

motion contour (see Figure 23).

4.4 Coaxis and copoint vectors

In this section the concept of selection of normal motion vectors of a given length and direction is
generalized. Instead of considering vectors of the same value, we examine various classes of vector-
valued functions. In particular, we investigate the coaxis- and copoint vectors, which we described

in an earlier paper [12].
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Figure 22: (a) Normal motion field due to translation and rotation. Superimposed on the vector
field are the boundaries of the two normal motion areas corresponding to the vectors of length zero
in direction ny and ng. (b) The black and gray squares denote locations where in the normal motion
field of (a) vectors of length zero in direction ny and ny were found. (c) and (d) Normal motion
field due only to translation and corresponding normal motion vectors of length zero in directions
ny and ny. The intersection of areas corresponding to different normal motion vectors of length
zero gives the FOE. (e) and (f) Normal motion field due only to rotation and corresponding normal
motion vectors of length zero in directions ny and n,. The intersection of areas corresponding to
different normal motion vectors of length zero gives the AOR.
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Figure 23: The normal motion bands corresponding to vectors of length zero intersect on the zero

motion curve (curve segment marked by circles).
The copoint vectors are defined with respect to a point. The (r,s) copoint vectors are defined

as the normal motion vectors which are perpendicular to straight lines passing through the point

(r,5). A copoint vector (r, s) at a point (x,y) is parallel to the vector (s —y,z —r) (see Figure 24).
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Figure 24: Copoint vectors (r,s).

The coaxis vectors are defined with respect to a direction in space. The coaxis vectors (A, B, ()
are defined as follows: A line through the image formation center defined by the directional cosines
(A, B,C) defines a family of cones with axis (4, B,C') and apex at the origin. The intersection of
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these cones with the image plane gives rise to conic sections. The normal motion vectors perpen-

dicular to these conic sections are called coaxis vectors (A, B,C). At every point (z,y) a coaxis

vector is parallel to the vector (—A(y*+ f?)+ Bay + Ca, Avy — B(z* 4+ f*) + Cy) (see Figure 25).

Figure 25: Coaxis vectors (A, B,C').

Asin the case of the iso-normal motion vectors, we choose vectors of a given length and direction

and evaluate the regions with positive depth measurements. We consider the copoint vectors (r,s)

and the coaxis vectors (A, B,C') of length u,(z,y) (with w,(2z,y) a function in 2 and y). Where

% > 0 the following inequalities hold:
[y(zo — 1) — 2(yo — 5) — wos + yor]-
as  fOr
)

2 2
[un(w,y) - (%(ﬁs +7f) - 7(047‘ +7f)+ wy(T + 7
+y(rs+80) 2y +af) = (afr+ 579 | > 0 (24)
A
[untec) = (= 425 = S0+ 45 - Baa® + 2+ )]
2 A%o oy Bro  Avw, o By
y(f+0) fﬁ@/(f f)+$(f+0)
~U(BS + Cyo) = a(AS + Coo) 4 Auof + Binf | > 0 (25)
In the case of

For u,(z,y) = 0 we obtain regions defined by a line and a conic section.
the copoint vectors the line separates the translational components and the conic separates the
The line passes through the FOE and also through the

rotational components of the vectors.
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point (r,s), and thus it can be described by only one unknown. The conic is specified by only
two unknowns, aw—f and ﬁw—f In the case of the coaxis vectors, the line separates the rotational
components. It passes through the AOR and through the point (r,s) and thus it is also described
by only one unknown. The conic separates the translational components. It is defined by the two
coordinates of the FOE, (2, yo). The intersection of the lines and the conics lies on the zero motion
curve. One of the two other regions defined by the above described curves contains only vectors of
length greater than zero, and the other contains only vectors smaller than zero. An illustration is

given in Figure 26, which shows these regions for the class of coaxis vectors displayed on Figure 25.

Figure 26: Separation of (A, B,() coaxis vectors whose directions are shown in Figure 25: A
line passing through the AOR separates the positive and negative rotational components. A conic
through the FOE separates the positive and negative translational components. In the area marked
by horizontal lines all (A, B, (') coaxis vectors are greater than zero. In the area marked by vertical
lines all (A, B, (') coaxis vectors are smaller than zero. The two other areas contain all the (A, B, (')
coaxis vectors of length zero.

It becomes clear that the normal motion vectors of same length and direction can be considered
as special cases of the copoint vectors. They represent the copoint vectors for which r and s both
are oo and £ = _n—zy A special class of coaxis vectors, those which correspond to an axis parallel
to the XY -plane, is very similar to the iso-normal motion vectors. For all classes of coaxis vectors
(A, B,0) the slope of the line separating the rotational components is % and the conics are all

hyperbolas.
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5 Applications

The constraints developed in this paper allow us to make explicit aspects of the structure of motion
fields and normal motion fields which are due to rigid motion. These constraints are defined globally
on the image, as they relate motion measurements from different parts of the image to each other.
The globality gives the constraints the potential of being exploited in tasks related to the recovery
of the parameters describing the rigid motion configuration. They may be used in algorithms
computing the extrinsic as well as the intrinsic parameters of a rigid motion configuration or stereo
setting. They also may be exploited to verify that a vector field is only due to rigid motion and
to locate areas in the image where this constraint does not hold—for example, in the detection
and localization of independently moving objects for a moving observer. They also may be used to
address technical problems related to image stabilization. In the remainder of this section we will

describe in more detail ideas that could be used in algorithmic procedures for 3D motion estimation.

5.1 TUsing motion vectors

Knowledge of any single iso-motion contour is sufficient to derive the 3D motion. Thus the local-
ization of any such contour provides the motion parameters. Iso-motion contours can be localized
with simple matching techniques using filters which are tuned to respond to image points in dif-
ferent frames being a certain distance apart (see Figure 27). Finding motion vectors of a certain
length and direction by means of predefined filters is a decision problem and thus easier and of

lower complexity than computing a motion field.

In addition, the various relationships between iso-motion contours described in Section 3 can
be used to increase the accuracy of the computation of iso-motion contours. We can describe every
point as the intersection of a certain class of iso-motion contours: the FOE is the intersection of
all iso-motion contours; different ku iso-motion contours intersect at a point on the zero motion
contour; and any point on a general Cy iso-motion contour can be considered as the intersection

of a family of iso-motion contours as described in equation (17).

Furthermore, knowledge about the directions of the motion vectors along iso-motion contours
can be of use in the verification of the contours’ correct locations. As described in Section 3.2, for
every point along any u iso-motion contour the following holds: If we subtract u from the motion
vector v at P, we obtain a vector v_, which is parallel to the translational motion component of v.

In particular, for every point along the zero motion contour the motion vector is in the direction of
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Figure 27: To test whether points A = (z,y) and B = (# + u,y + v) correspond, we test how well
two windows w4 and wpg placed around the point A and B match. With a set of correspondence
operators tuned to different values (u,v) the points on the (u,v) iso-motion contours are located.

the translational motion component. The preceding discussion demonstrates that even if there is
no iso-motion contour available, but we have at our disposal a set of points (at least two) with their
associated motion vectors, and we know on which iso-motion contour each point lies, the position

of the FOE is uniquely determined (as shown in Figures 11 and 12).

5.2 TUsing normal motion vectors

Similarly, the iso-normal motion areas as well as the regions containing coaxis and copoint vectors
of a certain length and direction can be used in the recovery of the 3D motion. The normal motion
regions can be obtained by localizing their boundaries. In particular, the normal motion vectors
of length zero are bounded by curves which can be described by only three parameters. Thus a
simple search technique in a three-dimensional space, such as in [12, 13], could be employed to find

the 3D motion parameters.

The iso-normal motion areas, however, also allow to obtain bounds on the solutions for the
motion parameters in very simple ways. Computations of this kind might be used in combination

with other techniques, such as the search techniques described above, for example as preprocessing
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modules to reduce the amount of search.

A possible area for the FOE can be obtained by using iso-normal motion vectors in different
directions. The normal motion vectors of a given value are located within the normal motion bands
(see Figure 21). The normal motion bands consist of two areas meeting at the point Sy, . Through
Sup and the FOE passes the boundary line of the iso-normal motion areas, which also separates the
translational motion components (Figure 16). The slope of the line is known; it is perpendicular to
the direction of the normal motion. The exact position of the line is defined by the location where
the normal motion band is thinnest. It may not be possible to locate one point and thus the exact
line, but only a bounded area which contains the line. Since all iso-normal motion areas of different
lengths but the same direction define the same line, this bounded area can be located by means of
a number of iso-normal motion bands corresponding to parallel motion vectors. The intersection
of at least two such bounded areas corresponding to normal motion vectors in different directions
gives an area in which the FOE lies. This is demonstrated in Figure 29. Figure 28 shows the
synthetic normal flow field, which was used as input data for the localization of the translation and
rotation axis demonstrated in the following three figures (Figures 29, 30, and 31). The image size is
300 x 300, the focal length is 100 pixels, and the origin is at the center of the image. The translation
was (—0.1,0.1,0.5) and the rotation was (0.005—0.0020.01), where the depth was chosen randomly

in an interval between 20.0 and 70.0.
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Figure 28: Synthetic normal motion field used as input data for the localization of the FOE and
AOR shown in the next three figures.
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Figure 29: Localization of FOE: (a): Normal motion band due to normal motion vectors of a
certain length parallel to the z-axis and corresponding curves g(z,y) and h(z,y) defining the
normal motion area. By localizing where this normal motion band is thinnest, a bounded area
for the line separating the translational normal motion components is found (marked by diagonal
lines). (b): Normal motion band due to normal motion vectors of a certain length parallel to the
y-axis with overlaid curves g(z,y) and h(z,y) defining the normal motion area and localization
of bounded area for the line separating the translational normal motion components (marked by
diagonal lines). (c¢) The intersection of these areas gives a bounded area for the FOE.
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Figure 30: Localization of FOE: The FOE cannot lie within the areas where the normal motion
bands corresponding to parallel normal motion vectors intersect. (a) Normal motion vectors parallel
to the y-axis of three different lengths. (b) Polygonal approximation of the boundaries of normal
motion bands and localization of an area in which the FOE can lie.
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AOR

Figure 31: Localization of the AOR with (A, B, 0) coaxis vectors: (a) (0.707,—0.707,0) coaxis vec-
tors of length zero and curves separating the positive from the negative translational and rotational
normal motion components. (b) Localization of a bounded area in which the AOR lies.
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Instead of focusing on the thinnest parts of the normal motion bands, one could consider
various normal motion bands corresponding to different lengths but the same direction. Two such
iso-normal motion areas cannot intersect in an area that contains the line. Thus an area for the line
passing through the FOI can be located as the region between regions where iso-normal motion
areas intersect (see Figure 30).

Just as a line passing through the FOI bounds the iso-normal motion regions, a line passing
through the point where the rotation axis pierces the image plane (AOR) bounds regions separating
the coaxis vectors (A, B,0) of length zero. By finding the locations where the areas separating the

(A, B,0) coaxis patterns are thinnest and intersecting different such areas, a bounded region for

the AOR can be located (see Figure 31).

5.3 Combined use of motion and normal motion

Of course, the iso-motion and iso-normal motion constraints can also be used in a combined manner.
To locate iso-motion contours normal motion vectors can be employed. For example, the intersection
of normal motion bands (belonging to normal motion vectors originating from one motion vector)

gives a segment of the corresponding iso-motion contour (see Figure 19 and 20).

6 Conclusions

The motion field or the displacement field due to rigid motion on a system’s retina possesses a
global structure that is independent of the scene in view and depends only on the parameters of the
underlying 3D motion. In this paper we have studied this structure for the cases of a spherical and
a planar retina by analyzing the geometry of the iso-motion contours and iso-motion regions, i.e.
the loci on the retina where the motion vector (or the normal motion vector) could have a certain
value. We found that the iso-motion curves and the boundaries of the iso-normal motion areas are
of second order and their form depends on the 3D motion parameters. The theory described here
can find several applications in problems of visual motion interpretation as well as calibration, or

in general, in problems related to the matching of two views and to its interpretation.
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