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1 IntroductionThere has been growing interest among computer vision researchers in solving the problem ofnavigating an automonous vehicle through uneven terrain. The knowledge of the vehicle's pose andmotion relative to some reference system is a prerequisite for the success of other navigation taskssuch as object recognition and obstacle avoidance. Although the Inertial Navigation System (INS)on board the vehicle provides accurate motion information over short periods, there are problemsover long periods due to sensor drift. An independent estimate of the vehicle's motion can becombined with INS information to provide more reliable information.In recent years, the wealth of information contained in long sequences of images has attractedthe attention of computer vision researchers [3, 14, 15, 16]. Motion estimation based on two orthree frames has been shown to be very sensitive to noise [1, 2, 7, 10], leading to an increasinginterest in long sequence based methods. Due to lack of knowledge of the forces and torquesthat result in movements of the camera, most model-based motion estimation algorithms assume asmooth trajectory over time in order to exploit temporal information [3, 14, 15, 16]. For a vehicletraversing uneven terrain, the camera undergoes nonsmooth motion. Thus the performance of thesealgorithms may degrade, depending on the roughness of the terrain, the vehicle speed, etc.In order to describe the motion of the vehicle, both its lateral dynamics (or kinematics) and itssuspension dynamics should be considered [13], in connection with direction control and stabiliza-tion behavior, respectively. The work in [5] focuses on the use of lateral vehicle dynamics in 3-Droad tracking. In this paper, we develop a motion estimation algorithm mainly from the suspensiondynamics point of view and use simple assumptions about lateral kinematics. Two vehicle models,which can be found in the literature on optimal design of suspension systems [4, 8], are used inour work: A Half Vehicle Model (HVM), consisting of two wheels, which takes into account vehiclebouncing and pitch motion in rough terrain; and a Full Vehicle Model (FVM), which considersthe correlation between the left and right tracks, in order to include roll motion in addition tobouncing and pitch motion. Both models assume that each tire always contacts the surface at apoint, tire sti�ness is modeled by a linear spring, and the suspension system is modeled by puttinga linear spring and a damper at each corner of the vehicle body. Assuming that the vehicle follows astraight path with constant speed along the longitudinal axis (i.e. there is no steering control), themotion of the vehicle can be described using standard equations of motion. A camera is assumedto be rigidly attached to the vehicle body with known orientation relative to a coordinate system1



attached to the vehicle. The 3-D coordinates of some landmarks relative to a �xed reference systemare also assumed to be available; these can be obtained, for example, by a vehicle-mounted laserrange �nder. Then, given the image coordinates of these feature points at di�erent time instants,an IEKF [11] is used to recursively estimate the motion parameters of the vehicle.The organization of this paper is as follows. Section 2 gives detailed descriptions of the twovehicle models and the physical laws governing the motion of unsprung and sprung masses. Therecursive �lter formulation of the algorithm is given in Section 3. Section 4 presents simulationresults, and conclusions are presented in Section 5.2 Suspension dynamicsWe describe the vehicle models and their behaviors under various surface inputs. In both models,an inertial coordinate system I is �xed on the ground. A vehicle coordinate system V moves withthe vehicle with its origin at the vehicle's center of mass and its axes coinciding with the principalaxes of the vehicle's body. When there is no confusion, the time dependence of all quantities willbe suppressed in the following derivations.2.1 The half vehicle model (HVM)A two-wheel vehicle model is shown in Fig. 1. It represents the bouncing and pitch motions of thevehicle body, which result from di�erent surface inputs to the front and rear wheels. Mwf andMwrrepresent the unsprung masses of the front and rear wheels and their axles. Each tire is modeledby a linear spring with sti�ness coe�cient KT . Kf ; Cf ; Kr and Cr are the characteristics of thelinear springs and dampers that model the suspension system.Assuming that the pitch motion is small, so thatsin � � �holds, and that the variations of the springs and dampers are along the vertical direction, themotion of the vehicle body can be described as follows [4]:Mwf �x1 = Kfd2 + Cf _d2 �KTd1Mwr�x2 = Krd4 + Cr _d4 �KTd3MB �X = �(Kfd2 + Cf _d2)� (Krd4 + Cr _d4)I �� = �(Kfd2 + Cf _d2)WA + (Krd4 + Cr _d4)WB (1)2
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Figure 1: The half vehicle model [4].where X is the displacement of the center of mass of the vehicle, � is the pitch angle, and Irepresents the moment of inertia with respect to the pitch axis, which is normal to the half-vehicleplane. The displacements of the connection points fdi; i = 1; : : : ; 4g are approximated byd1 = x1 � x01d2 = X +WA� � x1d3 = x2 � x02d4 = X �WB� � x2 (2)where x01; x02 are the surface excitation inputs to the front and rear wheels, respectively.2.2 The full vehicle model (FVM)A four-wheel vehicle model is shown in Fig. 2. For a vehicle following a straight path, in additionto bouncing and pitching behavior, rolling due to the di�erent inputs to left and right wheels isconsidered in this model. As in the HVM, the tires are modeled by linear springs, and linear springsand dampers are used to model the suspension system.Wheel MotionFor simplicity, we refer the heights of the four wheels and the four corners of the vehicle bodyabove the 
at ground when the vehicle is at rest (i.e. when gravity is the only external force actingon the vehicle) as reference heights. Let fx1; x3; x5; x7g be the unsprung mass displacements,fx2; x4; x6; x8g be the displacements of the four corners, and fx0i; i = 1; : : : ; 4g be road excitation3
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Figure 2: The full vehicle model [8].inputs. All these quantities are measured with respect to their own reference heights, as shown inFig. 2. Assuming that the linear springs and dampers in the model are restricted to move onlyvertically, the displacements between the di�erent connection points ared1 = x1 � x01; d2 = x2 � x1d3 = x3 � x02; d4 = x4 � x3d5 = x5 � x03; d6 = x6 � x5d7 = x7 � x04; d8 = x8 � x7 (3)and the motion of the unsprung masses is described by Newton's law asMwf �x1 = Kfd2 + Cf _d2 �KTd1Mwf �x3 = Kfd4 + Cf _d4 �KTd3Mwr �x5 = Krd6 + Cr _d6 �KTd5Mwr �x7 = Krd8 + Cr _d8 �KTd7 (4)BouncingIn Fig. 3, let f~i;~j;~kg and f~i0; ~j 0; ~k0g be the axes of the coordinate systems I and V respectively.Here again, the suspension forces f ~Fi; i = 1; : : : ; 4g which act on the four corners are always in the~i-direction, i.e. ~F1 = �(Kfd2 + Cf _d2)~i = F1~i~F2 = �(Kfd4 + Cf _d4)~i = F2~i~F3 = �(Krd6 + Cr _d6)~i = F3~i~F4 = �(Krd8 + Cr _d8)~i = F4~i (5)4



Vehicle bouncing is thus restricted to the ~i-direction and is described byMB �X = 4Xi=1 Fi (6)where MB is the mass of the vehicle's body and X is the displacement of its center of mass.Pitch and Roll MotionsAs shown in Fig. 3, the four suspension forces which act on the four corners at the same time resultin change of the vehicle's angular momentum. In order to describe the pitch and roll motion of thevehicle's body, we need to �nd its orientation with respect to the inertial coordinate system|inother words, we need to �nd the rotation matrix which aligns V with I . There are many ways torepresent this rotation matrix [9]. Since the instantaneous angular velocity changes with time, weuse a quaternion representation. In the following, a vector P is denoted by PI if its componentsare represented in I , and by PV if they are represented in V .
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Figure 3: The inertial coordinate system I and the vehicle coordinate system V .Let wV = (wx; wy; wz)T be the instantaneous angular velocity of the vehicle's body with respectto the vehicle coordinate system V . By choosing the axes of V to coincide with the principal axesof the vehicle's body, Euler's equations of motion [12] can be applied to �nd the instantaneous5



angular velocity: 0BBBB@ MxMyMz 1CCCCA = 0BBBB@ Ixx _wx + wywz(Izz � Iyy)Iyy _wy + wzwx(Ixx � Izz)Izz _wz + wxwy(Iyy � Ixx) 1CCCCA (7)where fIxx; Iyy; Izzg are the moments of inertia of the vehicle with respect to the coordinate axesof V (these are constants, because V moves with the vehicle's body) and (Mx;My;Mz)T is the nettorque applied by the suspension forces, with its components expressed in V .The instantaneous angular velocity and the rotation matrix are related through the quaternionsas follows: Let the quaternions q be represented byq = (q1; q2; q3; q4)TThen the dependence of q on ! is [16] _q = 
[wI ] q (8)where 
[wI ] = 12 0BBBBBBB@ 0 �wZ wY �wXwZ 0 �wX �wY�wY wX 0 �wZwX wY wZ 0 1CCCCCCCA (9)and (wX ; wY ; wZ)T are the components of the instantaneous angular velocity represented in I . Therotation matrix can then be obtained as follows:R[q] = 0BBBB@ q21 � q22 � q23 + q24 2(q1q2 + q3q4) 2(q1q3 � q2q4)2(q1q2 � q3q4) �q21 + q22 � q23 + q24 2(q2q3 + q1q4)2(q1q3 + q2q4) 2(q2q3 � q1q4) �q21 � q22 + q23 + q24 1CCCCA� 0BBBB@ r1 r2 r3r4 r5 r6r7 r8 r9 1CCCCA (10)When the rotation matrix (10) is available, the relative orientation of I and V is known. Thecoordinates of a vector P in the two systems are now related through the rotation matrix, i.e.R[q]PV = PI (11)6



3 Recursive �lter formulationUnlike batch estimators, which process all the data, recursive �lters update their estimates of theparameters as new information becomes available. Among recursive estimators, EKF and IEKFare both suitable for estimating the parameters of a nonlinear system. The measurement equationsin HVM and FVM are similar; we will therefore describe only the corresponding plant equations.3.1 The plant equationsHVMLet x � (x1; _x1; x2; _x2; X; _X; �; _�; v)Tbe the state vector, where v is the vehicle speed along the longitudinal axis, expressed in system I .The plant equation is obtained from (1) and (2) as_x = Ax+ Bx0 (12)whereA =0BBBBBBBBBBBBBBB@ 0 1 0 0 0 0 0 0 0�(Kf+KT )Mwf �CfMwf 0 0 KfMwf CfMwf Kf WAMwf Cf WAMwf 00 0 0 1 0 0 0 0 00 0 �(Kr+KT )Mwr �CrMwr KrMwr CrMwr �KrWBMwr �CrWBMwr 00 0 0 0 0 1 0 0 0KfMB CfMB KrMB CrMB �(Kf+Kr)MB �(Cf+Cr)MB �(Kf WA�KrWB)MB �(Cf WA�CrWB)MB 00 0 0 0 0 0 0 1 0KfWAI CfWAI �KrWBI �CrWBI (�KfWA+KrWB)I (�CfWA+CrWB)I �(KfW2A+KrW2B)I �(CfW2A+CrW2B)I 00 0 0 0 0 0 0 0 1
1CCCCCCCCCCCCCCCAand B = 0B@ 0 KTMwf 0 0 0 0 0 0 00 0 0 KTMwr 0 0 0 0 0 1CAT x0 = � x01 x02 �Twhere the forward speed is assumed to be constant.FVMAgain, let x � (x1; _x1; x3; _x3; x5; _x5; x7; _x7; X; _X;!TI ; qT ; v)T7



be the state vector, where v is the vehicle's forward speed, represented in I . Note that for conve-nience, the angular velocity is expressed in I . Assuming that the vehicle moves along a straightpath on the horizontal plane with constant speed, the plant equation is obtained from (4), (6), (7)and (8) as _x = f(x; x0) (13)where
f(x; x0) =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

_x11Mwf (Kfd2 + Cf _d2 �KTd1)_x31Mwf (Kfd4 + Cf _d4 �KTd3)_x51Mwr (Krd6 + Cr _d6 �KTd5)_x71Mwr (Krd8 + Cr _d8 �KTd7)_x1MB (F1 + F2 + F3 + F4)R(q)266664 1Ixx (Mx � !y!z(Izz � Iyy))1Iyy (My � !z!x(Ixx � Izz))1Izz (Mz � !x!y(Iyy � Ixx)) 37777512 0BBBBBBB@ 0 �!Z !Y �!X!Z 0 �!X �!Y�!Y !X 0 �!Z!X !Y !Z 0 1CCCCCCCA q0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
(14)

Assuming that the movements of the linear springs and shock absorbers in the ~j and ~k-directionsare negligible compared to their movements in the ~i-direction, d2; d4; d6 and d8 are approximatedby d2 = X � x1 + r2Ts + r3WAd4 = X � x3 � r2Ts + r3WAd6 = X � x5 + r2Ts � r3WBd8 = X � x7 � r2Ts � r3WB (15)8



where r2; r3 are the elements of the rotation matrix (10), and Ts;WA and WB are the dimensionsof the vehicle's body, as shown in Fig. 3.In the above formulation, !I is used to represent the angular velocity in the state vector inorder to preserve the dynamics of the quaternions (8). To include Euler's equations of motionin the plant equation, the dynamics of the angular velocity ! should be expressed in the inertialcoordinate system I . The representation of ! in the V coordinate system can be found from (11):wV = RT [q]wI (16)Because of the characteristics of the angular velocity [12], it follows that0BBBB@ _wx_wy_wz 1CCCCA = RT [q] _wI (17)where _!I is the rate of change of the angular velocity with components represented in system I .Finally, the relationship between (Mx;My;Mz)T and x is derived in Appendix A.As shown above, to describe roll motion in addition to the bouncing and pitch motions, thelinear plant equation of HVM is replaced by a nonlinear equation in FVM.3.2 The measurement equationsConsider the camera coordinate system and the imaging model shown in Fig. 4. Let P jI = (Xj , Y j ,Zj)T be the coordinates of the jth feature point, let OV (t) = (X(t) + h; 0; vt)T be the coordinatesof the vehicle's center of mass at time t (both in I), and let h be the reference height of the centerof mass. Assuming that the camera is �xed with respect to the vehicle system V , i.e. its projectioncenter OC(t) in V is (d0; 0; l)T , then P jC(t) = (xj(t); yj(t); zj(t))T , the coordinates of the jth featurepoint in the camera coordinate system C, are0BBBB@ xj(t)yj(t)zj(t) 1CCCCA = R08>>>><>>>>:RT (q)8>>>><>>>>:0BBBB@ XjY jZj 1CCCCA �0BBBB@ X(t) + h0vt 1CCCCA9>>>>=>>>>;� 0BBBB@ d00l 1CCCCA9>>>>=>>>>; (18)where R0 aligns the camera coordinate system C with the vehicle coordinate system V . Forsimplicity, R0 is set equal to the identity matrix in our discussion.The image plane coordinates of the jth feature point at time ti can now be obtained by applyingthe perspective projection formula. The resulting measurement equations for the recursive �lter9



XI

Z I

YI

O
 I

Y
V

 O V

Xc

YC

O CX V

Z V

Image  plane

Z C
Z C

XC

Y C

Y V

XV
Z V

O V

O C

feature  point  P j
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straight path with constant speed, the inputs to the rear wheels are the same as the inputs to thefront wheels except for a time delay, i.e.x02(t) = x01(t� L=v) (20)for HVM, and x03(t) = x01(t� L=v) (21)x04(t) = x02(t� L=v) (22)for FVM, where L is the length of the vehicle. Fig. 5 shows the surface inputs used in our simulation.Note that in the case of the FVM, during time interval [0; 4:0] the excitation inputs to the left andright wheels are the same, so that no roll motion should result. The front left wheel then encountersa bump during the time interval [4:0; 7:2], which makes the vehicle start rolling. After the bump,the surfaces are again the same for both the left and right wheels.
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Table 1: Vehicle parametersMB 1710 kg KT 200.0 kN/m L 2.69 mMwf 57.5 kg Kf 18.0 kN/m WA 1.353 mMwr 75 kg Cf 1.0 kN/m/sec TS 0.595 mIxx 1233.05 kg-m2 Kr 10.0 kN/m d0 0.6 mIyy 1031.25 kg-m2 Cr 1.0 kN/m/sec l 1.35 mIzz 201.79 kg-m2 h 2.0 mconditions arbitrarily chosen as(0:1 � 0:3 � 0:05 0:4 0:03 0:06 0:01 0:04 1:345)TThe resulting bouncing and pitch motions of the vehicle's body are shown in Fig. 6. Note that theleft wheel input shown in Fig. 5 is used as the terrain.
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For the FVM, since the plant equation (13) is nonlinear, a numerical integration technique isemployed with the initial conditions(0:03 1:2 0:1 � 1:5 � 0:05 1:0 � 0:02 � 0:9 0:01 0:5 � 0:1 0:2 0:3 0:1 0:2 0:8 0:55678 2:69)TThe resulting trajectories, corresponding to the states directly related to the bouncing and orien-tation of the vehicle's body, are shown in Fig. 7. The nonzero instantaneous angular velocity forthe FVM introduces roll motion, in addition to pitch motion, from the beginning.
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image point would be close to the center of the image. To avoid the depth becoming negative aftera few frames, each point was moved away from the origin by 20.0. The resulting 3-D coordinatesof the feature points in the inertial coordinate system are listed in Table 2. The size of the imageis assumed to be 2:0 � 2:0 with resolution 200 � 200. This is equivalent to adding 0.01 uniformnoise to the image plane coordinates of each feature point. The trajectories of the feature pointsare then obtained from (19); the sampling rate is 10 frames/sec for both models.Table 2: The feature point coordinates in the inertial coordinate system I .Feature points 3-D coordinates1 2.317 -2.245 41.4602 0.48 -4.894 48.5593 1.594 -0.526 43.8994 1.526 9.516 44.7705 1.632 1.155 44.6206 -0.493 -0.500 53.7947 3.937 5.892 34.3568 1.739 6.001 44.246In the following, we assume that the 3-D coordinates of the feature points in the inertial coor-dinate system I are available. Simulations with known and unknown terrain will now be presented.Known TerrainAssuming that the excitation input to each wheel is known, �fty Monte Carlo trials were done forboth models. The initial guess for the recursive �lter was set to be(1:0 1:0 1:0 1:0 1:0 1:0 1:0 1:0 1:0)Tfor the HVM, and(1:0 1:0 1:0 1:0 1:0 1:0 1:0 1:0 1:0 1:0 1:0 1:0 1:0 0:0 0:0 0:0 1:0 1:0)Tfor the FVM. Note that for the FVM, the initial guess for the quaternions should be of length 1[16]; the initial guesses were purposely chosen to be di�erent from the initial conditions in orderto test the convergence of the IEKF. The estimates for the two models are shown in Fig. 6 andFig. 8. As shown in these �gures, the IEKF converges to the true values in about 40 frames forboth models. Since the plant equation of the FVM is nonlinear, a numerical integration techniquewas employed in the prediction stage of the IEKF for the FVM.14
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IEKF, the estimates obtained when there is no measurement noise are shown in (a) and (b). Theestimates with 0.001 uniform noise, corresponding to an image resolution of 2000�2000, are shownin (c) and (d). The state corresponding to bouncing is more sensitive to measurement noise thanthe pitch angle state, and the errors in the estimates are larger than those for known terrain. Wehave also observed that when we treat the excitation inputs as additional states, the IEKF cannottrack the states corresponding to the wheel movements and inputs. In the case of known terrain,this problem did not appear. The observability of the augmented HVM (23) should be investigated.
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frame numberFigure 9: The e�ects of measurement noise on the IEKF when the excitation inputs are unknown:(a) vertical movement error without noise, (b) pitch angle error without noise, (c) vertical movementerror with noise, and (d) pitch angle error with noise.We see from the above simulation that more information seems to be required in order to obtainreliable estimates of vehicle motion when the surface inputs are not available. Such additional16
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Appendix ATo apply Euler's equations of motion as stated in Section 3, we need to express (Mx;My;Mz)T interms of the state vector x.Consider Fig. 3 and assume that f ~Fi; i = 1; : : : ; 4g always act along the ~i-direction, i.e. ~Fi inI = (FiX ; 0; 0)T ; then ~Fi in V � (Fix; Fiy; Fiz)T (24)= (r1 r2 r3)TFiX (25)where (r1 r2 r3) is the �rst row of the rotation matrix R[q] in (10).Let the position vectors of the four corners of the vehicle's body with respect to coordinatesystem V be f~ri; i = 1; : : : ; 4g, i.e.~r1 = (0; Ts;WA)T ~r2 = (0;�Ts;WA)T~r3 = (0; Ts;�WB)T ~r4 = (0;�Ts;�WB)TThe net torque applied by the four forces can then be obtained as follows:0BBBB@ MxMyMz 1CCCCA = 4Xi=1 ~ri � ~Fi in V (26)= 0BBBB@ r3Ts � r2WA �r3Ts � r2WA r3Ts + r2WB �r3Ts + r2WBr1WA r1WA �r1WB �r1WB�r1Ts r1Ts �r1Ts r1Ts 1CCCCA0BBBBBBB@ F1XF2XF3XF4X 1CCCCCCCASubstitution of (5) and (15) into (26) yields the desired relationship between (Mx;My;Mz)T andx.
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