This paper presents a new model-based egomotion estimation algorithm for an autonomous ve-
hicle navigating through rough terrain. Due to the uneven terrain, the vehicle undergoes bouncing,
pitch and roll motion. To reliably accomplish other tasks such as tracking and obstacle avoidance
using visual inputs, it is essential to consider these disturbances. In this paper, two vehicle models
available in the literature are used for egomotion estimation. The Half Vehicle Model (HVM) takes
into account the bouncing and pitch motion of the vehicle, and the Full Vehicle Model (FVM) also
considers the roll motion. The dynamics of the vehicle are formulated using standard equations
of motion. Assuming that depth information is known for some landmarks in the scene (e.g., ob-
tained from a laser range finder), a feature-based approach is proposed to estimate vehicle motion
parameters such as the vertical movement of the center of mass and the instantaneous angular
velocity. An Iterated Extended Kalman Filter (IEKF') is used for recursive parameter estimation.
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1 Introduction

There has been growing interest among computer vision researchers in solving the problem of
navigating an automonous vehicle through uneven terrain. The knowledge of the vehicle’s pose and
motion relative to some reference system is a prerequisite for the success of other navigation tasks
such as object recognition and obstacle avoidance. Although the Inertial Navigation System (INS)
on board the vehicle provides accurate motion information over short periods, there are problems
over long periods due to sensor drift. An independent estimate of the vehicle’s motion can be

combined with INS information to provide more reliable information.

In recent years, the wealth of information contained in long sequences of images has attracted
the attention of computer vision researchers [3, 14, 15, 16]. Motion estimation based on two or
three frames has been shown to be very sensitive to noise [1, 2, 7, 10], leading to an increasing
interest in long sequence based methods. Due to lack of knowledge of the forces and torques
that result in movements of the camera, most model-based motion estimation algorithms assume a
smooth trajectory over time in order to exploit temporal information [3, 14, 15, 16]. For a vehicle
traversing uneven terrain, the camera undergoes nonsmooth motion. Thus the performance of these

algorithms may degrade, depending on the roughness of the terrain, the vehicle speed, etc.

In order to describe the motion of the vehicle, both its lateral dynamics (or kinematics) and its
suspension dynamics should be considered [13], in connection with direction control and stabiliza-
tion behavior, respectively. The work in [5] focuses on the use of lateral vehicle dynamics in 3-D
road tracking. In this paper, we develop a motion estimation algorithm mainly from the suspension
dynamics point of view and use simple assumptions about lateral kinematics. Two vehicle models,
which can be found in the literature on optimal design of suspension systems [4, 8], are used in
our work: A Half Vehicle Model (HVM), consisting of two wheels, which takes into account vehicle
bouncing and pitch motion in rough terrain; and a Full Vehicle Model (FVM), which considers
the correlation between the left and right tracks, in order to include roll motion in addition to
bouncing and pitch motion. Both models assume that each tire always contacts the surface at a
point, tire stiffness is modeled by a linear spring, and the suspension system is modeled by putting
a linear spring and a damper at each corner of the vehicle body. Assuming that the vehicle follows a
straight path with constant speed along the longitudinal axis (i.e. there is no steering control), the
motion of the vehicle can be described using standard equations of motion. A camera is assumed

to be rigidly attached to the vehicle body with known orientation relative to a coordinate system



attached to the vehicle. The 3-D coordinates of some landmarks relative to a fixed reference system
are also assumed to be available; these can be obtained, for example, by a vehicle-mounted laser
range finder. Then, given the image coordinates of these feature points at different time instants,

an IEKF [11] is used to recursively estimate the motion parameters of the vehicle.

The organization of this paper is as follows. Section 2 gives detailed descriptions of the two
vehicle models and the physical laws governing the motion of unsprung and sprung masses. The
recursive filter formulation of the algorithm is given in Section 3. Section 4 presents simulation

results, and conclusions are presented in Section 5.

2 Suspension dynamics

We describe the vehicle models and their behaviors under various surface inputs. In both models,
an inertial coordinate system I is fixed on the ground. A vehicle coordinate system V moves with
the vehicle with its origin at the vehicle’s center of mass and its axes coinciding with the principal
axes of the vehicle’s body. When there is no confusion, the time dependence of all quantities will

be suppressed in the following derivations.

2.1 The half vehicle model (HVM)

A two-wheel vehicle model is shown in Fig. 1. It represents the bouncing and pitch motions of the
vehicle body, which result from different surface inputs to the front and rear wheels. M,y and M,,,
represent the unsprung masses of the front and rear wheels and their axles. Each tire is modeled
by a linear spring with stiffness coefficient K. Ky, (', K, and (), are the characteristics of the

linear springs and dampers that model the suspension system.

Assuming that the pitch motion is small, so that
sinf ~ 6

holds, and that the variations of the springs and dampers are along the vertical direction, the

motion of the vehicle body can be described as follows [4]:

Mypin = Kypdy+ Cpdy — Krdy
Myiy = Kpdy+ Cpdy — Krds W
MpX = —(Kjpdy+ Cydy) — (K,dy+ Cpdy)

16 = —(Kjpdy+ Cpdy)Wa+ (K,dy + Cody)Wp
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center of mass O,

Figure 1: The half vehicle model [4].

where X is the displacement of the center of mass of the vehicle, 8 is the pitch angle, and [
represents the moment of inertia with respect to the pitch axis, which is normal to the half-vehicle

plane. The displacements of the connection points {d;,i = 1,...,4} are approximated by

di = x1—20
d2 = X + WAO — 1
d3 = 3 — 202

d4 = X—WBO—$2

where g1, xg2 are the surface excitation inputs to the front and rear wheels, respectively.

2.2 The full vehicle model (FVM)

A four-wheel vehicle model is shown in Fig. 2. For a vehicle following a straight path, in addition
to bouncing and pitching behavior, rolling due to the different inputs to left and right wheels is
considered in this model. Asin the HVM, the tires are modeled by linear springs, and linear springs

and dampers are used to model the suspension system.

Wheel Motion

For simplicity, we refer the heights of the four wheels and the four corners of the vehicle body
above the flat ground when the vehicle is at rest (i.e. when gravity is the only external force acting
on the vehicle) as reference heights. Let {x1,23,25,27} be the unsprung mass displacements,

{29, 24, 26,25} be the displacements of the four corners, and {z¢p;,i = 1,...,4} be road excitation
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Figure 2: The full vehicle model [8].

inputs. All these quantities are measured with respect to their own reference heights, as shown in

Fig. 2. Assuming that the linear springs and dampers in the model are restricted to move only

vertically, the displacements between the different connection points are

dy =
ds =
ds
dy =

L1 — 201, dy = x9— 14
T3 — L02, dy = x4— 23
L5 — 03, de = x6— 5
L7 — To4, ds = xs— a7

and the motion of the unsprung masses is described by Newton’s law as

M, iy
M, fis
Moy its
M, ié7

Bouncing

= Kjdy+ Cydy — Kpdy
= Kjdy+ Cydy — Kpds
= K,dg+ Cpdg — Kryds
= K,ds+ C.ds — Kyd;

In Fig. 3, let {;, 7, E} and {Z_;, 7. k_)’} be the axes of the coordinate systems I and V respectively.

Here again, the suspension forces {F;,i=1,...

i-direction, i.e.

—(Kydy + Cydy)i = Fyi
—(Kydy + Cydy)i = Foi
—(K,ds + Codg)i = F3i
~(K,ds + Cds) i

T = F4’L

4

,4} which act on the four corners are always in the



Vehicle bouncing is thus restricted to the i-direction and is described by
. 4
MpX =) F, (6)
=1

where Mpg is the mass of the vehicle’s body and X is the displacement of its center of mass.

Pitch and Roll Motions

As shown in Fig. 3, the four suspension forces which act on the four corners at the same time result
in change of the vehicle’s angular momentum. In order to describe the pitch and roll motion of the
vehicle’s body, we need to find its orientation with respect to the inertial coordinate system—in
other words, we need to find the rotation matrix which aligns V' with /. There are many ways to
represent this rotation matrix [9]. Since the instantaneous angular velocity changes with time, we
use a quaternion representation. In the following, a vector P is denoted by Py if its components

are represented in I, and by Py if they are represented in V.

Figure 3: The inertial coordinate system I and the vehicle coordinate system V.

Let wy = (wg, wy, w,)T be the instantaneous angular velocity of the vehicle’s body with respect
to the vehicle coordinate system V. By choosing the axes of V' to coincide with the principal axes

of the vehicle’s body, Euler’s equations of motion [12] can be applied to find the instantaneous



angular velocity:

Mx wawx ‘|’ wywz(Izz - Iyy)
My = Iyywy ‘|‘ wzwx(lam’ - Izz) (7)
M, L0, + wywy(Lyy — Lpp)

where {5, Iy,1..} are the moments of inertia of the vehicle with respect to the coordinate axes
of V (these are constants, because V moves with the vehicle’s body) and (M, M, M.)T is the net

torque applied by the suspension forces, with its components expressed in V.

The instantaneous angular velocity and the rotation matrix are related through the quaternions

as follows: Let the quaternions ¢ be represented by
4= (q1,92:43,94)"

Then the dependence of ¢ on w is [16]

q= Quwy] ¢ (8)
where
0 —wy Wy ——wy
1 wz 0 —wx -—wy
Q[MI] = 5 (9)
—wy wx 0 —wy
wx wy Wy 0

and (wy,wy,wz)" are the components of the instantaneous angular velocity represented in I. The

rotation matrix can then be obtained as follows:

G- -aG+a 20g+ 4q4) 2(q193 — 4244)
Rlg] = 2Ang — ¢3q1) —G+ G -G+ a4 2(q293 + q194)
2(q193 + 9294) 2203 — 1¢4) —4i — G+ G+ G (10)
o T2 T3
= T4 Ts Te
r7 T8 To9

When the rotation matrix (10) is available, the relative orientation of I and V is known. The

coordinates of a vector P in the two systems are now related through the rotation matrix, i.e.

RlqlPy = Py (11)



3 Recursive filter formulation

Unlike batch estimators, which process all the data, recursive filters update their estimates of the

parameters as new information becomes available. Among recursive estimators, EKF and IEKF

are both suitable for estimating the parameters of a nonlinear system. The measurement equations

in HVM and FVM are similar; we will therefore describe only the corresponding plant equations.

3.1 The plant equations
HVM
Let

— . . v 2 T
L = ($1,$1,$2,$2,X,X,0,0,?])

be the state vector, where v is the vehicle speed along the longitudinal axis, expressed in system I.

The plant equation is obtained from (1) and (2) as

&=Az+ Bz (12)
where
0 1 0 0 0 0 0 0
—(K;+Kp) —Cy K Cj Ky Wa Cf Wy
Moy My s 0 0 My, My My, 5 My, 5
0 0 0 1 0 0 0 0
0 0 —(K-+K7) —Cy Ky Cy K, Wg —Cr Wg
My r My r My r My r My r My r
0 0 0 0 0 1 0 0
K Cj K, c, —(K;+Ky) —(C;+Cr) —(K; Wa—KrWg) —(C; Wa—CrWg)
Mg Mg Mg Mg Mg Mg Mg Mg
0 0 0 0 0 0 0 1
KWy CyWy _K,Wg —C, Wy (—E;Wa+K,Wg) (=CyW4+CrWg) —(K; WA+ K, W3) —(CyWE+C WE)
T T T I I
0 0 0 0 0
and
K T
0 =22 0 0 000 00 T
B = Mg T
= K 0 — o1 Zo2
0O 0 0 &= 00000
wr

where the forward speed is assumed to be constant.

FVM

Again, let
. . . . . : T T T
Q:($1,$1,$3,$3,$5,$5,$7,$7,X,X,£[,(] 7?])

7
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be the state vector, where v is the vehicle’s forward speed, represented in I. Note that for conve-

nience, the angular velocity is expressed in I. Assuming that the vehicle moves along a straight

path on the horizontal plane with constant speed, the plant equation is obtained from (4), (6), (7)

and (8) as

where

f(la io) =

T
MLW(I(fdQ + Cfdg — I(le)

T3
MLW(IXIdeI + Cfd4 — I(ng)

s
MLW(I(TdG + Crd(; — I(Td5)

T7
(K, ds + Cyds — Krdy)

x

i B+ B+ B+ Fy)
i(Mx — wyw (L — Iyy))
R(ﬂ) Izl,_y(My - wzwl’(le’ Izz))
L(]V[Z —wewy(lyy — Ipz))

IZZ
0 —Wwyz Wy «—Wwx
1 wy 0 —Wwy —Wwy
2 q
—Wwy  Wwx 0 —Wy
wx wy wyz 0
0

(13)

(14)

Assuming that the movements of the linear springs and shock absorbers in the  and k-directions

are negligible compared to their movements in the i-direction, dy,dy,ds and dg are approximated

by
dy
dy
ds
dg

= X—ap+rds+rsWy
= X —a3—rls+rWa
= X-—a5+rl;—rsWp
= X —z7—1rTs —raWp

(15)



where r3, 73 are the elements of the rotation matrix (10), and T, W4 and Wpg are the dimensions
of the vehicle’s body, as shown in Fig. 3.

In the above formulation, w; is used to represent the angular velocity in the state vector in
order to preserve the dynamics of the quaternions (8). To include Euler’s equations of motion
in the plant equation, the dynamics of the angular velocity w should be expressed in the inertial

coordinate system I. The representation of w in the V coordinate system can be found from (11):
_ pT
wy = R7[gwy (16)

Because of the characteristics of the angular velocity [12], it follows that

by, | = B g iy (17)

where «; is the rate of change of the angular velocity with components represented in system [.

Finally, the relationship between (M, M,, MZ)T and z is derived in Appendix A.

As shown above, to describe roll motion in addition to the bouncing and pitch motions, the

linear plant equation of HVM is replaced by a nonlinear equation in F'VM.

3.2 The measurement equations

Consider the camera coordinate system and the imaging model shown in Fig. 4. Let Pl = (X7,Y7,
Z9)T be the coordinates of the j'! feature point, let Oy (t) = (X (t) + h,0,vt)T be the coordinates
of the vehicle’s center of mass at time ¢ (both in I), and let i be the reference height of the center
of mass. Assuming that the camera is fixed with respect to the vehicle system V, i.e. its projection
center O¢(t) in V is (do,0,1)T, then Pé(t) = (2/(t),9°(1), #/(1))T, the coordinates of the ;I feature

point in the camera coordinate system C', are

2 (1) X/ X(@t)+nh do
yi(t) | =Ro B (4| VI |- 0 - o (18)
2(t) VAl vt l

where Ry aligns the camera coordinate system (' with the vehicle coordinate system V. For
simplicity, Ro is set equal to the identity matrix in our discussion.

The image plane coordinates of the j* feature point at time #; can now be obtained by applying
the perspective projection formula. The resulting measurement equations for the recursive filter

9



feature point p

Image plane

i Figure 4: The camera coordinate system C' and the imaging model

RE(P] - Ov(t:)) - do
RY(P] = Ov(t;) -1
RY(P} — Ov(t))
RY(P] = Ov(t;) -1

Yit;) = f + ny, (t:)

where f is the focal length and N is the number of available feature points. {R?,i =1,2,3} is the
i*" row of the rotation matrix RT and (nx,(#;), ny,(t;)) takes into account measurement noise such

as quantization noise. Note that if the HVM is employed, the rotation matrix

cos(f) 0 —sin(d)
0 1 0
sin(f) 0 cos(6)
should be used for R in (19), while the quaternion representation of the rotation matrix in (10)
should be used for the FVM.

After the plant and measurement equations have been formulated, EKF or IEKF can be applied

to estimate the vehicle dynamics.

4 Experimental results

Natural terrain, in general, can be decomposed into low-frequency and high-frequency components;
the low-frequency component maintains the road’s shape, and the high-frequency component takes
into account its micro-roughness. In the following simulation, we generated the micro-roughness
from a first-order Markov process and superimposed it on designed shapes in order to obtain the

surface excitation inputs to the front wheels. Since we assume that the vehicle moves along a

10



straight path with constant speed, the inputs to the rear wheels are the same as the inputs to the

front wheels except for a time delay, i.e.

zo2(t) = zo1(t— L/v) (20)
for HVM, and

$03(t) = $01(t — L/?J) (21)

$04(t) = $02(t — L/?J) (22)

for FVM, where L is the length of the vehicle. Fig. 5 shows the surface inputs used in our simulation.
Note that in the case of the FVM, during time interval [0, 4.0] the excitation inputs to the left and
right wheels are the same, so that no roll motion should result. The front left wheel then encounters
a bump during the time interval [4.0,7.2], which makes the vehicle start rolling. After the bump,

the surfaces are again the same for both the left and right wheels.
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Figure 5: The excitation inputs to the front wheels

The values of the vehicle parameters are listed in Table 1 [8]. For the HVM, the plant equation

in (12) is first discretized. The ground truths of the states are then obtained, with the initial

11



Table 1: Vehicle parameters

Mg 1710 kg K7 | 200.0 kN/m L 2.69 m
M, | 57.5 kg K; | 180kN/m | W4 |1.353 m
My | 75 kg Cy | L.OKN/m/sec | Ts | 0.595 m

I, |1233.05kg-m? | K, | 10.0 kN/m do | 0.6m
I, |1031.25 kgm? || C, | 1.0 kN/m/sec || [ 1.35 m
I.. | 201.79 kg-m? h 2.0 m

conditions arbitrarily chosen as
(0.1 —0.3 —0.05 0.4 0.03 0.06 0.01 0.04 1.345)T

The resulting bouncing and pitch motions of the vehicle’s body are shown in Fig. 6. Note that the

left wheel input shown in Fig. 5 is used as the terrain.

x 102 Vertical movement of the center of mass x 10" Pitch angle

frame number
0 10 20 30 40 50 60 70 80 20 100 60
@ (b)

Bias of vertical movement x 102 Bias of the pitch angle

frame number frame number

. . . . . . . . . 35 . . . . . . . . .
10 20 30 40 50 60 70 80 920 100 0 10 20 30 40 50 60 70 80 920 100
© (d)

-0.2
0

Figure 6: The time history and bias of the estimates of the motion parameters of the HVM: (a)
vertical movement of the center of mass, (b) pitch angle, (c) vertical movement error, and (d) pitch

angle error.
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For the FVM, since the plant equation (13) is nonlinear, a numerical integration technique is

employed with the initial conditions
(0.03 1.2 0.1 —1.5 —=0.05 1.0 —0.02 —-0.9 0.01 0.5 —0.1 0.2 0.3 0.1 0.2 0.8 0.55678 2.69)T

The resulting trajectories, corresponding to the states directly related to the bouncing and orien-
tation of the vehicle’s body, are shown in Fig. 7. The nonzero instantaneous angular velocity for

the FVM introduces roll motion, in addition to pitch motion, from the beginning.

x 107 Vertical Movement of the center of mass of the vehicle Bouncing velocity of the center of mass of the vehicle

10

0.5

frame number frame number
6 . . . . . . . . . 04 . . . . . . . . .
0 10 20 30 40 50 60 70 80 20 100 0 10 20 30 40 50 60 70 80 20 100
@ (b)
Instantaneous angular velocity Quaternion
3 T T T 1 T
, a3 T ——

0.6

i
\: w_Z

4
frame number y & frame number

6 . . . . . . . . . 02 . . . . . . . . .
0 10 20 30 40 50 60 70 80 920 100 0 10 20 30 40 50 60 70 80 920 100
© (d)

Figure 7: The time history of the motion parameters of the FVM: (a) vertical movement of the
center of mass, (b) bouncing velocity, (c) instantaneous angular velocity, and (d) quaternions.

Eight feature points were used in both models. Instead of randomly generating these feature
points, we used feature points from the Rocket ALV sequence, in which ground truth is available
[6, 15]. Note that in this above sequence, the camera moves along a straight path toward the left.

In our experiment, we shifted each point upward and to the right by 10.0 so that the corresponding
13



image point would be close to the center of the image. To avoid the depth becoming negative after
a few frames, each point was moved away from the origin by 20.0. The resulting 3-D coordinates
of the feature points in the inertial coordinate system are listed in Table 2. The size of the image
is assumed to be 2.0 x 2.0 with resolution 200 x 200. This is equivalent to adding 0.01 uniform
noise to the image plane coordinates of each feature point. The trajectories of the feature points

are then obtained from (19); the sampling rate is 10 frames/sec for both models.

Table 2: The feature point coordinates in the inertial coordinate system I.

‘ Feature points H 3-D coordinates ‘
1 2.317 -2.245 41.460
2 0.48 -4.894 48.559
3 1.594  -0.526  43.899
4 1.526  9.516 44.770
5 1.632  1.155 44.620
6 -0.493 -0.500 53.794
7 3.937  5.892 34.356
8 1.739  6.001 44.246

In the following, we assume that the 3-D coordinates of the feature points in the inertial coor-

dinate system [ are available. Simulations with known and unknown terrain will now be presented.

Known Terrain

Assuming that the excitation input to each wheel is known, fifty Monte Carlo trials were done for

both models. The initial guess for the recursive filter was set to be
(1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0)T
for the HVM, and
(1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 1.0 1.0)"

for the FVM. Note that for the FVM, the initial guess for the quaternions should be of length 1
[16]; the initial guesses were purposely chosen to be different from the initial conditions in order
to test the convergence of the IEKF. The estimates for the two models are shown in Fig. 6 and
Fig. 8. As shown in these figures, the IEKF converges to the true values in about 40 frames for
both models. Since the plant equation of the FVM is nonlinear, a numerical integration technique
was employed in the prediction stage of the IEKF for the FVM.
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Bias of the vertical movement Bias of the bouncing velocity

frame number frame number

0 10 20 30 40 50 60 70 80 920 100 ) 10 20 30 40 50 60 70 80 920 100
@ (b)

Bias of the instantaneous angular velocity Bias of the quaternion

frame number frame number

0 10 20 30 40 50 60 70 80 920 100 ) 10 20 30 40 50 60 70 80 920 100
© (d)

Figure 8: Bias of the estimates of the motion parameters of the FVM: (a) vertical movement error,
(b) bouncing velocity error, (c¢) angular velocity error, and (d) quaternion error.

Unknown Terrain

We first consider the HVM. By modeling the inputs as first order Markov processes and augmenting

the state vector to include the two inputs, the plant equation (12) becomes

z A B T 0 wi(t)
= + (23)
Zy 0 ol Zg I wa(1)

where I5 is a 2 x 2 identity matrix and « is a constant. For simplicity, wq(¢) and wy(¢) are assumed
to be independent white Gaussian noise, although correlation exists between the inputs to the front
and rear wheels. Using the same measurement equations as before, the IEKF was applied, with
the same initial guess as in the case of known terrain.

The estimated results are shown in Fig. 9. To illustrate the effects of measurement noise on the

15



IEKYF, the estimates obtained when there is no measurement noise are shown in (a) and (b). The
estimates with 0.001 uniform noise, corresponding to an image resolution of 2000 x 2000, are shown
in (c) and (d). The state corresponding to bouncing is more sensitive to measurement noise than
the pitch angle state, and the errors in the estimates are larger than those for known terrain. We
have also observed that when we treat the excitation inputs as additional states, the IEKF cannot
track the states corresponding to the wheel movements and inputs. In the case of known terrain,

this problem did not appear. The observability of the augmented HVM (23) should be investigated.

x 102 Error in the vertical movement of the center of mass x10° Error of the pitch angle

0.61 0.61 q

0.2r 0.2r q

-0.2r b -0.2r
-04r b -04r
0.6 , -0.6f
-0.81 A -0.81
frame number frame number
0 10 20 30 40 50 60 70 80 20 100 0 10 20 30 40 50 60 70 80 20 100
@ (b)
Bias of the vertical movement x 102 Bias of the pitch angle
0.1 T T T T T T T T
0.08F — 1k i
0.06- 051 )
0.04-
o 4
0.02
-0.5r A
oF
-1k 4
-0.02f
15F b
-0.04f
-0.06 -2 |
-0.08 -2.5r 4
frame number frame number
0 10 20 30 40 50 60 70 80 20 100 0 10 20 30 40 50 60 70 80 20 100
© (d)

Figure 9: The effects of measurement noise on the IEKF when the excitation inputs are unknown:
(a) vertical movement error without noise, (b) pitch angle error without noise, (¢) vertical movement
error with noise, and (d) pitch angle error with noise.

We see from the above simulation that more information seems to be required in order to obtain

reliable estimates of vehicle motion when the surface inputs are not available. Such additional

16



information could be obtained if a Digital Terrain Model (DTM) or an active sensor such as LADAR
were available. The rough estimates of the surface could then be combined with the visual inputs

to provide more measurements for the IEKF. Currently we are working on this idea and plan to

test it on the FVM.

5 Conclusion

A new algorithm has been presented for estimating the egomotion of an autonomous vehicle which
navigates through uneven terrain. In this paper the vehicle is assumed to move along a straight path,
but steering dynamics (or kinematics) could also be included, to take lateral motion into account.
Our work can be directly applied to stabilize the images acquired during vehicle navigation. The
pitch and roll angles can be estimated from the instantaneous angular velocity or from the rotation
matrix for the FVM. Using knowledge of the vertical movement of the vehicle and of the pitch and

roll angles, image stabilization can then be achieved.
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Appendix A

To apply Euler’s equations of motion as stated in Section 3, we need to express (M, M,, MZ)T in

terms of the state vector z.

—

Consider Fig. 3 and assume that {F;,z =1,...,4} always act along the i-direction, i.e. F; in

I=(Fix,0,0)7; then
Foin V. = (Fa, Fy, F2)T (24)
= (7‘1 T2 7‘3)TE (25)

where (71 73 73) is the first row of the rotation matrix R[¢] in (10).

Let the position vectors of the four corners of the vehicle’s body with respect to coordinate

system V be {7;,i=1,...,4}, i.e.

Fl = (Ostva)T FQ = (07 _Tsva)T
FS = (Ostv_WB)T F4 = (0,—T5,—WB)T

The net torque applied by the four forces can then be obtained as follows:

M, .
M, | = > FHxFEiinV (26)
=1
M.,
Fix
rals —roWa  —r3ly —roWa 13T+ roWp  —r3Ts + 1oWph
Iy
= TIWA TIWA —T1WB _TIWB
Fsx
_TlTs TlTs _TlTs TlTs
Fyx

Substitution of (5) and (15) into (26) yields the desired relationship between (M., M,, M,)T and

z.
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