
 275

6.3 Treemaps:
a space-filling approach to the
visualization of hierarchical
information structures

Brian Johnson
Ben Shneiderman

Abstract
This paper describes a novel method for the visualization of hierarchically

structured information. The treemap visualization technique makes 100% use of
the available display space, mapping the full hierarchy onto a rectangular region in
a space-filling manner. This efficient use of space allows very large hierarchies to
be displayed in their entirety and facilitates the presentation of semantic informa-
tion.

Proc. of the 2nd International IEEE Visualization Conference (San Diego, Oct. 1991) 284-
291.

Sparks of Innovation in Human-Computer Interaction,
B. Shneiderman, Ed., Ablex Publ., Norwood, NJ (1993)

276 Section 6: Information visualization

Introduction
A large quantity of the world’s information is hierarchically struc-

tured:manuals, outlines, corporate organizations, family trees, directory structures,
internet addressing, library cataloging, computer programs... and the list goes on.
Most people come to understand the content and organization of these structures
easily if they are small, but have great difficulty if the structures are large.

We propose an interactive visualization method for presenting hierarchical
information called treemaps. We hope that the treemap approach is a step forward
in the visualization of hierarchical information, and that it will produce benefits
similar to those achieved by visualization techniques in other areas.

As humans we have the ability to recognize the spatial configuration of
elements in a picture and notice the relationships between elements quickly. This
highly developed visual ability allows people to grasp the content of a picture much
faster than they can scan and understand text (Kamada, 1988).

The treemap visualization method maps hierarchical information to a rectangu-
lar 2-D display in a space-filling manner; 100% of the designated display space is
utilized. Interactive control allows users to specify the presentation of both
structural (depth bounds, etc.) and content (display properties such as color map-
pings) information. This is in contrast to traditional static methods of displaying
hierarchically structured information, which generally make either poor use of
display space or hide vast quantities of information from users. With the treemap
method, sections of the hierarchy containing more important information can be
allocated more display space while portions of the hierarchy which are less impor-
tant to the specific task at hand can be allocated less space (Furnas 1986; Henry &
Hudson, 1990).

Treemaps partition the display space into a collection of rectangular bounding
boxes representing the tree structure (Shneiderman, 1990). The drawing of nodes
within their bounding boxes is entirely dependent on the content of the nodes, and
can be interactively controlled. Since the display size is user controlled, the
drawing size of each node varies inversely with the size of the tree (i.e., number of
nodes). Trees with many nodes (1000 or more) can be displayed and manipulated
in a fixed display space.

The main objectives of our design are:
Efficient space utilization

Efficient use of space is essential for the presentation of large information
structures.

Interactivity
Interactive control over the presentation of information and real time

feedback are essential.
Comprehension

The presentation method and its interactive feedback must facilitate the
rapid extraction of information with low perceptual and cognitive loads.

Esthetics
Drawing and feedback must be esthetically pleasing.

 277

Hierarchical information structures contain two kinds of information: structural
(organization) information associated with the hierarchy, and content information
associated with each node. Treemaps are able to depict both the structure and
content of the hierarchy. However, our approach is best suited to hierarchies in
which the content of the leaf nodes and the structure of the hierarchy are of primary
importance, and the content information associated with internal nodes is largely
derived from their children.

Motivation: current methods and problems
This work was initially motivated by the lack of adequate tools for the visual-

ization of the large directory structures on hard disk drives.
Traditional methods for the presentation of hierarchically structured informa-

tion can be roughly classified into three categories: listings, outlines, and tree
diagrams. It is difficult for people to extract information from large hierarchical
information structures using these methods, as the navigation of the structure is a
great burden and content information is often hidden within individual nodes
(Vincente, Hayes, & Williges, 1987).

Listings are capable of providing detailed content information, but are gener-
ally very poor at presenting structural information. Listings of the entire structure
with explicit paths can provide structural information, but require users to parse
path information to arrive at a mental model of the structure. Alternatively, users
may list each internal node of the hierarchy independently, but this requires users to
manually traverse the hierarchy to determine its structure. Outline methods can
explicitly provide both structural and content information, but since the structural
indentation can only be viewed a few lines at a time, it is often inadequate (Chi-
mera, Wolman, Mark, & Shneiderman, 1991).

The number of display lines required to present a hierarchy with both the
listing and outline methods is linearly proportional to the number of nodes in the
hierarchy. These methods are inadequate for structures containing more than a few
hundred nodes. A great deal of effort is required to achieve a mental model of the
structure in large hierarchies using these methods.

Tree drawing algorithms have traditionally sought efficient and esthetically
pleasing methods for the layout of node and link diagrams. These layouts are based
on static presentations and are common in texts dealing with graph theory and data
structures. They are excellent visualization tools for small trees (Bruggemann-
Klein & Wood, 1989; Henry & Hudson, 1990; Kamada, 1988; Knuth, 1973;
Robertson, Mackinlay & Card, 1991). However, these traditional node and link tree
diagrams make poor use of the available display space. In a typical tree drawing
more than 50% of the pixels are used as background. For small tree diagrams this
poor use of space is acceptable, and traditional layout methods produce excellent
results. But for large trees, traditional node and link diagrams can not be drawn
adequately in a limited display space. Attempts to provide zooming and panning
have only been only partially successful (Henry & Hudson, 1990).

6.3 Treemaps: a space-filling approach

278 Section 6: Information visualization

Another problem with tree diagrams is the lack of content information;
typically each node has only a simple text label. This problem exists because
presenting additional information with each node quickly overwhelms the display
space for trees with more than just a few nodes.

The presentation of content information in all of these traditional methods has
usually been text-based, although tree diagrams are a graphically based method
capable of making use of many of the visualization techniques presented in this
paper. Unfortunately, global views of large tree diagrams require the nodes to be so
small that there is virtually no space in which to provide visual cues as to node
content.

Treemaps efficiently utilize the designated display area and are capable of
providing structural information implicitly, thereby eliminating the need to explic-
itly draw internal nodes. Thus, much more space is available for the rendering of
individual leaf nodes, and for providing visual cues related to content information.

Treemaps provide an overall view of the entire hierarchy, making the naviga-
tion of large hierarchies much easier. Displaying the entire information structure at
once allows users to move rapidly to any location in the space. As Beard states in
his paper on navigating large two-dimensional spaces (Beard & Walker, 1990), “If
the two-dimensional information space fits completely onto a display screen, there
is no navigation problem Users are never lost because they can see the complete
information space.”

A directory tree example
Obtaining information about directory trees was the initial motivation for this

research and provides a familiar example domain. For illustrative reasons, the
hierarchy in this example is small and nodes have only an associated name and size.
While reading through this example, think about how the techniques described
would scale up to a directory tree containing 1000 files. An Apple Macintosh
screen snapshot showing a treemap of 1000 files from one of our laboratory’s hard
disk drives follows this example.

Presenting directory structures is a very practical problem. The following are
the methods widely available today:

- Command Line Listing (e.g., UNIX “ls”, DOS “dir”);
- Outlines (e.g., UNIX “du”, Microsoft Windows);
- Windowing (e.g., Macintosh Finder);
- Tree Drawings (e.g., OpenWindows File Manager).

We are not aware of approaches that provide a visual representation of the
relative sizes of files or directories.

Even moderately sized directory trees are difficult to visualize using standard
operating system interfaces. With command line interfaces such as UNIX “ls” or
DOS “dir”, only the immediate children of any directory are listed. An overall view
of the directory tree must be pieced together by traversing the various paths and
listing the immediate children of the currently active directory.

 279

Desktop metaphors and their windowing strategies are another alternative. One
of the problems with windows is that they often obscure each other, and users may
spend much of their time arranging windows. Also, the tree structure is not
apparent unless windows have been carefully placed. Desktop icons generally
show only the type of the file. Much richer visual mappings are
possible but are currently not available, for instance, the depth of
an icon’s shadow could be used to indicate file size.

We will use a small directory tree hierarchy as an example.
Tree A depicted in Figures 1 through 7 contains 23 nodes; of
these, 6 are directories (internal nodes) and 17 are files (leaf
nodes). This tree is structured such that among siblings, file nodes
always precede directory nodes.

In Figure 1 we see an outline view similar to the presentations
provided by PCShell under DOS, the UNIX command “du”, or
Microsoft Windows 3.0. This presentation requires 23 lines; a
structure with 1000 files would require a minimum of 1000 lines
in order to present both directories and files.

Figure 2 presents a typical tree diagram; such drawings can be
found in graph theory textbooks. This tree drawing approach is
similar to the presentation method used by the OpenWindows File
Manager. Directory trees with 1000 files cannot be drawn all at
once on a typical screen (if all files are at the same level, each file
node will have less than one pixel in which to draw itself). The
problem becomes even more
severe when real file
names are used as node
labels.

Figure 3 presents
the same information
in yet another manner,
as a Venn diagram. We
use this figure for illustra-
tive purposes as a familiar and
often used set theoretic visualiza-
tion technique. It is an intermediate
step which facilitates the transition
from traditional presentations to
treemaps. This is an odd use of Venn diagrams, as one does not usually think of
files and directories as sets. However, simple directory structures can be thought of
as set theoretic collections of files, using only the containment (subset) property.
Note that each node has been drawn proportionate to its size.

The space required between regions would certainly preclude this Venn
diagram representation from serious consideration for larger structures. Note that
this “waste” of space is also present in traditional tree diagrams. Using boxes

6.3 Treemaps: a space-filling approach

A160
B10
C30

D60

E60

F6
G6
H6
I42

J36
K24

L7

M7
N28

O4

Q4
R4

T4

U8
V12
W8

P4

S4

Figure 1. Outline

A160

B10 C30 D60 E60

F6 G6 H6 I42 J36 K24

L7 M7 N28 O4 Q4 R4 T4

U8 V12 W8

P4 S4

Figure 2. Tree diagram

280 Section 6: Information visualization

A160

B10
C30

D60

E60

F6 G6

H6

I42 J36

K24

L7

M7

N28

O4

Q4R4

T4

U8

V12

W8

P4S4

Figure 4. Nested treemap

instead of ovals and a bin-packing algorithm could partially solve this space
problem. But bin-packing is an NP-complete problem and does not preserve order.

Figure 4 is a box-based Venn diagram which illustrates a more efficient use of
space and is an excellent tool for the visualization of small hierarchies. But even
the small degree of nesting present in this technique renders it unsuitable for the
presentation of large hierarchies. Fortunately space efficient results can be
achieved without bin-packing, using our “slice and dice” treemap approach, a
simple linear method in which the algorithm works top-down. An analogy should
quickly illustrate this concept. If the hard disk drive were a large, flat, rectangular
cheese, one could certainly slice it into chunks representing the size of each top
level directory. Applying this slice and dice algorithm recursively to each piece of
the cheese, and rotating the slicing direction 90 degrees at each recursive step,
would result in the treemap of Figure 5.

Figure 5 simply eliminates the nesting offset used to seperate objects at each
level. If we wanted to distribute our cheese to 17 people based on their weights,

Figure 3. Venn diagram

A160 D60 E60

I42

K24

N28

B10 C30

F6

G6

H6

J36

L7 M7

O4 Q4 R4 T4

U8

V12

W8

P4 S4

 281

Figure 5 would give us a slicing diagram. This weight-proportionate distribution is
one of the important features of treemaps. The treemap snapshots of Figures 6 and
7 (see color plates) are the full color, machine generated screen snapshots of
Figures 4 and 5. All screen snapshots in this paper have been made while using our
TreeViz application on an Apple Macintosh II.

Figure 8 (see color plates) is a screen snapshot showing a treemap of 1000
files. A simple color mapping has been used to code some of the various Macintosh
file types: treemap applications are red; all other applications are purple; system
files are green; picture files are magenta; text files are yellow; archive files are
cyan; and all other file types not currently of primary interest are gray. This
treemap shows 21 root level files on the left, followed by 19 root level directories
moving across to the right. Detailed file information is displayed in a pop-up dialog
window as the mouse is dragged over files in the display.

In this directory structure it can be observed that purple application files are
generally the largest files on this disk, and take up relatively the same percentage of
overall disk space as system related (green) files. A duplicate set of files exists just

to the right of the vertical green bar. The files in this root level folder can be seen
duplicated one level down in subfolders, as repeating geometric patterns offset 900
from their parent.

Since this treemap portrays the overall allocation of disk space, the largest files
can be located quite easily. Sorting a large directory listing by size would also
make finding the largest files easy, but these files would not be presented in their
original context. In addition, sorting a list on two or more properties (i.e., size and
type) makes presentation of the results difficult. Treemaps make finding the largest
system, application, and picture files on the disk as easy as finding the largest green,
purple, and magenta rectangles in Figure 8. This is one simple example of the
visual display properties possible; further discussion is contained in section 4.2.

6.3 Treemaps: a space-filling approach

Figure 5. Treemap

B10 C30

F6

G6

H6
J36

L7 M7

O4 Q4 R4 T4

U8

V12

W8

P4 S4

282 Section 6: Information visualization

The treemap method
Displaying a directory tree while fully utilizing space and conveying structural

information in a visually appealing and low cognitive load manner is a difficult
task, as these are often opposing goals. Our interactive approach to drawing
directory trees allows users to determine how the tree is displayed. This control is
essential, as it allows users to set display properties (colors, borders, etc.) maximiz-
ing the utility of the drawing based on their particular task.

Structural information: partitioning the display space
Treemap displays look similar to the partition diagrams of quad-trees and k-D

trees. The key difference is the direction of the transformation. Quad-trees create
hierarchical structures to store 2-D images efficiently (Samet, 1989), while

Figure 6. Nested treemap

Figure 7. Non-nested treemap

 283

treemaps present hierarchical information structures efficiently on 2-D display
surfaces.

Treemaps require that a weight be assigned to each node; this weight is used to
determine the size of a nodes bounding box. The weight may represent a single
domain property (such as disk usage or file age for a directory tree), or a combina-
tion of domain properties (subject to Property 4 below). A node's weight (bounding
box) determines its display size and can be thought of as a measure of importance
or degree of interest (Furnas, 1986).

The following relationships between the structure of the hierarchy and the
structure of its treemap drawing always hold:

Properties
1) If Node 1 is an ancestor of Node 2, then the bounding box of Node 1

completely encloses, or is equal to, the bounding box of Node 2.
2) The bounding boxes of two nodes intersect if one node is an ancestor of

the other.
3) Nodes occupy a display area strictly proportional to their weight.
4) The weight of a node is greater than or equal to the sum of the weights of

its children.

Figure 8. Treemap with 1000 Files

6.3 Treemaps: a space-filling approach

284 Section 6: Information visualization

Structural information in treemaps is implicitly presented, although it may also
be explicitly indicated by nesting child nodes within their parent. Nesting provides
for the direct selection of all nodes, both internal and leaf. The space required for
nesting reduces the number of nodes which can be drawn in a given display space
and hence reduces the size of the trees that can be adequately displayed compared
to non-nested drawings (Travers, 1989).

A non-nested display explicitly provides direct selection only for leaf nodes,
but a pop-up display can provide path information as well as further selection
facilities. Non-nested presentations cannot depict internal nodes in degenerate
linear sub-paths, as the bounding boxes of the internal nodes in the sub-path may be
exactly equal. Such paths seldom occur and tasks dependent on long chains of
single child nodes will require special treatments.

Content information: mapping content to the display
Once the bounding box of a node is set, a variety of display properties deter-

mine how the node is drawn within it. Visual display properties such as color (hue,
saturation, brightness), texture, shape, border, blinking, etc., are of primary interest,
but the interface will not limit users to purely visual properties (Ding & Mateti,
1990). Color is the most important of these visual display properties, and it can be
an important aid to fast and accurate decision making (Hoadley, 1990; MacDonald,
1990; Rice, 1991). Auditory properties may also be useful in certain circumstances.
Nodes may have many domain dependent properties, in which case a rich set of
mappings exists between content information and display properties.

The drawing of individual nodes within their bounding boxes determines the
content information statically presented in a treemap. The number and variety of
domain properties that can be statically coded in the drawing of the tree is limited.
As Kuhn states, “Since human perception imposes an upper bound on the complex-
ity of graphic representations, only a small number of relations can be shown.”
(Ellson, 1990; Kuhn, 1990) Interactive control of the drawing is therefore critical
because the mapping of content information to the display will vary depending on
the information users require. Dynamic feedback is provided by a pop-up window
which displays information about the node currently under the cursor.

For example, files could have weights (display size) proportional to their
creation date, color saturation dependent on their last modification date, and pitch
(tone heard while crossing border) based on size. Using this scheme it is easy to
locate old files which have changed recently, and as the cursor crosses into their
bounding box a deep tone tells users that the file is large even before they read the
information about that file.

Algorithms
Algorithms are given to draw a treemap and to track cursor movement in the

tree. The algorithms may be applied to any tree, regardless of its branching degree.
Both algorithms appear on the following page as Figures 9 and 10.

 285

DrawTree() The node gets a message to draw itself The Root node is set up prior to the
original recursive call

{ doneSize = 0; The percent of this node's subtree
drawn thus far

PaintDisplayRectangle(); The node sends itself a Paint
Message

switch (myOrientation) { Decide whether to slice this node
horzontally or vertically

case HORIZONTAL:
startSide = myBounds.left; Set start for horizontal slices

case VERTICAL:
startSide = myBounds.top; Set start for vertical slices

}
if (myNodeType == Internal) { Set up each child and have it draw

itself
ForEach (childNode) Do {

childNode->SetBounds(startSide, doneSize, myOrientation); Set childs bounds
based on the parent partition
taken by previous children of
parent

childNode->SetVisual(); Set visual display properties (color,
etc.)

childNode->DrawTree(); Send child a draw command
}}}

SetBounds(startSide, doneSize, parentOrientation)
{ doneSize = doneSize + mySize; How much of the parent will have

been allocated after this node
switch (parentOrientation) { Decide which direction parent is

being sliced
case HORIZONTAL:

myOrientation = VERTICAL; Set direction to slice this node for its
children

endSide = parentWidth * doneSize / parentSize; How much of the parent will have
been sliced after this node

SetMyRect(startSide + offSet, Left side, Offset controls the nesting
indentation

parentBounds.top + offSet, Top
parentBounds.left + endSide - offSet, Right
parentBounds.bottom - offSet); Bottom

startSide = parentBounds.left + endSide; Set start side for next child
case VERTICAL:

myOrientation = HORIZONTAL; Set direction to slice this node for its
children

endSide = parentHeight * doneSize / parentSize;
SetThisRect(parentBounds.left + offSet, Left side

startSide + offSet, Top
parentBounds.right - offSet, Right
parentBounds.top + endSide - offSet); bottom

startSide = parentBounds.top + endSide; Set start side for next child
 }}

Figure 9. Drawing AlgorithmThe basic drawing algorithm produces a series of nested boxes

representing the structure of the tree.

6.3 Treemaps: a space-filling approach

286 Section 6: Information visualization

FindPath(point the Point)
{ if node encloses thePoint then

for each child of thisNode do {
path = findPath(thePoint);

if (path != NULL) then
return(InserlnList(this Node, path)); Add child to path

}
return (NULL); Start path, the Point is in this node,

but not in any of its children
}

Figure 10. Tracking algorithm

The cursor tracking algorithm facilitates interactive feedback about the tree.
Every point in the drawing corresponds to a node in the tree. While the current
tracking point (from a mouse or touchscreen input device) is in a node, the node is
selected and information about it is displayed.

Drawing algorithm
The treemap can be drawn during one pre-order pass through the tree in O(n)

time, assuming that node properties (weight, name, etc.) have previously been
computed or assigned. The current algorithm has been implemented in object-
oriented Think C on a Macintosh II. The drawing algorithm proceeds as follows:

1) The node draws itself within its rectangular bounds according to its display
properties (weight, color, borders, etc.).

2) The node sets new bounds and drawing properties for each of its children,
and recursively sends each child a drawing command. The bounds of a node’s
children form either a vertical or horizontal partitioning of the display space
allocated to the node.

Tracking algorithm
The path from the root of the tree to the node associated with a given point in

the display can be found in time proportional to the depth of the node.
In our implementation, when a node draws itself it stores its bounding box in

an instance variable. Every point in the treemap corresponds to a node in the
hierarchy; in addition, every node is contained in the bounding box of the root node.
Recall that each node’s bounding box completely encloses the bounding boxes of
its children, and that the bounding boxes of sibling nodes never overlap. Finding
the path to a node containing a given point thus involves only a simple descent
through one path in the tree, until the smallest enclosing bounding box is found.

Coping with size
A typical 13-inch display has a resolution of 640 x 480, or roughly 300,000

pixels. Drawing an 80mb directory tree (weight = disk usage) on such a display
requires that each pixel represent 260 bytes, i.e., there are roughly 4 pixels per

 287

Kilobyte. Assuming that such a directory structure may contain roughly 3,000 files
(as on one of our lab’s hard disks) implies that there are approximately 100 pixels
per file on average. A box with 10 pixels per side (roughly 4mm2) is easily select-
able using a standard mouse or touchscreen device (Sears & Shneiderman, 1990).
This average case analysis is only part of the story since file sizes may vary widely.

The range of file sizes on our hard disk varied from a few hundred bytes to well
over one million bytes. In the treemap of Figure 8, groups of very small files often
become completely black regions as there is only enough space to draw their
borders. Magnification over these regions or zooming can provide access to these
files. But since the assignment of node weights can be user controlled, presumably
the nodes with the greatest weights are of greatest interest and the nodes with the
smallest weights are of least interest.

Future research directions
Further research includes the exploration of alternate structural partitioning

schemes, appropriate visual display of both numeric and non-numeric content
information, dynamic views such as animated time slices, and operations on
elements of the hierarchy. Standard operations such as zooming, marking, selecting
and searching also invite designers to explore variations on the treemap strategy.

Dr. Ram Naresh-Singh, a visiting research scientist in our lab, is working on an
alternate directory only approach to partitioning the display which we have termed
“top-down”. His implementation on a Sun Sparcstation preserves the traditional
notion of having the root node at the top and the leaves at the bottom.

Animation, or time-sliced displays, could provide insight into evolving
structures. For example, the hierarchical organization of a university could be
mapped from the university level (root), to the college level, to the department
level, to the research lab level. If weights were assigned based on personnel
resources, it would be easy to see the structure of the university based on the
distribution of employees, and hence understand its strengths and weaknesses.
Furthermore, if the saturation of red was proportionate to the funds spent at each
node, and the saturation of cyan (the inverse of red) was proportionate to the funds
allocated, nodes (labs, departments, colleges) which were on budget would be
shades of gray (equal amounts of red and cyan), nodes over budget would become
increasingly red, and nodes under budget would become increasingly cyan. The
magnitude of the nodes funding would range from black (small budgets and
expenditures) to white (large budgets and expenditures). If a series of these
displays are generated based on data over the last ten years, it would be possible to
see how funding and personnel resources have evolved and been distributed within
the university.

The range and variety of potential applications of this technology is vast. For
instance, stock market portfolios are often hierarchically structured. Animations
over time of financial portfolios could be a valuable application of this technology.

6.3 Treemaps: a space-filling approach

288 Section 6: Information visualization

Conclusion
We believe that space-filling approaches to the visualization of hierarchical

information structures have great potential. The drawing algorithm we have given
is quite general, and the numerous possibilities for mapping information about
individual nodes to the display are appealing. The treemap approach to visualizing
hierarchical structures enables meaningful drawings of large hierarchies in a limited
space.

Acknowledgments
We would like to acknowledge the support of the members of the Human-

Computer Interaction Lab, whose suggestions and criticisms have been greatly
appreciated. They have forced us to prove the value of treemaps and allowed us to
hone our presentations of the idea.

 289References

References

Beard, D. V., Walker II, J. Q. (1990) Navigational techniques to improve the display of large
two-dimensional spaces. Behaviour & Information Technology, Vol. 9, No. 6, 451-466.

Brüggemann-Klein, A., Wood.D. (July 1989) Drawing trees nicely with tex, Electronic
Publishing, Vol. 2, No. 2, 101-115.

Card, S. K., Robertson, G. G., Mackinlay, J. D. The information visualizer, an information
workspace, Proc of ACM CHI’91, Conference on Human Factors in Computing Systems,
Information Visualization, 181-188.

Chimera, R., Wolman, K., Mark S., Shneiderman, B. (Feb. 1991) Evaluation of three
interfaces for browsing hierarchical tables of contents, Technical Report CAR-TR-539,
CS-TR-2620, University of Maryland, College ParK.

\Cox, D. J., The art of scientific visualization,(March 1990) Academic Computing, 20.
Ding, C., Mateti, P. (May 1990) A framework for the automated drawing of data structure

diagrams, IEEE Transactions on Software Engineering, Vol. 16, No. 5, 543-557.
Ellson, R., Visualization at work (March 1990) Academic Computing, 26.
Feiner, S. (March 1988) Seeing the forest for the trees: hierarchical display of hypertext

structures, ACM Proc. COIS'88 , Conf. on Office Information Systems (Palo Alto, CA),
205-212.

Furnas, G. W. (1986) Generalized fisheye views, Proc. of ACM CHI’86 , Conference on
Human Factors in Computing Systems, Visualizing Complex Information Spaces, 16-23.

Henry, T. R., Hudson, S. E. (May 1990) Viewing large graphs, Technical Report 90-13,
University of Arizona.

Hoadley, E. D. (February 1990) Investigating the effects of color. Communications of the
ACM, Vol. 33, No. 2, 120-139.

Kamada, T. (Dec. 1988) On visualization of abstract objects and relations, Ph.D. thesis,
University of Tokyo, Department of Information Science, 7-3-1 Hongo, Bunkyo-ku,
Tokyo, 113 JAPAN.

Knuth, D. E. (1973) Fundamental Algorithms, Art of Computer Programming, vol. 1,
Addison-Wesley, Reading, MA, 2nd edition.

Kuhn, W. (1990) Editing spatial relations, Proc. of the 4th International Symposium on
Spatial Data Handling, (Zurich, Switzerland) 423-432.

Rice, J. R. (March 1991) Ten rules for color coding, Information Display, Vol. 7. No. 3, 12-
14.

Robertson, G.G., Mackinlay, J. D., Card, S. K. (1991) Cone trees: animated 3d visualiza-

290 Section 6: Information visualization

tions of hierarchical information, Proc. of ACM CHI’91, Conference on Human Factors in
Computing Systems, Information Visualization, 189-194.

Samet, H. (1989) Design and Analysis of Spatial Data Structures, Addison-Wesley Publish-
ing Co., Reading, MA.

Sears, A., Shneiderman, B. (April 1991) High precision touchscreens: design strategies and
comparisons with a mouse. International Journal of Man-Machine Studies, Vol. 34, NO.
4, 593-613.

Shneiderman, B. (Sept. 1990.) Tree visualization with tree-maps: a 2-d space-filling
appoach, ACM Transactions on Graphics, Vol. 11, No. 1, 92-99.

Travers, M. (1989) A visual representation for knowledge structures, ACM Hypertext’89
Proc., Implementations and Interfaces, 147-158.

Tufte, E.R. (1983) The Visual Display of Quantitative Information, Graphics Press, Cheshire,
CT.

Vincente, K. J., Hayes, B. C., Williges, R. C. (1987) Assaying and isolating individual
differences in searching a hierarchical file system, Human Factors, Vol. 29, No. 3,:349-
359.

 291References

