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1 INTRODUCTIONIn an era of escalating software costs, reuse of software components is an economic necessity.Equally acute is the need to integrate components in the presence of heterogeneity, whether insource languages, architectures, or communication media. Unfortunately, additional softwaremust be developed to implement interfacing decisions for each heterogeneous con�guration. Ap-plication programs must be adapted to use the desired architecture and communication media,or they must be extended to do so. Interface software can be expensive to create, and must berewritten whenever components are reused in di�erent con�gurations.One way to increase the potential for software reuse is to limit the growth of dependencies be-tween components. For example, module interconnection languages (MILs) have been e�ectivein managing structural dependencies, i.e., those concerning visibility or compatibility of variablesand interface names [5]. However, the availability of heterogeneous systems increases the likeli-hood for geometric coupling, which are dependencies due to the relation between components andwhere they execute in the underlying architecture. To minimize these dependencies, program-mers typically organize their programs so that calls to an underlying communication system areas isolated as possible. They hope that stubs will localize the impact of subsequent changes inthe communication system, therefore reduce the cost of reusing the component. This approachis generally successful, but there is still the manual tasks of identifying the remote interfaces,creating the stub code, and determining how the stub should be integrated with the application.When programmers must adapt their components for each new application, some economic ben-e�ts of reuse are lost. In order to regain them, we must turn to automatic techniques, from whichseveral questions arise. How do we generate the interface software needed for one applicationcomponent to interoperate with another? How are the components and interface software pack-aged together into executable objects? How do we analyze source programs to discover potentialdependencies in the �rst place? These are problems we focus on in this paper.We will describe a method for automating the generation of custom interface software for hetero-geneous con�gurations. Whereas previous research has focused on `stub generation' alone, ourapproach generates stubs as well as the con�guration methods needed to integrate an application.Using this approach, developers may build support tools that hide the details of how softwarecon�gurations are `packaged' into executables.This method is implemented in a system called Polygen within the Unix environment. Polygenintegrates heterogeneous components by generating the interface software needed to integrateand transform (for instance, compile and link) a con�guration into a set of executable objects.Programmers provide only the source code for application components plus an abstract charac-terization of their decisions concerning the desired geometry of a con�guration. Polygen thenacts as a `linker' to analyze the information and generate the necessary interface software. Theprocess is guided by a set of abstract composition rules that characterize the integration capa-bilities of an environment. In this manner, components can be composed and reused in di�erentapplications without being modi�ed explicitly by the software developer.1



2 MOTIVATIONSoftware is partitioned for many reasons into modules | identi�able and homogeneous (butpossibly divisible) units of computation. Consider a simple application implemented in Figure 1.The two modules are implemented in di�erent programming languages (C and Common Lisp) andmay be con�gured to execute either on a single processor, on two processors in a shared-memorymultiprocessor, or on two di�erent machines in a distributed system. In each case, they must bemodi�ed to use a common interface mechanism. As comparison, the integration task is trivialif both modules were implemented in the same programming language and con�gured to run ona single processor | both modules would be integrated into a single executable object withoutthe use of interface software except as implemented by the native linker/loader (e.g., using stackand jump instructions). In many cases, however, the integration task is not as trivial.The way we adapt these modules for integration in more general cases depends in part on theirsource languages, their execution location in the available hardware con�guration, and the inter-process communication (IPC) facilities available in an environment. Figure 2 gives an exampleof module adaptations for one execution environment. The extra code in both cases is necessarybecause the modules reside in separate executable objects that are integrated by communicationmechanisms. A connection between them is established at run time by the environment throughRENDEZVOUS functions. The call to a BYTESWAP function may be necessary if the processes runson two hosts with di�ering representations of an integer. For the lisp function, a dispatcherroutine becomes the new `main' program | the typical `read, eval and print' operation of lispmust be replaced in order for the process to act as as server in support of other modules. Ingeneral, we might place the extra code in a separate module to gain procedural transparency.Such a module, called a stub, would be linked in or loaded separately.Source language, execution location, and IPC properties as shown in this example are some of theimplementation di�erences that increase coupling and decrease reuse by requiring programmers toadapt modules through the use of interface software. We would like to reuse modules in as manydi�erent con�gurations and environments as possible without manually creating or modifyingsource code. To achieve this goal, we need to adapt modules automatically by generating interfacesoftware from abstract speci�cations of applications. Such a capability would reduce coupling andincrease the possibilities for reuse by isolating architectural and communication dependencies.Programmers also need assistance with more than just the generation of stubs themselves. Eachdesired con�guration requires di�erent communication mechanisms and integration strategies.Once the stubs have been generated and the commands needed to integrate the new �les havebeen enumerated, tools such as makefiles [7] can help programmers obtain executables reliably| the problem is identifying the program units and generating the appropriate commands (e.g.,generating the make�le for mixed language programs) in the �rst place. This can be a tedioustask that no programmer is interested in performing manually. Existing stub generation systemsoften replace the manual adaptation of source programs with the manual task of establishingcon�guration control over the application. 2



#include ``client.h''main()f char key[256];int retval;printf("Name? ");while(gets(key) != NULL) fif((retval = lookup(key)) != 0)printf("%s at ext. %d", key, retval);elseprintf("%s not found.",key);printf("Name? ");gg
(setq TABLE '((Jim 2706)(Dave 1234)(John 5678)))(defun lookup (name)(table-lookup name TABLE))(defun table-lookup (name list)(cond((null list) 0)((equal name (caar list)) (cadar list))(t (table-lookup name (cdr list)))))Figure 1: Module `main' (left) and function `lookup' (right) for a simple application.The client and server modules (above) can be integrated in our execution environment through the useof interprocess communication primitives. Each source module, however, must be modi�ed (below)to use these facilities. Integration methods are di�erent for each environment, but most will requiresuch adaptations depending on the capabilities of local compilers, linkers, and interpreters.#include ``client.h''main()f char key[256], buffer[1024];int retval;int fd, ip;if ((fd = RENDEZVOUS(LOOKUP)) < 0)exit(1);printf("Name? ");while(gets(key) != NULL) fif (SEND(fd, key) < 0) exit(2);if (RECEIVE(fd, buffer) < 0) exit(3);if(buffer[0] != (char)0) fip = &(buffer[strlen(buffer)+2]);retval = BYTESWAP(*ip);printf("%s at ext. %d", key,retval);g else fprintf("%s not found.",key);gprintf("Name? ");gg
(setq TABLE '((Jim 2706)(Dave 1234)(John 5678)))(defun lookup (name)(table-lookup name TABLE))(defun table-lookup (name list)(cond((null list) 0)((equal name (caar list)) (cadar list))(t (table-lookup name (cdr list)))))(defun dispatcher (h)(do* ((desc (RECEIVE h) (RECEIVE h)))(SEND (sender desc) (invoke desc))))Figure 2: How the two modules must be modi�ed for integration.3



Remote procedure call speci�cation compilers have existed for many years, but few have beencoupled with con�guration management tools. The Matchmaker [9], Courier [21], SunRPC [19],and XDR [18] RPC compilers, for example, are stub generators. Such compilers must be portedmanually in some cases to handle environment-speci�c details. The HRPC [4] and HORUS RPCcompilers [8] are notable exceptions. The HORUS stub generator is parameterized with systemand language schema �les, while the HRPC project extends this parameterization to includeRPC protocols. The Interface Description Language (IDL) [15] project also implements a stubgenerator. In all cases, integration of stubs, source components, and existing servers is left to thedesigner.As an alternative to static generation of stubs, some projects have designed e�cient remoteevaluation mechanisms for heterogeneous applications. Distributed applications gain substantialperformance improvements through the use of customized interface mechanisms like RPC orREV stubs [3, 14, 17, 6]. Stubs in these projects are often handwritten or rewritten from thosegenerated automatically because their performance is critical in many systems and their designif often dependent upon the context of use in a con�guration.In comparison, Polygen accommodates many of these approaches by further parameterizing thestub generation process, as will be shown. Stubs between components can be customized forsoftware con�gurations as well as environments. If modules are implemented in the same languageand execute on the same host, stubs may not be necessary. E�cient interface mechanisms can becreated without sacri�cing interconnection abstractions. This is the advantage of coordinatingstub production with con�guration management tools.Polygen also relies upon technology from the module interconnection language community. Inthe past, MIL projects have focused primarily upon issues of interface and module compatibility.More recently, the Polylith system showed how MILs could be employed to control communi-cation issues in a distributed network [13]. Polylith introduced a software bus organization toencapsulate interfacing decisions, and, in this way, software components that do not interfacedirectly can interoperate e�ciently. This is the particular communication system we have chosento generate stubs for within Polygen, since Polylith simpli�es many of the data coercion andrelocation requirements.The Inscape project [11] is an alternate MIL approach, which primarily focuses on the seman-tics of module composition processes. Also, the Conic [10] and Durra [2] projects have recentlyaddressed the same problems as Polylith with a similar \toolkit" approach, but without the aidof composition abstractions like the software bus. A number of rule-based software compositionmodels have been constructed for speci�c programming languages and environments [1]. Theyestablish rules for composing objects and producing the infrastructure needed to construct appli-cations in particular environments. The XCON-in-RIME project [16], for example, also addressessoftware reuse problems by describing components and composition methods using assertions andrules. Our method, however, unites this approach with methods for handling heterogeneity andthe application of local tools | compilers, linkers, stub generators, and con�guration manage-ment programs. 4



3 THE PACKAGING PROCESSWe have created a packaging system to meet the integration needs motivated in the last section.Our system, called Polygen, allows designers to reuse modules in many di�erent environmentsby separating the logical design of an application from the geometry implementing that design.The system is a collection of tools used to build executable objects from source modules. Thetools transform MIL speci�cations of modules into the interfacing mechanisms and integrationmethods needed to interconnect modules in a particular environment. The interfacing mecha-nisms (sometimes called `wrappers', usually just thought of as stubs) come in many forms | theymay specify macro substitutions, perform source transformations, or implement stub procedures.In general, interfacing mechanisms must consist of a set of modules along with all commandsnecessary to prepare them for interoperation with other resources in a con�guration.3.1 DEFINITIONSA module speci�cation is an abstract description of a software component. Its most importantrole is to describe the interfaces de�ned by the module, as well as interfaces to resources thatthe module uses. A module speci�cation also describes the properties of a component. In thisproject, the Polylith MIL is used to support integration activities, so properties are organizedas name-value pairs. A name may be a keyword or a user-de�ned identi�er. A value is either aprimitive type (integer, string, boolean, oat), a constructed type (structure, array), a predicateexpression, a sequence of values, or a set of values. The interfaces of a module are de�ned similarlywith the interface name and its properties separated by \:" characters. Module speci�cationsthat simply describe the properties and interfaces of a component are called primitive modules.Figure 3 contains the module speci�cations for the components shown in Figure 1. In thisexample, the pattern property is used to describe the `interface pattern', that is, the order andtype of parameters on the interface.A module speci�cation can also be used to compose other modules into an application. A com-posite speci�cation describes a collection of modules and the bindings between their interfaces.(An example composite speci�cation that uses the components of Figure 3 is shown in Figure 5,as will be described.) In this sense, an application can be represented by a directed graph. Eachnode of the graph corresponds to an instance of a module. Each edge of the graph correspondsto a connected pair of interfaces | a use to a de�nition.Module speci�cations may have many possible implementations, written in a variety of sourcelanguages and associated with the speci�cation as another form of module property. Once the userdevelops a composite speci�cation, the source programs must be united with appropriate programstubs, then transformed into executables (which may span several �les, due to heterogeneity in thesystem.) This collection of source programs, generated stubs and commands to build executablesis called a package. Packaging is the activity of analyzing source program interfaces, determiningcompatibility of source with available communication media, generating stubs and creating allthe necessary con�guration commands. 5



module client flanguage = 'C'source = '/u/callahan/client.c'extract = '/u/callahan/client.x'guse interface printf: pattern = f str g: pattern = f str str g: pattern = f str str int g: accepts = f int guse interface gets: pattern = f str g: accepts = f int guse interface lookup: pattern = f str g: accepts = f int gg
module server flanguage = 'KCL'source = '/u/callahan/server.lsp'extract = '/u/callahan/server.x'define interface lookup: pattern = f str g: returns = f int gdefine interface table-lookup: pattern = f str list g: returns = f int ggFigure 3: Module speci�cation for client component (left) and server component (right).3.2 POLYGENThe distinct phases of packaging are shown in Figure 4. Polygen's utility in this process is basedupon having primitive module speci�cations for the available source programs. (In the casethat no speci�cations are available for the source, then the system provides users with a tool toextract the interface descriptions in the �rst place; this is done by techniques discussed later inSection 3.2.4.)3.2.1 COMPOSITION. The �rst phase is a design activity is composition. Developers createa composite speci�cation of their application in terms of primitive module speci�cations. Thisexpression of the application's modular structure should represent a design for meeting functionalrequirements. Ideally, it should not contain extensive information concerning geometry (thatis, which architectures each module should execute on and what communication mechanismswould bind modules together) since this information should be added separately. Of course,having the ability to separately annotate a logically-correct design with geometric informationis where the leverage of our approach is found, since programmers are then free to vary thoseannotations quickly in order to experiment with di�erent con�gurations rapidly. Geometricproperties are attached to both modules and bindings, and their values can either guide thepackager to build executables for some desired architecture, or they can represent constraintsconcerning what con�gurations are not feasible. Polygen provides an editing tool for programmersto add annotations without changing the design speci�cations.The composite speci�cation in Figure 5 describes an application composed of two unique modulesand a description of the bindings between their interfaces. In this case, the interfaces are boundimplicitly by name. A sample annotated design is shown in Figure 6, where desired LOCATIONs6



for execution of each module are declared, and a the method for all inter-module communicationis constrained to be TCP/IP via a Polylith network bus.3.2.2 GENERATION. This is the key phase in packaging. A composite speci�cation maybe realized in many ways, depending upon both the application and available execution en-vironments. To implement an application in a given environment, Polygen must analyze theconstraints a�ecting compatibility, select interconnection options between interfaces, generate allnecessary stubs and enumerate the con�guration commands needed to integrate all components.This resulting package is speci�c to the application and a target execution environment.Polygen creates a package by partitioning con�gurations into sets of components that are com-patible for integration into the same executable image according to the constraints of the givenenvironment. (We often refer to these sets as partitions.) Once partitions are determined, thecommands for creating executables from for are generated. For example, multiple source �leswritten in the same programming language (call it X) may be compiled using the X compilerand linked into a single executable using the X link editor. Such a compatibility is encoded as acomposition rule and used by Polygen to partition con�gurations. If a partitioning is possible fora con�guration, then Polygen generates the package needed to create the application's executa-bles. Otherwise, the target environment does not support the desired integration, and Polygenreports the error. A detailed description of the partitioning algorithm is given in Section 4.In order to reason about modules and their compatibility, Polygen requires a characterization ofthe interconnection capabilities of target execution environments, plus an abstract description ofthe compatibility of various programming languages within those environments. (This informa-tion is given in terms of rules created by a site administrator, as discussed in Section 4.) Polygenapplies these rules to produce the interface software needed to implement a composition in aparticular environment. The package includes source programs and stubs, plus all the con�gura-tion commands needed to compile, link, invoke and interconnect the programs at execution time.The con�guration commands are given in terms of a Unix makefile. For example, the sourceprograms in Figure 2 would be part of the package for our demonstration problem, as would bethe makefile necessary to translate and integrate the modi�ed source programs.3.2.3 CONSTRUCTION. Finally, the construction phase consists of applying the con�gura-tion commands to actually obtain all executables. In Polygen, this means the make�le is executed.Most of the construction tools are provided by the host execution environments in the form ofcompilers, linkers, loaders, and other con�guration management tools.A number of executable objects may be produced from a generated implementation. Executableobjects come in many forms: binary images, scripts, and other types of interpreted programs.They may execute as processes on separate hosts and interoperate via a run-time instance of thesoftware bus | the stubs and the interprocess communication facilities available in an executionenvironment. 7
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module test fbus : 'polylith tcpip' ::tool client ::tool server ::bindallgFigure 5: A design for the phone application.module test ftool client : LOCATION = ``flubber.cs.umd.edu'' ::tool server : LOCATION = ``konky.cs.umd.edu'' ::bindallgFigure 6: An annotated design for the phone application.3.2.4 EXTRACTION. Extraction tools are used when an existing module has no MIL spec-i�cation in the �rst place, or when we wish to verify that an implementation is consistent withits speci�cation. An extraction tool transforms source code into abstract structural descriptions,a collection of assertions about the properties and interfaces of a module. This signature canbe created automatically by compilers, parsing tools [12], or manually in cases where extractiontools are unavailable.In Polygen, the scan tool is used to extract such information from source modules. The resultscontain declarations about the properties and interfaces of a module, and speci�cations basedon them are useful when integrating old implementations into new environments or managingthe consistency of implementations and their speci�cations during development. Thus, we cancreate MIL representatives for existing libraries and gain the leverage of reusing them in as manycon�gurations as permitted by their implementations. While extraction is a straightforward task,it is a necessary phase of our system and is one of the ways that our research is distinct fromother e�orts that only provide stub generation from user-de�ned interface descriptions. Currently,extraction tools are provided for C, Pascal, Ada and Lisp.3.3 AN EXAMPLEAn implementation is characterized by a set of modules, their stubs, and a con�guration program.In our execution environment (a UNIX environment on a local area network), these correspondto the source �les, stubs, and commands needed to build executable objects. The commands arepart of a con�guration program | a UNIX make�le [7]. It is produced by the package tool alongwith the interface descriptions.We wish to create an executable application given the code shown in Figure 1. The script ofthe entire process, which includes both user commands and the execution of the con�guration9



Initially the user only has source code. So ...% scan -o client.cl client.c create a module speci�cation for the client component% scan -o server.cl server.lsp create a module speci�cation for the server component% edit test.cl client.cl server.cl Next the user creates a design from his specs (see Figure 5)% polygen -m test.cl Finally, the user has polygen create the package.The -m option asks that the executables be constructed too. Hence,the following output is from commands called from the make�lecreated automatically by polygen.csc test.cl compiles the application speci�cation into test.cocsc client.cl compiles the client speci�cation into client.cocsc server.cl compiles the server speci�cation into server.cocsl test.co client.co server.co -o test creates a root executable that executes a1 and a2wrapgen a1.w creates the client.h and a1.c wrapperscc -c client.c compiles the client component into client.occ -c a1.c compiles the a1.c wrapper into a1.occ -o a1 client.o a1.o -lith creates the �rst executable object (a binary image)wrapgen a2.w creates the a2.lsp wrapperecho ``#!/bin/csh -f'' > a2 creates the second executable object (a shell script)echo ``kcl server.lsp a2.lsp'' >> a2.outchmod +x a2% test The user may run the application.Figure 7: Script for the design (user commands pre�xed by a \%" prompt).program, is shown in Figure 7. Using the extraction tools, we �rst create the speci�cations shownin Figure 3. Next, we construct the system speci�cation shown in Figure 5. We then invoke thepackage tool to create an implementation | a UNIX makefile and the interface description �lesa1.w and a2.w. The makefile contains the con�guration program needed to create the necessarystubs and integrate them with modules into executable objects. Finally, the makefile is itselfexecuted, which (according to rules speci�c to our environment) creates two separate executableobjects because the modules cannot be linked together by a conventional linker | i.e., they areincompatible in this execution environment. The generated stubs (client.h, a1.c, and a2.lsp)are shown in Figure 8.This example involves a di�erence between the source languages of the two modules. The gen-erated implementation is designed to integrate the two modules despite this di�erence. Thepackaging system determines whether or not the two modules can be loaded into a single exe-cutable object or the methods by which they can be linked together. In this way, a developercan ignore the details of a composition and concentrate on the description of the interconnectionsand geometry of an application. The packager system uses this description as a set of constraintsto produce an appropriate implementation.3.4 INTERCONNECTION SUBSYSTEMPolygen does not replace existing forms of communication and interconnection systems, but ratherassists users in utilizing those resources. Polygen currently relies upon the Polylith software in-10



client.h=======================#define main client mainextern int lookup();a1.c=======================#include <polylith.h>main(argc,argv)f int r = OK;mh init(&argc,&argv,NULL,NULL);r = client main(argc,argv);mh shutdown(ALL,r,NULL);glookup(arg1)char *arg1;f int r;mh write("lookup", "S", NULL, NULL, arg1);mh read("lookup", "i", NULL, NULL, &r);return r;g
a2.lsp=======================(defun mh-dispatcher ()(do* ( (message (mh-readselect) (mh-readselect))(interface (car message) (car message)))(nil 'neverreturned)(cond ((equal interface ``lookup'')(mh-write ``lookup''(lookup (car (cadr message)))))(t (mh-error message)))))(mh-initialize)(mh-dispatcher)Figure 8: Wrappers for the client (left) and server (right) instances.terconnection system for its communication and mixed-language programming requirements [13].However, our inference capability is not limited to only Polylith. Polygen can generate packagesfor other execution environments if the compatibility rules and methods for them are expressedto our inference engine. Polylith and Polygen have an important di�erence in responsibilities:the former provides interconnection services to programmers, and the latter helps them reasonabout how to access those services.Our experience is that any pair of modules can be declared compatible only with respect to a citedexecution environment and communication system. Two modules might be `load-compatible' inPolylith (that is, a Polylith link editor can build the two modules' object code into the sameprocess image), but they might not be able to interoperate if an alternate communication systemis used. As Polygen is enriched with information on how modules can be interconnected using newcommunication resources, users will gain exibility in how their applications can be con�gured.Key properties that a�ect compatibility of program units are the type and the representation ofdata in an interface. Polygen does not attempt to infer coercion mechanisms for heterogeneousdata directly, but rather inherits transformation capabilities from whatever communication sys-tem has been characterized in its rule base (that is described in Section 4.) Our choice of Polylithas the principle interconnection subsystem within Polygen greatly simpli�ed these issues for ourinitial experiments with the system, since the software bus organization elides from the program-mer all representation issues for primitive and record data types. Hence, Polygen users maybase their design decisions (in the composition phase) upon a single type system (the Polylith11



i1: c_instance

client: c_source server: kcl_source

a1: c_executable a2: kcl_executable

test: polylith_tcpip

i2: kcl_instanceFigure 9: A partitioning for the complete example.MIL), using techniques described in [13]. An ability to transmit abstract data types acrossPolygen-created interfaces is similarly dependent upon what interconnection rules to characterizecompatibility have been installed in the underlying inference engine.4 THE PARTITIONING METHODA package depends upon the integration capabilities of an environment. In the earlier example,two modules were con�gured into separate executable objects because they were incompatibleto some degree | they could be composed only if the appropriate stubs were generated. Inother environments, it might be possible to load and execute heterogeneous components within asingle address space. Polygen must have enough inference capability to distinguish between thecases, and then, having determined a target con�guration, it must generate both the stub sourceprograms and the methods for integrating the �nal application. This section describes a methodfor determining the contents of a package.An environment's interconnection capabilities constrain what types of integrations are possible.Given such constraints, one can determine whether it is possible to describe an application interms of sets of compatible components. In Polygen, these sets are called partitions and arerepresented by directed, acyclic graphs whose internal nodes represent integration methods andterminal nodes represent source components. The partitioning for the example in Section 3.3is shown in Figure 9. In this case, the partitioning is a tree because all modules are basedon distinct source components and there exists a single composition method at the root (i.e.,the polylith tcpip bus). A partitioning with a single root is called a valid partitioning, and apackage may be created for a con�guration if and only if the con�guration has a valid partitioning.Depending on the integration capabilities available in an environment, several valid partitioningsmay be constructed for a single con�guration. A valid partition is created in a bottom-up fashion.First, we identify the types of components in the con�guration. Next, we determine the methodsfor integrating them into larger objects (i.e., partitions). The integration activity continues12



module client f/* see Figure 3 */ gmodule server f/* see Figure 3 */ gmodule test fbus : 'polylith tcpip' ::tool client ::tool server ::bindallg =) ?- ['/usr/polygen/package.pl'].pmodule(client).language(client,'C').source(client,'client.c').include(client,'client.h').main(client).import(client,lookup,[int],[str]).pmodule(server).language(server,'KCL').source(server,'server.lsp').export(server,lookup,[int],[str]).instanceof(i1,client,test).location(i1,'flubber.cs.umd.edu').instanceof(i2,server,test).location(i2,'flubber.cs.umd.edu').bind(i1,lookup,i2,lookup,test).?- package(test,polylith tcpip).Figure 10: Module speci�cations converted to Prolog assertions.iteratively until a single method is found that integrates all of the objects of the previous iteration.The �nal method represents the root of a valid partitioning and includes all the components ofa con�guration.Polygen implements this method in Prolog. A site administrator | not each programmer |describes the interconnection capabilities of an environment in terms of rules that constrain thesatisfaction of partitioning goals. To construct a package, Polygen �rst reads in the given modulespeci�cations for an application. These are converted into a set of Prolog assertions (Figure 10)that encode facts about the modules and bindings in a con�guration. After reading the assertionsin Figure 10, Polygen attempts to satisfy the goal? � package(test; polylith tcpip): (1)which asks the question, \Is it possible to create at least one package for the con�guration namedtest using the Polylith TCP/IP-based bus in this environment?" If this goal can be satis�ed, atleast one package will be created for the given con�guration. The Prolog inferencing mechanismsearches the rule base and attempts to satisfy the package rulepackage(N,T) :-modules(N,M),instances(N,I),partition(I,[[N,T,P]]),createpackage(M,I,[N,T,P]).Prolog assigns the variable N the name \test" and the variable T the name polylith tcpipand attempts to satisfy the sub-goals. The �rst two subgoals determine that the modules M =13



[client,server] and module instances I = [i1,i2] are used in the \test" con�guration. Next,a possible partitioning on the instances in I is found and placed in the list P. In this case, thepartition goal is of the form? � partition([i1; i2]; [[test;polylith tcpip; P]]): (2)The partition predicate asks \Does there exist a partitioning of the modules in this executionenvironment?" A partitioning is a list of the forms[label;method; [t1; : : : ; tn]]where t1; : : : ; tn is a list of module instances (i.e., implementations) and partitionings. At theleaves of a partitioning are the instances in the list I. The method is the name of the compositionmethod used to integrate the objects in t1; : : : ; tn. The label is the symbolic name assigned to apartition. For example, goal (2) asks \Does there exist a valid partitioning on the instances i1and i2 such that they can be integrated on a TCP/IP-based bus?" In our environment, this goalwould be satis�ed ifP = [[a1; c executable; [i1]]; [a2;kcl executable; [i2]]]: (3)This partitioning states that a composition can be created using a TCP/IP-based bus if twoseparate objects are created for each instance.The Prolog inference engine attempts to satisfy partition goals using the composition rules forthe current environment. These rules are authored by system administrators and kept in a read-only system �le. The composition rules shown in Figure 11, for example, are used to determinewhether or not a set of instances can be composed into a single executable object. According tothe rules in Figure 11, a set of instances are composed using the c executable method if all thecomponents are instances of modules written in C, execute on the same host, and as a set haveno more than one main entry point.Once a set of valid partitionings is determined for the instances in a con�guration, the goal calledcreatepackage acts as a code generator. The composition methods in (3) | c executable andkcl executable | are invoked while satisfying this goal. These methods generate the package.Since a partitioning is simply a tree whose leaves are module instances, the interface software canbe generated by traversing the partition from the root and invoking the composition method ateach node.The current Polygen driver code is implemented by 50 Prolog rules. Each composition methodconsists of about 50 rules including the compatibility rules and the rules for generating stubs andmake�le rules. To add a new composition method, one must write new compatibility rules andcode generation rules. The compatibility predicate is of the form14



type(X,c instance) :- instanceof(X,M, ), language(M,'C').samelocation( ,[]).samelocation(X,L) :-location(X,S),applist(location,[S],L).compatible([X],c executable) :- type(X,c instance).compatible([X|L],c executable) :-type(X,c instance),countmain([X|L],M),M =< 1,samelocation(X,L),compatible(L,c executable).Figure 11: Some compatibility rules used in the package tool.compatible(L; T)where L is a list of partitions or instances and T is the name of the composition method. Thereare two types of code generation rules for each composition method in an environment: make�lerules and stub rules. Both types are invoked while satisfying the createpackage sub-goal of apackage goal on a partitioning.The root composition method need not be given explicitly in the package goal | it may bedetermined from the composition rules using the deductive capabilities of Prolog. The compositespeci�cation in Figure 6, for example, does not require the use of a particular bus implementation.In this case, the package goal would be of the form? � package(test; B): (4)The subsequent partition goal would be of the form? � partition([i1; i2]; [[test;B;P]]): (5)The bus implementation B is determined during the attempt to satisfy the partition goal. In ourenvironment, goal (5) is satis�ed by the variable assignmentsB = polylith xns; P = [[a1; c executable; [i1]]; [a2; kcl executable; [i2]]]:based on the properties of instances i1 and i2. As speci�ed in Figure 6, the instance i2 (theserver) is located on the host machine konky.cs.umd.edu. In our environment, this host does15



not implement the Polylith TCP/IP-based bus, but it does implement an XNS-based version.Luckily, the host flubber.cs.umd.edu on which i1 resides implements both bus versions. Thedeveloper is unaware that the generated stubs and con�guration �le in this case look very di�erentas a result of location annotations in the composite speci�cation.5 CONCLUSIONWe have described a packaging system that allows diverse software components to be easilyinterconnected within heterogeneous programming environments. Interface software and stubscan be generated for programmers automatically once they express their application's geometry ina few simple rules and MIL attributes. By generating custom interface code for each application(based on analysis and extraction of interfacing requirements), our approach is able to produceexecutables whose run-time performance is comparable to manually-integrated applications.An important feature of this approach is how easy it is for system managers to add a new languageor execution environment to Polygen. Each time a new rule declaring compatibility is added,so too does the manager provide a set of possible commands that would make two componentscompatible according to that rule. An example of this (that if done manually would entail writingmore source code than can be reasonably given here in its entirety | certainly more source thana programmer would want to generate manually without need) is the ease by which one cantailor application programs for use on workstations. The addition of a small set of rules yields apackager that can layer network RPC stubs underneath wrapper codes needed to integrate theapplication into a powerful window system. As a result, not only can the simple example usedthroughout this paper be run as a distributed application, but each component can be set up tointeract with users via its own window on the local host workstation. Should the user elect torun under a di�erent window system, then, once again, all the source components can be adaptedautomatically for use on the new platform.The availability of early stub generation systems relieved programmers having to create interfacesoftware manually. Polygen also relieves programmers of having to identify and extract theinterfaces in the �rst place, and of having to tell their con�guration management system how thestub programs should incorporated into the application.
16
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