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A Computational Fluid Dynamics (CFD) analysis is developed for 3-D rotor

unsteady aerodynamic load prediction. It is then coupled to a rotor structural

analysis for predicting aeroelastic blade response, airloads and vibration. The

CFD analysis accounts for the elastic deformations using a dynamically deform-

ing mesh system. All the rotor blades are assumed to be identical, therefore to

reduce the computational complexity the CFD calculations are performed for

a single blade. This accounts for the near wake flow field. But the far wake

effects because of the trailed tip vortices from all the blades have to be included

separately. This is achieved by the use of the field velocity approach, which

is a method for modeling unsteady flows via apparent grid movement. In this

method, the induced velocity field caused by the trailed vortex wake is included

by modifying the grid time metrics.

The CFD method developed is systematically validated for a range of prob-

lems starting from simple 2-D model problems to full scale forward flight cases.



The CFD analysis shows significant improvements in airloads prediction com-

pared to a table lookup based lifting-line analysis. The CFD analysis is then

used to investigate the fundamental mechanisms of rotor vibration. It is found

that both the normal forces and pitching moments are dominated by three di-

mensional aerodynamic effects. The curvature introduced by the blade elasticity

appears to play a key role in the generation of the vibratory harmonics in air-

loads. The pitching moments near the blade tip (85% outboard) are significantly

affected by transonic tip relief effects. The fundamental understanding of rotor

vibrations gained from this study is then used to develop generic corrections for

improving the accuracy of a lifting line analysis.

Finally the CFD analysis developed is coupled with an advanced comprehen-

sive rotor aeroelastic analysis. The coupling procedure is formulated in a way

such that there is an exchange of information between the structural model and

CFD model every rotor revolution. The coupled CFD/structure scheme is found

to considerably improve the prediction of rotor vibratory airloads compared to

the baseline rotor aeroelastic analysis which uses a lifting line based aerodynamic

model.
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Chapter 1

Introduction

Helicopters are the most versatile flying machines in existence today. They

have unmatched operational capabilities compared to fixed wing aircraft, such

as performing hover and vertical take off and landing on unprepared sites. How-

ever, helicopters suffer from excessive noise and high levels of perceived vibra-

tion. Their rotors are also susceptible to several aeromechanical instabilities.

Therefore, designing the new generation helicopters for reduced noise and vi-

bration levels requires an in depth understanding of the fundamental physical

phenomenon causing them.

Figure 1.1 shows the different physical phenomena occurring during a steady

flight operation of a helicopter, all of which contribute to rotor vibration. The

rotor blades and hub form a dynamic system, which is harmonically excited by

motion dependent forces and unsteady aerodynamic loads. The rotor blades

respond to this periodic excitation by motions in axial, chordwise bending (lag),

flapwise bending (flap) and torsional directions. The torsional motions of the

blade consist of a rigid motion caused by pilot applied controls in addition to

the elastic deformations caused by the unsteady aerodynamic forcing.
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Figure 1.1: Sources of rotor vibration

The dynamic response of the rotor in the flap direction is used to vector

the thrust of the rotor so as to generate the necessary control moments that

transition the helicopter in to different flight regimes (forward flight, maneuver,

descent etc.). This is accomplished by 1/rev pitch control inputs by the pilot

such that the necessary orientation of the tip path plane (plane traced by the

1/rev motion of the blade tip) is achieved.

The rotor blade undergoes other higher harmonic excitations in addition to

the low frequency (1 to 3/rev) aerodynamic forcing caused by the pitch control.

The interaction of the blades with the trailed tip vortices is one of the major

sources of aerodynamic excitation. At some flight conditions (especially descent

and low speed forward flight), the rotor blades pass very close to the tip vortices

shed from the other blades causing a phenomenon termed Blade Vortex Interac-
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tion (BVI). The BVI is a major source of noise and perceived levels of vibration

at these flight conditions. Also, at high speed forward flight conditions with

large thrust levels, a significant portion of the rotor blade (inboard) has large

incidence of reversed flow conditions during the retreating blade phase. This

combined with the high angle of attacks owing to pitch control at the retreating

side may lead to a phenomenon called dynamic stall. During dynamic stall the

sectional aerodynamic loads, especially pitching moments, show large excursions

from their normal behavior. There can be a 180 degree phase difference between

the pitch rate of the airfoil and the associated pitching moment leading to a

negative pitch damping. A negative pitch damping would excite larger torsional

vibration levels which in turn would influence the overall vibration level to a

large extent.

1.1 The Problem of Rotorcraft Aeroelastic

Analysis

The highly unsteady forcing because of the periodic blade motion and various

aerodynamic interactions combined with the complex structural coupling makes

the rotorcraft aeroelastic analysis one of the most difficult problems to be mod-

eled. Researchers in rotorcraft aeroelastic analysis are posed with a myriad of

modeling choices for both structural and aerodynamic analysis. Also, varied

levels of refinement can be used in each of these models. Figure 1.2 summarizes

the various structural and aerodynamic modeling choices and their progressive

refinements. One has to often derive a compromise between performance and

accuracy to determine an efficient analysis methodology. The choice of the high-

3



est level of refinement in the most sophisticated analysis approach might provide

one with a refined solution at an impractical computational cost. The lowest or-

der approach, although attractive as a routine design tool, might be inaccurate

for analyzing advanced rotor systems.

1.1.1 Choices for structural modeling

The fundamental problem of the structural analysis is to estimate the rotor blade

motions as a function of space and time because of an unsteady aerodynamic

forcing. One way of solving the governing partial differential equations of struc-

tural dynamics is to decouple the spatial and temporal variations such that the

equations reduce to a set of ordinary differential equations (ODE’s) that can be

integrated in time.

The structural dynamic analysis can be progressively refined from a simple

modal analysis to a complex multibody based approach. In the modal analysis,

one assumes the blade response to be a linear superposition of a set of structural

modes at any instant. These structural modes are chosen such that they satisfy

the geometric boundary conditions. The governing equations are first linearized

about a steady state periodic solution. Using the modal approach in space they

are then reduced to a set of periodic coefficient ordinary differential equation

system, which can be integrated in time to obtain the total rotor response.

The Finite Element (FEM) approach spatially discretizes the rotor blade in

to a set of elements. The spatial variation of displacements in an element can

be described in terms of the generalized nodal displacements and interpolating

shape functions. The elements are formulated to preserve continuity and differ-

entiability of displacements at the inter element junctions. The FEM approach

4



Li
fti

ng
 L

in
e 

A
na

ly
si

s

C
om

pu
ta

tio
na

l F
lu

id
 D

yn
am

ic
s 

(C
F

D
)

T
S

D
F

ul
l P

ot
en

tia
l

E
ul

er
N

av
ie

r 
S

to
ke

s

In
flo

w
 m

od
el

s

P
re

sc
rib

ed
 W

ak
e

F
re

e 
W

ak
e 

an
al

ys
is

 
P

er
tu

rb
at

io
n 

A
pp

ro
ac

h
S

ur
fa

ce
 T

ra
ns

pi
ra

tio
n

F
ie

ld
 V

el
oc

ity
 A

pp
ro

ac
h

A
ll

 a
ir

lo
ad

s 
V

s
ju

st
 s

ec
ti

on
al

 li
ft

A
ct

ua
l M

es
h 

de
fo

rm
at

io
ns

 

D
ire

ct
 W

ak
e 

C
ap

tu
rin

g

B
la

de
 m

ot
io

ns
 c

on
ve

rt
ed

to
 e

ff
ec

ti
ve

 a
ng

le
 o

f a
tt

ac
k

W
ak

e 
C

ou
pl

in
g

W
ak

e 
M

et
ho

do
lo

gy
A

er
od

yn
am

ic
s

F
LU

ID
 D

Y
N

A
M

IC
S

S
T

R
U

C
T

U
R

A
L 

D
Y

N
A

M
IC

S
C

ou
pl

in
g 

M
et

ho
d

Se
ct

io
na

l a
ir

lo
ds

 fr
om

pr
es

su
re

 d
is

tr
ib

ut
io

ns

or
 P

ar
ti

al
 a

ng
le

 o
f a

tt
ac

ks

R
ef

in
ed

 m
es

h,
 w

ith
 

hi
gh

er
 o

rd
er

 s
ch

em
es

V
or

tic
ity

 C
on

fin
em

en
t

1. 2. 3.
 L

oo
se

 c
ou

pl
in

g 
or

   
 ti

gh
t c

ou
pl

in
g

1.
 A

ll
 s

ec
ti

on
al

 a
ir

lo
ad

s
ai

rf
oi

l t
ab

le
s

2.
 T

ig
ht

 c
ou

pl
in

g

3.
 M

ul
tib

od
y

2.
 F

in
ite

 E
le

m
en

t M
et

ho
d

1.
 M

od
al

 M
et

ho
d

Figure 1.2: Overall methodology and analysis choices for rotorcraft aeroelastic

analysis
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reduces the governing equations to a time dependent ODE system. It provides

flexibility compared to a modal approach in that the normal modes are extracted

automatically as a combination of generalized interpolating functions. Both the

FEM and modal approaches begin with non-linear governing equations which

are derived based on a small strain and moderate slope assumptions.

A multibody approach provides a method for handling large frame deflec-

tions. It may provide a versatile way of handling kinematics of complex bound-

ary conditions (e.g., a detailed control system model by explicitly describing the

details of joints, linkages, contacts etc.). In this case, the governing equations

are reduced to a non-linear time dependent ODE system.

1.1.2 Choices of aerodynamic modeling

The aerodynamic analysis can be incrementally refined from a lifting line anal-

ysis to a full Computational Fluid Dynamics (CFD) simulation of the entire

flow field. The first step in a lifting line analysis is to determine the effective

angle of attack at the individual blade elements. The effective angle of attack is

composed of contributions from the pitch control, blade elastic motions and the

induced inflow caused by the trailed vortex wake. The aerodynamic loading at

the blade element can be then determined by using the known airfoil character-

istics. Linearized unsteady aerodynamic modeling based on a indicial response

formulation is often used to account for the unsteady effects. An extended lifting

line theory (Weissinger-L [1]) based formulation is used to account for the 3-D

finite-wing effects.

A CFD based approach calculates the aerodynamic loads by integrating the

pressure distributions achieved on the rotor blade. The levels of refinement can

6



vary from a potential flow model (e.g. transonic small distrubance, full potential)

to a complete Navier-Stokes simulation. In all the approaches, the governing

equations, which are the fluid conservation laws, are numerically discretized and

solved to achieve time accurate solutions of the flow variables.

The blade motions obtained from the structural analysis have to be incor-

porated in the CFD scheme. Most potential flow approaches do not actually

deform the blade, but prescribe the effect of the deformations as so called ‘par-

tial angle of attack’ distributions. The partial angles of attacks are calculated

in the same fashion as the effective angles of attack in the lifting line analysis.

But the effect of induced inflow contributed by the near wake (i.e., the down-

wash induced by the blade itself) is removed from the effective angle of attack.

Hence, the approach is to use a better definition of the near wake flow field as

computed by the CFD solver. The most sophisticated approach is to actually

deform the CFD mesh such that it conforms to the rotor blade geometry at any

time. This method requires modification of the numerical algorithm to strictly

satisfy volume conservation in the moving meshes.

The interaction of the blade with the trailing vortex wake is an important

aspect of the rotor aerodynamics. Hence, embedded in any aerodynamic anal-

ysis is an approach for determining the vortex wake definition. The simplest

way is to use empirical induced inflow models. A more refined approach chooses

a prescribed wake model whose geometry is known empirically. Alternatively,

the wake can be computed using a Lagrangian vortex lattice method, which is

often referred as a “Free Wake” analysis. The lifting line analysis is coupled then

with a free wake solver to model the induced inflow effects. A full-fledged CFD

analysis with a fine spatial discretization in regions of concentrated vorticity

7



can be used to directly capture the full vortex wake. But, such an approach is

computationally intensive and still very impractical for routine analysis. There-

fore, even the CFD solvers are often coupled with free wake analysis to include

the trailed wake induced inflow. There are various methods that can be used

to include the effect of the trailed vortex wake in to the CFD solver. Some of

the commonly used ones are the perturbation method, surface transpiration and

the field velocity approach. The perturbation method obtains the potential field

solution because of the vortex wake and superposes it on the flow solution. The

surface transpiration approach modifies the boundary conditions at the wall sur-

face to include the effect of the wake, while the field velocity approach includes

the induced velocities from the wake via apparent grid movement.

1.1.3 Integrating structural and aerodynamic analysis

The aerodynamic analysis and structural dynamic analysis have to be coupled

to achieve a full aeroelastic solution. A tight coupling approach simultaneously

integrates the structural and aerodynamic governing equations in time. The

extended lifting line analysis, owing to its analytical simplicity, can be often

integrated easily into such an analysis frame work. But it is quite involved

to include CFD based aerodynamic modeling in the same fashion. Hence, CFD

based analysis are often coupled externally to the structural dynamic model. The

exchange of information (blade motions from structure and loads from aerody-

namics) is often performed every rotor revolution. Another aspect of a rotor

aeroelastic analysis is to obtain a trim solution for the whole aircraft. The trim

solution ensures the force and moment balance about the center of gravity of

the aircraft for steady flight conditions. Mathematically, the force and moment

8



balance equillibrium can be posed as a set of non-linear equations, which can be

solved by Newton’s method. Alternately, one can pose the whole system as an

optimization problem and minimize the force and moment residuals.

1.2 Motivation

A comprehensive rotor aeroelastic analysis model which consistently gives accu-

rate predictions of helicopter vibration still eludes researchers in the rotorcraft

field. For example, in Fig 1.3 the predicted 4-per-revolution hub vibration for

the Lynx helicopter from several state-of-the-art comprehensive rotor analysis

codes are shown (from Ref [2]). Clearly, there is a large deviation in blade load

predictions from different comprehensive codes. Also, all the predictions differ

from the flight test measurement with over 50%. Bousman in his detailed re-

view [3] of the state-of-the-art in rotorcraft vibration prediction identifies two

key issues to be resolved for articulated rotors before one can perform compre-

hensive predictions for all flight conditions. They are: (1) inaccuracy of negative

lift phase in high-speed forward flight, and (2) underprediction of blade pitching

moments and hence the pitch link loads (Figure 1.4).

Various modeling refinements in both aerodynamics and structural dynamics

were tested by numerous researchers in the past decade to resolve these problems

(See Section 1.3.4). It appears from these research efforts that the accurate pre-

diction of the blade torsional response is important for the accurate prediction

of the lift phase. The underprediction of pitch link loads seem to be because

of the inability of classical lifting line based analyses to predict section pitching

moments accurately. Pitching moments are very sensitive to flow non-linearities

9
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Figure 1.3: Predicted 4/rev hub vibration for the Lynx (airspeed=158 knots)

in the highly unsteady rotor environment. Also the inability to predict section

pitching moments produces an inaccurate torsional response solution. It follows

from these approaches that one might be able to get acceptable vibration pre-

diction if the aerodynamic modeling was improved using a computational fluid

dynamics (CFD) based model, which may provide much more refined results for

both sectional lift and pitching moments.

There were a few research efforts in the past two decades (See Section 1.3.3)

that replaced classical lifting line analysis with the CFD based modeling in the

comprehensive analysis framework. Most of the research efforts used a “loose”

coupling methodology (i.e., exchange of information between CFD and struc-

tural analysis only once every rotor revolution). However these approaches were

limited in the extent that:
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1. They were able to couple only lift distributions obtained from CFD model

in to the structural dynamic modeling. Torsional response divergence was

noted when pitching moments were included.

2. In cases where pitching moments from CFD were used, they had to be

included as an average of those predicted by lifting line theory and CFD

model to aid convergence.

3. The blade motions were included in the CFD computations as “partial

angle of attacks” rather than including the actual deformed blade surface

geometry. For moderately large deformations, this approach would induce

errors in the analysis.

4. The CFD models were limited by the use of potential flow based methods

rather than Euler/Navier-Stokes solvers. In the highly unsteady rotor flow

field with transonic Mach numbers, a potential flow assumption may lead

to inaccuracies in load prediction.

Recently, there have been research efforts which replaced the loosely coupled

approach with the so called “tight” coupling approach. In the tight coupling

approach, equations representing the fluid conservation laws and structural dy-

namic response are integrated simultaneously. But the approach presents se-

vere numerical challenges for ensuring trim states and periodic response solu-

tions. Also, a comprehensive validation and identification of fundamental phys-

ical mechanisms have been limited in these efforts.

The motivation of this research work stems from the aforementioned problems in

rotorcraft vibration prediction. The primary objective of this research effort is

to develop and validate a time and grid independent CFD computation that can

12



give acceptable prediction of aerodynamic loads, so that it can be included in

to a rotor aeroelastic analysis (overcoming limitations (3) and (4)). This will be

followed by the reexamination of the loosely-coupled iteration scheme for cou-

pling CFD and comprehensive rotor analyses (overcoming limitations (1) and

(2)). Efforts will also be focussed on identifying the key physical phenomenon

that causes the rotor vibrations. The strengths and limitations of CFD based

aerodynamic model compared to the classical lifting line based analysis will also

be evaluated.

1.3 Previous Work

The focus of this research work is in developing a CFD methodology for ro-

tor problems that includes aeroelastic blade deformations. Historically, CFD

methods were first used to replace lifting line theory in fixed wing aeroelasticity

research. Therefore, a brief review of the use of CFD modeling for fixed wing

aeroelastic problems is presented first. This is followed by a survey of different

wake modeling techniques, which are an essential modeling difference between

fixed wing and rotary wing problems. The various research efforts which coupled

CFD codes with computational structural dynamics (CSD) analyses for rotary

wing problems are reviewed next, followed by efforts that are focused more on

validation and isolation of the potential modeling deficiencies.

1.3.1 Fixed wing aeroelasticity

The use of computational fluid dynamics for modeling transonic unsteady airfoil

problems was initiated in the early 1970s. Among the most promising efforts
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was the one by Magnus and Yosihara [4] who computed transonic flow over a

NACA 64A410 airfoil by solving the Euler equations. They performed unsteady

calculations for a step change in angle of attack, a step change in a pitching

angular velocity and for harmonic oscillation about the airfoil mid chord for a

range of reduced frequencies. They used the perturbation approach [5] to model

the boundary conditions for unsteady motions. Thus, the mesh was unchanged

with time, and the boundary condition for motion of the airfoil surface was

modeled by modifying the velocity along the surface normal appropriately.

Ballhaus and Goorjian [6] constructed a scheme for unsteady transonic small

disturbance equations in the place of Euler equations to model a similar prob-

lem of low frequency unsteady transonic flow around airfoils. They reported

results consistent with those predicted by Magnus and Yosihara. Ballhaus and

Goorjian [7] are also credited with, perhaps, the first CFD effort for solving

an aeroelastic problem by simultaneous time-integration of the structural and

flowfield equations. They compared predictions obtained from classical indicial

methods and time-integration computations for oscillating airfoils and hence de-

fined limits of applicability of the indicial methods. Also, they demonstrated that

equations governing non-linear aerodynamics and structural motions can be inte-

grated simultaneously to provide solutions to aerodynamic problems. This work

formed the basis of further development of computational aeroelastic models to

analyze wing flutter problems.

Guruswamy [8] pioneered the application of the simultaneous integration ap-

proach suggested by Ballahaus and Goorjian. The approach was first compre-

hensively validated for two dimensional problems with thin airfoils and later

extended to three dimensional flutter problems for finite wings [9, 10]. These
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Figure 1.5: Pioneering works in fixed wing aeroelasticity

research efforts led to the development of an efficient general purpose aeroelastic

code for aircraft problems called ENSAERO [11], which is widely used and has

become an accepted standard for fixed wing aeroelasticity. Robinson, Batina

and Yang [12, 13] modified a three-dimensional unsteady Euler/Navier-Stokes

solver (CFL3D) to include a deforming mesh capability that makes the mesh

continuously conform to the instantaneous shape of aeroelastically deforming

wing surface. They followed the simultaneous time integration scheme to per-

form aeroelastic analysis of a 45 degree swept back wing with NACA 0012 cross

section. A unique grid deformation scheme which models the computational

mesh as a spring network was proposed. They also recognized the conservation

problems which arise because of changing cell sizes in a deforming mesh and

applied the necessary correction term in the flow solution algorithm. The aeroe-
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lastic time marching scheme thus developed was later used to comprehensively

perform linear stability analysis and hence the flutter boundaries of swept back

wings [14].

The modern day trend in fixed-wing aeroelasticity looks in to developing

reduced order models for non-linear aerodynamics to replace the computation-

ally expensive CFD calculations. A time marching aeroelastic analysis with CFD

based aerodynamics has the limitation that it is often difficult to extract the aero-

dynamic damping in the system directly. Hence, the determination of the sta-

bility boundaries often require a large amount of computations. An alternative

simplified representation of the unsteady aerodynamic behavior that provides

intuitive physical sense and hence a direct estimate of aerodynamic damping is

very useful from a practical design point of view. Ballhaus and Goorjian in their

initial work did use indicial response functions instead of direct CFD calcula-

tions. Crouse and Leishman [15] refined this approach and performed aeroelastic

analysis for an airfoil with flapping and torsion degree of freedom using a gen-

eralized state-space approach. The unsteady aerodynamics was modeled using

indicial response functions. The indicial response function was a combination of

non-circulatory response and circulatory response. The non-circulatory or im-

pulsive response were obtained from piston theory [16], while circulatory load

response were obtained from CFD predictions in the frequency domain. The

Proper Orthogonal Decomposition technique (POD) is the state-of-the-art now

for extracting reduced order models. The basic idea behind this technique is

to extract basis vectors which span the solution space from frequency domain

solutions obtained using a higher order (often direct CFD) model. These basis

vectors obtained are used to develop a model in the time domain, usually rep-
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resented in a state-space form. Dowell [19, 20] and Hall [21, 22] in their several

works developed mathematical formulations for extracting the basis vectors us-

ing eigen analysis from the higher order methods. Wilcox et al. [23, 24] recently

applied these formulations to develop lower order aerodynamic models for aeroe-

lastic control of turbomachinary. The technique developed is demonstrated for

pitching and plunging motion of a single stage rotor under inviscid flow con-

ditions. Applications of these methods for viscous three dimensional problems

have not been reported yet and are much awaited.

The pioneering works in fixed wing aeroelasticity are summarized in Fig-

ure 1.5.

1.3.2 Fixed wing vs rotary wing

The main difference in a CFD analysis model for fixed wing and rotary wing is

the wake modeling. Unlike the fixed wing case a rotor blade is always operating

in the wake generated by vortices trailed by other blade/blades as well as from

itself (Figure 1.6). This additional effect has to be carefully modeled to get a

good estimate of sectional aerodynamic loads for a rotor blade. Finite volume

and finite difference numerical schemes commonly employed in CFD models

have inherent numerical dissipation present in them. This numerical dissipation

causes the vortices in the flow field to diffuse at a faster rate than their physical

diffusion rate. The numerical dissipation could be decreased by decreasing the

cell sizes (i.e, using a finer mesh). However, the extent of mesh refinement is

limited in practice as the computational complexity increases with the number of

grid points. So, often one has to resort to alternative methods for including the

vortex wake into the CFD calculations. Currently, there are three approaches
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Figure 1.6: Trailed wake structures for fixed wing and rotary wing

mainly used for predicting the flowfield of a rotor using CFD methods. They

are:

Direct wake capturing: In this approach Euler/Navier Stokes equations are

solved with sufficient mesh resolution and clustering to minimize the dissipation

of the wake and hence maintain its integrity. This approach was initiated in

the 1980’s for hovering rotors by Roberts and Murman [25] and investigated in

detail by Kramer et al. [26] and Chen and McCroskey [27].

Srinivasan et al. [28] proposed a novel approach using periodic boundary

conditions on a cylindrical mesh around a single blade for wake capturing. The

method was shown to be applicable even in cases were strong viscous effects
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Figure 1.7: Summary of wake inclusion techniques developed/applied in CFD

and shock separations were prevalent. They also showed good predictions for

both hover performance and surface pressure distributions for the Caradonna

and Tung [29] model rotor. Wake and Baeder [30] used this approach to validate

hover performance of a Black Hawk model rotor blade. The solutions were

found to improve with grid adaptation and higher order schemes by Tang and

Baeder [39].

The present day approaches use chimera grids for wake capturing. In the

chimera (overset) mesh approach, a boundary conforming mesh is used for the

rotor blades and a background Cartesian mesh encompassing all the rotor blades

to capture the trailed wake. Information is exchanged with the various meshes at
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each time step using carefully tailored interpolation techniques. Srinivasan and

Duque [32] were the first to investigate overset grid approaches to model the hov-

ering flow field. Strawn et al. [33] further refined and applied this approach for

rotor aerodynamics and aeroacoustics computations. Ahmad and Strawn [34],

on a follow-up work, comprehensively investigated grid independence of solu-

tions obtained using such multiple mesh based approaches. They found that

the solution is fairly grid dependent and concluded that the grid independence

of the wake capturing methodology needs to be rigorously established to ensure

the accuracy and credibility of the CFD solutions. Pomin and Wagner [35] also

recently used the overset mesh approach for studying hovering and non-lifting

forward flight conditions. For the hover calculations they also performed an

aeroelastic analysis by simultaneously integrating the rotor structural equations

with the flow solutions.

Coupling free wake solutions and CFD: In these methodologies the wake

geometry is obtained using a Lagrangian based free vortex wake solution. The

free wake models use the principle of vorticity transport to solve for the wake

geometry. The vortex filaments are allowed to convect with the self and mutu-

ally induced velocities until a force free wake state is obtained. For steady flight

cases the wake geometry is periodic at the rotor frequency. Hence, solutions for

such cases can be obtained using a relaxation approach. The Pseudo-Implicit

Predictor-Corrector (PIPC) method by Bagai and Leishman [36] is one method

to determine the wake geometry prediction for steady flight cases. Although in

cases where the wake is aperiodic (i.e., for maneuvering flight and flight condi-

tions with multiple rotors) the wake geometry has to be found by time integra-
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tion. The stability, convergence and accuracy of such a numerical scheme needs

to be rigorously investigated before it can be routinely applied. Bhagwat and

Leishman [37] have recently developed numerical schemes for time accurate free

wake calculations. They applied the methodology developed for maneuvering

flight conditions and reported good correlation of the predicted wake geometry

with flight test observations. This methodology has been incorporated in to

numerous comprehensive rotor aeroelastic analyses.

Coupling the flow solvers with an externally generated wake geometry is

achieved commonly using three approaches, namely: (1) the perturbation ap-

proach, (2) the surface transpiration approach, and (3) the field velocity ap-

proach. In the perturbation approach, the flowfield is decomposed into two

parts despite nonlinearity. The first is a prescribed vortical disturbance known

to satisfy the governing equations in the absence of solid surfaces, and the sec-

ond is obtained from the solution of the governing equations [5, 38]. As a result,

the vortex structure is free of numerical diffusion. For a simple 2-D vortex

or an infinite line vortex the induced pressure and density fields can be deter-

mined by solving a simple 2-D normal momentum equation analytically. This

approach has been used extensively in studying airfoil vortex interaction (AVI)

problems [39]. However, it is unclear how to extend this approach for the curved

vortex filaments that represent the actual helicopter wake, because exact analyt-

ical solutions cannot be determined for the vortex induced pressure and density

fields.

The second approach, which is the surface transpiration approach, is the

most commonly used approach for coupling the free wake solutions. The effect

of the vortex wake is included in to the CFD computations through a surface
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transpiration boundary condition at the blade surfaces. The Biot-Savart law is

used to obtain the wake induced velocities at the blade surface grid points. The

boundary conditions at the wall are subsequently modified to include the effect

of these induced velocities. For an Euler or full potential calculation (when no

boundary layer needs to be modeled) the velocity at the blade surface can be non-

zero. For such inviscid calculations, the normal flux boundary conditions at the

blade surface is modified. The velocity normal to the surface is then calculated

such that it exactly cancels the effect of the wake induced velocity normal to the

surface. This method is equivalent to modeling the effect of the wake using an

equivalent angle of attack. This methodology cannot be directly extended for

viscous (i.e., Navier-Stokes) based simulations as a no-slip boundary condition

has to be imposed at the wall. The wake effect is mostly included in such

computations by explicitly modifying the blade section angle of attack using the

wake induced velocities. References [40] to [41] use this approach for prediction

of unsteady rotor aerodynamic loads.

The third method used is called the field velocity or the grid velocity ap-

proach. The wake induced effects are modeled by an apparent grid movement.

The vortex wake generates a non-uniform induced velocity distribution over the

entire flow field. Therefore, the vortex wake effect can be thought of as modify-

ing the velocities along all three coordinate axis directions instantaneously. This

is similar to the indicial response problem [42].

For instance, the indicial response to a step change in angle of attack can be

modeled by incorporating a step change in vertical grid velocity (i.e. create an

apparent movement for the grid in the vertical direction by modifying the grid

time metrics). Using the same idea, the vortex wake induced effects can be mod-
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eled by modifying the time metrics at each grid point using the wake induced

velocities. This does require the additional computational expense of calculating

the induced velocities at all the mesh points at every time step. The field veloc-

ity approach lies between the perturbation and surface transpiration methods

in terms of complexity. However, it is far superior in robustness and range of

applicability compared to the other two approaches. The field velocity approach

for indicial calculations was proposed by Parameswaran and Baeder [42], and

comprehensively applied to study indicial responses of finite wings by Singh and

Baeder [43]. This method was introduced for coupled free wake-CFD computa-

tions by Khanna and Baeder [44], who performed coupled hover computations.

Recent works by Sitaraman [45] and Boisard [46] extended this approach to

study more complex BVI problems in low speed forward flight. This approach

is chosen for wake inclusion in this dissertation because it was found to be the

most reliable and sufficiently accurate method for the inclusion of the vortex

wake induced effects.

Vorticity confinement/embedding methods: The vorticity confinement

technique proposed by Steinhoff et al. [47] is a novel approach born out of the

motivation to mitigate the effects of the inherent diffusion in numerical schemes

for the Euler and Navier-Stokes equations. In essence, the method can be looked

upon as a way to add an anti-diffusive term to the discretized form of conser-

vation equations without affecting stability. It is normally incorporated into

a solver as source terms on the right hand side of the momentum and energy

equations.

The vorticity embedding technique is another way of including additional
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vorticity into the numerical scheme. This model does not formulate the solution

at the vortical regions using partial differential equations. The locations of the

vortical regions are determined by tracing irrotational stream lines on the mean

flow, and assuming the vortical regions lie in between them. The vortical strength

is determined by solving difference equations. The actual variation of the velocity

in the vortical region could be prescribed using known empirical models. This

method differs from the direct wake capturing schemes in the sense that the latter

uses solution of hyperbolic conservation laws formulated in the strong (PDE)

form for solving the vortex structure. Also, compared to the prescribed wake

methods, the wake system is solved for directly in this methodology rather than

being specified from an external calculation. However, the internal structure of

the vortical regions also needs to be modeled in this case.

The vorticity confinement/embedding approach has gained interest in the

recent past among rotorcraft researchers and has been used as a wake capturing

methodology. Steinhoff and Ramachandran [48, 49] applied this methodology for

predicting free wake structures for two bladed and four bladed rotors and real

helicopter geometries with rotor and fuselage. Unfortunately, the validations of

the aerodynamic loads obtained have been limited in these approaches. Bridge-

man et al. [50] modified the FPR code [51] to include vorticity embedding into

its modified version, the FPX code. The FPX code was used as the aerodynamic

model for rotorcraft aeroelastic analysis by Lee et al. [52]. Recently, Bridgeman

and Dietz [53] used the vorticity confinement approach to perform an aeroelas-

tic analysis of an airfoil undergoing dynamic stall. They used the simultaneous

time integration approach of a two degree of freedom structural dynamic system

along with the flow conservation equations.
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The various wake modeling/inclusion techniques discussed in this section are

summarized in Fig 1.7.

1.3.3 CFD coupling into comprehensive

rotorcraft analysis

Historically, there have been two ways researchers have tried to couple CFD

based aerodynamics into rotor structural analysis. The first method, often re-

ferred to as loose coupling, involves transfer of information between the struc-

tural dynamic analysis and CFD analysis every rotor revolution. The second

method, which is the tight coupling approach, uses the simultaneous time in-

tegration of both structural dynamic and fluid dynamic equations. In essence,

there is transfer of information between both analyses at every time step. The

loose coupling method has the inherent advantage that a trim solution can be

also achieved along with the convergence of structural dynamic response. But,

because some of the frequencies of interest in the rotor system are much larger

than the rotor rotational frequency (which is the same as the frequency of in-

formation exchange), often the credibility of the vibration predictions by this

approach is suspect. The tight coupling is a more rigorous aeroelastic analysis

from a fundamental point of view, however, the practicality of the approach is

limited because of the inherent numerical challenges of ensuring both trim state

and a periodic response solution.

One of the earliest successful efforts which used the loose coupling approach

was by Tung and Caradonna [54] who coupled the comprehensive rotor analysis

code CAMRAD [55] to FDR [51], a transonic small disturbance finite difference

code. The procedure used CAMRAD aerodynamic formulation of lifting line
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Figure 1.8: Summary of research efforts which coupled CFD to comprehensive

analsysis

theory, discrete vortex wake, and tabulated airfoil data to calculate airloads

except for substitution of FDR calculated blade lift (not pitching moment) within

a specified region on the advancing blade side of the rotor disc. The blade

motion information and far wake information from CAMRAD was provided to

FDR using the so called “partial angle of attack” method. The partial angle

of attacks were calculated from CAMRAD by modifying the effective angle of

attack at the blade sections excluding all the inflow contributions caused by the

near wake (i.e., the part of the free wake geometry contained inside the CFD

mesh boundaries). The Full Potential Rotor code (FPR) was the successor to

the FDR code. Strawn and Tung [56, 57] used the FPR code and improved the

coupling approach by extending the computational region to the full 360 degrees

of azimuth rather than just at advancing blade azimuths. Also, the coupling
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between the codes was automated to run on a single machine.

The loose-coupled iteration FPR/CAMRAD iteration scheme was further

applied to predict airloads on the AS-330 PUMA helicopter configuration by

Strawn et al. [58]. The correlation between predicted and measured aerodynamic

loads did not show significant improvement, even with the FPR based advanced

aerodynamic modeling. Strawn and Bridgeman later extended this analysis by

adding contributions of the pitch rate and lead-lag blade motions in the bound-

ary conditions of FPR. They also for the first time tried to couple both FPR

calculated lift and pitching moment into the comprehensive analysis. But they

noted significant convergence problems when lift and pitching moments were si-

multaneously coupled into the comprehensive analysis, and suggested that the

loose coupling procedure might be inadequate when pitching moments/torsional

dynamics were included. There were other investigations contemporary to these

efforts which also followed the similar methodology. Yamauchi et al. [60] used

a similar approach (i.e., FPR/CAMRAD) to predict structural bending and

aerodynamic loads on an advanced geometry rotor blade of a SA349/2 Gazelle

helicopter and showed good correlation with flight test data. Kim et al. [61] im-

proved the iteration scheme by coupling both the lift and pitching moment ob-

tained from the CFD computations. They coupled a transonic small distrubance

(TSD) code with UMARC. However, they also noted convergence issues when

both lift and pitching moment were simultaneously coupled. Therefore, the ap-

proach was modified by including the pitching moments only at a later stage of

the iteration scheme to ensure convergence.

The research efforts on developing a tightly coupled approach was initiated

by Bauchau and Ahmad [62] who coupled an overset mesh based CFD solver
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(OVERFLOW [63]) and a multibody dynamics code (DYMORE [64]). Results

were obtained for a four-bladed UH-60A rotor in forward flight and compared

with flight test measurements. At each time step the coupling procedure used

the CFD aerodynamic forcing as input excitation for the structural dynamic

analysis and then used the blade dynamics computed as input for predicting the

aerodynamic forcing. The CFD analysis using OVERFLOW includes direct wake

capturing and hence no external inputs of the wake geometry were needed. A

trim analysis could not be performed in such a coupling frame work. Hence, using

experimentally measured rotor trim control inputs, the blade lift and moment

results were compared with flight test data. The results showed similar trends

to test data, although there were significant differences in the mean values and

even the higher frequency components.

Recently there were additional research efforts focussed on a tightly coupled

scheme, where the structural dynamics and fluid dynamics governing equations

are integrated simultaneously rather than per revolution. Lee et al. [52] have con-

ducted one of the most comprehensive research effort of tightly coupling CFD and

CSD methodologies. They coupled the FPX [50] code with 2GCHAS [65], and

analyzed the UH-60A and PUMA helicopter rotor configurations. The boundary

conditions for FPX used a combination of actual grid motions and surface tran-

spiration to represent the aeroelastic response calculated by 2GCHAS. Initial so-

lutions were unstable because of inaccurate calculation of the pitching moments,

which lead to the presence of negative aerodynamic damping from the CFD

moments. Ultimately a finer temporal resolution was used, and convergence

of the response was obtained for the PUMA case. Unfortunately, substantial

computational resources were found to be required, even for the full-potential
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formulations in this case.

Buchtala et al. [66] investigated a staggered time marching scheme for fluid

structure coupling for an ONERA 7A model rotor. They indicated good correla-

tion of the chordwise pressure data with the experimental results. Beumier [67]

studied helicopter rotor performance in hover using a Reynolds Averaged Navier-

Stokes based aerodynamic modeling. The aero-elastic effects were coupled by

prescribing the deformations to the grid. Because this was a hover case, the

blade deformation was assumed to remain unchanged with azimuth. This work

primarily focussed on the accuracy of the flow solvers themselves rather than the

coupling scheme. Altmikus and Wagner [68] provided a comprehensive report

on the accuracy of tightly coupled schemes for aeroelastic simulations. Pomin

and Wagner [35] used these coupling schemes to analyze helicopter rotor per-

formance in hover and forward flight using chimera grids for wake capturing.

Overall, the tightly coupled approaches showed considerable success, but they

were performed for prescribed control angles and so did not ensure the simulta-

neous convergence of trim and blade response solutions. A trim solution could

be achieved by changing the control angles (collective and cyclic) to produce

enough rotor aerodynamic loading (averaged per revolution) that would ensure

both force and moment balance in all three directions. A tightly coupled ap-

proach poses severe numerical challenges in ensuring such a trim solution as part

of the analysis.

Berkman et al. [69] developed the hybrid Navier-Stokes/Full potential method-

ology for predicting three dimensional unsteady flows over multibladed rotors in

hover and forward flight. The flow solution was divided in to three zones in this

analysis consisting of an inner zone where Navier-Stokes equations were solved,
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a potential flow region which carries the acoustic and pressure waves generated

by the rotor to far field, and a Lagrangean scheme for capturing the vorticity

that leaves the viscous region and convecting it away to the far field. Yang

et al. [70] coupled this hybrid Navier-Stokes/full potential methodology to a

structural analysis model for predicting rotor unsteady airloads. The coupling

methodology followed an open loop approach (i.e., the predicted aerodynamic

loads from CFD were not passed back to the structural analysis) in which the

measured elastic deformation and control angles based on a wind tunnel trim

was supplied to the CFD analysis. Dynamically deforming meshes were used

to prescribe the elastic deformation to the CFD analysis. Fair agreement with

flight test data for the case of a four blade rotor in forward flight was reported

in this effort.

The summary of all the key CFD coupling research efforts that were discussed

in this section is presented in Figure 1.8.

1.3.4 Comprehensive validation and isolation of modeling

deficiencies

The coupled nature of rotorcraft aeromechanics problems makes it one of the

most difficult problems for detecting modeling deficiencies. There have been

some research efforts in the past which tried to isolate the modeling deficiencies

in structural and aerodynamic modeling.

Bousman et al. [71] provided the most comprehensive evaluation of lifting line

and CFD methods by correlating the predictions with the flight test data of the

Puma helicopter. For the Puma flight test case, most of the methods produced

good correlation with measured aerodynamics loads (good for normal forces,
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fair for pitching moments). Yet recent validation with the full scale UH-60A

flight test data performed by Lim et al. [72] showed poor to fair correlation of

predicted blade aerodynamic loads with flight test data. Bousman [3] addresses

this issue in his comprehensive review of problems in rotor aeromechanics. Two

unsolved problems, namely, phase of negative lift on the advancing side in high

speed forward flight and underprediction of pitching moments and hence the

pitch link loads, were identified as the primary problems rotorcraft researchers

need to address before one could resort to comprehensive validation.

Torok et al. [75] validated the structural dynamic model by using measured

aerodynamic loads obtained from the UH-60A model rotor tests conducted by

Lorber et al. [76] as input to the structural dynamic analysis. They were able to

obtain good correlation of flap bending loads with measured data. The torsion

moment correlation was found to be fair. Overall, it was concluded that the

structural dynamic models are in general capable of predicting sufficiently accu-

rate flap dynamics if accurate aerodynamic loads are provided, whereas torsion

dynamics needed refinement.

Bousman [73] showed that the advancing blade negative lift character is sim-

ilar for both model and full scale helicopter and therefore seems to be a fun-

damental phenomenon independent of specific hub configurations (e.g., for hubs

with dampers, bifilar pendulum vibrations absorbers etc). Datta and Chopra [74]

showed by frequency separation that the lift phase problems stems from inac-

curate vibratory lift prediction in the advancing side of the rotor disk. The

advancing side lift was also shown to be affected mostly by elastic torsional de-

formations, unlike the low speed case where it is primarily affected by the trailed

vortex wake. However, an inconsistency was noted between the phase errors in
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pitching moment and lift indicating that elastic torsion may not be the only

contributing component of the error in the lift phase.

Torok and Berzin [77] in the follow up work evaluated different aerodynamic

and wake methodologies, including CFD based (FPR) modeling. They used

the measured aeroelastic deflections as input to the aerodynamic methodologies

and correlated the predictions with measured aerodynamic loads. It was found

that the measured torsional deformation was a significant contributor for the

accurate prediction of both magnitude and phase of the aerodynamic loads.

Good correlations were noted between the surface pressure measurements and

the pressure coefficients evaluated by FPR models.

Lee et al. [52] performed one of the most comprehensive tight coupling ap-

proaches also identified that the inaccurate prediction of pitching moments by

CFD codes was one of the primary reasons for torsional response divergence.

Earlier, loose-coupling efforts with full-potential CFD codes had identified this

divergence as a numerical robustness problem.

1.4 Objectives

The main objectives of this dissertation are framed in a way such that the proce-

dures developed and knowledge gained from this work would serve as a platform

for improved vibration prediction.

• Develop grid and time independent solutions to unsteady aerodynamic loads

using Navier-Stokes based CFD calculations: An existing Navier-Stokes

solver was extensively modified to consistently incorporate the aeroelastic

blade motions and effects of the trailed vortex wake. The method was
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formulated in a way such that it strictly satisfies the conservation laws.

Grid and time step independence studies were performed for different flight

conditions and differing mesh geometries. Performance enhancement tech-

niques were incorporated to improve the practicality of conducting simu-

lations in a routine basis.

• Validation of the CFD model developed: The validation of the CFD model

was performed in a step-by-step manner. The 2-D predictions for airfoils

were validated first for a range of Mach numbers and angle of attacks.

This was followed by validation of the procedures used to include aeroe-

lastic deformations and the trailed vortex wake. Complete validation of

the unsteady aerodynamic loads (lift and pitching moment) were also per-

formed on a flight test case with prescribed deformations and blade pitch

controls.

• Improve coupling of the CFD model with structural analysis: The loose

coupling approach between CFD and comprehensive rotor analysis was

evaluated and improved using the higher fidelity CFD model. The im-

provements in vibration prediction from the baseline comprehensive anal-

ysis were identified and emphasized.

• Investigate the physics of rotor vibrations: The CFD model developed was

used as a tool to identify the fundamental mechanisms of rotor vibrations.

The insights gained were used to identify key modeling deficiencies of the

lifting line based aerodynamic models. The feasibility of applying correc-

tions to the lifting line models to improve their prediction capabilities are

also investigated.
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1.5 Organization of the Thesis

This thesis emphasizes the development of a CFD model for better rotor vi-

bration prediction. It uses the standard organization format, which follows an

introduction, methodology, validation, key results and conclusion chapters, in

that order.

The methodology chapter describes the formulation of the Euler/Navier-

Stokes solver, which in principle is capable of accurately and robustly incor-

porating aeroelastic deformations and effects of an external vortex field. The

structural dynamic model used in a comprehensive rotor analysis model is also

briefly described. The extended lifting line model, which is used as the baseline

for evaluating the improved prediction capabilities of the CFD model developed,

is also presented.

The comprehensive validation of the methodology developed is presented in

the third chapter. The validation of the numerical schemes developed is con-

ducted for a range of problems including 2-D model problems and actual heli-

copter flight problems. The feasibility of coupling the CFD model and structural

dynamic analysis is investigated. A simplified structural dynamic analysis is used

in this context to reduce the complexity of the problem.

The investigations conducted to isolate key contributors to rotor vibration

are presented in Chapter 4. The CFD model is used as a tool to conduct an

investigation on major effects of different physical phenomena (transonic effects,

viscous effects, three dimensional effects, etc.). The knowledge gathered from

this investigation will be useful for understanding the limitations and perhaps

enhancing the prediction capabilities of the lifting line analysis.

Chapter 5 presents the results of the coupling process developed between
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the CFD model and comprehensive rotor analysis. The convergence issues in

the full coupling approach and procedures developed to maintain robustness are

described. The improvements in the prediction of rotor vibratory loads compared

to the baseline comprehensive analysis is also presented.

Conclusions and observations noted during the development, validation and

application of the methodologies developed are summarized in the final chapter.

1.6 Scope of the Thesis

The research work conducted in this thesis forms an important stepping stone

in the direction of the development of low vibration rotor systems. The analysis

developed shows improved vibration prediction capabilities compared to existing

comprehensive rotor aeroelastic analyses. The methodology developed could be

used as a tool for analyzing advanced rotor systems. A high fidelity analytical

model minimizes the requirements for scaled rotor testing, that may help reduce

the associated development and production costs. Also, it encourages designers

to probe more innovative configurations within the usual financial constraints of

design analyses.

Specifically, the contributions of the thesis are the following:

1. Development of a methodology for incorporating deforming mesh algo-

rithms in a CFD solver.

2. Inclusion of the external velocity field (e.g., because of the trailed vortex

wake) into the unsteady flow computations.

3. Consistent coupling of a structural model with the CFD analysis.
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4. Identification of the key physical contributors to rotor vibration.

It is noteworthy that although the development of the CFD scheme is mainly

driven by rotor applications, the methodologies are valid for any three dimen-

sional unsteady Navier-Stokes analysis. The procedure developed can be incor-

porated into any finite volume based Navier-Stokes solver, and extended to other

diverse applications that require modeling of unsteady flows.
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Chapter 2

Methodology

2.1 Introduction

This chapter describes the overall methodology used in this dissertation. The

methodology can be broadly divided into the development of an aerodynamic

prediction method, a structural dynamic analysis and the approaches used for

performing fluid-structure coupling. The aerodynamic prediction analysis is fur-

ther divided into a Computational Fluid Dynamics based (CFD) approach and

a modified lifting line analysis.

The CFD approach involves modeling rotor blades undergoing elastic defor-

mations and interacting with vortex wakes. The governing equations are the

conservations laws of fluid motion. The resulting partial differential equations

are discretized and solved using a finite volume approach. Special modification,

rigorously satisfying the Geometric Conservation Laws, is required for modeling

aeroelastically deforming rotor blades. Also, the effects of the vortex wake are in-

cluded using the so called Field Velocity Approach which requires a modification

of the grid time metrics. The inclusion of the vortex wake using this approach of-
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ten increases the computational complexity of the numerical scheme by an order

or magnitude. Hence, performance enhancement techniques that use hierarchical

data processing need to be investigated to make the simulations practical. The

detailed mathematical derivation of the performance enhancement techniques is

presented in Appendix A.

The extended lifting line aerodynamic analysis is developed primarily to un-

derstand the strengths and limitations of the CFD based approach. The method

uses airfoil lift, drag and pitching moment characteristics constructed using ex-

perimental data for obtaining the steady aerodynamic load coefficients. The

unsteady aerodynamic loadings are accounted for, using a linear superposition

of time domain based indicial response models. Indicial response models (e.g.,

Leishman-Beddoes [78]) and those developed for the specific airfoils of study

are implemented. A Weissinger-L based extended lifting line theory, which can

model the effects of blade sweep and taper, is used to account for the finiteness

of the rotor blade. This aerodynamic analysis methodology is typical of those

used in comrehensive rotor aeroelastic analysis codes.

The structural dynamic analysis involves the calculation of the rotor pitch

controls, vehicle orientation, and blade response such that the vehicle trim equa-

tions and the blade coupled periodic non-linear response equations are simul-

taneously satisfied. The satisfaction of vehicle trim equations imply that the

resultant forces and moments on the vehicle, averaged over one rotor revolution,

becomes zero. A simplified rotor structural model which consists only of flap and

torsion degree of freedom is developed initially to test the feasibility of loosely

coupling CFD based aerodynamics with structural dynamics analysis. Later on,

a more advanced structural analysis, which accounts for all the degrees of free-
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dom and non-linear elastic couplings is used. A finite element based approach

that can accurately model the kinematic and elastic behavior of a rotating blade

is chosen for analyzing both articulated and hingeless rotors. In the simplified

analysis, the blade is modeled as a slender beam undergoing flap bending and

torsional deformations. The blade equations are transformed into normal mode

space first, and then the resulting ordinary differential equations are solved us-

ing a temporal finite element method. The temporal finite element method has

proven to be robust and efficient to solve blade nonlinear response.

2.2 Fluid Dynamic Modeling

The governing equations for the fluid modeling in this work are the three dimen-

sional Navier-Stokes equations, which are numerically discretized and solved with

necessary boundary conditions for the specified geometry.

2.2.1 Navier-Stokes equations

The Navier-Stokes equations are the fundamental partial differential equations

which describe the flow of compressible fluids. They represent the conservation

of mass, momentum and energy. The strong conservation-law form of the Navier-

Stokes equations in Cartesian coordinates can be written as [79]:

∂q

∂t
+
∂f

∂x
+
∂g

∂y
+
∂h

∂z
=
∂σ

∂x
+
∂θ

∂y
+
∂ω

∂z
+ R̂ (2.1)

Where the state vector q and the inviscid flux vectors f , g and h are defined as
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q =




ρ

ρu

ρv

ρw

ρE




(2.2)

f =




ρu

ρu2 + p

ρuv

ρuw

ρuH




(2.3)

g =




ρv

ρvu

ρv2 + p

ρvw

ρvH




(2.4)

h =




ρw

ρwu

ρvu

ρw2 + p

ρwH




(2.5)

Where u, v, w are the velocity components in the coordinate directions x, y, z, ρ

is the density, p is the pressure, e the specific internal energy and σ, θ, ω represent

the viscous stress and work terms for each coordinate direction, respectively. The

40



term R̂ represents the source terms that have to be included to account for the

centrifugal and Coriolis accelerations if the equations are formulated in a non-

inertial frame of reference. The total energy E and enthalpy H are given by the

equations

E = e+
u2 + v2 + w2

2
(2.6)

H = e+
p

ρ
(2.7)

Transformation to generalized curvilinear coordinates

The governing equations can be expressed in strong conservation law form in

generalized body-conforming curvilinear coordinate system with the aid of the

chain rule of partial derivatives. In effect, the equations after being transformed

to the the computational coordinates ξ, η, ξ are as follows:

∂q̂

∂τ
+
∂f̂

∂ξ
+
∂ĝ

∂η
+
∂ĥ

∂ζ
=

1

Re

(
∂σ̂

∂ξ
+
∂θ̂

∂η
+
∂ω

∂ζ

)
+ R̂ (2.8)

where, the normalized inviscid fluxes are given by

q̂ = Jq

f̂ = ξ̂tq + ξ̂xf + ξ̂yg + ξ̂zh

ĝ = η̂tq + η̂xf + η̂yg + η̂zh

ĥ = ζ̂tq + ζ̂xf + ζ̂yg + ζ̂zh

(2.9)

and the normalized viscous fluxes are given by
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σ̂ = ξ̂xσ + ξ̂yθ + ξ̂zω

θ̂ = η̂xσ + η̂yθ + η̂zω

ω̂ = ζ̂xσ + ζ̂yθ + ζ̂zω

(2.10)

Here terms of the form ξ̂x,y,z, η̂x,y,z and ζ̂x,y,z are the space metrics, ξ̂t, η̂t and ζ̂t

are the time metrics in the computational domain, and J is the Jacobian of the

inverse coordinate transformation (i.e., J = det(∂(x,y,z)
∂(ξ,η,ζ)

).

Thin-layer approximation

The flow fields encountered in helicopter flows are often inertia dominated. The

viscous effects are concentrated in the boundary layer and in the wake in such

high Reynolds number flows. These regions are generally smaller compared to

the complete flow field. The order-of-magnitude estimates used to derive the

boundary-layer equations show that the streamwise viscous terms are negligible

compared to the other terms in the Navier-Stokes equations. Thus, one can

drop the streamwise viscous terms. This eliminates the cross derivatives in the

normalized viscous fluxes and so simplifies the numerical discretization. There

are three conditions necessary for the thin-layer approximation to be valid. These

are:

1. Body surfaces are mapped onto coordinate surfaces and wakes are mapped

onto parallel surfaces in the computational space. Therefore, for slender

beam structures, like wings and rotor blades, a “C” type mesh is appropri-

ate at each spanwise section with the ζ=constant surface mapped on the

body surface.
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2. Grid lines must be clustered to the surface and in the wake, and must be

close to orthogonal to each other.

3. Viscous derivatives in streamwise (ξ,η) direction are small and therefore

can be neglected. The viscous derivatives are retained only in the normal

(ζ) direction.

The non-dimensionalized thin-layer Navier-Stokes equations in computational

space can be written as

∂q̂

∂τ
+
∂f̂

∂ξ
+
∂ĝ

∂η
+
∂ĥ

∂ζ
=

1

Re

∂Ŝ

∂ζ
+ R̂ (2.11)

where the viscous flux vector Ŝ is given by:

Ŝ =




0

µm1uζ + µ
3
m2ζ̂x

µm1vζ + µ
3
m2ζ̂y

µm1wζ + µ
3
m2ζ̂z

µm1m3 + µ
3
(ζ̂xu+ ζ̂yv + ζ̂zw




(2.12)

with

m1 = ζ̂2
x + ζ̂2

y + ζ̂2
z

m2 = ζ̂xuζ + ζ̂yvζ + ζ̂zwζ

m3 = 1
2
(u2 + v2 + w2)ζ + 1

Pr(γ−1)
(a2)ζ

(2.13)

Equation 2.11 is the simplified partial differential equation form of the fluid con-

servation laws that is discretized and integrated in time to obtain time accurate

solutions of the flow variables used for this work.
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2.2.2 Numerical algorithm

The baseline flow solver is the Transonic Unsteady Rotor Navier-Stokes (TURNS)

research code which has been applied to a variety of helicopter rotor prob-

lems [28, 80, 81]. The inviscid fluxes are evaluated using a finite volume up-

wind numerical algorithm. The upwind biased flux-difference scheme used is

that proposed by Roe [82] and later extended to three-dimensional conserva-

tion laws by Vatsa et al. [83]. The use of upwinding eliminates the addition

of explicit numerical dissipation, which is often required in central difference

schemes. Upwind schemes have been demonstrated to produce less dissipa-

tive numerical solutions compared to their central difference counterparts [83].

First order schemes have unrealistic mesh discretization requirements. There-

fore, the Van Leer [84] Monotone Upstream-Centered Scheme for Conservation

Laws (MUSCL) approach is used to obtain higher order accuracy. Appropriate

flux limiting is used to make the scheme total variation diminishing (TVD). The

Lower-Upper-Symmetric Gauss-Seidel (LU-SGS) scheme, suggested by Jameson

and Yoon [86, 87] is used as the implicit operator.

The space discretized form of the differential in Eq 2.11 at any computational

node (j, k, l) is

∂τ q̂ = −
f̂j+ 1

2
− f̂j− 1

2

∆ξ
−
ĝk+ 1

2
− ĝk− 1

2

∆η
−
ĥl+ 1

2
− ĥl− 1

2

∆ζ
+

1

Re

ŝl+ 1
2
− ŝl− 1

2

∆ζ
(2.14)

Here j, k and l correspond to the coordinate directions ξ, η and ζ . Roe’s [82]

upwinding is performed in a locally one-dimensional manner along the coordinate

directions. The fluxes at the half points can be written (e.g., in the ξ direction),

as
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f̂
[
qL, qR,

(
∆ξ
J

)
j+ 1

2

]
= 1

2
(Ê
[
qR,
(

∆ξ
J

)
j+ 1

2

]
+ f̂
[
qL,
(

∆ξ
J

)
j+ 1

2

]
−|A
[
qL, qR,

(
∆ξ
J

)
j+ 1

2

]
|(qR − qL))

(2.15)

where A is the Roe-averaged Jacobian matrix and qL and qR are the left and

right state variables, respectively. Higher order schemes can be constructed by

using higher order monotone interpolation schemes (Suresh and Huynh [88]) for

the primitive variables ρ, u, v, w and p at the j+ 1
2

and j− 1
2

points. This work

uses the third order accurate method proposed by Koren [85].

The integration in time is performed implicitly using the Lower Upper-Symmetric

Gauss Seidel (LU-SGS) method [86]. Briefly, the LU-SGS method is a direct

modification of the approximate lower-diagonal-upper (LDU) factorization to

the unfactored implicit matrix. The resulting factorization can be regarded as

the symmetric Gauss-Seidel relaxation method. The diagonal elements in the

LDU factorization have the absolute values of the Jacobian matrices making it

more stable than a LU factorization.

The final form of this algorithm can be written for a first-order time-accurate

scheme as

LDU∆q̂n = −∆tRHSn

q̂n+1 = q̂n + ∆qn
(2.16)

where
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L = I −∆tÂ−|j,k,l + ∆t∇ξÂ
+ −∆tB̂−|j,k,l + ∆t∇ηB̂

+

−∆tĈ−|j,k,l + ∆t∇ζĈ
+

D =
[
I + ∆t(Â+ − Â− + B̂+ − B̂− + Ĉ+ − Ĉ−)|j,k,l

]−1

U = I + ∆tÂ+|j,k,l + ∆t∆ξÂ
− + ∆tB̂+|j,k,l + ∆t∆ηB̂

− + ∆t

Ĉ+|j,k,l + ∆tĈ+|j,k,l + ∆t∆ζĈ
−

(2.17)

where ∆t is the time step, RHS represents the discretized flux terms and n

refers to the current time level. Here ∆ξ represents a forward difference and ∇ξ

represents a backward difference. Also, the split flux Jacobians (e.g., Â+ and

Â−) may be given by a spectral radius approximation as A+ = 1
2
(A+ σξ), A

− =

1
2
(A− σζ), σξ = (|U |+ arξ) ∗ (1 + ε), ε = 0.01 typically, and rξ =

√
ξ2
x + ξ2

y + ξ2
z .

As a result of the simplified form of the Jacobian terms (e.g., Â+), all of the

diagonal elements in L, D and U reduce to scalar elements. Thus, this method

requires only two (one forward and one backward) sweeps with scalar inversions

and leads to a reduced factorization error. This work uses a similar second

order backwards difference scheme along with Newton subiterations to remove

the factorization error and maintain conservation at each time step.

2.2.3 Calculation of space and time metrics

In Equation 2.9, the terms of form ξ̂x,y,z, η̂x,y,z and ζ̂x,y,z are the space metrics,

ξ̂t, η̂t and ζ̂t are the time metrics in the computational domain, and J is the

Jacobian of the inverse coordinate transformation (i.e J = det(∂(x,y,z)
∂(ξ,η,ζ)

).

A modified finite volume method is developed as part of this dissertation to

calculate fourth order accurate space metrics. A methodology to calculate time

metrics in a way that preserves geometric conservation is also improvised. The

46



field velocity approach is used to include the effects of an external field (e.g., the

velocities induced by a vortex wake).

Field Velocity Approach

Mathematically, the field velocity approach can be explained by considering the

velocity field, V , in the physical Cartesian domain. It can be written as

V = (u− xτ )i+ (v − yτ )j + (w − zτ )k (2.18)

where u, v and w are components of the velocity along the coordinate directions

and xτ , yτ and zτ are the corresponding grid time velocity components. For

the flow over a stationary wing, these components are zero. For a rotor blade

rotating about the z-axis, both xτ and yτ have non-zero values owing to the

rotation of the mesh. Let the velocity induced by the external potential be

represented by a velocity field (u′, v′, w′). Thus, the velocity field becomes

V = (u− xτ + u′)i+ (v − yτ + v′)j + (w − zτ + w′)k (2.19)

The field velocity approach models this changed velocity field by changing the

grid velocities. The modified grid velocities are defined as

x̃τ i+ ỹτj + z̃τk = (xτ − u′)i+ (yτ − v′)j + (zτ − w′)k (2.20)

After the modified grid velocities are obtained, the grid time metrics in the

computational domain (ξ̂t, η̂t ζ̂t) are computed as:

ξ̂t = −(ξ̂xx̃τ + ξ̂yỹτ + ξ̂zz̃τ )

η̂t = −(η̂xx̃τ + η̂y ỹτ + η̂z z̃τ )

ζ̂t = −(ζ̂xx̃τ + ζ̂yỹτ + ζ̂zz̃τ )

(2.21)
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Geometric Conservation Law

The geometric conservation law (GCL) has the same form as the mass conserva-

tion law (first component of the vector in Eq. 2.8) as it essentially represents the

conservation of cell volumes. The differential form of the GCL can be obtained

from the mass conservation equation by setting ρ=1 and V = (u, v, w) = 0:

Jτ + (ξ̂t)ξ + (η̂t)η + (ζ̂t)ζ = 0 (2.22)

The integral form of the GCL can be obtained in a similar manner and can be

stated as:

ν(t2)− ν(t1) =

t2∫
t1

∮
S(t)

�Vs. �dSdt (2.23)

where ν(t2) and ν(t1) are the initial and final volumes and �Vs is the moving

velocity of the cell surface. Equation 2.22 or 2.23 needs to be satisfied in order

to make the numerical discretization strictly conservative. Otherwise, artificial

sources and sinks can be generated as a result of the numerical discretization.

Thomas and Lombard [90] proposed the solution of Eq. 2.22 with the same

differencing scheme as that used for solving the flow conservation equations to

maintain the GCL. But this adds to the computational overhead of the calcula-

tion.

A more practical approach is to compute the Jacobian, J , by its geometric def-

inition and calculate the time metrics according to the GCL [91]. For example,

for a first order accurate time metric calculation one could find the time metrics

in the computational domain as:
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ξ̂t = −V
Sξ

∆t

ζ̂t = −V
Sζ

∆t

η̂t = −VSη
∆t

(2.24)

Where VSξ , VSη and VSζ are the volumes swept by the faces of the cell volume in

the computational coordinate directions. This approach provides a methodology

for implicitly satisfying the GCL without solving any additional equations. But,

in a purely finite difference approach one is posed with the problem of identifying

cell volumes. In other words, a strategy needs to be identified to define bounded

volumes around mesh points which can be used for the computations of the

Jacobian, space metrics and time metrics in a consistent manner.

Defining Cell Volumes

To preserve the overall order of accuracy of the computations, the space and time

metrics need to be calculated to at least the same order of accuracy as that of the

underlying spatial and temporal numerical discretization. Using a classical finite

difference approach, one calculates the transformation matrix ∂(x,y,z)
∂(ξ,η,ζ)

and inverts

it to find the space metrics. The Jacobian of transformation is the determinant

of this transformation matrix. The order of accuracy of the space metrics can be

improved by using a larger finite difference stencil for evaluating individual terms

of the above matrix. But, for surface conforming mesh geometries, it is possible

to create overshoots and undershoots (e.g. at the trailing edge of an airfoil)

when arbitrarily increasing the finite difference stencil, which causes divergence

of the flow solution at times. Hence, a modified strategy, often referred to as the

dual refined mesh approach, which computes the space metrics and Jacobian in

a finite-volume like way, is proposed.
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Figures 2.1(a) and 2.1(b) show the volumes around a mesh point for a 2-D

mesh and 3-D mesh respectively. The open symbols represent the mesh points

of the original mesh in which the computations of flow variables are performed.

The closed symbols show the refined mesh generated by one dimensional in-

terpolation in the direction of each of the computational coordinates. For this

work, the refined mesh points are generated using a quadratic monotone inter-

polation scheme proposed by Suresh and Hyunh [89]. The monotonicity of the

interpolation scheme prevents the generation of overshoots and undershoots in

the refined mesh geometry. Also, the fourth order interpolation makes the cal-

culation of the Jacobians and space metrics spatially 4th order accurate, even

though the computations of these are made in a finite-volume like way.

After the refined mesh is obtained, a volume which is bounded by 24 faces

(8 edges in 2-D) can be defined around the mesh point. The Jacobian of the

transformation to the computational coordinates at every mesh point can be

evaluated by consistently evaluating the volumes of these bounded cells. The

Jacobian(J) in Eq. 2.8 is that of the inverse transformation and can be found by

taking the inverse of the volumes calculated. The algorithms used for calculating

cell volumes preserving the consistency at the interface between neighboring cells

is given in detail in Appendix B.

Evaluation of Space metrics

The space metrics are gradients to ξ = const, η = const and ζ = const surfaces

scaled by the Jacobian of inverse transformation. The definition of these surfaces

are known from the refined mesh which was computed while defining the volumes.

The gradients of these surfaces can be evaluated at every mesh point to find the
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space metrics.

For the computation of the right hand side of the flow conservation equations in

the discretized form, one often needs the space metrics at the interface points

(ξ = i ± 1
2
,η = j ± 1

2
, ζ = k ± 1

2
). These are actually surface normals to the

bounded cell defined around the mesh point (graphically described in Fig 2.1)

which can be evaluated by computing the gradient vector to the appropriate

surface.

Evaluation of time metrics

The evaluation of the time metrics require computation of volumes swept by

the faces of the bounded volume. The time metrics should have components of

both the actual deformation of the mesh and the external velocity field, which is

included using the field velocity approach. Figure 2.2 illustrates the methodol-

ogy of computation. The time metric in a particular computational coordinate

direction is calculated by accumulating the volume swept by the face because of

actual deformation and the apparent volume swept because of the field velocity

components.

The temporal order of accuracy can be improved by using the volumes swept

at previous time steps and devising an appropriate backward difference stencil

(similar to the flow equations). To make the scheme strictly conservative, the

Jacobian is recalculated by including the change in volume because of the ap-

parent contribution from the field velocity components. The space metrics are

still evaluated as surface normals to the actual deformed mesh, although they

are rescaled by the modified Jacobian. Thus, this approach presents a unique

way of satisfying the GCL together with the use of the field velocity approach.
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Figure 2.1: Cell volume representation in the finite volume scheme
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Cell face at time=t+ t∆

Cell face at time=t

Cell face because of

field velocity components
Apparent movement due to 

V2
V1

Volume swept = V1 + V2

Figure 2.2: Evaluation of volumes swept by cell faces

2.2.4 Mesh generation

Rotor blade geometries (e.g., the UH-60A) often have swept tips and non-linear

twist and chord distributions defined as a function of span. A hyperbolic mesh

generation technique [92] is used to generate 2-D C-type meshes around the

airfoil sections at the various spanwise loacations. The C-type meshes are free of

the geometrical singularity at the trailing edge, which is a major disadvantage

of O-type meshes. Also, the grid clustering at the trailing edge provides good

resolution for capturing the shed wake. The C-meshes obtained are stacked in

the spanwise direction to produce a single block three dimensional C-H mesh.

The wrap around C direction is in the chordwise direction and H type is in

the spanwise direction. A schematic of typical C-H mesh topology is shown in

Fig 2.3. One of the major disadvantages of C-H meshes are their inability to
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(a) C-mesh at each section

(b) Stacking in spanwise direction

Figure 2.3: Hyperbolic C-H mesh used for CFD computations (Every other point

on the mesh is shown).
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accurately model the tip geometry shapes. The tip geometry is approximated as

a bevel shape because of the H topology in the spanwise direction. An alternate

approach known as the C-O mesh approach can be used to provide better tip

definition. Thus, the mesh generation algorithm is modified to generate C-O

meshes as well. Representative C-H and C-O mesh topologies that emphasize the

salient differences in tip definition are shown in Fig 2.4. A detailed description

of the C-O mesh generation technique is provided in Appendix C.

2.2.5 Vortex wake modeling

The vortex wake is found using the principles of vorticity transport in a La-

grangian frame. The Maryland Free Wake [94] analysis was used for computing

the wake geometry. The analysis uses a Pseudo Implicit Predictor Corrector

(PIPC) [36], which finds the solution to the vorticity transport through a re-

laxation approach. For the steady flight conditions studied the rotor wake can

be considered to be periodic. Wake periodicity is assumed when performing the

relaxation solution. The trailed wake is discretized into vortex filaments which

are allowed to convect under the self and mutually induced velocities caused by

all the vortex filaments in the wake. A converged wake geometry is obtained

when the system becomes force-free, i.e. when the vortex filaments reach such a

location in space where the net forces from all of the self and mutually induced

velocities approach zero.

The free wake analysis needs inputs of the vortex release points and the cir-

culation strengths of the individual wake filaments. The tip vortex release points

and bound vortex locations are calculated using the exact structural deformation

of the rotor blade. The circulation strengths are computed using the sectional
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(a) C-H mesh

(b) C-O mesh

Figure 2.4: Near body C-H and C-O meshes at the blade tip
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lift coefficient integrated from the pressure distributions obtained from the CFD

solution of the flow around the deformed blade geometry. The bound vortex

strengths as given by

Γ =
1

2
UcCl (2.25)

where c, U , Cl are the chord, local free stream velocity and sectional lift coeffi-

cient respectively. The bound circulation outboard of the maximum circulation

point along the radius is assumed to roll up in to a single tip vortex. There-

fore, the maximum bound vortex strength along span is used as the tip vortex

strength. A desingularized vortex-core model is used to avoid singularity at the

center of the vortex. The model is described for an infinite vortex filament as

Vθ =
Γ̄r

2π(r2
c + r2)

(2.26)

where Vθ is the tangential velocity, r is the radial distance from the center, and

rc is the core radius and Γ̄ is the circulation strength. An empirical viscous

diffusion model [37] is used to account for the core radius growth with wake age.

An example of the typical vortex wake geometry predicted is shown in Fig 2.5.

2.2.6 Inclusion of the vortex wake in to the CFD calcu-

lations

The field velocity approach(Section 2.2.3) is used to incorporate the necessary

conditions for simulating interaction of the blade with the rotor wake. The

effect of the wake is simulated by superposing a velocity field equivalent to that

induced by the wake over the free stream conditions. The velocity field (u′, v′, w′)

in Eq 2.19 at each grid point is evaluated by aggregating the velocities induced

by all the individual vortex filaments in the discretized vortex wake structure.
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Figure 2.5: Representative wake geometry computed by the Free Wake Analysis

: Present case is for UH-60A rotor at advance ratio of µ=0.110, CT/σ=0.0783
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Wake interpolation and calculation of induced velocities

The time steps used in CFD computations are often one order of magnitude

smaller than that used in the free wake computations. This necessitates the

interpolation of the wake geometry for in between azimuthal locations. The

periodicity of the wake geometry (for each rotor) with azimuth facilitates the

use of a spectral interpolation. A one dimensional fast Fourier transform is

performed on the coordinate location of the wake filaments with the same wake

age at all azimuth angles. The wake interpolation is conducted by extending the

Fourier series to the higher time resolution used in the CFD computations. The

use of the FFT technique improves the accuracy and speed of the interpolation

process.

As mentioned previously, the wake induced velocities at all the grid points

need to be recalculated every time (azimuthal) step to consistently incorporate

the vortex wake geometry using the field velocity approach. The near wake sheet

is computed as part of the CFD solution. The near wake is assumed to roll up

in to a tip vortex in 30 degrees of azimuth. Therefore, the first 30 degrees of

the free wake geometry are excluded in the induced velocity calculations. The

induced velocities at any point in space caused by a single wake filament can be

directly evaluated by the Biot-Savart law given by:

�Vind =
1

4π

l∫
0

Γ(y)× �r
|�r|3 dy (2.27)

where l is the length of the vortex filament, Γ is the circulation strength and r

is the vectorial displacement of the evaluation point with respect to the vortex

filament. The Biot-savart kernal is mollified to avoid singulaties using the core
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function described in Eq 2.26.

The induced velocity calculation is a computationally intensive process as

there are as many Biot-Savart operations per grid point as there are free vortex

filaments. This is an O(M ∗ N) operation, where M is the number of grid

points and N is the number of vortex filaments. Typically the effects of about

1000 vortex filaments need to be found at all of the 1 million mesh points per

time step. Hence, fast evaluation algorithms need to be developed to make the

simulation practical.

A fast hierarchical algorithm that uses a divide and conquer methodology is

developed to minimize the Biot-Savart computations. The mesh is enclosed in a

rectangular bounding box (Fig 2.6), which is recursively subdivided in to smaller

boxes. The induced velocity contributed by all the free vortices are evaluated at

the vertices of the smallest boxes. Vortices are indexed and the indices of vortices

in each box is found hierarchically. For any given grid point the Biot-Savart law

is evaluated directly for all the vortex filaments contained in the smallest box,

which contains the grid point and also for all the vortex filaments that are in

its immediately neighboring boxes. The velocity induced by all the near field

vortex filaments so found are also found at the vertices of the box containing

the grid point. The influence of the far field is found at the vertices of the box

by subtracting the effect of the near field vortices from the induced velocity

caused by the whole wake, which was precomputed. The far field contribution

at the grid point is then evaluated by interpolating the values at the vertices

consistently. This approach was found to give good performance gain with little

loss in accuracy and is used to calculate field velocities used in the present work.

However, it is not possible to obtain strict bounds for the approximation errors
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in this approach.

C−Mesh 

Bounding Box 

Recursive
Division 

Figure 2.6: Bounding box and its recursive division

The fast multipole method (FMM) [93] provides yet another powerful method

for fast evaluation of potential fields. Analytical models have been developed by

researchers in the past for fast evaluation of scalar potential fields. But, the

present problem involves a vector field, which requires derivation of the underly-

ing analytical models. The multipole expansion of the Biot-Savart integral, the

re-expansion and translation operators and the octree based multi level hierar-

chical algorithm are described in detail in Appendix A.
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2.2.7 Inclusion of aeroelastic deformations into the CFD

computations

A blade dynamic response distribution that includes elastic and rigid flap, lag

and torsional deformations is calculated from the structural dynamic analysis.

The given rotor geometry is dynamically deformed in accordance with these

blade motions. There are different ways of expressing aeroelastic deformations.

One popular way is using Euler parameters [e1, e2, e3, e4, e5, e6]
T , which represent

linear motions and rotations. These parameters are obtained as a function of

both radius and azimuth from the structural dynamic analysis. The Euler pa-

rameters e1, e2 and e3 are linear deflections while e4, e5 and e6 define rotations.

The rotation matrix is found from e4, e5 and e6 as follows:

e0 =
√

1− e24 − e25 − e26 (2.28)

TDU =




1− 2e2
5 − 2e2

6 2(e4e5 + e0e6) 2(e4e6 − e0e5)

2(e4e5 − e0e6) 1− 2e2
4 − 2e2

6 2(e5e6 + e0e4)

2(e4e6 + e0e5) 2(e5e6 − e0e4) 1− 2e2
4 − 2e2

5


 (2.29)

Structural dynamic analysis can also provide deformations in the form

[u, v, w, v′, w′, φ]T , where u, v and w are the linear deformations in axial, lag and

flap directions, v′, w′ are the radial derivatives for lag and flap degrees and φ

is the elastic torsional deformation. The rotation matrix is found from these

parameters as follows:
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TDU =




1− v′2
2
− w′2

2
v′ w′

−v′ cos θ1 − w′ sin θ1 (1− v′2
2

) cos θ1 − v′w′ sin θ1 (1− w′2
2

) sin θ1

v′ sin θ1 − w′ cos θ1 −(1− v′
2
) sin θ1 − v′w′ cos θ1 (1− w′2

2
) cos θ1




(2.30)

The variable θ1 represents the total pitch of the blade which is given by θ1 =

θc+φ, where θc are the control deflections and φ is the elastic torsional deflection.

Mesh deformation

The deformed mesh coordinates in the blade fixed frame are given by the follow-

ing equation:



x′

y′

z′


 = (TDU)T



x

y

z


+ �xlin (2.31)

The vector �xlin is {e1, e2, e3} for the former deflection convention and {u, v, w}T

for the latter convention. A decay is applied to both the rotations and linear

deflections such that the outer boundary of the mesh remains stationary (See

Fig 2.7). Several algorithms including “the spring analogy”(Ref [13]) were inves-

tigated for the problem. For the present structured mesh the simple decay with

cosine smoothing was found to be both robust and optimal. The procedure for

the cosine decay is as follows (Eq 2.32):
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ei = ei × C (i = 1, 6)

C = 1 (r < RMIN)

C = 1 + cos(pi ∗ (r − RMIN)/RMAX) (RMIN ≥ r < RMAX)

C = 0 (r ≥ RMAX)

(2.32)

where r is the distance of any point (x, y, z) to quarter chord location of the

section. Once, the deformed mesh is obtained in the blade fixed frame, it is

rotated about the axis of rotation (z-axis in this case) to the appropriate az-

imuthal location. Typical choices of RMIN and RMAX are 4 chords and 10

chords respectively.

2.3 Structural Dynamic Modeling

The rotor system can be modeled as a 2nd order system (mass-spring-damper)

which is harmonically excited by an unsteady forcing (aerodynamic loading).

The blade motions (both rigid and elastic) need to be calculated such that they

simultaneously satisfy the vehicle trim equations and blade periodic response

equations.

Finite element based methods are known to accurately model kinematic and

elastic behavior in bending and torsion of slender beams. A single rotor blade,

because of its large aspect ratio, can be considered as a slender beam. The rotor

blade has all the 6 degrees of freedom and undergoes simultaneous flap, lag and

torsion deformations. The detailed mathematical equations for such a system

is complex because of the non-linear coupling between the various degrees of

freedom and hence not included here to preserve the brevity of the thesis ( details
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(a) Undeformed mesh

(b) Deformed mesh

Figure 2.7: Deformed and undeformed mesh : The amount of deformation di-

minishes as one moves outward
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in UMARC manual [95]). The overall methodology can however be explained

by considering the rotor blade as a slender beam undergoing flap bending only.

The inclusion of the other degrees of freedom produces additional cross-coupling

terms in the mass, stiffness and damping matrices.

2.3.1 Comprehensive rotor analysis methodology

The comprehensive rotor analysis methodology can be divided in to four major

parts. The first part concerns the structural modeling of the rotor blade involving

finite element discretization of the blade and subsequent analysis of the natural

frequencies and mode shapes. The second part involves the calculation of the

unsteady forcing and aerodynamic mass, stiffness and damping matrices. The

third part involves reduction of the blade equations to the modal form and

solving them by a temporal finite element method. The last part deals with

calculation of the control parameters producing a rotor response that gives a set

of average rotor forces and moments which satisfy the vehicle trim equations.

2.3.2 Finite element discretization of the rotor blade

For the simplified case (i.e., with only the flap bending), the blade is discretized

into two noded beam elements with two degrees of freedom per node. The

degrees of freedom are displacement and slope (w and w′). The distribution of

displacement w in an element can be considered of the form

w(x, t) = α1 + α2x+ α3x
2 + α4x

3 (2.33)

Applying the end conditions one can formulate the displacement in terms of

the end displacements and slopes. For a displacement vector [q1, q2, q3, q4]
T with
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q1=w1, q2=w
′
1, q3=w2 and q4=w

′
2 respectively, the displacement is given by:

w(x, t) =

4∑
i=1

Hiqi (2.34)

where Hi are shape functions which are Hermite polynomials of the form:

H1 = 2
x

l

3 − 3
x

l

2

+ 1 (2.35)

H2 =

{
x

l

3 − 2
x

l

2

+
x

l

}
l (2.36)

H3 = −2
x

l

3

+ 3
x

l

2

(2.37)

H4 =

{
x

l

3 − x

l

2
}
l (2.38)

Hamilton’s variational principle is used to derive the system equations of motion.

For a conservative system, Hamilton’s principle states that the true motion of a

system between presicribed initial conditions is that particular motion of which

the time integral of the difference between the potential and kinetic energies is

a minimum. The generalized Hamilton’s principle is given by:

δΠ =

t2∫
t1

(δU − δT − δW )dt = 0 (2.39)

where δU is the virtual variation of strain energy and δT is the virtual variation

of kinetic energy. The δW is the work done by external forces. The element

mass and stiffness matrices are derived based on this principle and are given as:

[mij ] =

1∫
0

mHiHjds (2.40)

[kij] =

1∫
0

(FAH
′
iH

′
j + (EIzsin

2(θ0) + [EIycos
2(θ0))H

′′
i H

′′
j ))ds (2.41)
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where EIy and EIz are flexural rigidities in the longitudinal and transverse

directions and FA=
∫ 1

x
mxdx. All the variables are non-dimensionalized, hence w

actually implies the non-dimensionalized displacement w/R. All the integrations

are conducted using a six point Gauss quadrature formula.

The element mass and stiffness matrices are assembled appropriately to form

the global mass and stiffness matrices. An eigen analysis is conducted on these

matrices to determine the generalized eigen values and eigen vectors. The eigen

values are the square of the natural frequencies of this system, while the eigen

vectors represent the natural vibration mode shapes.

2.3.3 Unsteady aerodynamic forcing

The blade response is directly dependent on the aerodynamic forcing on the

individual blades. Quasi-steady aerodynamic modeling is chosen for explaining

the methodology. This can be replaced by a table-lookup based linear unsteady

aerodynamic modeling (Section 2.4) or direct CFD based aerodynamic model-

ing (Section 2.2). In the quasi-steady approach, the normal (UP ), tangential

(UT ) and radial (UR) components of the free stream velocity are calculated at

each section of the rotor blade. The motion and deformation of the blades are

accounted for appropriately in the calculation of these components. The final

non-dimensionalized form of the aerodynamic forces in the deformed frame of

reference is given by (detailed description in section Section 2.4.1 Eq 2.82):

(Lw)c = γ
6a

(c0U
2
T − (c1 + d0)UTUP + d1|UP |UP )

(Lv)c = γ
6a

(−d0U
2
T − (c0UP − d1|UP |)UT + (c1 − d2)U

2
P )

(Lu)c = γ
6a

(−d0URUT )

(2.42)
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Here, c0, c1 are used represent linear variation of Cl with angle of attack, d0, d1,

d2 represent quardratic variation of Cd with angle of attack and f0, f1 represent

linear variation of pitching moment with angle of attack. The quantity γ is

the lock number (ratio of aerodynamic forces to inertial forces) and a is the

lift-curve-slope.

The aerodynamic forces in the undeformed frame are obtained by using the

orthogonal co-ordinate transformation




(LAu )C

(LAv )C

(LAw)C




= (TDU)T




(Lu)C

(Lv)C

(Lw)C




(2.43)

As only the flapping degree of freedom is included for this presentation, the

quantity (LAw)C is the only one required. (LAw)C can be expanded as follows:

(LAw)C = (LA)0 + (LA)L + (LA)NL (2.44)

where LA0 is the deformation independent aerodynamic forcing, LAL depends lin-

early on the blade motions and LANL is the non-linear contribution to aerody-

namic forcing by the blade elastic deformation. One could linearize Eq. 2.44

with respect to the degrees of freedom (w and w′) to give :

(LAw)C = (LA)0 + (LA)NL|0 + (Aw + AwNL)w+

(Aw′ + Aw′NL)w′ + (Aẇ + AẇNL)ẇ + Aẅẅ
(2.45)

Equation 2.45 is the forcing function (RHS) for the global mass and stiffness

matrices (LHS) obtained from the finite element modeling of the rotor blade.

The damping in the rotor system for the first flap mode is primarily produced

by the aerodynamic loading. Hence, for the numerical stability of the aeroelastic
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analysis the motion dependent terms of the linearized expression (e.g., Aw, Aẇ

etc), are taken to the LHS. This produces additional entries in the global mass,

stiffness and damping matrices. One could determine these entries by finding

the aerodynamic mass, damping and stiffness matrices for any element given by

(for this simplified analysis):

(MA
b )i = −γ

6
li

1∫
0

HT
s AẅHsds (2.46)

(KA
b )i = −γ

6
li
∫ 1

0
(HT

s ((Aw + AwNL)Hs + (Aw′

+Aw′NL)H ′
s))ds

(2.47)

(CA
b )i = −γ

6
li

1∫
0

HT
s (Aẇ + AẇNL)Hsds (2.48)

Also, the forcing vector is given by

(QA
b ) =

γ

6
li

1∫
0

HT
s

(
(LA)0 + (LA)NL|0

)
ds (2.49)

where li is the length of the element under consideration and Hs are the shape

functions described in the previous section. The element matrices are assembled

appropriately to determine the global aerodynamic mass, stiffness and damping

matrices and the load vector which forms the right hand side. The full blade

equations of motion are obtained by accumulating the structural and aerody-

namic matrices.
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2.3.4 Finite element in time

The finite element equation for the rotor blade after the spatial finite element

discretization is of the form:

M(ψ)ẅ + C(ψ)ẇ +K(ψ) = F (w,w′, ψ) (2.50)

This equation involves many degrees of freedom. To reduce the computational

time, the blade finite element equations are transformed in to the normal mode

space. This significantly reduces the degrees of freedom. The blade natural

vibration modes determined from the finite element analysis are used for the

modal transformation. The blade displacement is assumed to be decoupled in

space and time and is hence expressed as:

w = φ(x)pb(t) (2.51)

where φ is a matrix whose columns consist of the natural vibration mode shapes

and pb is the vector of normal mode coordinates. The ODE representing the

motion of the blade can be now transformed to the normal mode co-ordinates as

M̄p̈b + C̄ṗb + K̄pb = F̄ (2.52)

where

M̄ = φTMφ (2.53)

C̄ = φTCφ (2.54)

K̄ = φTKφ (2.55)

F̄ = φTFφ (2.56)
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are the modal mass, damping and stiffness matrices and the load vector respec-

tively. Using the Hamilton principle the blade equation can be rewritten as

2π∫
0

δpb(M̄p̈b + C̄ṗb + K̄pb − F̄ )dψ = 0 (2.57)

Integrating by parts and applying periodic boundary conditions (M̄(ψ) = M̄(ψ+

2π)) one gets

2π∫
0

(−δṗbTM̄δṗb + δṗb
T C̄δpb + δpTb K̄δpb − δpTb F̄ ) = 0 (2.58)

The time from 0 to 2π is discretized in to Lagrangian time elements each having

6 degrees of freedom. The temporal node coordinates are denoted by ξ and the

normal mode coordinate in any element is assumed to vary as pb=Htξ where Ht

are appropriately chosen Lagrange polynomial based shape functions which sat-

isfy the end conditions. Continuity of the generalized displacements is assumed

between the time elements. The equations can be now rewritten of the form:

KG
t ∆ξG = QG (2.59)

where

KG
t =

Nt∑
i=1

ψi+1∫
ψi

(−Ḣt
T
M̄Ḣt +HT

t C̄Ḣt +HT
t K̄Ht) (2.60)

and

QG =
Nt∑
i=1

HT
t F̄ (2.61)

These are a system of non-linear algebraic equations, which are solved using

Newton’s method to calculate the blade response.
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2.3.5 Vehicle trim equations

There are many forms of trim solutions. Broadly they can be classified into two

categories: free flight and wind tunnel trim.

For free flight or propulsive trim, it is assumed that the engine can supply the

necessary power required to maintain the flight condition. For a steady flight,

the comprehensive propulsive trim solution can be obtained by satisfying the

three force (vertical, longitudinal and lateral) and three moment (pitch, roll and

yaw) vehicle equilibrium equations. For example, for a specified gross weight

and level flight speed, the trim solution gives the rotor pitch controls ( collective

θ0, cyclic θ1c and θ1s), vehicle orientation (longitudinal shaft tilt αs and lateral

shaft tilt φs) and tail rotor pitch (collective θtr). In general, the expressions for

the vehicle equilibrium can be expressed as (See Figure 2.8):

F = 0 (2.62)

where exact form F T = [F1, ..Fn] depends on the trim condition considered.

The following equations are derived from the force equilibrium of a helicopter

in steady flight

F1 = DF cos θFP +H cosαs − T sinαs (2.63)

F2 = YF + Y cosφs + T sinφs + Ttr (2.64)

F3 = T cosαs cosφs −DF sin θFP +H sinαs − Y sinφs −W − Lht (2.65)
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F4 = MxR +MxF + YF (h̄ cosφs + ycg sin φs) (2.66)

+W (h̄ sinφs − ycg cos φs) + Ttr(h̄− ztr) (2.67)

F5 = MyR +MyF +W (h̄ sinαs − xcg cosαs)

−DF (h̄cos(αs + θFP ) + xcgsin(αs + θFP )) + Lht(xht − xcg)
(2.68)

F6 = MzR +MzF + Ttr(xtr − xcg)−DFycg cosαs − Y xcg cosφs (2.69)

where F1, F2 and F3 are, respectively, the vehicle force equilibrium residuals

in X, Y and Z directions in the fuselage axes, and F4, F5 and F6 are the vehicle

rolling, pitching and yawing moment equilibrium residuals about the vehicle cg,

respectively.

The H , Y and T are respectively rotor drag, side force and thrust; and the

DF , YF and W are respectively fuselage drag, side force and gross weight. The

terms, Ttr, xtr and ztr, denote the tail rotor thrust, the distance of the tail rotor

hub behind the vehicle cg and the distance of tail rotor hub above the vehicle

cg. The horizontal tail is located at a distance xht behind the vehicle cg. The

terms in the three moment equations, e.g. MxR and MxF , denote the rotor and

fuselage moments, respectively. The forces act on the rotor hub and the moments

act about the rotor hub. In addition, xcg and ycg and h̄ are, respectively, the

relative location of the rotor hub center with respect to the vehicle center of

gravity in the XF , YF and ZF directions; αs (positive for forward flight) and

φs (positive advancing side down) are the longitudinal and lateral shaft tilts,
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respectively, and θFP is the flight path angle relative to an axis perpendicular to

the gravity vector.

2.3.6 Uncoupled and coupled trim

The convergence of the steady response for a fixed control setting is called an

uncoupled trim. In a coupled trim procedure this method is coupled with the

solution of the vehicle trim equations to solve to the final converged trim-response

solution. As the trim analysis is non-linear in nature a reasonably accurate initial

guess is a necessity. A trim analysis of a rigid rotor blade is conducted to find the

initial control estimate. The vehicle force and moment equations and the blade

flapping equations are solved using an appropriate non-linear equation solver.

The response of the rotor to the initial control estimate is found by solving the

rotor equations using the temporal finite element method. A force summation is

conducted on the basis of the blade response obtained to yield the aerodynamic

forces and moments produced by the deformed blade. The time averaged values

(over one rotor revolution) of rotor forces and moments are substituted in the

appropriate vehicle trim equations to obtain the residuals of these equations.

The final aim of the coupled trim procedure is to find the control estimate which

drives these residuals towards zero. Newton’s method, based on the evaluation

of a trim Jacobian matrix, is used to find the final control estimate.

A finite difference approximation is used to calculate the control Jacobian.

The initial controls are perturbed one at a time and the variation of the residuals

are used appropriately to find individual terms of the control Jacobian. The

control settings are updated using the control Jacobian and the value of the

residual vector. The whole process is conducted in a loop until the residues to
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the vehicle trim equations are below a specified error bound.

2.4 Extended lifting line analysis

The aerodynamic analysis formulation can be divided into the following parts:

two dimensional strip theory, attached linear unsteady aerodynamics and the

Weissinger-L model to account for the finiteness of the rotor blade.

2.4.1 2-D strip theory

The 2-D strip theory assumes that the blade airloads are solely a function of

the instantaneous blade section angle of attack. Furthermore, the lift, drag, and

pitching moment data, for a specified airfoil section, is strictly based on static

characteristics.

The effective angle of attack at any section can be determined by finding the

normal and tangential components of the air velocity in the deformed frame.

The general expression for the resultant blade velocity at a radial station x in

the rotating undeformed frame is given by:

�V = − �Vw + �Vb + �Vf (2.70)

where �Vw is the wind velocity with contributions from the vehicle forward flight

speed and the rotor inflow, �Vb is the blade velocity relative to the hub fixed frame

resulting from blade rotation and blade motions and �Vf is the blade velocity

caused by fuselage motion.

The wind velocity has components in the backward and downward direction

w.r.t. to the non-rotating hub fixed coordinate system (See Fig 2.9). The com-

77



α
s α

s

α
s

λ
i

KH

J H

V cos

Vsin

V

βpΩ

IH

(Into the plane )

Hub plane

Figure 2.9: Hub fixed non-rotating coordinate system

ponent in the backward direction is because of forward motion of the helicopter

at the desired advance ratio µ = V cosαs/ΩR (V is the vehicle forward speed;

αs the forward shaft tilt and ΩR is the rotor tip speed). The downward compo-

nent is because of the total inflow through the rotor, which is in turn composed

of a free stream component and an induced inflow component. Let us define

(ÎH , ĴH , K̂H) as the orthonormal basis vectors in the hub fixed non-rotating co-

ordinate system. Then the wind velocity can be expressed as

�Vw = (µΩR)ÎH − (λΩR)K̂H (2.71)

The rotor inflow can be expressed as :

λ = µ tanαs + λi (2.72)

As mentioned earlier, µtanαs is the component of free stream velocity perpen-

78



dicular to the hub plane and λi is the non-dimensional rotor induced inflow

associated with the lift on the rotor. For the quasi-steady aerodynamic model-

ing the wind velocity needs to be expressed in a rotating undeformed coordinate

system (blade fixed). Two transformations need to be performed for this, first

from non-rotating to rotating frame and second from no precone angle to a pre-

cone angle βp. Rotor hubs are often designed with a small precone angle βp to

relieve the bending stresses in the cruise conditions and hence improve fatigue

life. The wind velocity can be expressed in the rotating undeformed frame after

performing these transformations and using a small angle assumption for βp as :

�Vw = Vwxî+ Vwy ĵ + Vwzk̂ (2.73)

where

Vwx = µΩR cosψ − λΩRβp

Vwy = −µΩR sinψ

Vwz = −µΩR cosψβp − λΩR

(2.74)

The blade velocity in the rotating undeformed frame can be written as:

�Vb = �̇r + �Ω× �r (2.75)

where �r = (x1, y1, z1) is the position vector from the center of the hub to a point

on the deformed blade in the rotating undeformed coordinate system. After

applying the transformation for the finite precone angle βp one obtains:

�Vb = Vbxî+ Vby ĵ + Vbzk̂ (2.76)

where
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Vbx = ẋ1 − Ωy1 cosβp

Vby = ẏ1 + Ωx1 cosβp − Ωz1 sin βp

Vbz = ż1 + Ωy1 sin βp

(2.77)

For the quasi-steady aerodynamic modeling, we require the effective velocity

at the 3/4 chord location. Substituting for ẋ1, ẏ1 and ż1, calculated using the

section wise blade deformations ([u, v, w, v′, w′, θ1]) one obtains:

Vbx = u̇− (v̇′ + w′θ̇1)ηr cos θ1 − (ẇ′ − v′θ̇1)ηr sin θ1 − Ω(v + ηr cos θ1)

Vby = v̇ − θ̇1ηr sin θ1 + Ω[x+ u− v′ηr cos θ1 − w′ηr sin θ1 − (w + ηr sin θ1)βp]

Vbz = ẇ + θ̇1ηr cos θ1 + Ωβp(v + ηr cos θ1)

(2.78)

Here ηr is the non-dimensional distance (non-dimensionalized by the blade ra-

dius) between the feathering axis location and the three quarter chord point. For

simplifying the analysis one can neglect the term �Vf in Eq 2.70, assuming limited

fuselage motions at steady level flight conditions and small angle assumption for

the precone angle βp.

The resultant velocity at any radial station can then be expressed in the

rotating undeformed coordinate system as:

�V = Uxî+ Uy ĵ + Uzk̂ = (Vbx − Vwx)̂i+ (Vby − Vwy)ĵ + (Vbz − Vwz)k̂ (2.79)

where (Vbx, Vby, Vbz) and (Vwx, Vwy, Vwz) are known from Equations 2.78 and 2.74

respectively. These velocity components could be transformed to the deformed

rotating frame using the transformation:
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where the transformation matrix TDU is given by Eq 2.30. The variable θ1

represents the total pitch of the blade which is given by θ1 = θc + φ̂, where θc

are the control deflections and φ̂ is the elastic torsional deflection. The resultant

velocity at any section expressed in the deformed rotating frame ([UT , UP , UR])

where (UT=tangential, UP=perpendicular and UR=radial or out of plane) is

sufficient to define an effective angle of attack (See Figure 2.10) given by:

α = tan−1

(−UP
UT

)
(2.81)

For a purely strip theory based aerodynamic modeling one could lookup the

Cl, Cm and Cd ( aerodynamic lift, pitching moment and drag coefficients) from

C81 type airfoil tables. These tables are usually compiled using available ex-

perimental data for the specific airfoil at that section. In Eq. 2.42 a simplified

approximation for the aerodynamic coefficients is used, namely

Cl = c0 + c1α

Cd = d0 + d1|α|+ d2α
2

Cm = f0 + f1α

where α ≈ −UP
UT

(2.82)

2.4.2 Unsteady aerodynamic modeling

The 2-D strip theory accounts for only the circulatory component of the lift.

This lift would be that produced in a steady state, i.e., when the airfoil is at rest
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and maintains a constant angle of attack. The effects of compressibility causes

circulatory lift to have a deficiency, or in other words a finite time to develop

in to its final asymptotic value. Furthermore in a compressible flow regime, the

unsteady motions of the blade produce non-circulatory components lift compo-

nents also. The non-circulatory lift can be explained using Newton’s third law.

The unsteady motions (plunge for example) are similar to the motion of a pis-

ton. Therefore the airfoil imparts a change in momentum to the surrounding

fluid by its piston like motion. The reactive force because of this effect is termed

non-circulatory lift. The non-circulatory lift is felt instantaneously and then de-

cays with time. Overall, the flow physics in a unsteady flow environment can be

modeled by developing approximations for the rate of growth of the circulatory

lift and the rate of decay of the non-circulatory lift.

The effective angle of attack (Equation 2.81) is composed of unsteady terms

arising from mainly three different unsteady phenomena. They are changes in

pitch (plunge can be considered to be effective change in pitch) of the airfoil,

change in pitch rate about the feathering axis and penetration in to a vertical

velocity field caused by the induced inflow. An attached flow unsteady aerody-

namic model uses the assumption that the flow field behaves linearly for small

unsteady changes. Hence the angle of attack variation can be discretized and

considered as small step inputs at each instant of time. The responses to these

step inputs are linearly superposed to find the overall load response. Separate

indicial response models are used to represent responses caused by pitch, pitch

rate and gust penetration.

Indicial aerodynamic models which represent responses to step changes in pitch

angle, pitch rate and penetration into a gust field can be linearly superposed to

83



extract the total response because of the composite unsteady motion. As de-

scribed earlier the indicial response consists of two distinct regions, each having

different flow physics, with an intermediate overlapping region. The initial load-

ing (non-circulatory) decays rapidly from the initial value within a few chord

lengths of distance traveled through the flow. This loading can be computed

directly for two dimensional subsonic and supersonic flow quite accurately using

linear piston theory. For example, the initial value of the lift magnitude for a

step change in angle of attack as given by Bispilinghoff et al [101] from linear

piston theory is:

Cl(t = 0) =
4

M
∆α (2.83)

where M is the free stream Mach number and ∆α is the step change in angle of

attack. The second part of the response is related to the steady-state response

to the effective change in boundary condition caused by the impulsive input.

This part is called the circulatory response; it is asymptotically reached after

the perturbation caused by the step input and is a result of the change in bound

circulation. This part can be accurately determined using quasi-steady theory.

In the case of a step change in angle of attack for a flat plate the final value of

lift is given by quasi steady theory as

Cl(t→∞) =
2π√

1−M2
∆α (2.84)

For cambered airfoils, the circulatory lift can be obtained using the steady lift

data represented as airfoil tables.

Approximate functional representations of 2-D indicial responses are in general

represented as a summation of exponential functions which decay with non-

dimensional time (s). Non-dimensional time s is defined as the distance traveled
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in semi-chords by the airfoil from the instant of the indicial change (s = 2U∞t
c

).

The functional forms of lift and pitching moment response for step change in

angle of attack and pitch rate given by Leishman [96] are as follows

Cnα
α

=
4

M
φncα (s,M) +

2π

β
φcα(s,M) (2.85)

Cmα
α

= − 1

M
φncαm(s,M) +

2π

β
φcα(s,M)(0.25− xac) (2.86)

Cnq
q

=
1

M
φncq (s,M) +

π

β
φcq(s,M) (2.87)

Cmq
q

= − 7

12M
φncqm(s,M)− π

8β
φcqm(s,M) (2.88)

where Cn and Cm respectively represent the lift and pitching moment coefficients

induced by a step change in angle of angle of attack or pitch rate. The factor 2π
β

in these equations is the lift-curve-slope and can be replaced by the exact value

from the airfoil tables.

The functional forms and coefficients of the circulatory and non-circulatory in-

dicial response functions (φ) were obtained by Leishman [100] and are given

below. The circulatory lift function φcα(s,M) takes the form

φcα(s,M) = 1−
N∑
i=1

Aie
−bis (2.89)

and the non-circulatory lift function φncα takes the form

φncα (s,M) = e−s/Tα (2.90)

where Tα is a time constant of decay of the non-circulatory loading. The coeffi-

cients Ai and bi can be determined by an optimization process which minimizes
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the least square error between a computed/measured response in frequency do-

main and the analytical function. The optimization is subject to constraints of

initial value and initial slope which are known exactly [102]. Leishman [96] used

a two term exponential function to represent the indicial response. The response

to a step change was extracted from experimental measurement of responses to

a sinusoidal motion using a Laplace transform approach.

Direct CFD calculations of indicial responses are feasible using the field veloc-

ity approach. Research efforts [103, 104] used these CFD calculated load time

histories to estimate the indicial coefficients. The indicial coefficients can be

generalized and expressed in terms of Mach number and mean angle of attack

to account for the non-linearity.

2.4.3 Weissinger-L model

The indicial response model accounts only for the shed wake effects. In the

3-D flow environment the trailed vortex effects also need to be accounted for.

The trailed vortex flow physics is as follows: the changes in bound circulation

along the span causes near wake trailers of varying strengths to be shed along

the span. These near wake trailers roll up in to a tip vortex within a few

chords of distance. The CFD model gives accurate description for the near

wake and its roll up. But in a linearized aerodynamic model a lifting line or

lifting surface model needs to be used to account for the near wake effects.

The lifting line model is computationally inexpensive, but not accurate enough

to model blades with swept tips. The lifting surface (vortex lattice) methods

are more computationally expensive, but considered more accurate compared

to the lifting line representation. The Weissinger-L model has an intermediate
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complexity compared to the lifting line and lifting surface models.

Weissinger theory or extended lifting line theory differs from lifting line the-

ory in several respects [36, 96]. It is really a simple panel method (a vortex lattice

method with only one chordwise panel), not a corrected strip theory method as

is lifting line theory. This model works for wings or rotors with sweep and con-

verges to the correct solution in both the high and low aspect ratio limits. The

basic concept is to compute the strengths of each of the bound vortices required

to make the flow tangent to the blade surface at a set of control points. The blade

is represented as a set of horseshoe vortices. Each horseshoe vortex consists of

a bound vortex leg and two trailing vortices. This arrangement automatically

satisfies the Helmholtz requirement that no vortex line ends in the flow. The

rotor model used is illustrated in Fig 2.11. A curved near wake trajectory that

is approximated by finite length vortex segments is used . The control points

are positioned at the three quarter chord location and the zero normal flow con-

ditions at these control points are used to formulate the simultaneous equations

for solving bound vortex strengths.

2.4.4 Solution procedure for the blade bound vorticity

Figure 2.11 shows the relative locations of the bound vorticity and the near wake

trailed vortex sheet. The bound vortices and control points are located such that

they conform to the twist and taper of the rotor blade geometry under study.

The trailed vortex geometry, as mentioned previously is appoximated by straight

line vortex filaments. The first filament in all cases is parallel to the chord line of

the blade at all radial stations. The subsequent filements are found by sweeping

the trailing edge of the rotor blade by constant angular displacements. The
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boundary condition to be satisfied is the no flux boundary conditions at the

blade control points. For the ith control point, this can be expressed as

( �Vib + �Vit).n̂+ V∞α2D = 0 (2.91)

where �Vib is the velocity induced by all the bound vortex filaments, �Vit is the

velocity induced by the trailed vortex sheet, n̂ is the surface normal and α2D is the

angle of attack as obtained by 2-D strip theory with the unsteady aerodynamic

modeling for the shed wake effects. Now, �Vib and �Vit can be expressed in terms

of bound vortex and trailed vortex circulation strengths as

�Vib =

N∑
j=1

Γj

lj∫
0

�dl × �rij
|rij|3 (2.92)

�Vib =

N+1∑
j=1

Γjt

ND∑
k=1

lk∫
0

�dl × �rik
|rik|3 (2.93)

where Γj and Γjt represent circulation strengths of the jth bound vortex filament

and jth trailed vortex vilament respectively. The quantity lj represents the

length of the jth vortex filament and the rij is the vectorial displacement of

the ith control point with respect to the jth vortex filament. The quantities lk

and rik have similar definition. The integral in the equation represents the Biot-

Savart law, and can be evaluated analytically for a straight line vortex filament.

The trailed vortex circulation strengths Gammajt is given by

Γjt = −Γ1 j = 1

Γjt = Γj−1 − Γj 1 < j < N + 1

Γjt = ΓN j = N + 1

(2.94)
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Using Eq 2.94 in Eq 2.93 and expressing the equation Eq 2.91 for all the

control points (i.e, i=1,N), a linear system can be obtained of form

[aij ][Γj ] = −V∞α2D (2.95)

These are solved using a Gauss-Jordan elimination technique to obtain the bound

vortex strenghs, Γj.

2.4.5 Compressibility correction

The Weissinger-L model is only strictly valid for incompressible flows, therefore

Prandtl-Glaeurt corrections have to be applied to the geometry for computing

compressible flows. The chordwise compressibility effects are inherent from the

indicial response model. Equivalent wing planform in zero-Mach-number flow

for the same wing sectional shape, angle of attack and twist can be found using

Prandtl-Glauert correction of aspect ratio. For a wing, the planform can be

transformed simply by contracting the span by a factor of
√

1−M2 where M is

the free stream Mach number.

For a rotor in hover, the section Mach number varies linearly with distance

from the blade root. Thus the blade element at distance r from the root trans-

form to element dr0 according to the integral

r∫
0

dy√
1−M(y)2

(2.96)

where M(y) is the local Mach number of the blade section. Evaluating the

integral for M(y) = Mtipy gives the equivalent blade in compressible flow as:
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r0 = sin−1(Mtipr)/Mtip (2.97)

2.4.6 Iteration process

The airloads for the prescribed aeroelastic deformations are calculated using

the following iterative procedure. In the first step, the prescribed blade motions,

measured control angles, and a uniform inflow obtained from the measured thrust

are used to calculate the sectional angle of attack. The sectional angle of attack

and the incident normal Mach number are used to calculate sectional lift using

the airfoil tables and the attached flow unsteady aerodynamic model.

From the lift, the bound circulation strengths are calculated using Kutta-

Joukowski (K-J) theory. In the second step, the bound circulation strengths are

used to calculate the rotor free wake using a single rolled up tip vortex model.

All the circulation beyond the point of maximum circulation is assumed to roll

up in to the tip vortex. This approach is chosen based on that used by Bagai [36].

With the new free wake generated inflow, the sectional angle of attack distri-

bution is recalculated. Note that the first 30 degrees of the free wake geometry

for the rotor blade under study is not used when the free wake generated inflow

is computed. This is to prevent doubly accounting for the tip vortex, because

the near wake sheet is modeled in the Weissinger-L model and assumed to roll

up within 30 degrees of azimuth.

In the third step, the new angle of attack distribution is used as input to the

Weissinger-L model to recalculate the bound circulation strengths. Steps two

and three are performed iteratively until the bound circulation converges. Three

iterations are usually enough for this purpose.
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Figure 2.11: Adapted Weissinger-L for trailed wake modeling
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Within the above general framework the airfoil tables can be included using

two different methods. In the first method the effective angle of attack obtained

in step two is scaled to an equivalent flat plate angle of attack. This equivalent

angle of attack is used in step three. The resultant bound circulation strength

is then used directly to compute lift using the K-J theorem. The angle of attack

is reverse looked up using the airfoil tables to obtain the drag and pitching

moment. In the second method, the angle of attack in step two is not scaled but

provided directly as input to step three. Bound circulation strength obtained in

step three is not used to calculate lift using K-J theorem. Instead, they are used

to calculated the circulation strengths of near wake trailers. These near wake

trailers are used to estimate the induced angle of attack at quarter chord points.

This induced angle of attack is subtracted from the angle of attack in step two

and the resulting effective angle is used to obtain lift, drag and pitching moment

from the airfoil tables.

2.5 Coupling Fluid Dynamics and Structural

Dynamics

The loose coupling approach, which involves transfer of information between

structural dynamic analysis and CFD analysis at every rotor revolution is used

for coupling. This technique has the inherent advantage that the trim solution

can be obtained simultaneously with the aeroelastic blade response.

The major problems faced by researchers in the loose coupling approach was

the divergence of torsional response. Earlier efforts used full potential CFD anal-

ysis which overpredicted the pitching moment magnitudes and led to divergence
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of torsional response. The present approach, using the Navier-Stokes based CFD

analysis, was found to give good prediction of the pitching moments and hence

did not show divergence of pitch response.

The sectional aerodynamic coefficients for normal force, chord force and

pitching moment are obtained as a function of radius and azimuth from the

CFD computations (i.e., Cn(r, ψ) Cc(r, ψ) and Cm(r, ψ)). These aerodynamic

forces are obtained in the deformed blade frame. The structural analysis re-

qiures aerodynamic loads in the undeformed frame which can be obtained by

expressing the (RHS) of Eq 2.43 as:


(Lu)C

(Lv)C

(Lw)C




=




0

γ
6a
CcU

2
T

γ
6a
CnU

2
T




(2.98)

The pitching moment changes are assumed to be negligible with the transforma-

tion from the deformed to the undeformed frame. Therefore, Cm obtained from

CFD, is directly used as the right hand side of the torsional response equations

in the structural analysis.

Briefly the general algorithm for loose coupling is as follows:

1. Obtain an initial guess for control angles and blade motions using UMARC

comprehensive analysis solution. The sensitivity of the control angles to

the vehicle trim residues (trim Jacobian) are evaluated. The free wake ge-

ometry is also obtained as part of the comrehensive rotor analysis solution.

2. Calculate CFD airloads using the control angles, the prescribed blade mo-

tions and free wake geometry as inputs.

3. Calculate blade response by using the CFD airloads (normal force, pitching
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moment and chord force) as the forcing function in the structural model.

The free wake geometry is also recomputed using the CFD based sectional

aerodynamic loads.

4. Correct the control angles according to the rotor trim residues using the

trim Jacobian evaluated in step 1.

5. Check for blade response and trim convergence. If the convergence condi-

tion is not satisfied return to step 2.

This algorithm was used with slight modifications to achieve converged so-

lution in actual practice. The specific details of the modified algorithm used is

explained in more detail in the Chapters 3 and 5.

2.6 Summary

This chapter described the fluid dynamic and structural analysis methodology

used in this dissertation. The modifications of the CFD analysis to incorporate

aeroelastic blade motions and induced velocities caused by a trailed vortex wake

were discussed in detail. The structural and aerodynamic methodologies used in

a typical comprehensive rotor analysis were also detailed. A brief description of

the loose coupling methodology which is used to achieve coupling of CFD based

three dimensional aerodynamic modeling was also presented.
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Chapter 3

Validation and Feasibility Study

The eventual goal of this work is to obtain a coupled CFD based aeroelastic

analysis for helicopter rotor systems. However, this requires a careful systematic

validation of the 3-D unsteady CFD based aerodynamic model, as well as a

feasibility study of the loose coupling approach to tie together the CFD based

aerodynamic model with a structural analysis.

The systematic validation of the CFD based modeling starts with the com-

parison of 2-D static airfoil characteristics of typical rotor airfoils with data tables

compiled using experimental data available from various sources. It continues

with looking at validating 2-D unsteady model problems (step change in angle of

attack and traveling vertical gust) by comparing CFD based results with those

from exact analytical solutions obtained from linearized aerodynamics.

Next, the suitability of the field velocity approach for modeling the rotor

wake is validated for a 2-D airfoil vortex interaction. The results are validated

against those obtained with other CFD based approaches used for incorporating

the unsteady velocity field. The requirement of rigorously satisfying the Geo-

metric Conservation Law (GCL) is also elucidated. The accuracy and relative
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performance measure of the algorithm developed for the fast evaluation of in-

duced velocities caused by the trailed vortex wake is also examined. Finally, the

unsteady airloads measured for a UH-60A helicopter rotor in high speed forward

flight are used to validate the 3-D unsteady CFD based aerodynamics model us-

ing a prescribed aeroelastic response obtained by forcing the structural dynamics

model with the measured airloads. In Chapter 4, this validated approach forms

the basis for the method used for identifying the key aerodynamic mechanisms

involved in the generation of vibratory airloads.

After the validation of the CFD based model is obtained for prescribed aeroe-

lastic blade response, it is necessary to study the feasibility of the loose coupling

approach. This is first performed with a simplified structural analysis, since the

success of performing the loose coupling with a simplified structural analysis is

at least necessary, though not sufficient, before resorting to a full coupling with

a comprehensive rotor structural analysis. The complete loose coupling with a

comprehensive rotor structural analysis is examined in more detail in Chapter

5.

3.1 2-D Airfoil Validation

The UH-60A rotor blade is constituted by SC1095 and SC1095R8 sections (Fig-

ure 3.1). Typically, comprehensive rotor analyses use airfoil characteristics in

C81 table format. These C81 tables are compiled using experimental data avail-

able from different sources. A critical assessment of the wind tunnel data for

SC1095 and SC1095R8 is documented by Totah [97]. The assessment method

followed the same approach as that by McCroskey [98], who examined and eval-
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Figure 3.1: UH-60A Black Hawk geometry
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1 UTRC Large Subsonic Wind Tunnel

2 Ohio State University Transonic Wind Tunnel

3 National Research Council (NRC) icing tunnel

4 Naval Ship Research and Development Center (NSRDC) 7 by 10 feet Wind Tunnel

5 NASA Langley 6 by 2 inch Transonic Wind Tunnel

6 NASA Ames 2 by 2 feet Transonic Wind Tunnel

7 NASA Ames 11 feet Transonic Wind Tunnel

8 NASA Ames 7 by 10 feet subsonic wind tunnel

9 Glenn L Martin 8 by 11 feet subsonic wind tunnel

Table 3.1: Wind tunnel tests for SC1095

uated the quality of data from 40 wind tunnel tests. The parameters examined

include lift-curve slope, minimum drag, maximum lift-to-drag ratio, maximum

lift versus Mach and Reynolds number, pitching moment and moment coefficient

slope. The major sources for the C81 tables used in this dissertation are listed

in Table 3.1 and 3.1. Yeo [99] assessed the quality of this data and generated

C81 tables for comparison with CFD calculations. Because of the large num-

ber of sources, the reliability and accuracy of these airfoil tables was a concern.

Therefore, the CFD analysis is conducted for the SC1095 and SC1095R8 sections

to semi-validate both the CFD methodology and the C81 tables. Additionally,

effects of using different turbulence models on the predicted aerodynamic char-

acteristics were also investigated.
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1 Ohio State Transonic Wind Tunnel

2 National Research Council (NRC) icing tunnel

3 NASA Langley 6 by 28 inch Transonic Wind Tunnel

4 NASA Ames 11ft Transonic Wind Tunnel

5 Glenn L Martin 8 by 11 feet Subsonic Wind Tunnel

Table 3.2: Wind tunnel tests for SC1095R8

3.1.1 RAE2822 airfoil

It is customary to present a case with pressure coefficient validation before one

embarks upon a detailed validation of force coefficient variations with angle of

attack. The test case chosen was that of the RAE 2822 airfoil as a SC1095 airfoil

measured pressure distribution was unavailable to the authors. The data from

pressure measurement for this case is from the AGARD test data base [105]. This

test case is the accepted standard for CFD research code validation. Figure 3.2

shows the plot of −Cp vs chord location on the airfoil. The salient features of the

pressure field including the shock location are well captured. The lower surface

pressure coefficient prediction shows excellent correlation with the experimental

data. The leading edge suction peak magnitude and location is well captured

by both the turbulence models. The shock is predicted to occur closer to the

leading edge than that observed from measurements by the Baldwin-Lomax (BL)

turbulence model. However, the one equation Spalart-Allmaras (SA) turbulence

model shows very good prediction of the shock location. The C-H mesh used in

this case was locally refined near the shock location to improve the accuracy of

the computations.
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Mach Number AoA range(deg)

0.3 -10 to 22

0.4 -10 to 22

0.5 -8 to 20

0.6 -8 to 16

0.7 -6 to 12

0.8 -6 to 10

0.9 -4 to 8

1.0 -4 to 6

Table 3.3: Computation Matrix

3.1.2 SC1095 and SC1095R8 airfoil validation

Comprehensive rotorcraft codes often incorporate aerodynamic models that look

up force coefficients from airfoil tables (C81 format) generated from experimental

data. One of the goals of this investigation is to establish correlation of this 2-D

data with CFD computations.

The computational grid used to study this problem is of a C-type topology

(Fig 3.3). It has 217 points in the wrap around direction of which 145 are on the

airfoil surface. The number of points in the normal direction is 91. The spacing

at the airfoil surface is set as 5 × 10−5 chords for the viscous simulations that

were performed.

The experimental data base for the SC1095 airfoil consists of force coefficient

(Cl, Cm, Cd) data over a range of angle of attacks and Mach numbers. The cases

for which the computations are conducted are shown in Table 3.3.
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40 chords

Figure 3.3: C type mesh used (217 X 91)
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Figure 3.4: Flow fields and lift time history for stalled and unstalled SC1095

airfoil

All the 2-D test cases are conducted at a Reynolds number of 6.5 million

which is typical for rotorcraft environments. For cases that do not indicate

presence of static stall, the computations are conducted until a steady state is

achieved and the final force coefficients are found by integrating the pressure and

viscous stresses at the airfoil surface. But for cases in which the airfoil stalls, the

flow field no longer reaches a steady state. There is periodic shedding of vortices

that results in periodic oscillations in the force coefficients. Hence, in these cases

force coefficients are averaged over a period of time. Figure 3.4 indicates salient

features of non-stalled and stalled airfoil pressure fields and the lift coefficient

time history. In the stalled case, the periodic oscillation in the lift is caused by

periodic vortex shedding.

The lift, drag and pitching moment coefficients obtained at each data point

in Table 3.3 is plotted against the experimental data in Figures 3.5, 3.6 and

3.7 respectively. The figures consist of a series of 8 subplots each represent-

ing a different Mach number. The experimental data is plotted against results

obtained using both the Spalart-Allmaras and Baldwin-Lomax turbulence mod-
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els. The dark closed symbols represent the cases in which stall was noticed, the

aerodynamic coefficient values were found by time averaging in these cases.

The results of all, lift, drag and pitching moment show good agreement with

experimental data in the stall free regime at the lower Mach numbers. For the

high transonic Mach numbers (M=0.8 and M=0.9), the CFD predictions show

a larger lift curve slope compared to the experimental data. The positive static

stall angle at all the Mach numbers obtained using both the turbulence models

compares well with the experimental data. The abrupt decrease of pitching

moment and sudden increase of drag coefficient at the onset of stall is very well

represented by both the turbulence models. The closed symbols are given to

the data points, which represent cases that showed presence of stall (i.e., force

coefficients were time averaged).

The correlation with the test data deteriorates for the SC1095R8 airfoil sec-

tion (Figures 3.8, 3.9, 3.10). The SC1095R8 airfoil section is more cambered and

hence has a smaller zero lift angle of attack compared to the SC1095 airfoil sec-

tion. The pitching moment magnitudes are also larger for the SC1095R8 airfoil

section owing to the larger camber. Although these trends are well predicted

by the CFD analysis, there seems to be more differences in the quantitative

prediction of the airloads for the SC1095R8 airfoil.

The aerodynamic coefficient values show considerable differences from exper-

imental data in the post stall regime especially at high Mach numbers. In the

stall free region both turbulence models predict very similar force and pitching

moment coefficient values. But once the airfoil stalls they behave very differently.

This is particularly evident in the pitching moment plots. Spalart-Allmaras tur-

bulence model evidently shows better correlation with pitching moment data at
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all Mach numbers.

At the low Mach number regime, the Baldwin-Lomax turbulence model is

unable to capture the onset of negative stall. However, the Spalart-Allmaras

turbulence model shows encouraging results even for these cases. It should be

noted though that, further mesh refinement showed deterioration in agreement

between the experimental data and predicted lift coefficients even when using

the SA turbulence model.

On the whole, the correlation with experimental data could be considered

good except at highly stalled conditions. The CFD predictions are found to

follow most of the specific trends in variation of aerodynamic characteristics

with Mach number and angle of attack.

3.2 Validation of the Field Velocity Approach

The field velocity approach (Section 3.13) is used for including the effects of

the trailed vortex wake in the full 3-D rotor computations. The accuracy of

the approach is validated for 2-D model problems. The predictions obtained for

the 2-D model problems are validated against exact analytical solutions, where

available. In cases where closed form solutions are unavailable the predictions

are correlated with results obtained using different analysis methods.

The 2-D model problems studied are

1. Step change in angle of attack (indicial problem)

2. Interaction with a sharp edged traveling vertical gust (indicial problem)

3. Airfoil vortex interaction
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Figure 3.5: Cl Vs α for various Mach numbers for SC1095 airfoil
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Figure 3.6: Cd Vs α for various Mach numbers for SC1095 airfoil
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Figure 3.7: Cm Vs α for various Mach numbers for SC1095 airfoil
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Figure 3.8: Cl Vs α for various Mach numbers for SC1095R8 airfoil
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Figure 3.9: Cd Vs α for various Mach numbers for SC1095R8 airfoil
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Figure 3.10: Cm Vs α for various Mach numbers for SC1095R8 airfoil
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The investigations conducted for the first two model problems are presented

in detail in Appendix D. The problem of 2-D airfoil vortex interaction is discussed

in detail in this section.

3.2.1 Airfoil vortex interaction

Airfoil vortex interaction is an unsteady two dimensional problem in which a

vortex convects perpendicular to the vorticity vector and influences the flow

around an airfoil (Figure 3.11). It is the 2-dimensional equivalent of the parallel

blade vortex interaction phenomenon observed in helicopter flight. Blade Vortex

Interaction (BVI) is one of the dominant source of the low frequency rotor noise.

The BVI noise propagates out of plane, usually forward and down making it the

most audible noise to an observer on the ground, especially during the landing

approach of the helicopter.

The aerodynamic generating mechanism of BVI noise can be explained briefly

as follows. When the vortex is upstream of the blade it induces a downwash,

and after the vortex passes by the blade an upwash is induced. The time varying

vertical velocity change produced during the passage of the vortex changes the

effective local angle of attack and causes a corresponding fluctuation in the blade

loading. Thus, a sharp impulsive noise signature is created by the large rate of

change of loading with time.

There are various ways of simulating the airfoil vortex interaction. One of the

popular methodologies is called the perturbation approach [38], in which a flow

field is decomposed into two parts despite nonlinearity: one is a prescribed vorti-

cal disturbance known to satisfy the governing equations, and the other obtained

from the solution of the governing equations. As a result, the vortex structure
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is free of numerical diffusion. The second methodology is to use an accurate

vortex-preserving Euler/Navier-Stokes solver [39], in which the vortex solution

is computed directly from the numerical solution of the governing partial differ-

ential equations. This methodology requires a high resolution grid to prevent

excessive numerical dissipation. The field velocity approach discussed earlier

provides yet another methodology for simulating this problem. The grid time

metrics are modified to include the velocity field induced by the vortex.

The results of the aerodynamic loads obtained from all three methodologies are

presented in Figure 3.12. The correlation of the results from all three approaches

are excellent. The field velocity approach presents a computationally efficient

way of simulating the problem, as it does not require a high resolution grid and

is computationally less complex compared to the perturbation approach.

The vortex preserving approach requires solution adaptive grid generation to

prevent numerical dissipation. An adaptive grid generation causes changes in

the volumes of grid cells with each time step. The results presented are from the

work of Tang [39], which clearly illustrate the necessity of satisfying the GCL in

such computations.

Figure 3.2.1 shows the unadapted and adapted mesh for the vortex preserving ap-

proach. If the geometric conservation law is not satisfied, an artificial source term

is created which leads to the radiation of pressure waves from the leading edge

of the airfoil. Figure 3.14, which shows the pressure contours when the vortex is

about 5 chords upstream of the airfoil, clearly illustrates this phenomenon. Sat-

isfying the GCL eliminates these spurious source terms and produces a smoother

and more accurate solution as shown in Figure 3.15.
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Figure 3.11: Schematic of Airfoil Vortex Interaction
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Figure 3.12: Blade Loading time history (M=0.6, miss distance(Zv=-0.25c))
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(a) unadapted (b) adapted

Figure 3.13: Grids in Vortex region
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Figure 3.14: Non dimensionalized pressure contours without satisfying the GCL
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Figure 3.15: Non dimensionalized pressure contours with the time metrics sat-

isfying the GCL

3.2.2 Accuracy of the algorithms for fast evaluation of

induced velocities

Simulation of a real helicopter rotor blade in forward flight, as mentioned earlier,

requires the use of the field velocity approach to prescribe the effects of the self

generated trailed wake as well as the trailed wake from the other rotor blades.

The rotor blade motions which consists of pitch, flap and lag also needs to be

included.

The trailed vortex wake geometry can be obtained using a prescribed empirical

formulae [111] or can be predicted using a free wake analysis using a Lagrangian

vortex lattice method [94] as described in the previous chapter. The vortex wake

geometry obtained consists of a description of the locus of the vortex filaments

in space at discrete azimuthal positions of the rotor blade. Often, the azimuthal

discretization of the wake geometry is much coarser (∆ψ = 5o) than the az-
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imuthal discretization used for the flow computations (∆ψ = 0.25o). This ne-

cessitates the use of an appropriate interpolation technique to obtain the vortex

wake geometries at the finer discretization level. In this case, the interpolation

is performed spectrally, taking in to advantage the periodicity of the wake with

azimuthal angle.

The field velocity approach requires the evaluation of induced velocities caused

by the vortex wake system at every grid point in the computational domain.

Therefore, a performance enhancement technique which maintains the necessary

accuracy is required to perform routine computations using this methodology.

The performance enhancement is obtained using fast hierarchical algorithms [93,

112]. Briefly, these algorithms use the recursive subdivision of the computational

domain and a delineation of the near-field and far-field regions. The algorithm

is explained in more detail in Chapter 2. Hence, for any grid point, the influence

because of all the vortex filaments in its near field is evaluated exactly, while

the effects of vortex filaments in the far-field are evaluated using an appropriate

interpolation or multipole expansion of the far field potential. Typical run-times

are reduced by an order of magnitude (i.e. from 4 days to 10 hours) using the

performance enhancement with very little loss of accuracy.

A detailed mathematical description of the fast hierarchical algorithm and quan-

titative estimates of the performance measure for a blade vortex interaction

(BVI) problem is presented in Appendix A.
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3.3 Validation of Unsteady Aerodynamic Load

Prediction

The flight condition chosen is that of the UH-60A helicopter in high speed for-

ward flight with V=158kts and a blade loading CT/σ=0.0783. This particular

test case was chosen because of the noted modeling issues that occur for such a

condition, such as the phase error in the negative lift and the error in the peak to

peak magnitudes of predicted pitching moments (Bousman [3]). Also, a plethora

of aerodynamic flight test data (Kufeld et al. [116]) is available for this case to

validate the numerical solutions computed.

A first principle based airload prediction scheme required coupling of both

aerodynamic and structural methodologies. The aerodynamic and structural

models have to be validated independently before resorting to full coupling. The

aerodynamic model can be validated by prescribing measured elastic deforma-

tions and validating the airloads predicted with measured airloads. But there are

no measured aeroelastic deformations available. Hence, the following strategy is

adopted:

1. Measured aerodynamic and structural dynamic loads are available. There-

fore, measured aerodynamic loads were prescibed as the forcing in to the

structural model and the aeroelastic blade response were extracted. The

structural loads obtained were correlated with the measured structural dy-

namic loads to ascertain the fidelity of the structural model.

2. The blade motions obtained from the validated structural model was be

treated as the best blade motion set available. These were prescribed in

to the CFD model and sectional aerodynamic loads were extracted.
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3. The CFD predicted aerodynamic loads were then compared with the flight

test measurements.

The aeroelastic deformations are obtained from two separate structural anal-

ysis codes, namely UMARC [95] and DYMORE [64].

The computations are conducted using the blade motions obtained from the

structural model, when it was forced with measured aerodynamic loads. The

measurements of the collective and cyclic angles (θ0=13.21 deg, θ1c=6.56 deg,

θ1s=-9.07 deg) is also prescribed together with the elastic torsional deformations

obtained from the structural model. A trim procedure was not conducted by

the structural model in this analysis. Hence, prescribing the measured control

angles without the appropriate trim procedure causes large steady and 1/rev

errors in the normal forces. These can be removed by adjusting the collective

and cyclics to maintain trim. The primary interest of the excercise is to validate

the vibratory airload prediction. Therefore, a low frequency filter is applied on

the normal forces ( 2/rev and higher will be shown). Also, the pitching moments

show large steady errors which are present at some radial stations and absent in

other ones. This was determined to be because of the offsets in surface pressure

measurements towards the trailing edge [117]. Therefore, the pitching moments

variations shown will be with the steady values removed (i.e 1/rev and higher).

3.3.1 Accuracy of the flight test data

The flight test data used in this dissertation is from the UH-60A flight test data

base generated at the NASA Ames. Comprehensive flight testing was conducted

using a research aircraft with pressure intrumented rotor blades for a period of

10 years staring from 1984 (Bousman [118]). The present test cases are among
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the few that have been widely published. There are two data sets used in this

dissertation, one for the high speed case (µ=0.368) and one for the low speed

case (µ=0.110). Both the cases are from flight 85 (CT/σ=0.0783) and have code

numbers C8534 and C8515 respectively.

The UH-60A rotor blade was instrumented at 9 radial staions. The maximum

number of transducers at any radial station was 30. The pressure transducers had

a gaussian distribution in the chordwise direction. The pressure measurements

from the chordwise transducers are integrated to obtain section normal force,

section chord force and section pitching moments. There are many sources of

errors possible in this approach. The major sources of errors can be categorized

as pressure transducer errors and integration algorithm errors. The quantitative

estimates of pressure transducer errors are unavailable. However, Bousman [119]

showed that there is negligible variation in sectional aerodynamic loads between

cycles in the same counter (e.g., C8534). Therefore, it can be inferred that there

is a low probability of pressure transducer induced errors.

The integration algorithm would also contribute large errors when a sparse

number of chordwise transducers are used. An investigation is conducted to

quantify the errors in the pressure integration scheme. The methodology is as

follows:

A 2-D CFD computation was conducted for the SC1095R8 geometry. The

mesh topology used 150 points on the airfoil surface. The flow computations are

conducted atM=0.4 and α=8o. Given the lower and upper pressure distributions

(Cpl and Cpu) the sectional normal force (Cn), chord force (Cc) and pitching
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moment (Cm) are known as

∆Cp = Cpl − Cpu
Cn =

∫ 1

0
∆Cpd(x/c)

Cc =
∫ 1

0
(dyl
dx
Cpl − dyu

dx
Cpu)d(x/c)

Cmle =
∫ 1

0
∆Cp(x/c)d(x/c)

(3.1)

The accuracy of the integration can be improved by performing the transforma-

tion as:

x∗/c =
√

(x/c)

C∗
p = 2Cpx

∗/c
(3.2)

The integration is performed using a parabolic quadrature (modified Simpson’s

rule for unequal spacing). The sectional aerodynamic coefficients obtained for

150 points is treated as the most accurate solution. The accuracy of the inte-

gration approach is then assessed by using smaller number of points (15 to 50)

and quantifying the relative error with the most accurate solution. The results

of this analysis is shown in Fig 3.16. It is evident that at the UH-60A transducer

spacing with 30 chordwise transducers, there is about 0.15% error in the nor-

mal force, 1.1% error in the chord force and 2% error in the pitching moment.

However, this is the best possible case. All the radial stations did not have the

same number of transducers, the stations with lesser number of transducers will

evidently have larger pressure integration errors. Also, in the flight test case con-

sidered (Flight 85) it is known that 19 transducers performed unsatisfactorily.

Therefore, the analysis performed was extended to the exact UH-60A transducer

spacing accounting for the unreliable transducers. The results from this analysis

are quantified in Table 3.4. The table presents the expected relative error(%)

because of pressure integration algorithm in sectional normal force, sectional

chord force and pitching moment at each radial station.
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Figure 3.16: Variation of relative error in pressure integration with number of

points on the airfoil
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r/R No. of working transducers ∆NF (%) ∆CF (%) ∆PM(%)

0.225 18 1 3.2 18.3

0.400 19 0.7 2.6 12.1

0.550 18 0.8 3 14.4

0.675 17 1 3.4 19.1

0.775 23 0.35 1.8 5.4

0.865 25 0.25 1.5 3.5

0.920 26 0.18 1.3 2.5

0.965 29 0.15 1 2.1

0.990 26 0.17 1.3 2.6

Table 3.4: Expected errors at each radial station because of pressure integration

(Flight 85)

3.3.2 Grid dependence study

A study of the grid and time step dependence of the CFD solution is conducted to

establish the fidelity of the prediction. The same set of deformation data was pre-

scribed on three sets of meshes. The aeroelastic deformations used were those ob-

tained from DYMORE. The meshes used were a coarse C-H mesh (133×43×43)

and fine C-O mesh (217× 71 × 61) and a fine C-H mesh (217× 71 × 61). The

azimuthal time step for the coarse mesh computations were 0.25 degrees, while

the azimuthal time step for the fine mesh computations were 0.125 degrees.

Figure 3.17 shows the oscillatory normal force (2/rev and higher) and pitching

moment (1/rev and higher) obtained from the computations using the aforemen-

tioned meshes at the two radial stations. The control angles used are the same

as those given by the flight test measurements. Again, the steady and 1/rev
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harmonics of normal force are removed as the rotor is out of trim because of

uncertainities in the measured control angles. The aerodynamic load responses

show some grid dependence, especially in the pitching moment response at the

outboard radial station. The coarse and refined C-H meshes predict almost the

same response, while the C-O) mesh (which has a better tip definition) seems to

resolve the higher harmonics better. Overall, the solution could be considered

fairly grid independent and acceptable to be used for further prediction. Thus,

all of the remaining CFD results use the fine C-H mesh.

A comparison of the aerodynamic loads obtained using deformations obtained

from UMARC and those obtained from DYMORE are presented in Fig 3.18.

The normal force (2/rev and higher) and pitching moments (1/rev and higher)

show good correlation with flight test data for both set of deformations. The

computations using the deformations from UMARC better captures the phase

of the negative lift, while those using the deformations from DYMORE show

better correlation in the pitching moment magnitudes towards the tip. Most

of the remaining CFD results use the aeroelastic deformations obtained from

UMARC.

3.3.3 Airloads prediction

The aerodynamic loads obtained for the forward flight case of 155 knots (µ=0.368)

are shown in Figures 3.19 and 3.20 respectively. CFD results are for the fine

mesh using the Baldwin-Lomax turbulence model. The validations, as men-

tioned earlier, are performed for 2/rev and higher normal force and 1/rev and

higher pitching moment because of uncertainities in rotor trim.

From Figure 3.19 it can be inferred that the normal force distributions pre-
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Figure 3.17: Aerodynamic loads, normal force (2/rev and higher) and pitching

moment (1/rev and higher) obtained for three different meshes
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Figure 3.18: Aerodynamic loads, normal force (2/rev and higher) and pitching

moment (1/rev and higher) obtained from CFD, prescribed elastic deformations

from UMARC and DYMORE, (µ=0.368)
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dicted from the CFD calculations show good phase correlation with the test

data at all the four radial stations. The lifting line analysis (table lookup, lin-

ear unsteady aero, Weissinger-L) was provided the same set of prescribed blade

motions. The results obtained from the lifting line analysis are also compared

with those obtained from the CFD analysis and test data. The normal force

variations show an absence of the updown impulse and a larger phase error with

the flight test data compared to the CFD computations at the inboard stations.

However, it should be noted that this phase error is less than that noted in a

full comprehensive analysis solution, because the “correct” blade deformations

are prescribed.

The advancing blade lift impulse is a major source of all higher harmon-

ics which are transfered to the hub. The rotor acts as a filter for harmonics

in airloads. For example, a N blade rotor would only let frequencies which are

multiples of N (N, 2N, 3N.. etc) be transfered to the fuselage. For this particular

case (N=4) the major hub vibrations will be of frequency 4/rev. The frequen-

cies of 3/rev and 5/rev in the rotating frame contribute to 4/rev frequencies in

the fixed frame. Therefore, for accurate prediction of hub vibrations, accurate

predictions of 3, 4 and 5/rev aerodynamic loads are a necessity.

The pitching moments predicted from the CFD computations show good cor-

relations with the test data at all four span stations shown in Fig 3.20. Both

the phase and magnitude of the pitcing moments are resolved accurately. Ac-

curate prediction of pitching moments is a necessity for accurate prediction of

torsional elastic response which in turn would play a key role in determining

the normal force variation in a coupled simulation. The pitching moments pre-

dicted by the lifting line analysis; on contrast show poor correlation with the
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test data. The pitching moment magnitudes are underpredicted inboard and

overpredicted outboard. The phase of the negative pitching moments are also

predicted inaccurately.

The chord force predicted from CFD (Fig 3.21) shows significant difference

from the flight test data. The CFD computations contain both the viscous

and induced drag contributions in the chord force. The flight test chord force

is constructed by integrating the pressure measurements from the transducers

located on the blade. Hence, the flight test data would have only the induced

drag contribution to the chord force. This is the primary reason of the over

prediction of the chordforce magnitude by the CFD computations. The lifting

line analysis also includes the viscous drag terms because the table-lookup drag

coefficients do include the parasite drag component. Therefore, the lifting ling

analysis also shows larger chord force magnitude compared to the flight test

measurements.

Acoustic pressure and hence noise is dependent on the time rate of change

of the normal force. Figure 3.22 shows the time derivative of the normal force

obtained from the CFD computations plotted against the flight test data. The

peak-to-peak magnitudes of the lift derivatives predicted also show good corre-

lation with the flight test data. But, the prediction does not capture some of

the higher harmonic oscillations present in the flight test data.

Figures 3.19 and 3.20 also demonstrate the superior aerodynamic predication

capability of the present approach compared to the table-lookup based linearized

aerodynamic prediction schemes used in routine comprehensive rotorcraft aeroe-

lastic analysis.

As described earlier, the CFD computations do show differences in the steady
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and 1/rev components of the normal force. The changes in control angles and

inflow distributions primarily affect the steady and 1/rev components. So, it is

possible that the error in the steady and 1/rev components are because the rotor

is untrimmed. The control angles (θ0, θ1c and θ1s) of the rotor were iteratively

adjusted to retrim the rotor preserving the elastic deformations. The desired

trim target (balance of forces in all three directions) was obtained in about 5

iterations. The changes in control angles obtained were ∆θ0=1.84o, ∆θ1c=−3.64o

and ∆θ1s=−1.11o respectively. The changes in inflow because of the presence

of fuselage is not modeled in the CFD computations. This might be one of the

reason for the changes in control angles from the flight test values when the rotor

is retrimmed. A comparison of the total aerodynamic loads at four radial stations

with and without retrimming are presented in Fig 3.23. The predicted pitching

moments are not greatly affected by retrimming (as expected) and therefore are

not shown. The aerodynamic loads obtained with the trimmed rotor show good

correlation with the flight test data in both phase and magnitude. It is also clear

that the vibratory load phase changes are relatively small for the small changes

in control angles. Hence, one could decipher that the vibratory load phase is

primarily determined by the elastic motion rather than the rigid motion of the

blade. But one should view these results with caution as they do not represent a

completely independent approach for trim. The blade response does change with

changes in aerodynamic loads. This effect is not modeled here as the structural

dynamic analysis is not included in the trim loop. Therefore, these results are

presented more to emphasize the relative insensitivity of vibratory aerodynamic

loads to control angles rather than good correlation of the overall airloads with

the test data.

129



0 60 120 180 240 300 360
−400

−200

0

200

400

Azimuth, ψ (deg)

N
or

m
al

 F
or

ce
, 2

/r
ev

 a
nd

 h
ig

he
r 

(lb
/ft

)

r/R=0.675

0 60 120 180 240 300 360
−300

−200

−100

0

100

200

300

Azimuth, ψ (deg)

N
or

m
al

 F
or

ce
, 2

/r
ev

 a
nd

 h
ig

he
r 

(lb
/ft

)

r/R=0.775

0 60 120 180 240 300 360
−400

−200

0

200

400

Azimuth, ψ (deg)

r/R=0.865

0 60 120 180 240 300 360
−400

−200

0

200

400

Azimuth, ψ (deg)

r/R=0.965

Flight Test
Linear Aero
CFD        

Figure 3.19: Sectional vibratory normal force (2/rev and higher) for high speed

forward flight (µ=0.368, CT/σ=0.0783) at four radial stations
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Figure 3.20: Sectional vibratory pitching moment (1/rev and higher) for high

speed forward flight (µ=0.368, CT/σ=0.0783) at four radial stations
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Figure 3.21: Sectional vibratory chord force (1/rev and higher) for high speed

forward flight (µ=0.368, CT/σ=0.0783) at four radial stations
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Figure 3.22: Time derivative of normal force for high speed forward flight

(µ=0.368, CT/σ=0.0783) at four radial stations
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Figure 3.23: Sectional aerodynamic loads for high speed forward flight (µ=0.368,

CT/σ=0.0783) with the rotor retrimmed
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3.3.4 Necessity for satisfying the geometric conservation

law

For a high speed forward flight case, the elastic deformations are more important

than the influence of the vortex wake. The wake becomes relatively unimportant

as the trailed wake is swept farther away from the rotor plane because of the

higher free stream velocity. Therefore, the elastic deformation of the rotor blade

needs to be incorporated accurately.

The satisfaction of the GCL is a necessity to prevent spurious oscillations in

a solution which has relatively large grid deformations as shown earlier for AVI

with the deforming mesh (Section 3.2.1, Figures 3.14 and 3.15).

Figures 3.24 and 3.25 show the sectional oscillatory aerodynamic loads com-

puted with and without satisfying the GCL correlated against the flight test

data. The sectional normal force does not show large differences when the GCL

is not satisfied. But the effects of spurious source terms are prominent in the sec-

tional pitching moments, which are more sensitive to the variation of the surface

pressure distributions. The sectional pitching moment computed without satis-

fying the GCL shows both a change in peak to peak magnitude and the presence

of high frequency oscillations, compared to the smoother solution predicted with

the GCL being satisfied. The test data, as expected, correlates better with the

solution which satisfies the GCL.

3.4 Feasibility Study of Loose Coupling Approach

A simplified structural model which models the rotor blade as a one dimensional

Euler-Bernoulli beam is used to study the feasibility of the loose coupling. Each
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Figure 3.24: Sectional lift (2/rev and higher) at r/R=0.775 for the UH-60A rotor

(µ=0.368, CT/σ=0.0783)
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blade is assumed to be an elastic beam undergoing flap bending and elastic

twist. The three dimensional aerodynamic loading is expected to have larger

effects on flap and torsional response compared to lag and axial motion. The

blade is discretized into beam elements with 7 degrees of freedom distributed

for 3 element nodes (2 boundary nodes and 1 interior node). Between elements,

there is continuity of displacement and slope for flap deflection and continuity of

displacement for torsional deflection. A normal mode reduction is performed to

reduce the number of equations solved. The first four flap modes and first two

torsional modes are chosen for the normal mode analysis. The final equations of

motions of the blade system can be expressed as a system of nonlinear, periodic,

ordinary differential equations of the form

M(ψ)q̈ + C(ψ)q̇ +K(ψ)q = Frhs(ψ, q) (3.3)

where q is the generalized displacement vector and M , C and K are the

generalized mass, damping and stiffness matrices. The right hand side is the

time varying forcing vector which is a function of q. As the response is known

to be periodic, a temporal finite element method is used to integrate the govern-

ing equations in time. The temporal response is approximated using Lagrange

polynomials as shape functions in a time element. Continuity of generalized

displacements are ensured between the time elements. The finite element in

time approach reduces the governing equations to a set of nonlinear algebraic

equations which are solved using a modified Newton method. A more detailed

description of the structural model is presented in Chapter 2.

The boundary conditions in the assembled finite element equations are mod-

ified appropriately to analyze various rotor configurations, including articulated
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and hingeless rotors. The right hand side, or the forcing term, is evaluated

from the detailed pressure distributions on the blade (spanwise and chordwise)

obtained from the time accurate CFD solutions at each azimuthal location.

The CFD computations are performed in the Euler mode (inviscid) using the

modifed TURNS code. The aeroelastic flap and torsion motions obtained from

the structural analysis is used to deform the mesh in space. The wake geometry

is computed using the Lagrangian vortex lattice method. The induced velocities

caused by the wake is included using the field velocity approach. The transfer

of information between the CFD and structural analysis happens every rotor

revolution. The wake computations are also performed as part of the coupled

solution scheme. The exact tip locations are found from the blade motions,

while the circulation strengths of the tip vortex trailed is calculated from the

CFD solution.

3.4.1 Coupling methodology

The goal is to achieve solution to the blade motions such that the vehicle trim

equations and blade response equations are simultaneously satisfied. The blade

loading (CT/σ) and advance ratio (µ) are specified and trim solutions calculates

the shaft tilt angles (αs, φs) and the blade pitch control settings (θ0, θ1c, θ1s).

The initial conditions for starting the calculations are conducted by performing

the elastic blade response and the trim calculations using quasi-steady aerody-

namics. The trim jacobian for predicting the control settings based on the trim

residues is also computed. The rotor response solution, consisting of the periodic

blade response and vehicle trim, are calculated as one coupled solution using a

Newton-Raphson scheme. The methodology of the coupled analysis scheme is
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summarized in Fig 3.26.

CALCULATE TRIM JACOBIAN
AERODYNAMICS AND 

TRIM USING QUASI−STEADY

CONTROL ANGLES
BLADE RESPONSE
FREE WAKE GEOMETRY

OUTPUTS

ROTOR BLADE RESPONSE
AND FREE WAKE GEOMERY

CALCULATIONS

INPUT

GEOMETRY AND
ROTOR BLADE

OPERATING CONDITIONS

CONVERGED

NOT
CONVERGED

AERODYNAMICS 
CFD USING TURNS

FINISH

BLADE RESPONSE
AND TRIM CONVERGENCE

Figure 3.26: Coupling scheme

3.4.2 Aerodynamic damping

Aerodynamic loading contributes primarily to the damping in the first flap and

torsion modes. Quasi-steady aerodynamic modeling provides the ease for lin-

earizing the aerodynamic forcing on the right hand side as:

Frhs(ψ, q) = F0(ψ) + Fq̇(ψ)q̇ + Fq(ψ)q + ...non-linear terms (3.4)

Therefore one could take the velocity dependent terms (Fq̇) to the left hand

side and construct an aerodynamic damping matrix, CA(ψ), such that the to-

tal damping matrix is C(ψ) = CS(ψ) + CA(ψ), where CS(ψ) is the structural

damping that is present in the system. The aerodynamic forcing has a frequency
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very close to the natural frequency of the first flap mode. Hence the presence

of aerodynamic damping is numerically helpful to prevent divergence of the 1st

mode response solution.

The aerodynamic forcing vector, F (ψ, q), obtained from the CFD computa-

tions cannot be linearized with ease unlike the quasi-steady aerodynamic loads.

Hence, one needs to identify a way for introducing damping in the system to

ensure convergence of the blade response. Artificial structural damping can be

introduced (i.e. in CS(ψ)), which is progressively removed to obtain a stable

solution. This approach is used in the full coupling with UMARC (Chapter 4).

Another approach is to continue using linearized damping terms derived from

quasi-steady aerodynamic modeling in the left hand side. This requires subtrac-

tion of these terms from the right hand side. The response found in the previous

iterative step is used to find the terms to be subtracted from the right hand side.

For instance, at the nth coupling iteration step, where qn+1 denotes the blade

response to be solved at this step, the equations are formulated as:

M(ψ) ¨qn+1 +(CS(ψ)+CA(ψ)) ˙qn+1+K(ψ)qn+1 = Frhs(ψ, qn)−CA(ψ, qn)q̇n (3.5)

3.4.3 Computation specifics

The computational grid used in the CFD computations follows a C-H topology.

The periodic response of the blade is obtained from the structural model every

iteration. The response can be used to reconstruct the exact blade geometry at

any azimuthal location. A typical variation of periodic blade flap response as a

function of azimuth and radius is shown in Fig 3.27. The mesh is dynamically

deformed such that it conforms with the geometry of the blade surface at any
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Figure 3.27: Steady state response as a function of radius and azimuth (BO-105,

µ=0.3, CT/σ=0.08)

azimuthal location. A coarse mesh, which has 133 points in the wrap around di-

rection, 43 points in the spanwise direction and 43 points in the normal direction,

and a refined mesh (217 x 71 x 61) are used for the grid and time step indepen-

dence studies. The blade response convergence studies and trim calculations are

conducted for a B0-105 hingeless rotor and a UH-60 articulated rotor.

3.4.4 Grid dependence study

A grid and time step dependence study for the CFD computations are performed

to verify the fidelity of the analysis and implementation. Figure 3.28 shows the

non-dimensional lift and pitching moment at r/R=0.965 for the UH-60 rotor
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for two meshes and three azimuthal steps. The lift time history indicates good

grid and time step independence. The pitching moment time history, although

it shows some time step dependence, has even greater grid dependence present

in it. The pitching moment is extremely sensitive to the chordwise pressure

distribution, especially at the trailing edge. This is probably the reason for the

grid dependence present in the pitching moment time history even when the

lift time history is fairly grid independent. The coarse mesh with an azimuthal

resolution of 0.25o was deemed sufficient for this initial coupling feasibility study.

3.4.5 Blade response convergence studies

An investigation is conducted on the blade response convergence for a prescribed

control setting. Two configurations, a BO-105 hingeless rotor and a UH-60

articulated rotor are investigated. The computations for the B0-105 rotor are

conducted for an advance ratio of µ = 0.3 while those for the UH-60 rotor are

conducted for an advance ratio of µ = 0.368. Figures 3.29 and 3.30 show the

convergence characteristics for the B0-105 rotor. The flap and torsional responses

converged in about 4 coupling iterations when both the lift and pitching moment

coefficients computed using the CFD are coupled in to the aeroelastic code.

Figure 3.29 shows the case in which only the lift coefficient was coupled from the

CFD while Fig 3.30 shows the case in which both the lift and pitching moment

coefficients were coupled. Significant differences can be observed between the

responses obtained in both these cases, especially in the torsional response. The

differences between the responses obtained indicate the necessity of coupling

both the lift and pitching moment from CFD computations simultaneously into

the aeroelastic analysis.
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Figure 3.28: Lift and pitching moment time history at r/R=0.965 for UH-60

(µ=0.105, CT/σ=0.0783)
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The convergence of the lift and pitching moment time histories are presented

in Fig 3.31. The results indicate the convergence of the aerodynamic loading to

a periodic steady state also, in addition to the convergence of the blade response

itself.

Figure 3.32 shows the blade response convergence history for the UH-60 ro-

tor. Unlike the B0-105 case, the blade response computed using CFD based

aerodynamics shows significant departure from that calculated from quasi-steady

aerodynamics. But it is evident that the blade response converges even for the

articulated rotor case when both lift and pitching moment from CFD computa-

tions are included in the response calculations.

3.4.6 Trim convergence studies

The simultaneous convergence of blade response and the trim are investigated

for two advance ratios (µ=0.105 and µ=0.368) for the UH-60A, for which test

data are available. The response convergence metric is defined as

ε1 =

√∑Nψ
i=1(w1 − w0)2√∑Nψ

i=1(w1)2

(3.6)

while the trim convergence metric is defined as

ε2 =

√√√√ 6∑
i=1

Fi
2 (3.7)

where w0 is the blade response at the tip for the previous iteration and w1 is

the blade response at the tip for the current iteration and Fi are the residuals

of the vehicle forces and moments. The blade response and trim convergence

histories are shown in Fig 3.33. Both blade response and trim residue time
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Figure 3.29: Deflections at the tip of the blade (Only CFD Cl included) (BO-105,

µ=0.3,CT/σ=0.08
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Figure 3.30: Deflections at the tip of the blade (Both CFD Cl and Cm included),

BO-105, µ=0.3, CT/σ=0.08
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Figure 3.31: Lift and pitching moment responses at r/R=0.8, ( BO-105, µ=0.3)
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Figure 3.32: Deflections at the tip of the blade (Both CFD Cl and Cm included)

, UH-60, µ=0.368
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histories show monotonic convergence for µ=0.105. But in the case of µ=0.368,

there is significant departure from monotonic convergence. The trim residue

shows oscillations and does not decrease to the same extent that it does for the

lower advance ratio case. The oscillatory nature of the trim control settings

deteriorates the blade response convergence.

All the predicted trim control angles, except the lateral cyclic obtained from

the analysis, show good correlation with the test data (Figure 3.34). The lateral

offset of the center of gravity and the level of tail rotor modeling have a large

influence on the lateral cyclic. The reason for the discrepency is probably because

of the differences in these parameters between the actual test conditions and the

vehicle data used for analysis.

3.5 Conclusions and observations

The validation of the CFD model developed was discussed in this chapter. The

predictions for rotor airfoil charactersistics were compared with experimental

data (available as C81 tables) for a range of Mach numbers and angle of attacks.

The aerodynamic coefficients predicted showed good correlation with the exper-

imental data in the pre-stall regime. The use of Spalart-Allmaras turbulence

model showed better prediction capabilities in the post-stall regime compared to

the Baldwin-Lomax turbulence model. The agreement with experimental data

was found to deteriorate at higher Mach numbers (M >0.7).

The accuracy of field velocity approach was evaluated for 2-D unsteady model

problems (Appendix D). The results showed good agreement with exact analyt-

ical solutions. Investigation was also conducted for an airfoil vortex interaction
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151



−2

0

2

4

6

8

C
on

tr
ol

 a
ng

le
s 

(d
eg

re
es

)

Test data
Analysis 

θ
0
 θ

1c
 

θ
1s

 α
s
 φ

s
 

(a) µ=0.105

−10

−5

0

5

10

15

co
nt

ro
l a

ng
le

s 
(d

eg
re

es
)

Test data
Analysis 

θ
0
 θ

1c
 

θ
1s

 

α
s
 φ

s
 

(b) µ=0.368

Figure 3.34: Comparison of control angles obtained from analysis with test data
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problem. The predictions obtained showed good correlation with predictions

which used alternate CFD approaches (i.e, convecting vortex and perturbation

method).

The hierarchical algorithm developed for fast evaluation of induced velocities

was found to give accurate results ( within 0.5 % of the baseline approach) with

large gain in the run time performance (described in detail in Appendix A).

The predictions of rotor vibratory loads were obtained from the CFD model

using prescribed aeroelastic deformations. These aeroelastic deformations were

obtained by using the measured aerodynamic loads as the forcing in the struc-

tural dynamic model. The phase and magnitude of the predicted vibratory nor-

mal forces show good correlation with the test data. The predictions from the

Weissinger-L analysis shows only fair agreement for the identical set of aeroe-

lastic deformations. The phase of the advancing blade negative lift and the

up-down impulse in the first quadrant was also captured accurately by the CFD

predictions. The pitching moment predictions obtained from CFD also showed

good correlation with the flight test data, the Weissinger-L analysis showed poor

correlation for the identical set of aeroelastic deformations.

A feasibility study for the loose coupling approach was conducted by cou-

pling the CFD model with a simplified structural model (i.e., with only flap and

torsion degrees of freedom). It was possible to attain blade response convergence

even when both the lift and pitching moment obtained from the CFD based aero-

dynamics are included in to the rotor aeroelastic analysis. It was also found that

blade response convergence can be obtained for both articulated and hingeless

rotors. For the lower advance ratio case, trim and blade response monotonically

converged in about 12 iterations. But, for the higher advance ratio, the trim
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convergence was not as fast. This study served as a “proof-of-concept” test for

the loose coupling approach. The insights gained from this study will be used

in the coupling the CFD model developed with an advanced structural model

(UMARC).
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Chapter 4

Understanding of Rotor Unsteady

Aerodynamic Loads

In the previous chapter the CFD model was validated against flight test data

for a high speed forward flight test case. The blade motions used for the study

were obtained by forcing the structural dynamic model with the measured aero-

dynamic loads. It was found that the predicted vibratory aerodynamic loads

showed good agreement with the measured airloads (in both the phase and mag-

nitude). However, the extended lifting line based analysis (Weissinger-L) showed

inaccurate prediction for the vibratory airloads for identical set of blade motions.

Following are the discrepancies noted in the predictions from the Weissinger-L

analysis (illustrated in Fig 4.1).

1. Phase error of the advancing blade negative lift (although less than for

fully comprehensive analysis)

2. Poor resolution of the ”advancing blade lift impulse” (up-down variation

of the normal force at 60 to 80 degrees of azimuth).
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Figure 4.1: CFD vs Lifting line analysis (µ=0.368, CT/σ=0.078)

3. Poor correlation in pitching moment magnitude and phase towards the tip

of the rotor blade.

The advancing blade lift impulse is the source of much of the 3/rev and

higher harmonics which transfer to the fuselage. Hence, the accurate prediction

of this impulse is required for high fidelity vibration prediction. The prediction

of pitching moments towards the tip is absolutely important for the correct

prediction of the torsional response, which in turn is the deciding factor for

the phase of the negative advancing blade lift. Also, the accurate prediction of

pitch link loads is directly related to the accurate prediction of section pitching

moments.

The superior prediction capability of the CFD model is because of its abil-

ity to capture certain elements of flow physics which is not captured by the

Weissinger-L model. This chapter attempts to isolate these physical phenomena

that are modeled by CFD computations but are not resolved accurately by the
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Weissinger-L based analysis. The CFD method developed is used as a diag-

nostic tool to investigate the various aerodynamic mechanisms and identify the

key players. The knowledge gained in this study will be used to determine the

feasibility of applying corrections to improve the prediction capabilities of the

conventional lifting line model.

Following are the major aerodynamic mechanisms investigated

1. Radial flow effects

2. Inflow effects

3. Transonic effects

4. Viscous effects

5. Role of blade motions

6. Three dimensional effects

All the simulations are performed for the high speed forward flight with the

prescribed set of blade motions. The predictions are compared where possible

with corresponding predictions from the Weissinger-L analysis to identify the

key contributors to the accurate vibratory airload prediction.

4.1 Radial Flow Effects

The rotor blade in forward flight encounters significant amount of radial flow.

The lifting line analysis assumes the validity of the independence principle and

hence discards the radial component of the flow field. Figure 4.2 shows the

azimuthal variation of yaw angle at a few chosen radial stations. It can be
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Figure 4.2: Yaw angle variation encountered by a rotor blade at µ=0.368

observed that the inboard radial stations can have yawed flow angles as large as

35 degrees.

The first comprehensive experimental study for yawed flow effects on finite

wings were conducted by Purser et al. [120]. The independence principle

was found to be valid from the analysis of the experimental data. Also linear

aerodynamic theory of wings at an angle of side-slip using the small disturbance

approach (Jones [122]) shows that the pressure distributions on an infinite aspect

ratio wing is determined solely by the component of velocity in a direction normal

to the leading edge.

Harris [121] analyzed the Purser data comprehensively and determined that

the radial flow has little effect on rotor performance in the pre-stall regime.

However, in the post stall regime it was observed that the radial flow stabilizes

the boundary layer and causes it to stay attached leading to the phenomenon

called stall delay.
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The effects of compressibility are negligible in the Purser experiment because

of low Mach number. At higher Mach numbers there are larger non-linearities

in the flowfield that violate the validity of the small disturbance theory which

forms the basis of linearized aerodynamics. The investigations conducted in this

work are to assert the extent of validity of the independence principle even at

the higher operating Mach numbers.

The effects of radial flow would be different for a finite wing in comparison

to an infinite wing. This is because of the differences in the geometry of the

near field trailed wake. The rotor blades are similar to a large aspect ratio finite

wing. Therefore, studies are performed on yawed flow effects on finite wings.

4.1.1 Steady angle of attack variation

Simulations are conducted first for an infinite wing under yawed flow. This study

is performed to isolate the effects of pure yaw from finiteness effects as in the case

of the finite yawed wing. The boundary conditions (in the CFD solver) for the

infinite wing are applied as shown in Fig 4.3. The simulation is conducted using

three planes, which are sheared at the desired yaw angle. The free-stream Mach

number is so specified such that the velocity normal to the leading edge is equal

to the desired Mach number. The sectional aerodynamic loads are extracted at

the sheared sections (i.e., in the wind axis system). These are transformed to

the sections perpendicular to the leading edge (stability axis system [120]) using

the transformation Cls = Clw/ cos2 β.

Figure 4.4 shows the lift and pitching moment characteristics obtained for an

infinite yawed wing. As expected the variations in lift and pitching moment curve

slopes are negligible. The onset of supercritical flow (shock formation) causes
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Figure 4.3: Boundary conditions used for the simulations of an infinite yawed

wing
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non-linearities at the higher Mach number. This is the reason for the larger dif-

ferences in the aerodynamic characteristics with yaw angle at the higher Mach

number. Pitching moments can be observed to be more sensitive to yaw angle

than the lift. This is because the small changes in surface pressure distribu-

tions affect the pitching moments to a larger extent than the lift. Overall, the

results do indicate the validity of the independence principle until the onset of

supercritical flow.

The finite wing studies are conducted using a wing of rectangular planform

with same aspect ratio as the UH-60A rotor blade (AR=15.30). The wing is

untwisted, and has the same airfoil cross section (SC1095R8) along the whole

span. The geometry of the finite wing and boundary conditions used for CFD

simulation are shown in Fig 4.5. The free stream velocity is prescribed at the

desired yaw angle. Parametric studies are conducted varying the Mach number

normal to the leading edge and the pitch angle of the finite wing. The sectional

aerodynamic coefficients (Cl and Cm) are found using the normal Mach number

as the reference. Figure 4.6 shows typical spanwise variation of Cl and Cm with

yaw angle. The results are plotted for two cases, a low Mach number with low

angle of attack case and a moderate Mach number with high angle of attack

case. The results indicate that a positive yaw angle consistently produces a

larger lift and lower pitching moment at stations 60% outboard of the wing.

The negative yaw angle produced the exactly opposite effect. The variations are

larger at the larger Mach number, indicating that the flow non-linearities caused

by the compressibility effects augment the effects of yawed flow for a finite wing.

All the results from here on would be plotted at 75% span station and show

the variation of lift and pitching moment with positive yaw angles and angle of
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1st Order Extrapolation 

β

AR = 15.30AR = 15.30

Figure 4.5: Boundary conditions used for yawed finite wing simulation

attack at different Mach numbers.

Figure 4.7 shows the lift and pitching moment characteristics for three Mach

numbers at the four positive yaw angles studied. For the lower Mach numbers

the effect of yaw angles is to increase the lift curve slope by a marginal amount.

At the highest Mach number(M=0.8) the flow field is more non-linear because

of the incidence of shock formations. Therefore, the lift and pitching moment

characteristics show larger deviation than just being a gradual increase in the

slope.

The comparison between finite and infinite wing results show that the effect

of yaw is more prominent in the case of the finite wing. Yawed flow affects the

geometry of the near wake vortex sheet behind the rotor blade (Figure 4.8).

This is the primary reason for changes in lift curve slope. For positive yaw

angles (i.e., similar to a backward swept wing), the near wake is more expanded

and is convected away from the wing, while for negative yaw angles the near
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wake is convected closer to the wing. The spanwise variation of the induced

angle of attack is mostly determined by the geometry of the near wake sheet.

For example, in the case of the positive yaw angle the induced angle of attack

because of the near wake trailers would be smaller compared to the zero yawed

flow case because the near wake sheet is at a larger distance from the wing.

Therefore, the effective angle of attack would be higher along the span and so

the lift produced would be consistently larger compared to the zero yawed flow

case (Figure 4.6). This explains the larger lift curve slope for positive yaw angles.

It should be noted that in the case of rotor simulations in forward flight,

the amount of yawed flow changes with azimuth. The CFD analysis provides

accurate description of the near field vortex sheet. The Weissinger-L analysis on

the other hand approximates the geometry and circulation strengths of the near

wake sheet. This is the best method available within the limitations of extended

lifting line theory. Hence it is possible that the near wake modeling deficiencies

in Weissinger-L analysis might be the source of the inaccurate vibratory load

prediction. However, the yawed flow studies performed indicate that the effect

of yawed flow on steady aerodynamic loading is only predominant at high Mach

numbers. Even at the high Mach numbers the effect appears to be relatively

small. Therefore, the next logical step is to identify effects of yawed flow on

unsteady aerodynamics.

4.1.2 Indicial response of yawed finite and infinite wings

The unsteady aerodynamic load responses are extracted for a yawed infinite

wing to understand effects of yaw on unsteady blade motions. The wing was

initially maintained at zero pitch angle and flow computations are iterated until
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Near wake sheet

Rolled up tip vortex

β < 0 β > 0

Near wake sheet

Rolled up tip vortex

Figure 4.8: Schematic of near wake field for positive and negative yaw angles

a steady state is reached. A unit step change in pitch angle (1 degree) is applied

and the flow computations were performed maintaining 2nd order time accuracy

to extract the indicial response. The unit step change in the pitch angle is

introduced through the field velocity approach (Chapter 2).

The results of the indicial response computations performed for the yawed

infinite wing are shown in Figure 4.9. Both the lift and pitching moment response

show very little sensitivity to yawed flow angle at the low Mach number. At the

higher Mach number the lift response shows a gradual increase in the finally

asymptotic value. The pitching moment shows a more nose-down trend for

larger yawed flow angle at the steady state. The growth characteristics of the

pitching moment is observed to be more sensitive to the yawed flow compared

to the corresponding lift characteristics.

Figure 4.10 shows the sectional lift responses at (y/b=0.75) for a finite wing

obtained for three Mach numbers at yaw angles varying from -20 degrees to +20

degrees in steps of 5 degrees. The plots on the left side show the actual CFD

predicted response. Notice that the initial non-circulatory value is unchanged
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for all the yaw angles. The non-circulatory airload decays and the circulatory

airloads grow and asymptote to the final steady state. The final steady state

value increases with yaw angle because of the near wake effects. The indicial

responses obtained from CFD are curve fitted using a 5 term exponential series.

The equation for the indicial responses used are given by:

Cl(s)

∆α
=

4

M
e−s/Tα + Clα ∗ (1−

5∑
i=1

Aie
−bis) (4.1)

Here the first term represents the decay of the non-circulatory loading and

the second term represents the asymptotic growth of the circulatory lift. The

coefficents Ai, bi and time constant Tα are determined using a constrained op-

timization process which minimizes the error between Eq. 4.1 and the indicial

response obtained from CFD in a least square sense. The constraints used are

the the initial value of the lift and time derivative of lift which are known from

the exact solution [102]. This methodology was originally developed by Leish-

man [100] and further applied by Sitaraman [103] and Lee [104]. The coefficients

obtained for the three Mach numbers studied (M=0.3, M=0.6 and M=0.8) for

the range of yaw angles (-20< β <20) are shown in Table 4.1, 4.2 and 4.3

respectively.

The exponential approximation developed (Eq 4.1) are plotted as a function

of time with the same asymptotic value. This allows one to ascertain the changes
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β A1 b1 A2 b2 A3 b3 A4 b4 A5 b5

-20 0.1623 0.1202 0.6860 1.2087 2.7849 1.2183 1.2183 1.2253 -3.8515 1.5330

-15 0.1784 0.1188 0.6608 1.2220 2.9762 1.2328 1.2328 1.2347 -4.0482 1.5268

-10 0.1893 0.1164 0.7234 1.2003 2.4493 1.2104 1.2104 1.2205 -3.5724 1.5486

-5 0.1969 0.1139 0.6791 1.2206 2.7742 1.2374 1.2374 1.2279 -3.8877 1.5346

0 0.2041 0.1124 0.6945 1.2150 2.6223 1.2311 1.2311 1.2252 -3.7520 1.5404

5 0.2109 0.1112 0.6804 1.2227 2.7231 1.2363 1.2363 1.2321 -3.8508 1.5362

10 0.2174 0.1104 0.6730 1.2270 2.7777 1.2334 1.2334 1.2439 -3.9015 1.5347

15 0.2230 0.1099 0.6642 1.2326 2.8502 1.2495 1.2495 1.2380 -3.9870 1.5325

20 0.2282 0.1096 0.6825 1.2269 2.6768 1.2426 1.2426 1.2354 -3.8302 1.5394

Table 4.1: Indicial coefficients for lift at yaw angles ranging from -20 deg to 20

deg and M=0.3

β A1 b1 A2 b2 A3 b3 A4 b4 A5 b5

-20 0.1527 0.1031 0.8458 0.5676 0.9950 0.5783 0.5783 0.5789 -1.5718 0.7056

-15 0.1761 0.1031 0.8292 0.5756 1.0486 0.5827 0.5827 0.5831 -1.6366 0.7034

-10 0.1955 0.1025 0.8436 0.5787 0.9264 0.5812 0.5812 0.5809 -1.5466 0.7076

-5 0.2120 0.1017 0.8348 0.5831 0.9464 0.5858 0.5858 0.5856 -1.5790 0.7087

0 0.2264 0.1009 0.8351 0.5860 0.9189 0.5882 0.5882 0.5880 -1.5686 0.7111

5 0.2402 0.1001 0.8329 0.5899 0.9102 0.5918 0.5918 0.5916 -1.5751 0.7135

10 0.2524 0.0995 0.8305 0.5940 0.9072 0.5952 0.5952 0.5949 -1.5853 0.7154

15 0.2633 0.0991 0.8236 0.5975 0.9335 0.6001 0.6001 0.6000 -1.6205 0.7171

20 0.2728 0.0989 0.8282 0.6003 0.8949 0.6018 0.6018 0.6015 -1.5977 0.7203

Table 4.2: Indicial coefficients for lift at yaw angles ranging from -20 deg to 20

deg and M=0.6

β A1 b1 A2 b2 A3 b3 A4 b4 A5 b5

-20 0.8119 0.1278 0.0682 0.5051 0.2795 0.5051 0.5051 0.5051 -0.6648 1.4281

-15 0.8156 0.1192 0.0403 0.4707 0.1900 0.4707 0.4707 0.4707 -0.5165 1.5348

-10 1.5042 0.1289 -0.7719 0.1801 0.0927 0.3888 0.3888 0.3869 -0.2137 1.7262

-5 2.3585 0.1242 -1.4989 0.1322 -1.3870 0.8221 0.8221 0.6200 0.7053 3.5851

0 1.5063 0.1233 -0.7568 0.1704 -0.2344 0.9816 0.9816 0.3731 -0.4966 3.0083

5 1.5513 0.1236 -0.8034 0.1777 -0.2239 0.8999 0.8999 0.3618 -0.4239 3.1091

10 0.9575 0.1123 -0.0057 0.8110 0.3349 0.4654 0.4654 1.5177 -0.7521 2.2030

15 1.0040 0.1146 0.0024 0.6517 0.2844 0.5491 0.5491 1.8726 -0.8398 1.8751

20 1.0329 0.1232 0.0484 0.9960 0.5074 1.0632 1.0632 1.0635 -1.6518 1.3519

Table 4.3: Indicial coefficients for lift at yaw angles ranging from -20 deg to 20

deg and M=0.8

171



in the growth rate of the circulatory lift. It can be observed that the circulatory

lift reaches the final asymptotic state faster with increase in yaw angle.

Figure 4.11 shows the pitching moment responses for a finite wing for the

desired Mach number and yaw angle range. The indicial response shows little

variation for the lower Mach numbers. As observed earlier, the onset of super-

critical flow causes variation in the indicial response for the higher Mach number.

The response shows changes in final asymptotic value and variation in the growth

characteristics of the circulatory pitching moment at this higher Mach number.

As in the case of the lift response, the indicial responses obtained from CFD are

curve fitted using a 5 term exponential series given by:

Cm(s)

∆α
=
−1

M
e−s/Tαm + Cmα ∗ (1−

5∑
i=1

Aie
−bis) (4.2)

Again, the coefficients Ai, bi and time constant Tαm are determined using a

constrained optimization process which minimizes the error between Eq. 4.2 and

the indicial response obtained from CFD in a least square sense. The constraints

used are the the initial value of the lift and time derivative of lift which are known

from the exact solution. The coefficients obtained for the three Mach numbers

studied (M=0.3, M=0.6 and M=0.8) for the range of yaw angles (-20< β <20)

are shown in Table 4.4, 4.5 and 4.6 respectively.

This exponential approximation is plotted as a function of time with the

same asymptotic value (Figure 4.11. As observed in the case of the lift response,

the pitching moment response also reaches the final steady state value faster as

the yaw angle increases.

Overall, the indicial response studies for both lift and pitching moment indi-

cate that the effect of yaw predominantly affects the the final steady state values
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for three Mach numbers
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β A1 b1 A2 b2 A3 b3 A4 b4 A5 b5

-20 0.2699 1.9976 1.2504 2.0451 15.9921 2.5742 16.5247 2.5750 -33.0371 0.8571

-15 0.2972 1.9981 1.2616 2.0504 16.1696 2.5456 16.7260 2.5437 -33.4544 0.8705

-10 0.3027 2.0009 1.2536 2.0519 16.2291 2.5462 17.2416 2.5426 -34.0269 0.8704

-5 0.3072 1.9992 1.2607 2.0498 16.3470 2.5533 16.8466 2.5516 -33.7616 0.8662

0 0.2810 2.0040 1.2393 2.0465 16.7922 2.5876 17.3058 2.5892 -34.6182 0.8542

5 0.2739 2.0009 1.2489 2.0475 16.5319 2.5794 17.4417 2.5811 -34.4962 0.8558

10 0.2928 1.9998 1.2652 2.0521 16.2114 2.5441 16.6847 2.5416 -33.4541 0.8665

15 0.2938 2.0014 1.2603 2.0539 16.1006 2.5440 16.6883 2.5420 -33.3430 0.8741

20 0.2797 2.0041 1.2596 2.0567 16.2926 2.5309 16.8071 2.5282 -33.6390 0.8764

Table 4.4: Indicial coefficients for pitching moment respone at yaw angles ranging

from -20 deg to 20 d eg and M=0.3

β A1 b1 A2 b2 A3 b3 A4 b4 A5 b5

-20 0.3249 1.1068 0.8214 1.1111 8.5680 1.2578 8.8258 1.2558 -17.5401 0.5296

-15 0.3151 1.1024 0.8320 1.1042 8.2855 1.3007 8.5213 1.3018 -16.9540 0.5127

-10 0.3171 1.1032 0.8325 1.1052 8.3036 1.3017 8.5455 1.3026 -16.9988 0.5113

-5 0.3176 1.1046 0.8308 1.1065 8.3678 1.3024 8.6091 1.3034 -17.1253 0.5130

0 0.3180 1.1056 0.8294 1.1074 8.3594 1.3029 8.6019 1.3039 -17.1088 0.5142

5 0.3178 1.1066 0.8282 1.1084 8.3180 1.3028 8.5624 1.3038 -17.0263 0.5158

10 0.3161 1.1079 0.8265 1.1096 8.2493 1.3014 8.4965 1.3025 -16.8884 0.5189

15 0.3249 1.1087 0.8172 1.1103 8.0854 1.3059 8.3037 1.3076 -16.5312 0.5205

20 0.3317 1.1131 0.8167 1.1172 8.0313 1.2681 8.2918 1.2659 -16.4715 0.5313

Table 4.5: Indicial coefficients for pitching moment response at yaw angles rang-

ing from -20 deg to 20 deg and M=0.6

β A1 b1 A2 b2 A3 b3 A4 b4 A5 b5

-20 1.7568 0.1448 0.0404 1.1175 1.5891 1.1486 1.7453 1.1484 -4.1317 1.4207

-15 1.6198 0.1631 0.4059 0.1598 0.4531 0.9600 0.6912 1.0011 -2.1699 1.6040

-10 1.4666 0.1621 0.5728 0.1631 0.7516 0.9036 0.8933 0.9058 -2.6843 1.4888

-5 1.3903 0.1726 0.6345 0.1750 0.8993 0.8575 1.0219 0.8564 -2.9460 1.3926

0 1.1867 0.1976 0.5065 0.1936 0.6243 0.1937 0.9402 0.8931 -2.2577 1.3898

5 1.1250 0.2036 0.1697 0.8865 0.9469 0.2020 0.5443 1.0000 -1.7859 1.3551

10 1.1221 0.1826 0.1691 0.9455 0.8128 0.1823 0.4687 1.0656 -1.5727 1.2493

15 1.1605 0.1638 0.1539 0.9589 0.6805 0.1642 0.5283 1.0276 -1.5233 1.0637

20 2.3351 0.1944 1.7859 0.6686 1.2966 0.1957 0.8917 0.7349 -5.3094 0.3651

Table 4.6: Indicial coefficients for pitching moment response at yaw angles rang-

ing from -20 deg to 20 deg and M=0.8
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Figure 4.12: Effects of yawed flow corrections to lifting line analysis (µ=0.368,

CT/σ=0.078

more than the growth rate of the circulatory aerodynamic loads.

4.1.3 Corrections to the lifting line analysis

Corrections were applied to the lifting line analysis using a table lookup (C81

format) created from CFD computations including the yawed flow effects [123].

The aerodynamic lift, drag and pitching moment coefficients were parametrized

with Mach number, angle of attack and yaw angle. Indicial aerodynamic models

were also constructed from the CFD predicted responses. The indicial functions

were expressed as a sum of exponential functions (Eq 4.1 and 4.2. The coeffi-

cients of these functions were also parameterized in terms of Mach number and

yaw angle.

The predictions obtained from the the modified lifting line analysis con-

structed are shown in Figure 4.12. It is evident that there are no considerable

improvements compared to the base line analysis. Therefore, it appears that the

yawed flow effects are not the primary contributors to the errors in vibratory

load phase and magnitude.
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4.1.4 Summary of yawed flow observations

The effects of yawed flow can be summarized as follows

1. The effects of yawed flow is small for low subsonic Mach numbers. The

effects become more significant with the onset of supercritical flow. The

pitching moment characteristics appear to be more sensitive to yawed flow

than the lift characteristics.

2. Finite wings show more significant changes in sectional aerodynamic char-

acteristics compared to the infinite wings. This indicates that the change

in the geometry of near wake sheet caused by yawed flow is a primary con-

tributor to the changes in aerodynamic characteristics. The non-linearities

in flow field caused by yawed flow (as seen in the infinite case at high Mach

numbers) is augmented by the near wake effects.

3. The yawed flow effects does not appear to be the primary contributors for

the errors in the prediction of vibratory airloads. Corrections were applied

to the lifting line analysis using both the steady and unsteady aerodynamic

models extracted from the CFD analysis. These modifications, although

found advantageous, did not show considerable improvements from the

baseline model.

4.2 Inflow Effects

For the high speed forward flight condition studies, the effects of the wake mod-

eling are relatively unimportant. The inflow is dominated by the free stream

component perpendicular to the rotor disk, owing to a larger shaft tilt angle.
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Figure 4.13: Vibratory normal force (2/rev and higher) and pitching moment

(1/rev and higher) at r/R=0.865 for different inflow models

Figure 4.13 shows the oscillatory normal force and pitching moments obtained

using a linear (Drees) inflow model compared with those obtained from the free

wake based inflow modeling (baseline). It is evident from the plot that the in-

duced inflow components have very little effect on both the magnitude and phase

of the vibratory normal force. However, the pitching moment shows absence of

some of the higher harmonics when the linear inflow model was used.

4.3 Transonic Effects

The advancing blade lift impulse (Figure 4.1) is the dominant contributor to

vibratory airloads over a large portion of the span (50%R to 80%R). The studies

performed here are to verify whether this phenomenon is caused by the transonic

effects on the advancing side.

Moving shock waves are clearly visible in the surface pressure distributions,

although they are more predominant in the outboard regions (Figure 4.14). But

it suggests that transonic effects might play a key role in the production of the
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Figure 4.14: Surface pressure distributions at r/R=0.965 (µ=0.368,

CT/σ=0.078)

advancing blade lift impulse. To isolate the transonic effects, simulations were

conducted reducing the tip Mach number and maintaining the same advance

ratio. The blade motions used are those obtained from the structural dynamic

model when it is forced with the measured aerodynamic loads. The blade mo-

tions remain the same for all the cases studied.

The normal force obtained from these computations at the inboard station is

shown in Fig 4.15(a). The oscillatory normal force wave form shows the presence

of the up-down impulse even at the lowest tip Mach number case. Hence, it

appears that the impulsive loading in the first quadrant is not a transonic effect.

The pitching moment waveform (Fig 4.15(b)) on the other hand shows larger

deviation from the baseline case. This is more apparent at the outboard radial

station (Fig 4.16(a)). However, the oscillatory normal forces maintain the phase

of the negative lift even at the lower tip Mach numbers.

Overall, the results indicate that transonic effects are the key contributors to

the advancing blade pitching moment. However, it does not have any significant

effect on the impulsive loading in the advancing blade lift.
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Figure 4.15: Effects of compressibility on vibratory airloads (r/R=0.775,

µ=0.368, CT/σ=0.078)
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Figure 4.16: Effects of compressibility on vibratory airloads (r/R=0.965,
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4.4 Viscous Effects

Effects of viscosity can be isolated by performing an inviscid simulation (Eu-

ler) instead of the Navier-Stokes simulations. There is no evidence of retreat-

ing blade stall at this flight condition because of the moderate blade loading

(CT/σ=0.0783). Therefore the effect of viscous forces should be small compared

to the effects of the pressure forces.

Results of the Euler simulations are compared with those obtained from the

Navier-Stokes simulations in Fig 4.17 and 4.18. The sectional aerodynamic

loads (2/rev and higher normal force, 1/rev and higher pitching moment and

1/rev and higher chord force) are plotted for a span station of r/R = 0.775 and

r/R = 0.965 respectively. It is evident that the vibratory load correlation is only

degraded to a small extent (in both lift and pitching moment) when the Euler

computations are used. The chord forces obtained from Euler computations

show better correlation with test data compared to those obtained from the

Navier-Stokes computations. The effects of viscosity is absent in the test data

because the chord forces are obtained from integrating the chordwise pressure

measurements. Therefore it is logical that the inviscid computations show better

agreement with the test data compared to the viscous result for the chord forces.

4.5 Role of Blade Motions

The role of elastic blade motions are analyzed to understand the relative influence

of flap, torsion and lag degrees of freedom. Figure 4.19 shows the first seven

modes of flap, lag and torsion and their natural frequencies.

The first flap and lag modes are very close to being rigid motions. The higher
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modes are a result of the blade elasticity. The major contributions to elastic flap

motion are from the 2nd flap mode. The torsional motion is composed of the

rigid motions (collective+cyclic) and the elastic torsion. The elastic torsion

introduces a change of approximately -5 degrees in the advancing blade pitch

angle.

The analysis is performed by eliminating one degree of freedom at a time

from the given set of blade motions. The CFD calculations are conducted for

the same tip Mach number and advance ratio in each case. The predictions

of normal force (2/rev and higher) and pitching moment (1/rev and higher)

are compared with the baseline case (all blade motions) at two span stations

(r/R=0.775 and r/R=0.965).

Figure 4.20 shows the predictions obtained by eliminating the lag degree of

freedom. There is very little change from the baseline in both normal force and

pitching moment. Therefore, it is evident that the lag degree of freedom does

not play a significant role in determining the rotor vibratory airloads.

Figure 4.21 shows the predictions obtained by eliminating the flap degree

of freedom. The normal force predictions obtained show larger magnitude and

inadequate resolution of the advancing blade lift impulse at the inboard station.

The effect of flapping motion is to increase the effective angle of attack on the

advancing side (flap down) and decrease the effective angle of attack on the

retreating side (flap up). This explains the larger magnitude of the normal force

predictions when the flap degree of freedom is absent. The up-down impulse

appears to be an effect caused by the flap degree of freedom as it is conspicuously

absent in the predictions. It is also evident that the up-down impulse plays a

key role in determining the correct lift waveform on the advancing side. The
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Figure 4.20: Effects of eliminating lag degree of freedom on vibratory airloads

(µ=0.368, CT/σ=0.0783)
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Figure 4.21: Effects of eliminating flap degree of freedom on vibratory airloads

(µ=0.368, CT/σ=0.0783)
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Figure 4.22: Effects of eliminating flap degree of freedom on vibratory airloads

(µ=0.368, CT/σ=0.0783)
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pitching moments in the outboard station do not show large differences from the

baseline. However, the pitching moments at the inboard radial station does not

show the impulsive character which is present in the baseline case.

Figure 4.22 shows the predictions obtained by eliminating the elastic torsion

degree of freedom. The rigid torsional motions are still preserved to maintain

the approximately correct magnitude of aerodynamic loads. The normal force

predictions show smaller magnitude, but the up-down impulse is still present.

This further reinforces the hypothesis that the up-down impulse is produced by

the flap degree of freedom. Pitching moment predictions show a large deterio-

ration, with the correlation being worse outboard. Therefore, it is evident that

the elastic torsion determines the phase and magnitude of the negative pitch-

ing moments towards the tip. The predictions at the inboard station shows the

large impulsive (3/rev) nature, which is the manifestation of the flap degree of

freedom. The presence of torsion appears to play an important role even at the

inboard station in determining the exact magnitude and phase of the pitching

moments.

Figure 4.23 summarizes the key observations and attempts to elucidate the

role of the flap degree of freedom in the generation of the advancing blade lift

impulse and the torsional degree of freedom in determining the correct phase

and magnitude of the normal force variation at the inboard station. The results

presented are the predicted vibratory normal force at the inboard radial station

obtained by prescribing: (a) the rigid torsional motions (collective + cyclic)

only; (b) collective + cyclic + flap (rigid and elastic); (c) collective + cyclic +

elastic torsion; and (d) All the elastic and rigid motions. Prescribing only the

rigid torsional motions (case (a)) clearly shows the phase error in the negative
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lift phase and absence of the up-down impulse. The introduction of the flap

degree of freedom shows the generation of the up-down impulse and a better

phase correlation with the flight test data. However, there is a considerably less

vibratory force amplitude compared to the flight test data in this case. The

use of elastic torsion along with the collective and cyclic, i.e., excluding the

flap degree of freedom, shows improvement in the phase correlation, but shows

larger amplitude. The base line case (case (d)), which uses all the rigid and

elastic motions shows good correlation of both phase and magnitude. It can be

inferred that the elastic deformations (both flap and torsion) are very important

for accurately capturing the vibratory load phase and magnitude.

Figure 4.24 summarizes the effects of flap and torsion degrees of freedom on

the pitching moment at the outboard radial station. The results are presented

for the same set of configurations as the previous figure. A negative pitching

moment is produced when the rigid torsional motions (collective + cyclic) are

prescribed. Inclusion of the flap degree of freedom decreases the effective angle

of attack and hence decreases the magnitude of the negative pitching moment.

The elastic torsional deformations which have a negative peak on the advancing

side decreases the angle of attack such that the pitching moment magnitude and

phase are correctly captured.

4.6 Three dimensional Effects

The 3-D flow effects are composed mainly of finiteness, yawed flow and spanwise

bending curvature. The 3-D CFD calculations are now compared with 2-D CFD

calculations. The 2-D CFD calculations were performed for a given section of the

189



0 60 120 180 240 300 360
−400

−300

−200

−100

0

100

Azimuth,      (deg)

200

300

400

N
or

m
al

 F
or

ce
 (

lb
/ft

)

Flight Test                              
(a) Collective + Cyclic                  
(b) Collective + Cyclic +Flap            
(c) Collective + Cyclic + elastic torsion
(d) All rigid and elastic deformations   

ψ

Figure 4.23: Effects of degrees of freedom on vibratory normal force (2/rev and

higher) at r/R=0.775
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Figure 4.24: Effects of degrees of freedom on vibratory pitching moment (2/rev

and higher) at r/R=0.965
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rotor blade by supplying the sectional deformations, inflow and the time varying

chordwise velocity component. This can be considered as a 2-D strip-wise CFD

calculation.

The effect of bound vortices at other sections of the blade will also be ab-

sent in such a study. A study which includes the effect of bound vortices was

also conducted. The bound vortex strengths in this case were calculated using

the circulation strengths obtained from 3-D CFD calculations. The strength of

near wake trailers are determined using this bound vortex distributions and an

induced angle of attack is calculated at the desired section for which the 2-D

computations are performed. This induced angle of attack is subtracted from

the pure 2-D angle of attack to get the effective 3-D angle of attack.

Figure 4.25 shows the results of vibratory normal force at the 77.5% span

station. The 2-D CFD results appear to be similar to the lifting line based
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analysis and shows the absence of the up down impulse and presence of the

phase error in the negative lift. The use of near wake induced angle of attack

correction did not improve the 2-D CFD results. Overall, it appears that the

three dimensional effects are the key contributors to good correlation obtained

using the 3-D CFD computations.

Figure 4.26(a) compares predicted normal force using 2-D and 3-D CFD

computations. The 2-D CFD results are similar to the lifting-line results with

the impulsive behavior missing on the advancing blade. In the previous section

the impulse was identified as a consequence of flapping motion. It can now

be concluded that it is a 3-D effect associated with the flapping motion. 2-D

CFD predictions show larger peak to peak magnitudes compared to 3-D CFD

predictions towards the tip. This is a consequence of the finiteness effects. This

effect is accounted for in the lifting-line model.

Figure 4.26(b) compares predicted pitching moments using 2-D and 3-D CFD

computations. The 2-D calculations over-predict the peak to peak moments

at 77.5% R. This is again similar to the predictions obtained from the lifting

line model. Therefore the phenomenon of over-prediction of inboard pitching

moments is related to 3-D effects. In addition, like the normal force waveform,

the 3-D pitching moments also show an impulsive behavior in the advancing

blade. Towards the tip, the 2-D pitching moments shows large initial negative

peak in the advancing side which is also present in the lifting line case. Further

investigation revealed that the 3-D shock relief effects at the tip alleviate the

initial large negative pitching moment peak. The excursion of the aerodynamic

center towards the trailing edge, when the airfoil is generating positive lift is

the reason for the large negative pitching moment. The shock relief effects limit
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this excursion of the aerodynamic center and hence alleviate the large negative

pitching moments.

Figure 4.27 elucidates the effects of shock relief. The pressure contours shown

are for a finite wing. But the relief effects are similar in the rotor environment

also. The pitching moment vs angle of attack curves show decay as one moves

towards the tip. The lower Cmα at the tip prevents the formation of large pitching

moment excursions on the advancing side. A table lookup which incorporates

the tip relief effects was generated and used in the lifting line analysis. It can

be observed that (Figure 4.28) the pitching moment prediction from the lifting

line analysis shows considerable improvement when the shock relief effects are

accounted for.

To investigate the limitations of the lifting-line model to capture the 3-D

effect associated with flapping motion, the problem is further dissected. Starting

from hover, for a progressively increasing set of forward speeds the prescribed flap

and torsion deflections are used separately. Predictions are compared between

3-D CFD, lifting-line and 2-D CFD models. Figure 4.29 shows that for the

torsion deflection both lifting-line and 3-D CFD predict similar lift. Significant

discrepancy is noted for the flap deflection. This discrepancy is independent

of forward speed and is therefore not a purely high-speed phenomenon. The

2-D CFD results agree well with the lifting-line predictions suggesting that the

discrepancy is not a 2-D nonlinear effect but a purely 3-D phenomenon.

4.6.1 Spanwise curvature

The flap bending curvature (w′′) is observed to contribute to the advancing blade

lift impulse. The bending curvature changes rapidly at the inboard stations in the
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Figure 4.26: Effects of three dimensionality in vibratory airloads (µ=0.368,

CT/σ=0.0783)
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advancing blade. This is because the blade flap response transitions from being

dominated by the 1st flap mode to being dominated by the 2nd flap mode. The

2nd flap mode has a nodal point at 78.5% R and has the largest change in slope

in this region. CFD computations were performed removing the contribution of

the 2nd flap mode from the flap response.

Figure 4.30 shows the normal force predictions with and without the effects

of 2nd flap mode. Without the effects of curvature induced by the 2nd flap

mode, 3-D CFD predictions are close to those predicted by the lifting-line model

(i.e. the advancing impulse is absent). Therefore, it is clear further that the

three dimensional effects of the 2nd flap mode ( curvature induced effects) are

the primary contributors to the advancing blade lift impulse.

The pitching moments show similar trends (Figure 4.31) in the inboard sta-

tion. The impulsive character of the pitching moment is found absent when using

the flap response without the 2nd flap mode contributions. However, towards

the tip, there is little variation between the baseline and present case. This is

true for the normal force variation also. Therefore, as expected, the curvature

effects are more prominent at the inboard stations rather than at the tip.

The spanwise curvature is accounted for in the lifting-line model as the angle

of attack distribution is determined relative to the deformed section. Therefore

the exact aerodynamic mechanism that relates the changes in spanwise curva-

ture to the impulsive aerodynamic loading is not clear at present. This issue is

currently being investigated in detail.

197



0 60 120 180 240 300 360
−400

−200

0

200

400

Azimuth,      (deg) Azimuth,      (deg)

Azimuth,      (deg) Azimuth,      (deg)

N
or

m
al

 F
or

ce
 (

lb
/ft

)
N

or
m

al
 F

or
ce

 (
lb

/ft
)

N
or

m
al

 F
or

ce
 (

lb
/ft

)
N

or
m

al
 F

or
ce

 (
lb

/ft
)

Flight Test     

Baseline        

No 2nd flap mode

0 60 120 180 240 300 360
−300

−200

−100

0

100

200

300

0 60 120 180 240 300 360
−300

−200

−100

0

100

200

300

0 60

ψ ψ

ψ ψ

120 180 240 300 360
−300

−200

−100

0

100

200

300

77.5 % R 

92 % R 96.5 % R 

67.5 % R 
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Figure 4.31: Effects of removing the 2nd flap mode contribution to the flap
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4.7 Summary of Key Observations

1. The 3-D CFD captured advancing blade impulse in lift is not a transonic or

viscous effect. This impulse is generated by 3-D aerodynamics associated

with blade flapping motion. The flap bending curvature appears to play a

key role.

2. The torsional degree of freedom is the key contributor to the low frequency

(1/rev) component of the advancing blade pitching moment at all the sta-

tions. The high frequency components (impulsive nature) are determined

by the flapping motion.

3. Near the tip, it is the 3-D transonic effects (shock relief) that play the

key role in determining the peak to peak magnitude and phase of pitching

moment. At the intermediate span stations (60% to 80%) the three di-

mensional effects associated with flap bending contribute to the phase and

magnitude of the pitching moments.
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Chapter 5

CFD coupling with UMARC

This chapter describes the coupling of the CFD based aerodynamic model de-

veloped with the advanced structural dynamics model. The validation of the

predictions from the CFD based aerodynamic model is presented in detail in

Chapter 3. Prescribed blade motions obtained by forcing the structural dy-

namic model with measured airloads was used for the validation purpose. It

was observed that the predicted vibratory airloads showed good agreement with

measured aerodynamic loads. However, the steady and 1/rev harmonics showed

large deviations from the flight test data. This was because the predicted aero-

dynamic loads did not ensure the trim state.

In this chapter the structural dynamic model and the CFD based aerody-

namic model are coupled so as to obtain a consistent blade response, trim and

airload solution. In contrast to the validation study conducted using the pre-

scribed blade motions the trim state is ensured as part of the solution in this

approach. Therefore, all the harmonics of the aerodynamic loads predicted can

be correlated with test data. Also, this approach does not require any input

from the measured aerodynamic loads. The CFD predicted aerodynamic loads

201



0 0.2 0.4 0.6 0.8 1
−0.02

−0.01

0

0.01

0.02

0.03
ψ=0

r/R

lb
/in

0 0.2 0.4 0.6 0.8 1
−0.06

−0.04

−0.02

0

0.02

0.04
ψ=90

r/R

lb
/in

0 0.2 0.4 0.6 0.8 1
−0.03

−0.02

−0.01

0

0.01

0.02
ψ=180

r/R

lb
/in

0 0.2 0.4 0.6 0.8 1
−0.04

−0.02

0

0.02

0.04

0.06
ψ=270

r/R

lb
/in

A 

B 

Figure 5.1: Causes of small 1/rev hinge moments: reversal of 1/rev normal force

sign with radius

are used as the forcing for the structural dynamic model in every iteration of the

coupling process.

5.1 Coupling Procedure

The coupling procedure used here is similar to that described in the feasibil-

ity study with a simplified structural dynamic model (Chapter 3). Briefly, the

algorithm is as follows:

1. Obtain an initial guess for control angles and blade motions using UMARC

comprehensive analysis solution. The sensitivity of the control angles to
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the vehicle trim residues (trim Jacobian) is evaluated.

2. Calculate CFD airloads using the above control angles and the blade mo-

tions.

3. Calculate blade motions using the CFD airloads (normal force, pitching

moment and chord force) as the forcing function.

4. Correct the control angles according to the rotor trim residues.

5. Check for blade response and trim convergence. If the convergence condi-

tion is not satisfied return to step 2.

The primary difference in the implementation of this algorithm from the fea-

sibility study is in the modeling of aerodynamic damping terms. The predicted
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CFD aerodynamic loads which form the forcing (RHS) have motion dependent

components which contribute to the aerodynamic damping in the system. For

the solution of the 2nd order ODE system which represents the rotor dynam-

ics, often the motion dependent components are taken to LHS. In the feasibility

study the aerodynamic damping terms were found by linearizing the motion

dependent terms in the extended lifting line theory based aerodynamic model.

For the coupling process described here the aerodynamic damping terms are not

taken to the LHS. Therefore, the entire CFD predicted aerodynamic loads are

used as the forcing.

The validation of the structural model conducted suggested that the there is

some amount of structural damping present in the rotor system (4% critical) [74].

Therefore, this is the only source of damping present in this approach.

During the initial stages of the development of the coupling procedure, it

was observed that the blade response diverged abruptly after showing mono-

tonic convergence trends. This problem was traced to large 1/rev hinge moment

imbalance caused by the rotor being slightly out of trim. In trimmed forward

flight the 1/rev aerodynamic normal forces reverse sign as one moves radially

outboard. This is because the 1/rev airloads need to be in approximate moment

balance about the hub for low steady shaft moment. Therefore, in real flight

the integrated 1/rev hinge moments are relatively small. Figure 5.1 explains

this more clearly. The moments produced by areas (A) and (B) about the hinge

line complement each other to produce a small hinge moment. Figure 5.2 shows

the 3-D plot of 1/rev normal force variations with radius and azimuth. It can

be observed that the trend of normal force distribution reversing its sign as one

moves outboard is valid at all azimuthal locations.

204



In the analysis, small variations in aerodynamic loads during the trim pro-

cedure (especially when the CFD airloads are supplied back to the structural

dynamics) produces large 1/rev hinge moments. In the absence of aerodynamic

damping these 1/rev hinge moments diverge the flap response.

The problem was rectified by using an additional loop which adjusts the con-

trol angles iteratively to produce the same hinge moment magnitude as that

produced by the first comprehensive analysis solution. This step uses the lifting

line model. The lifting line analysis was found to generate similar 1/rev normal

force prediction as compared to those from the CFD computations. Response

convergence was obtained after the introduction of this additional correction. It

is to be noted that all lift, drag and pitching moment obtained from the CFD

computations are coupled to the structural analysis in this approach. Earlier

loose coupling efforts have shown divergence of torsional response. This is evi-

dently because of the discrepancy in the pitching moment predictions in previous

works.
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Briefly, the modified algorithm is as follows.

1. Obtain an initial guess for control angles and blade motions using UMARC

comprehensive analysis solution. The sensitivity of the control angles to

the vehicle trim residues (trim Jacobian) is evaluated.

2. Use the lifting line model to iteratively add corrections to the control an-

gles (aeroelastic deformations are unchanged) to produce the same hinge

moment amplitude as that obtained in step 1.

3. Calculate CFD airloads using the above control angles and the blade mo-

tions.

4. Calculate structural deformations using the CFD airloads (normal force,

pitching moment and chord force) as the forcing function.

5. Correct the control angles according to the rotor trim residues.

6. Check for blade response and trim convergence. If the convergence condi-

tion is not satisfied return to step 2.

Note that step 2 was modified to add the additional corrections for the control

angles in this modified approach.

5.2 Convergence of the coupling procedure

The coupling procedure converged to the prescribed numerical tolerance within

8 iterations. The convergence history of the blade response at the tip (flap and

torsion) is shown in Fig 5.3. The final flap and torsion response converged to a

difference of 1% between consecutive iterations. The variation of response residue
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and the trim residue with iteration number is shown in Fig 5.4. Monotonic

convergence trend can be noted from the results. However, the rate of decay of

the trim residue is observed to decrease with the iteration number suggesting

that the residue would tend to a constant rather than zero for a larger number

of iterations.

The total normal force and pitching moment (all harmonics) at each coupling

iteration are shown in Fig 5.5. The airload variation also converges to the pre-

scribed numerical tolerance limit in 8 coupling iterations.It can be noted from

the normal force variation that the changes in control angles primarily affect the

lower harmonics (0-2/rev), while the higher harmonics remain relatively unaf-

fected. This observation is illustrate more lucidly in Figure 5.6 which shows the

variation of the vibratory normal force (3-10/rev). It is evident that there is

little variation in the higher harmonic content with changers in control angles.

Hence, it appears that good estimates of vibratory hub loads can be obtained

even with just one coupling iteration.

The pitching moments show correlation with test data in both peak to peak

magnitudes and phase. Also, pitching moments show a smaller variation with

changes in control angles compared to the normal force. The final pitching

moments obtained (after 8 iterations) capture all the trends observed in the

pitching moment waveform obtained from the measurements.

The surface pressure distributions obtained at the final iteration are corre-

lated against the available flight test data in Fig 5.7 and Fig 5.8. At the outboard

(96.5%) span station an upper surface occurs at 90 degree azimuth and a lower

surface surface occurs at 135 degrees azimuth. This phenomenon is well cap-

tured by the CFD predictions. Overall, the correlation of the predicted surface
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pressure distributions with experimental data can be considered to be fair.
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Figure 5.5: Convergence of aerodynamic loads with coupling iterations
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Figure 5.6: Vibratory normal force (3-10/rev) variation with coupling iterations
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Figure 5.7: Chordwise surface pressure variation with azimuth, 77.5%R; µ =

0.368, CT/σ = 0.0783
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Figure 5.8: Chordwise surface pressure variation with azimuth, 96.5%R; µ =

0.368, CT/σ = 0.0783
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5.3 Improvements from the Comprehensive UMARC

solution

It is important to emphasize the improvements from the comprehensive UMARC

brought by the use of three dimensional unsteady CFD based aerodynamics. The

aerodynamic loads obtained in the final converged solution is compared with the

corresponding results from the baseline UMARC in this section.

Figure 5.9 shows the total sectional normal force obtained from CFD/UMARC

based calculations compared with the flight test data and baseline UMARC so-

lutions. It is evident that the CFD calculations have definitely improved the

predictions of the phase of negative lift compared to UMARC baseline case.

Note that this problem as identified by Bousman [3] was one of the primary

motivations for development of the coupled CFD/UMARC rotor analysis.

Figure 5.10 shows the 3/rev and higher normal forces (i.e., those which con-

tribute directly to the hub loads). The CFD/UMARC coupled scheme gives good

predictions for the peak magnitudes and phase of the vibratory loads. The im-

pulsive loading in the advancing blade and phase of the negative lift are resolved

accurately. The predictions are significantly better than those obtained from

the baseline UMARC. This shows that the use of the three dimensional CFD

aerodynamics does improve the state-of-the-art of vibratory airload prediction.

Figure 5.11 shows the predicted pitching moments. The CFD/UMARC pre-

dictions accurately resolve both phase and magnitude of the pitching moments

at all radial stations. The push rod (pitch link) loads are directly related to

the pitching moment predictions. The prediction of torsion bending moments

at three spanwise stations and pitch link loads are shown in Figure 5.12. The
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CFD/UMARC coupled scheme can be seen to produce much improved predic-

tion for torsion moments at all span stations. The pitch link loads also show

much better agreement with the measured data.

Better prediction of push rod loads would facilitate design more maneuverable

and agile helicopters. Hence, the ability to obtain good estimates of section

pitching moments is important from a designers perspective. Note that the

pitching moments predicted from the baseline UMARC show large deterioration

towards the tip. This was identified to be because of the deficiencies in modeling

of 3-D effects and compressibility effects by the Weissinger-L based aerodynamic

model (Chapter 4).

Figure 5.13 shows the control angles obtained from the CFD/UMARC cou-

pled scheme and baseline UMARC compared with the flight test measurements.

The collective and cyclic controls obtained from the coupled scheme shows fair

agreement with those obtained by baseline UMARC and flight test data. How-

ever, the lateral cyclic control angle is underpredicted compared to the flight test

measurement. However, the lateral cyclic obtained from the baseline UMARC

also shows the similar trend as that obtained from the coupled scheme.

This study forms the proof-of-concept for the loose coupling approach. The

predictions of the sectional vibratory normal force and pitching moment are

significantly improved compared to the comprehensive analysis. The predicted

normal force and pitching moment after full coupling show the same trends in

correlation with measured aerodynamic loads as those obtained using prescribed

blade motions (Chapter 4). Therefore, this study also forms the validation for

both the structural and aerodynamic models used in the coupling scheme.
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Figure 5.9: Comparison of CFD predicted normal force variations with baseline

UMARC (CT/σ=0.0783, µ=0.368)
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Figure 5.10: Comparison of CFD predicted vibratory normal force (3/rev and

higher) variations with baseline UMARC (CT/σ=0.0783, µ=0.368)
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Figure 5.11: Comparison of CFD predicted pitching moment variations with

baseline UMARC (CT/σ=0.0783, µ=0.368)

219



0 60 120 180 240 300 360
−800

−600

−400

−200

0

200

Azimuth,      (deg) Azimuth,      (deg)

Azimuth,      (deg) Azimuth,      (deg)

400

T
or

si
on

 M
om

en
t (

ft−
lb

)
T

or
si

on
 M

om
en

t (
ft−

lb
)

T
or

si
on

 M
om

en
t (

ft−
lb

)
0 60 120 180 240 300 360

−600

−400

−200

0

200

400
Flight Test   
UMARC Baseline
CFD/UMARC     

0 60 120 180 240 300 360
−200

−100

0

100

200

300

400

0 60 120 180 240 300 360
−2500

−2000

−1500

−1000

−500

0

ft−
lb

30% R 70% R

90% R Pitch−Link Load

ψ ψ

ψ ψ

Figure 5.12: Predicted Torsion Moments from baseline UMARC and

CFD/UMARC coupled scheme (CT/σ=0.0783, µ=0.368)
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Figure 5.13: Control angles after 8 iterations of the loose coupling (CT/σ=0.0783,

µ=0.368)
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5.4 Low speed forward flight case

The coupling analysis is also performed for a low speed forward flight case of

the UH-60A. The flight parameters are µ=0.110 and CT/σ=0.0783 respectively.

This speed is characterized by a larger influence from the trailed vortex wake

system compared to the high speed case. Therefore, the analysis conducted here

is to test whether the coupling procedure developed is feasible for such a wake

effect dominated case also.

Figure 5.15 shows the convergence of flap response with coupling iteration

number. The flap response appears to converge faster than the high speed case.

The response converges to a difference in response of 0.5% within 5 iteraions.

The torsional response also shows a faster convergence trend (Figure 5.16). The

normal force variation with azimuth for each iteration is shown in Figure 5.17.

The rapid convergence of flap and torsional response is reflected in the conver-

gence of the normal forces also. The normal forces converge to the final periodic

steady state in only 5 coupling iterations. As observed for the high speed case,

the vibratory normal forces (3/rev and higher) show little variation with coupling

iterations for this case too (Figure 5.18). The changes in trim controls during the

coupling iterations affect the steady and 1/rev harmonics to a large extent and

the 2/rev harmonic to a moderate extent. But the vibratory harmonics (3/rev

and higher) are relatively unaffected by changes in trim.

The final converged solution obtained after CFD coupling is contrasted with

the baseline comprehensive analysis solution in Figures 5.19 and 5.21 respec-

tively. From the normal force variations one can observe that the CFD predic-

tions better capture the impulsive loadings in the advancing (60 degrees) and

retreating blade phase (250 degrees) compared to the baseline comprehensive
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analysis. Also, the baseline comprehensive analysis shows a a large steady offset

at the outboard station (99%). The CFD predictions capture the normal force

magnitude and phase accurately even at this span station.

The CFD predicted vibratory normal force (3-10/rev) variation shows good

agreement with the flight test data. The impulsive loadings at ψ=60 deg and

ψ=300 deg dominate the phase and magnitude of the vibratory normal forces.

These impulsive loadings are primarily generated by the interaction of the rotor

blade with the trailed vortex wake. Therefore, it is evident that the inclusion

of the vortex wake modeling is important for obtaining accurate vibratory load

prediction at this flight speed. The vibratory loads obtained from the baseline

comprehensive analysis also shows fair agreement with the flight test data. How-

ever, the coupled scheme gives better predictions for the phase and peak-to-peak

magnitudes of the impulsive loadings.

The pitching moment waveform at the inboard stations are characterized by

the presence high frequency components (Fig 5.18). The baseline comprehensive

analysis does not resolve any of these high frequency components. The CFD

predictions do show presence of these higher frequency components in the pitch-

ing moment waveform at the inboard stations. However, the correlation with

test data is not as good as the high speed case. However, the pitching moment

predictions from CFD towards the tip show better correlation with test data

than at the inboard stations. The baseline comprehensive analysis on the other

hand tends to overpredict the pitching moments right near the tip.

The control angles obtained by the coupled scheme is shown in Fig 5.22.

The collective control shows good agreement with the flight test data. All the

other control angles show only a fair agreement with the flight test data. The
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control angles obtained after a baseline UMARC computation also shows the

same trends in agreement as those obtained by the coupled scheme.

It should be noted that for a test case such as this there might be improve-

ments possible even in the baseline comprehensive analysis if a finer temporal

discretization was used. The higher frequencies may have been aliased to the

lower ones because of the coarse temporal discretization in the baseline compre-

hensive analysis.
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Figure 5.14: Response and trim residue variations with coupling iterations

(CT/σ=0.0783, µ=0.110)
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Figure 5.16: Variation of the torsional response at the tip with coupling iterations

(CT/σ=0.0783, µ=0.110)
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Figure 5.17: Normal force variation with coupling iterations (CT/σ=0.0783,

µ=0.110)
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Figure 5.18: Vibratory normal force (3-10/rev) variation with coupling iterations

(CT/σ=0.0783, µ=0.110)
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Figure 5.19: Comparison of CFD predicted normal force variations with baseline

UMARC (µ=0.110)
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Figure 5.20: Comparison of CFD predicted vibratory normal force (3/rev and

higher) variations with baseline UMARC (CT/σ=0.0783, µ=0.110)
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Figure 5.21: Comparison of CFD predicted pitching moment variations with

baseline UMARC (µ=0.110)
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Figure 5.22: Control angles after 8 iterations of the loose coupling (CT/σ=0.0783,

µ=0.110)
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5.5 Alternate coupling methodology

An alternate coupling methodology (termed ∆ method) is investigated for the

low speed flight case. This methodology follows that adopted by Carradona et

al. [54]. The approach is can be briefly described as follows.

The difference between the airloads computed by the CFD solver and those

predicted by the comprehensive analysis is evaluated every iteration. This differ-

ence is provided as a constant forcing to the structural model of the comprehen-

sive analysis. This is in addition to the aerodynamic loading produced by the

lifting line model internal to the comprehensive analysis. Therefore, the aerody-

namic damping terms are evaluated using the lifting line analysis and the 3-D

aerodynamics predicted by the CFD is provided as an additional correction. The

comprehensive analysis performs the trim computations in this approach in con-

trast to the previous approach where the trim computations were conducted by

an external module. As the coupling iterations progress, the differences between

the CFD computed airloads and the lifting line analysis tends to a constant at

every azimuthal station.

The major differences in this approach compared to previous approach is

the presence of aerodynamic damping. Also, the trim iterations are performed

internally by the comprehensive analysis. Therefore, as mentioned earlier, an

external function for evaluating the trim residues and changes in control angle

is not required in this case. Also, this method has the advantage that every cou-

pling iteration inherently produces a trimmed solution. The coupling approach

is illustrated schematically in Figure 5.23.

The convergence of the blade response using the alternate coupling scheme

is shown in Figures 5.24 and 5.25 respectively. The response shows a very rapid
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convergence trend compared to the previous coupling scheme for both the high

speed and low speed cases. The response converges to 0.5% of its original value in

about 3 iterations for the low speed case and 4 iterations for the high speed case.

It should be noted that for the high speed case the first harmonic component

of ∆Cl had to be underrelaxed to obtain an accurate solution. Otherwise, the

converged solution obtained showed large deviation in shaft tilt angle and blade

flapping, even when both trim and response residues are converged. Multiple

solutions are possible for the non-linear coupled trim/blade response convergence

problem. Therefore, it is possible that the phase change introduced in the blade

flapping can produce a different trim solution. It is to be noted that the phase

change in blade flapping is primarily produced by changes in the modeling of

the aerodynamic damping terms.

The normal force variations also reflect the same convergence trend as the

blade response itself (Figure 5.26). Again, the high speed case required one

more iteration compared to the low speed case for the normal force variation

to converge to within a plotting accuracy. The results also show satisfactory

agreement with the flight test data, capturing the major trends such as the

impulsive nature at the advancing and retreating azimuths.

The results obtained for the two coupling schemes are contrasted in Fig-

ures 5.27. The normal force variation shows small phase differences. This is

because of the phase difference present in the torsional elastic response. The

phase differences in the normal forces appear as a phase difference in the flap re-

sponse also. For the high speed case there is a steady difference between the flap

response obtained from the both the coupling methods. As mentioned earlier,

the differences in the modeling of aerodynamic damping in system is the major
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reason for this steady offset. The torsional response shows a much smoother

variation compared to that obtained using the previous coupling method. This

is again because of the aerodynamic damping present in this approach, while it

was absent in the first method.

The normal force and pitching moment variations show good agreement in

both the coupling methods indicating that the steady offsets in flapping is coun-

tered by the change in the shaft angle so as to produce a similar aerodynamic

environment for the blades. Overall predictions from both the methods show

good correlation with each other reinforcing the fidelity of both the coupling

approaches.

The second coupling approach is preferable for routine applications compared

to the first one for its obvious robustness qualities. The trim solution to a pre-

scribed tolerance is assured as it is performed at each step by the comprehensive

analysis in this case, compared to the requirement for simultaneous convergence

in the previous analysis. Also, this method shows faster convergence compared

to the first method. There was no aerodynamic damping present in the first

method which caused generation of some instabilities. Aerodynamic damping is

inherently present in the second method as the aerodynamic model internal to

the comprehensive analysis is active during coupling. This helps to stabilize the

response and prevent divergence. However, for the high speed case, it was noted

that the second method bifurcated to a different trim and response solution if

the first harmonic component of ∆Cl is not underrelaxed.
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Figure 5.24: Variation of the flap response at the tip with coupling iterations
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Figure 5.26: Normal force variation with coupling iterations (CT/σ=0.0783
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Figure 5.27: Comparison of results between the two coupling approaches inves-

tigated (CT/σ=0.0783)
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Chapter 6

Closure

6.1 Summary

This thesis has investigated the use of the CFD based aerodynamic modeling

for application to rotorcraft aeroelastic analysis. The primary requirement for

coupling with an aeroelastic analysis is a deforming mesh capability. This is

because the mesh has to conform to the geometry of the deformed blade. Another

equally important requirement is to account for the effects of the trailed vortex

wake because it plays an important role in determining the sectional aerodynamic

loads.

An existing CFD solver (TURNS) was modified such that it could be coupled

with comprehensive helicopter rotor analysis codes. A mesh deformation algo-

rithm was implemented to account for the aeroelastic deformations of the rotor

blade. The numerical scheme was formulated to be strictly conservative, even for

deforming meshes. A finite volume approach for calculating the space and time

metrics was constructed such that the Geometric Conservation Law (GCL) was

always satisfied. The simulations were conducted for a single rotor blade to re-

242



duce the computational complexity of the problem. The trailed vortex wake was

accounted for using the field velocity approach. The field velocity approach is a

way of including the effects of a external field via apparent grid movement. This

approach requires evaluation of the induced velocities at all the mesh points.

This is a very computationally expensive operation. Therefore, a fast hierarchi-

cal algorithm that uses adaptive space partitioning was implemented to enhance

the computational speed of the induced velocity calculations. The trailed vortex

wake geometry was computed using a free vortex wake analysis.

The CFD solver developed was validated systematically before coupling to

the structural analysis models. The validations were performed on an incremen-

tal basis, starting from validations of 2-D rotor airfoil characteristics, to complete

validations for rotors in forward flight cases. The methodologies implemented

were also validated independently. For example, the field velocity approach was

validated for a range of 2-D unsteady model problems that have exact analytical

solutions. Predictions were also compared with results obtained from alternate

methods. The performance enhancement techniques for induced velocity evalu-

ation were found to give sufficiently accurate results, with large improvements

in run times.

A high speed forward flight problem for the UH-60 helicopter was studied

next. This flight regime is characterized by moderately large aeroelastic blade

deformations. The blade deformations were obtained by prescribing measured

aerodynamic loads on to the structural model. These blade deformations were

prescribed as inputs then in to the CFD method, and sectional airloads were

predicted. The vibratory loads predicted showed good correlations with the

measured test data. There was remarkable improvement in the phase of the
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normal force at the advancing blade and peak-to-peak magnitude of the predicted

pitching moments.

The CFD solver was then coupled with a simplified structural analysis model

to study the feasibility of the so called “loose” coupling approach. In the loose

coupling approach there is an exchange of information between the CFD analysis

and structural methodologies every rotor revolution. This study was necessary

to gain understanding of the numerical robustness problems before resorting to

coupling with an advanced structural model. Studies were conducted for both

articulated and hingeless rotor systems, and also for different flight regimes.

The results indicated the success of the loose coupling approach even when both

the lift and pitching moments obtained from the CFD model were included into

the aeroelastic analysis. Previous researchers had identified torsional response

divergence problems when the pitching moments were included. However, this

was attributed to the inaccurate prediction of magnitude of the pitching moment.

The present CFD methodology provides accurate prediction for section pitching

moments, and hence did not show any response convergence problems.

The validated CFD solver was then used as a diagnostic tool to identify the

aerodynamic mechanisms that lead to helicopter rotor vibrations. The different

mechanisms investigated include the effects of yawed flow, transonic flow, viscous

flow, blade elastic deformations and three dimensional effects. Elastic torsion and

the 2nd elastic flap mode were found to be the significant contributors to the

vibratory aerodynamic load phase and magnitude in the inboard radial stations.

At the outboard radial stations, the elastic torsion alone dictated the phase

and magnitude of the vibratory aerodynamic loads. Corrections were attempted

to improve the prediction capabilities of the lifting line analysis based on the
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insights gained from this study.

Finally, the CFD methodology was coupled to an advanced structural dy-

namic model (UMARC). The problems with loose coupling methodology were

identified for the high-speed forward flight case, and methods to guarantee con-

vergence of the aerodynamic loads and the blade response were proposed. The

coupling calculations were also performed for a low speed forward flight case, i.e.

where the measured test data was available. An alternate coupling methodology

was also investigated. The convergence trends and the final results obtained

from the two coupling methodologies were also compared. Overall, the loose

coupling methodology was found to be successful for all the flight cases studied.

Also, significant improvements were noted in the prediction of both vibratory

normal force and pitching moments.

6.2 Conclusions

The major conclusion of this dissertation is that the inclusion of CFD based

aerodynamic modeling in to a rotor aeroelastic analysis framework considerably

improved the prediction of vibratory aerodynamic loads, especially the pitching

moments. Also it was demonstrated that simultaneous convergence of trim and

blade response could be obtained even when lift and pitching moments from the

CFD computations were included into the rotor aeroelastic analysis. Therefore,

this study formed the “proof of concept” for the coupling of a Navier-Stokes

based CFD analysis to a comprehensive rotor aeroelastic analysis model. Spe-

cific conclusions and observations noted during the development, validation and

application of the analysis developed are now summarized in this section.
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The accuracy of the CFD solver was investigated in Chapter 3. The pre-

dictions for rotor airfoil characteristics were compared with experimental data

(available as C81 tables) for a range of Mach numbers and angle of attacks. The

predictions obtained for the 2-D indicial response problems were compared with

the exact analytical solutions. Furthermore, the vibratory airloads predicted at

the high speed forward flight were compared with flight test data. Prescribed

blade motions were used in this case. These blade motions were obtained by forc-

ing the strcutural dynamic model with measured aerodynamic loads. Following

are the key conclusions noted in this chapter:

1. The CFD methodology showed good prediction capabilities for 2-D airfoil

characteristics in the pre-stall regime.

• Accurate prediction of both upper and lower surface pressure distri-

butions were obtained for the case (RAE2822 airfoil) studied. The

shock location on the upper surface was resolved accurately.

• 2-D validation with measurements for two rotor airfoils (SC1095 and

SC1095R8), showed very good correlation with the test data in the

pre-stall regime. However, the predictions deteriorated at higher

Mach numbers (M >0.7).

• In the post stall regime, use of the Spalart-Allmaras turbulence model

gave better predictions compared to the Baldwin-Lomax model. The

predictions in the pre-stall regime were identical for both these tur-

bulence models.

2. The field velocity approach showed good correlation with exact analyti-

cal results for the 2-D unsteady model problems studied. For the model
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problem of airfoil vortex interaction, the results obtained from the present

method (using field velocity approach), showed good agreement with those

predicted using alternate approaches.

3. The hierarchical algorithms for fast evaluation of the induced velocities

were found to give sufficiently accurate results (within 0.5% of the baseline

approach) with a large gain in the run time performance (80% less CPU

time).

4. The CFD predictions gave good predictions of vibratory airloads when the

prescribed aeroelastic deformations are used.

• The phase of the advancing blade lift was resolved accurately (within

2 degrees).

• The up-down characteristic (advancing blade lift impulse) in the nor-

mal force waveform at advancing blade azimuthal locations was cap-

tured.

• The peak-to-peak magnitudes of the pitching moment variations were

predicted accurately at all span stations. The phase of the negative

pitching moments and the impulsive nature of the wave form present

in the inboard stations were also captured.

5. The CFD analysis was tested with differing meshes and varying spatial and

temporal discretizations for the same set of blade motions. The results are

found to be fairly grid independent. All the major trends seem to be

resolved even with the coarsest mesh.
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6. Satisfying the Geometric Conservation Law (GCL) was found to be a ne-

cessity for accurately resolving the phase and magnitude of section pitching

moments. The normal forces appear to be less sensitive to an absence of

the GCL.

The aerodynamic mechanisms generating the vibratory airloads were inves-

tigated in Chapter 4. The Weissinger-L based aerodynamic analysis was found

to give inaccurate predictions for the phase of advancing blade lift, the impul-

sive loading in the advancing blade phase and the phase and magnitude of the

pitching moments compared to the CFD calculations for identical set of blade

motions. Therefore, the investigations used the CFD analysis as a diagnostic

tool to isolate the physical phenomenon that are better modeled by the CFD,

thus leading to a better correlation. The following are the major observations

noted from the study:

1. The absence of yawed flow modeling is not the primary contributor to the

inaccurate prediction of vibratory airloads by the Weissinger-L analysis.

Yawed flow effects are more prominent for a finite wing than an infinite

wing. For the infinite wing the effects of yawed flow are absent (indepen-

dence principle) until the advent of supercritical flow. For the finite wing

yawed flow effects are caused predominantly by the differences in the near

wake field. Yawed flow for finite wings causes larger changes in the final

steady state value than changes in the unsteady aerodynamic response.

2. The onset of transonic flow is not a key contributor to the advancing blade

lift impulse. However, it plays a key role in the determination of the section

pitching moments. The effects are especially apparent at the outboard span
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stations.

3. Viscous effects play a minor role in determination of the vibratory airloads.

All the major trends were captured with an inviscid simulation.

4. Blade elastic torsion plays the key role in determining the phase of the

advancing blade lift. Accurate 1/rev elastic torsional response prediction

is a requirement for accurate prediction of the 2/rev advancing blade lift.

The prediction of accurate 1/rev elastic torsion requires good predictions

of the 1/rev pitching moment.

5. Blade flapping response plays the key role in generating the advancing

blade lift impulse at the inboard blade stations. The advancing blade lift

impulse is the source of all 3/rev and higher vibratory airloads. It also

affects the phasing of the advancing blade lift. The flap degree of freedom

also contributes to the impulsive nature in the section pitching moments

at the advancing blade.

6. Furthermore, the effects of spanwise curvature because of the elastic flap-

ping (that caused by the 2nd flap mode) appear to play a key role in

determining the advancing blade lift impulse. The impulse is not captured

with a Weissinger-L blade analysis or a 2-D CFD simulation.

7. Shock relief effects contribute to the accurate prediction of vibratory pitch-

ing moment towards the tip. The lifting line analysis obtains better predic-

tions of the pitching moments when the shock relief effects are accounted

for through modified lookup tables (C81 format).

A feasibility study of the loose coupling approach was conducted and is docu-
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mented in Chapter 3. A simplified structural analysis with only flap and torsion

degrees of freedom was used for this case. The loose coupling approach was

further examined in Chapter 5, whereby the simplified structural analysis was

replaced with an advanced structural model (UMARC). The CFD calculated

airloads replaced the UMARC aerodynamic modeling completely in this case.

Therefore, the aerodynamic damping terms were not modeled by the structural

model. An alternate coupling method that allows the aerodynamic modeling

in UMARC to become active was also investigated. In this approach, the dif-

ferences between the CFD computed airloads and UMARC computed airloads

were provided as forcing to the structural model. Therefore, the aerodynamic

damping terms, which are evaluated by linearizing the aerodynamic forcing, were

retained in the structural dynamic model. Following are the conclusions noted

from this investigation:

1. The loose coupling approach was found to give simultaneous convergence

of both trim and blade response, even when the lift and pitching moment

obtained from the CFD computations were included in to the structural

analysis.

2. For the first coupling algorithm, the trim and blade response were closely

tied in the high speed forward flight regime. Small errors in the trim

solution produced large 1/rev hinge moments that caused the divergence

of the blade flapping response. Therefore, additional trim corrections that

bound the 1/rev hinge moment magnitude was required for ensuring the

convergence of the coupling process.

3. The second coupling approach (which allows the aerodynamic modeling
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in UMARC to be active) showed rapid convergence trends for the low

speed forward flight case. The final blade response and aerodynamic loads

obtained in this approach showed good agreement with those predicted by

the former coupling approach. However, for the high speed case, the 1/rev

component of the difference in normal force was underrelaxed to obtain an

accurate and converged solution.

4. In general, the lack of consistency between the CFD methods and the

aerodynamic modeling used in the comprehensive analysis, especially in

the prediction of 1/rev normal forces, is what causes divergence of the

simultaneous trim and blade response solution. The divergence manifests

itself in the flap response solution. This inconsistency is more prevalent

at the higher forward flight speed than the lower speeds. Therefore, at

the higher speed case, modifications that affect the coupling of the 1/rev

normal force (discussed in (2) and (3)) from CFD were required in both

the coupling approaches to obtain a converged solution.

6.3 Recommendations for Future Work

Although the present scheme provides good prediction of aerodynamic loads, it is

still impractical for routine rotor design. The run times for a complete coupling

is of the order of 5 days. Therefore, the first suggested work is the investigation

of the feasibility of a reduced order model that would give sufficiently accurate

vibratory load predictions. The reduced order model may be the Weissinger-L

analysis with a set of corrections based on the insights obtained from the CFD

analysis. Alternatively, one could investigate eigen mode decomposition based
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aerodynamic modeling (which has matured for fixed-wing analysis) for rotor

problems. The CFD solver developed can be used both as an investigative tool

and as the test bed for validating the predictions of reduced order models.

The validation of the methodology developed needs to be extended for a

larger range of test cases to further evaluate the robustness and accuracy of the

approach. This is the first effort in this direction. The technology needs to

be comprehensively validated before it is mature enough to be used for routine

analysis. The following improvements to CFD methodologies are suggested:

1. Investigation higher order space discretizations of the governing equation

(e.g., 5th order). The present method use a 3rd order accurate solution.

2. Improvement of modeling of the inboard boundary conditions. Also the

mesh topology can be improved to form a smoother definition to the root

blade geometry.

3. Inclusion of a refined tip vortex mesh using the chimera approach. This

would help to better estimate the exact roll up location of the tip vortex

and also its circulation strength. This would improve the coupling between

the CFD and free wake analysis. Currently, the analysis developed assumes

the wake to roll up in 30 degrees of azimuth, and, therefore neglects the

first 30 degrees of the tip vortex geometry predicted by the free vortex

wake. Also, the circulation strength of the tip vortex is determined using

bound circulation strengths calculated using the sectional aerodynamic

loads predicted by CFD.

4. Modeling of the effect of fuselage on the rotor wakes and fuselage induced

downwash at the rotor disk. In the low speed cases, the inflow at the
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rotor disc is influenced by the presence of fuselage. Therefore modeling

the fuselage effects will improve the fidelity of the approach.

5. Further validation BVI dominated conditions and coupling to acoustic

codes for estimating perceived noise levels. This problem is more chal-

lenging than the steady flight conditions investigated in this dissertation.

Therefore, such a study would help further evaluate the prediction ca-

pabilities and identify the potential modeling deficiencies in the present

approach.

6. The loose coupling approach assumes the periodicity of the aerodynamic

loads with rotor frequency. During maneuvering flight conditions the aero-

dynamic loads are often aperiodic. Therefore, a tight coupling methodol-

ogy (i.e., one which integrates the structural and aerodynamic equations

simultaneously every time step) needs to be developed for such flight con-

ditions. The present method can be used for validating the results for the

tight coupling methodology for steady flight cases.
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Appendix A

Fast Evaluation Methods For

Evaluating Vortex Induced Velocity

Fields

The aerodynamic flow field around a helicopter rotor blade in forward flight is

characterized by interacting tip vortices trailed by the rotor blades. Computa-

tional Fluid Dynamic modeling of this problem has the limitation in that the

tip vortices trailed by the rotor blades are diffused faster than their physical

diffusion rate because of the inherent numerical dissipation. So, often one needs

a high resolution grid and a higher order numerical scheme with lower numerical

dissipation to model the problem. But resorting to complete wake capturing

using high resolution grids and modeling all the rotor blades is still prohibitive

from a designers point of view. Hence, often only one rotor blade is modeled and

the effects of the trailed vortex wake from the other rotor blades are included

from a separate free wake analysis, such as using a unique methodology called

the field velocity approach [42].

In the field velocity approach the effect of the trailed wake is simulated by
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superposing a velocity field equivalent to that induced by the wake over the free

stream conditions. This is accomplished by changing grid velocities at every grid

point by an amount equal to that induced by the vortex wake. In other words,

this is a way of modeling an unsteady velocity field by apparent grid move-

ment. Numerical schemes which are strictly conservative have been developed

to facilitate efficient use of this approach [45].

The vortex wake geometry, which is usually represented as a set of vortex

filaments oriented in a particular way in space and time, is externally com-

puted from the principle of vorticity transport. The solution is performed in

a Lagrangian frame of reference. This requires that one evaluates the mutually

induced velocities of vortex filaments at each time step and convect the filaments

with these induced velocities. Therefore, this computation requires an O(N2)

calculation per time step, where N is the number of vortex filaments.

The field velocity approach requires the computation of wake induced veloc-

ities at all the grid points in the mesh. This is an O(M ∗N) computation where

M is the number of grid points and N is the number of vortex filaments. Here,

M is of the order 106 and N is of the order 103. The velocity induced at a point

by a vortex filament is given by the Biot-Savart law. So a fast methodology

for computation of the Biot-Savart law could tremendously improve the perfor-

mance of both the wake geometry computation, and the inclusion of this wake

geometry in to the CFD computations by field velocity approach. This is the

main motivation for developing and testing methodologies for fast evaluation of

Biot-Savart kernels.
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A.1 The Biot-Savart Kernel

The velocity induced by a vortex filament of length l with a circulation strength

Γ, located at �y at a point with position vector �x is given by

V (x) =
1

4π

l∫
0

�Γ(y)× (x− y)
|x− y|3dy (A.1)

For points sufficiently in the far-field, i.e. when |x − y| is large computed to l

the integral can be approximated by considering Γ(y) = Γn̂ and x− y = x− y 1
2
.

Here, n̂ is unit vector in the direction of the vortex filament and y 1
2

is the position

vector of the mid point of the vortex filament. Then the integral in the Eq. A.1

can be reduced to:

V (x) =
1

4π
�ω × (x− y)
|x− y|3 (A.2)

where �ω = (Γl)n̂.

Now, if we define ∇ = ∂
∂x

, it follows that

(x− y)
|x− y|3 = ∇ 1

|x− y|
Then, expression Eq. A.2 could be rewritten as:

�V (x) =
1

4π
�ω ×∇ 1

|x− y|
As, �ω is not a function of �x, this equation is further rewritten in a convenient

form as

�V (x) =
1

4π
∇× �ω

|x− y|
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Hence, one could define a vector potential �φ(x) analogous to that in magnetic

field [124], as �φ(x) = �ω
|x−y| and write the velocity field induced by the vortex

filaments as V (x) = ∇× �φ(x). Now, the velocity induced at �x by a group of N

vortex filaments located at �yi(i=1,N) is given by:

�V (x) =
1

4π
∇×

N∑
i=1

�ωi
|x− yi| (A.3)

From Eq A.3, it is clear that the primary task in devising a fast evaluation

methodology is to find local and far-field series expansions to the vector potential

�φ(x).

A.2 Far-field expansion of �φ(x)

The Far-field expansion (termed as S-expansion from now on) is the series expan-

sion of the far-field vector potential around a chosen basis target location(origin

for now) due to a vortex filament located in the immediate neighborhood of the

basis location.

We need to find a series expansion vector potential �φ(x) = �ω
|x−y| . Let us

define x = (r, θ, φ) and y = (ρ, α, β) in spherical coordinates. Let γ be the angle

between vectors x and y. Then from the law of cosines we have:

|x− y| = r2 + ρ2 − 2rρ cos(γ)

with

cos(γ) = cos(θ) cos(α) + sin(θ) sin(α) cos(φ− β)

Thus,
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�w

r
=

�w

r
√

1− 2ρ
r
cos(γ) + ρ2

r2

=
�w

r
√

1− 2uµ+ µ2
(A.4)

having set

µ =
ρ

r
and u = cos(γ)

For µ < 1, which is evident from the definition of S-expansion, we may

expand the inverse square root in powers of µ, resulting in the series form:

1√
1− 2uµ+ µ2

=
∞∑
n=0

Pn(u)µ
n

and, in general, Pn(u) is the Legendre polynomial of degree n. Our expression

for the vector field now takes the form:

�w

|x− y| =
( ∞∑
n=0

Pn(u)
ρn

rn+1

)
�w (A.5)

But, the formula Eq A.5, unfortunately does not meet our needs. The parameter

u depends on both the source and the target locations. We cannot use it to

expand the field due to a large number of vortex filaments. A more general

representation will require the introduction of spherical harmonics.

For this, we write the Laplace equation in spherical coordinates:

1

r2

∂

∂r

(
r2∂Φ

∂r

)
+

1

r2 sin(θ)

∂

∂θ

(
sin(θ)

∂Φ

∂θ

)
+

1

r2 sin2(θ)

∂2

∂Φ2
= 0 (A.6)

The standard solution of this equation by separation of variables results in an

expression for the field as a series, the terms of which are known as spherical

harmonics:
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Φ =
∞∑
n=0

n∑
m=−n

(
Lmn r

n +
Mm

n

rn+1

)
Y m
n (θ, φ)

The terms Y m
n (θ, φ)rn are referred to as spherical harmonics of degree n, the

terms Y m
n (θ, φ)/rn+1 are called spherical harmonics of degree −(n+ 1), and the

coefficients Lmn and Mm
n are known as the moments of the expansion.

The spherical harmonics can be expressed in terms of partial derivatives of 1/r,

but one can also use the simple expression given by the relation

Y m
n (θ, φ) =

√
(n− |m|)!
(n+ |m|)!P

|m|
n cos(θ)eimφ

omitting a normalization factor of
√

(2n+1)
4π

. The special functions Pm
n are

called associated Legendre functions and can be defined by the Rodrigues’ for-

mula.

Pm
n (x) = (−1)m(1− x2)m/2(1− x2)m/2

dm

dxm
Pn(x) (A.7)

Now, we use the addition theorem for Legendre polynomials known from the

theory of spherical harmonics, to separate the source and target locations in

Eq A.5. The addition theorem for spherical harmonics is given by [125]:

Pn(cos(γ)) =

m=n∑
m=−n

Y −m
n (α, β).Y m

n (θ, φ) (A.8)

Now, suppose that N vortex filaments of circulation strengths ωi, i = 1, .., N are

located at points yi = (ρi, αi, βi), with |ρi| < a. Then for any point x = (r, θ, φ)

with r > a, the vector potential �φ(x) is given by:

�φ(x) =
∞∑
n=0

n∑
m=−n

�Mm
n

rn+1
.Y m
n (θ, φ) (A.9)
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where

�Mm
n =

N∑
i=1

�ωi
(
ρni .Y

−m
n (αi, βi)

)
(A.10)

The expansion can be truncated to p2 (truncation number) terms by making the

limits of the outer sum finite (from n = 0 to p).

A.3 Local expansion of �φ(x)

The local expansion (termed R-expansion from now on) is the expansion of the

vector potential in the immediate neighborhood of a specified target location due

to a vortex filament located in the far-field. The derivation of such an expansion

can follow the same steps as one followed for the S-expansion. But, in this case

r < ρ, or µ should be redefined as µ = r
ρ
. Then Eq A.5 can be modified as

�r

|x− y| =
( ∞∑
n=0

Pn(u)
rn

ρn+1

)
�w (A.11)

Replacing the Legendre polynomial terms in Eq A.5 appropriately as in the

derivation of Eq A.9, one could arrive at the expression for R-expansion. Now,

the vector potential at x = (r, θ, φ) with r < a caused by N vortex filaments of

circulation strengths located inside sphere of radius DQ of radius a with center

Q = (ρ, α, β) which satisfies ρ > (c+ 1)a and c > 1 is given by:

�φ(x) =
∞∑
n=0

n∑
m=−n

�Lmn r
n.Y m

n (θ, φ) (A.12)

where

�Lmn =

N∑
i=1

�wi
Y −m
n (αi, βi)

ρn+1
(A.13)
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It is to be reiterated that the coefficients �Lmn in Eq A.12 and �Mm
n in Eq A.9 are

invariant with spatial coordinates of the evaluation point. Hence the curl of the

vector potential can be evaluated analytically by taking appropriate derivatives

of the expansion equations. In this work the authors perform it by evaluating the

derivatives in spherical coordinates and then transforming them to the Cartesian

domain.

A.4 Translation Operators

The far-field expansion (Eq. A.9 and A.10) is sufficient to construct anO(N log(N))

scheme using a divide and conquer approach [112]. But, for the construction of

an O(N) scheme one requires operators which would facilitate re-expansion of

both the far-field and local expansion over a shifted basis. These were originally

derived for scalar potentials by Greengard [93] and can be trivially extended to

the vector potential case presented above.

A.4.1 S-S translation operator

Suppose that N vortex filaments of circulation strengths �wi and position vectors

�ρi are located inside the sphere D of radius a with center at x∗1 = (ρ∗1, α
∗
1, β

∗
1),

then the potential due to these charges for points x = (r, θ, φ) is given by the

S-expansion (truncated to p2 terms)

�φ(x− x∗1) =

p∑
n=0

n∑
m=−n

�Om
n

r′n+1 .Y
m
n (θ′, φ′) (A.14)

where (r′, θ′, φ′) = x− x∗1 and r′ > |ρi − x∗1|
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This S-expansion can be reexpanded on a shifted basis x∗2 = (ρ∗2, α
∗
2, β

∗
2) with

T = x∗1 − x∗2 = (t, ν, ξ). The reexpansion is given by

�φ(x− x∗2) =

p∑
j=0

j∑
k=−j

�Mk
j

rj+1
1

.Y k
j (θ1, φ1) (A.15)

where (r1, θ1, φ1) = x− x∗2 the translation operator �Mk
j is defined as

Mk
j =

j∑
n=0

m∑
m=−n

�Ok−m
j−n .i

|k|−|m|−|k−m|.Amn .A
k−m
j−n .t

n.Y −m
n (ν, ξ)

Akj
(A.16)

with Amn defined by

Amn =
(−1)n√

(n−m)!(n+m)!
(A.17)

A.4.2 S-R translation operator

Suppose that N vortex filaments of circulation strengths �wi and position vectors

�ρi are located inside the sphere D of radius a with center at x∗1 = (ρ∗1, α
∗
1, β

∗
1),

the S-expansion of vector field about the basis x∗1 is given Eq. A.14. Then the

corresponding local expansion around a shifted basis x∗2 = (ρ∗2, α
∗
2, β

∗
2) truncated

to p2 terms, provided t = (ρ∗1 − ρ∗2) > (c+ 1)a with c > 1 is given by:

�φ(x− x∗2) =

p∑
j=0

j∑
k=−j

Lkj .Y
k
j (θ1, φ1).r

j
1 (A.18)

where (r1, θ1, φ1) = x− x∗2 the translation operator �Lkj is defined as

Lkj =

p∑
n=0

n∑
m=−n

�Om
n .i

|k−m|−|k|−|m|.Amn .A
k
j .Y

m−k
j+n (ν, ξ)

(−1)nAm−k
j+n .t

j+n+1
(A.19)

where T = x∗1 − x∗2 = (t, ν, ξ) and Asr is defined by Eq A.17
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A.4.3 R-R translation operator

Let x∗1 = (ρ∗1, α
∗
1, β

∗
1) be the origin of the local expansion (truncated to p2 terms)

�φ(x− x∗1) =

p∑
n=0

n∑
m=−n

�Om
n .Y

m
n (θ′, φ′).r′n (A.20)

where (r′, θ′, φ′) = x− x∗1 and r′ < |ρi − x∗1|
Then, the local expansion around a shifted basis x∗2 = (ρ∗2, α

∗
2, β

∗
2) is given by

�φ(x− x∗2) =

p∑
j=0

j∑
k=−j

Lkj .Y
k
j (θ1, φ1).r

j
1 (A.21)

where (r1, θ1, φ1) = x− x∗2 and the translation operator Lkj is given as:

�Lkj =

p∑
n=j

n∑
m=−n

�Om
n .i

|m|−|m−k|−|k|.Am−k
n−j .A

k
j .Y

m−k
n−j (ν, ξ).tn−j

(−1)n+j.Amn
(A.22)

where T = x∗1 − x∗2 = (t, ν, ξ) and Asr is defined by Eq A.17.

A.5 Algorithms for Fast Evaluation

There are two algorithms proposed for the fast evaluation. The first approach

follows the divide and conquer strategy. This scheme has been implemented and

tested with the field velocity approach for a realistic blade vortex interaction

case. The O(N) scheme has been tested for a sample geometry of randomly

distributed vortex and evaluation points inside a unit cube. More realistic ge-

ometries require use of adaptive FMM techniques as the limits of enclosures in

the different coordinate directions are non-equal.
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A.5.1 Divide and Conquer Scheme

The approach is summarized in Figure A.1. A box that encloses the grid is

devised (level 0). This box is recursively subdivided in to smaller boxes (finer

and finer levels). The algorithm is as follows.

Local expansion: The R-expansion of all the vortex filaments about the center

of the level 0 box due to all the vortex filaments which lie outside the limits of

the level 0 box is evaluated

Far-field expansion: The number of vortices in each box are identified and

the S-expansion for all boxes in all levels are evaluated.

For EveryGridPoint:

1. The box in the finest level that contains the current gridpoint is found.

2. The Biot-Savart kernal is evaluated for all the vortex filaments in the par-

ticular box and its nearest neighbors.

3. The velocity due to the far-field potential is evaluated using S-expansions

of boxes at coarser levels. Larger boxes are used as the distance between

the evaluation points and vortex increases. In other words, vortex filaments

are grouped together as one multipole expansion. The larger the distance,

the larger the volume that can be grouped as a single multipole expansion.

Figure A.2 shows the lift time history obtained for the BVI problem shown

in Figure A.3. Here, the vortex wake geometry was obtained from a Lagrangian

free vortex wake analysis [94] and included in the CFD solver [80] using the field

velocity approach. The grid sizes and CPU time taken for the baseline and fast

simulations are shown in Table A.1. It is evident from these results that the

algorithm presents a very efficient approach with little loss in accuracy.
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recursively subdivided

C−H mesh

R−expansions of all filaments in
this box found at the center of 
Level 0 box

Level 0 box

Figure A.1: Schematic of the divide and conquer approach
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Figure A.2: Computed lift vs azimuth for a BVI problem for the OLS rotor test

case [113]
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Figure A.3: BVI locations at µ=0.164 for the OLS rotor

Approach M N Wall clock time

Baseline 940,000 900 84h

Fast 940,000 900 12h

Table A.1: Wall clock times for Fast method compared with baseline for one

revolution of the rotor (dψ = 0.25o), M=number of mesh points, N=number of

vortex filaments
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A.5.2 Multilevel Fast Multipole Algorithm

An octree based algorithm was developed to perform the fast multipole calcu-

lations. The method implements all the analytical machinery developed in the

previous sections of Appendix A. Also calculation are performed in a multi level

hierarchical manner to further accelerate the computations. A brief description

of the algorithm is shown below:

Initialization : Choose level of refinement n ≤ log8N , the precision parameter ε,

and set truncation number (number of terms in the expansions) p

Upward Pass :

1. Form S-expansions at the center of each box at the finest level. (Eq A.10)

2. For all levels up to the coarsest, starting from the parent level of the finest

level, find the S-expansions of all boxes at that particular level by S-S

translating the S-expansions of their children (Eq A.13).

Downward Pass:

1. For all boxes in level 2 to the finest level, compute the R-expansions at the

box centers by S-R translating (Eq A.19)the S-expansions of boxes in its

interaction list. The interaction list of any box is a set of all boxes which

are children of the nearest neighbors of the parent of the present box, but

are not its own nearest neighbors(See Fig. A.4).

2. Aggregate the R-expansions of the box with expansions obtained by R-R

translating (Eq A.22) of the parent box.

3. For all the evaluation points, find the box at the finest level containing the

evaluation point. Compute direct influences of all sources in this box and
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Figure A.4: Interaction List (Greengard [93])

its immediate neighbors. Compute the R-expansion (Eq A.12) with the

center of the box as the basis. Aggregate the two potentials thus obtained

to get the full potential.

A performance comparison is conducted between the direct and Multi-level

Fast Multipole Method (MLFMM). Equal number of source and evaluation

points randomly distributed in a unit cube is chosen as input. The cpu time

taken by each approach was measured and plotted against number of sources in

Figure A.5. It can be seen that the fast multipole code breaks even with the

direct simulation at approximately N = 103. The performance of the multi-

pole code asymptotes to O(N) while that of the direct simulation asymptotes to

O(N2).

The variation of the maximum absolute error (L1 norm of error) between

the fast method and direct method is plotted against the truncation number p

in Figure A.6. It is seen that desirable accuracy can be achieved even with a

truncation number as low as p = 3.

This method is still under the implementation stage for the free vortex wake

solver. An adaptive geometrical partitioning strategy is needed in this case to

avoid redundant performance degrading computations.
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Figure A.5: CPU time comparison for the direct and fast methods for (N = M)
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Figure A.6: Variation of maximum absolute error with truncation number
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A.6 Summary

The analytic machinery required for the fast multipole method, namely the series

expansions and the translation operators for the Biot-Savart kernel, are obtained.

A divide and conquer methodology and a multi level fast multipole method are

developed and effectively implemented. The divide and conquer methodology is

validated for a realistic test problem and found to give good results.

Performance comparisons are conducted for both random and uniform source

and evaluation point distributions for the multilevel FMM algorithm. Significant

improvement in the performance is observed when the Fast multipole methods

are used. Also, use of the truncation number of p = 3 is found to give the

required accuracy. The module developed is in a form for easy integration with

any analysis requiring evaluation of vortex induced velocity fields.
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Appendix B

Computation of Cell Volumes

The cell volumes are hexahedra in shape and are in general bounded by faces

which are ruled surfaces (i.e. all the four vertices do not lie on a plane). There-

fore, an algorithm needs to be devised such that computation of the cell volume

is consistent with that of the neighboring cell. This is required to prevent the

formation of spurious gaps or overlaps when computing adjacent volumes. There

are two methods proposed, they are:

1. Evaluating the individual contribution of each bounding face to the total

volume. The contribution would be added to one volume and will be

subtracted from the adjacent volume which shares the same bounding face.

2. Splitting each bounding face in to two triangles so as to split the hexahe-

dron in to 6 tetrahedra whose volumes can be easily evaluated.

B.1 Method 1

The first method requires the mapping of the given tetrahedra to a computa-

tional domain as shown in Fig B.1. This mapping provides a iso-parametric
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Figure B.1: Mapping of a hexahedron to a unit cube

transformation which can be used to define any position vector inside the cell

volume as a convex combination of the position vectors of the vertices. Let r be

any position vector inside the volume, r is given by

r =

8∑
i=1

Hiri (B.1)

Here ri are the position vectors of the vertices andHi are trilinear interpolants

given by:

H1 = (1− ζ) ∗ (1− η) ∗ (1− ν)
H2 = ζ ∗ (1− η) ∗ (1− ν)
H3 = ζ ∗ (1− η) ∗ ν
H4 = (1− ζ) ∗ (1− η) ∗ ν
H5 = (1− ζ) ∗ η ∗ (1− ν)
H6 = ζ ∗ η ∗ (1− ν)
H7 = ζ ∗ η ∗ ν
H8 = (1− ζ) ∗ η ∗ ν

(B.2)

Now, the volume in the cartesian domain can be represented as
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V =

∫ ∫ ∫
dV (B.3)

This can be further written as

V =
1

3

∫ ∫ ∫
∇.rdV (B.4)

where r = (x, y, z) is the position vector of the small volume dV . Eq B.4

uses the identity ∇.r=3. Applying Gauss divergence theorem to Eq B.4 gives:

V = 1
3

∫ ∫
r.ndS

= 1
3

∑nfaces
i=1

∫ ∫
ri.nidS

= 1
3

∑nfaces
i=1 Si

(B.5)

Now the volume contribution Si can be evaluated as

Si =
∫ ∫

r.nidA

=
∫ 1

0

∫ 1

0
r.[∂r

∂ζ
× ∂r

∂η
]dζdη

(B.6)

Using Eq A.22 and substituting the analytical expressions for r, ∂r
∂ζ

and ∂r
∂η

one can obtain the closed form solution to the integral in Eq B.6 as

Si = 1
4

∑
ijk ri.(rj × rk)

ijk ∈ 123, 124, 134, 234
(B.7)

Here r1, r2, r3 and r4 represent the vertices of the bounding face. The

contribution Si to the volume of a particular cell is algebraically added to the

inside cell (i.e one which has the normal pointing outwards from the phase) and

subtracted for an outside cell (normal of the face pointing inwards). This process

provides a way of maintaining the consistency in evaluating volumes. Also, this
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Figure B.2: Division of a Hexahedron in to 6 tetrahedra

method is generic and can be extended to polyhedra with multiple (more than

6) bounding surfaces.

B.2 Method 2

The second method uses splitting of the hexahedron in to 6 tetrahedra (See

Fig B.2). The minimum number of tetrahedra a hexahedron can be split to

occupy the same volume is 5. But in the present case it had to be split in

to 6 tetrahedra to make the opposite faces be split in to triangles in the same

way (i.e. the diagonals have similar orientation relative to the face edges). The
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Volume 1 Volume 2

Incompatible

Figure B.3: Compatibility of opposite faces of neighboring hexahedra

opposite faces have to split in the same fashion to maintain consistency of volume

evaluation between neighboring volumes. If the diagonals on the opposite faces

are reversed, one can generate spurious gaps (See Fig B.3).

The volume of a tetrahedron with sides represented by vectors �a, �b and �c is

given by

Vi =
1

6
�a.(�b× �c) (B.8)

The volume of the hexahedron can be evaluated as the sum of the volumes

of the 6 tetrahedra it was split into. It was found that this method provides a

robust approach for computing volumes. The previous method although more

accurate and mathematically rigorous poses some robustness problems for highly

skewed tetahedra. This is because the definition of the faces by the trilinear

interpolation can cause bounding faces to intersect and create negative volumes.

Therefore, the second method is preferable for routine computations because of

its robustness.
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Appendix C

C-O mesh generation

The C-O grid generation techniques are used to generate meshes which provide

a better tip definition. A C-O mesh has stacked C-type meshes along the span

until the very tip. Near the tip the C-type meshes are folded such that they

conform to a body of revolution type geometry at the tip (Figure C.1).

The method used here uses a C-H mesh topology as input and modifies it

to a C-O mesh topology. In the C-H mesh topology the C-meshes are stacked

in spanwise direction. At the tip the solid boundary reduces to a zero thickness

(straight line) creating a bevel type geometry. Following are the definitions of

Figure C.1: C-O mesh topology
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j wrap around direction

k spanwise direction

l normal direction

jle leading edge j coordinate

jtail1 trailing edge j coordinate on bottom surface

jtail2 trailing edge j coordinate on upper surface

ktip k-plane after which the body of revolution starts

jmax final j-plane

kmax final k-plane

lmax final l-plane

the grid parameters.

C.1 Step 1

The first step is to rotate the k=ktip plane by prescribed amounts about the

chord axis. This would give initial definition of the all the k-planes with (ktip ≤
k ≤ kmax). The rotation is achieved using quarternions. Quarternions provide

the ease of rotating a given point about a chosen center of rotation around an

arbitrarily aligned axis by the specified rotation angle. They also are devoid of so

called “gimbal locks” which are present when using conventional tranformation

matrices. A rotation about unit vector n̂ by an angle θ can be computed using

the quarternion :

q = (s, v) = (cos(
1

2
θ), n̂sin(

1

2
θ)) (C.1)
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The components of this quarternion are called Euler parameters. After rota-

tion a point p = (0, p) is then given by

p′ = qpq−1 = qpq̄ (C.2)

Here the formula follows the multiplication and conjugation identities of the

quarternion formulation [126].

The vector n̂ chosen is the unit vector in the direction of the chord line at the

k=ktip plane. The centers of rotation for any point is found as the average of

the (j,ktip,l) and (jmax-j+1,ktip,l) position vectors (Figure C.2). The following

pseudo code describes the algorithm.

Algorithm Rotate:

1: stretching factor← λ

2: number of planes(n)← kmax− ktip
3: determine dθ (using dθ ∗ (1 + λ.. + λn) = π/2)

4: for all �r(j, k, l), j ∈ [1, jmax], k ∈ [ktip + 1, kmax], l ∈ [1, lmax]) do

5:

6: if j �= jle then

7: θ(k) = dθ ∗∑k
i=1 λ

i−1

8: �r(j, k, l)← rotate(�r(j, ktip, l), n̂, θ(k), �rc)

9: else

10: �r(j, k, l)← �r(j, ktip, l)

11: end if

12: end for

The mesh topology obtained after step 1 is shown in Figure C.3. There

are singularities in this mesh topologies as the j=jle line and the l=1 line are
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Figure C.2: Rotation vector and point of rotaion

the same for all k-planes with k ≤ ktip. Such a mesh would cause numerical

problems in the solver because of the presence of zero volumes. Step 2 looks

in to rectifying this problem by redistributing points at the leading and trailing

edges.

C.2 Step 2

Fixing the trailing edge: The points are redistributed such that on and

k=constant (ktip ≤ k ≤ kmax) and l=1 line, all the points in the wrap around

direction located behind (in the streamwise direction) the point of maximum

thickness, is given the y-coordinate value as that of the point of maximum thick-

ness.

Algortihm Trailing:
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Figure C.3: Mesh topology obtained after Step 1
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1: for all k ∈ [ktip + 1, kmax] do

2: determine jt (point of maximum thickness)

3: ymax← y(jt, k, 1)

4: for all �r(j, k, l)j ∈ [1, jt − 1] ∪ [jmax− jt + 2, jmax], l ∈ [1, lmax] do

5: y(j, k, l)← y(j, k, l) + (ymax− y(j, k, 1))

6: end for

7: end for

Fixing the leading edge: The leading edge singularity is removed sim-

ply by redistributing the points between the k=ktip and k=kmax planes. The

following pseudocode explains the algrorithm.

Algorithm Leading:

1: for all �r(j, k, l), j = jle, k ∈ [ktip + 1, kmax], l ∈ [1, lmax] do

2: �r(j, k, l)← interp(�r(jle, ktip, l), �r(jle− 1, kmax, l), k)

3: end for

The resulting mesh obtained is shown in Figure C.4. It can be observed that

the singularities at the leading and trailing edge are removed.

C.3 Summary

An algorithm for modifying a given C-H mesh topology to a C-O mesh topology

is devised. The mesh obtained has a smoother tip definition and is devoid of any

geometrical singularities. The CFD methods can incorporate the mesh obtained

without any numerical robustness problems.
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Figure C.4: Mesh topology obtained after the leading and trailing edge redistri-

butions

282



Appendix D

Validation of the Field Velocity

Approach

This appendix presents the results of the computational investigations conducted

for two indicial response problems, namely (1) Step change in angle of attack

and (2) Interaction with a traveling vertical gust. The field velocity approach

(Section 3.13) is used to model the indicial changes in flow conditions.

D.1 Step change in angle of attack

Computations are performed to obtain responses of various airfoils to a step

change in angle of attack using the field velocity approach. The indicial response

is a combination of noncirculatory (wave propagation) and circulatory effects.

For compressible flow, the noncirculatory component exponentially decays and

the circulatory component grows to a final asymptotic value. A schematic of

the problem is illustrated in Fig D.1(a). Figure D.1(b) shows the lift and pitch-

ing moment responses obtained from the CFD computations. The responses

obtained from the CFD computations clearly show the physical trend of the
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compressible flow. It is possible to obtain closed form analytical solutions to

both the normal force and pitching moment responses for small times for a flat

plate in linearized compressible flow [102]. The expressions of normal force and

pitching moment coefficients are given by:

Cn(s)

α
=

4

M

[
1− 1−M

2M
s

]
(D.1)

Cm(s)
α

= 1
M

[
1− 1−M

2M
s+
(
1− M

2

)
s2

2M

]
0 ≤ s ≤ 2M

1+M

(D.2)

In these equations the quantity s represents the non-dimensional time, which

is defined as the distance traveled by the airfoil in semi-chords. Figures D.2(a)

and D.2(b) shows the comparison of the CFD results with the exact analyti-

cal solution for 4 different airfoils for the small non-dimensional times (i.e. in

the region the exact solution is valid). The results show good correlation with

the exact solution for both lift and pitching moment. The correlation seems to

degrade slightly with increasing thickness and camber. The NACA0006 airfoil,

which is the closest to a flat plate approximation, shows excellent correlation.

However, the NACA0015 airfoil shows the largest differences with the exact lin-

ear solution, especially at the higher Mach numbers where the flow becomes

non-linear.

A more detailed description and results of this approach for extracting indicial

responses to build both linear and non-linear kernels for reduced order aerody-

namics models are documented in previous research efforts [43, 104, 106].
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(a) Illustration of step change in angle of attack
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(b) Normal force and pitching moment responses for SC1095 airfoil (M=0.5)

Figure D.1: Response to step change in angle of attack using field velocity ap-

proach
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Figure D.2: Correlation between computed and exact analytical results for step

change in angle of attack
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D.2 Interaction of an airfoil with a traveling

gust

The next unsteady flow problem studied is the aerodynamic response of an airfoil

penetrating through a traveling vertical gust. The schematic of the problem is

illustrated in Fig D.3(a). The parameter that quantifies the relative convection

speed of the gust is termed the gust speed ratio (λ = V
V+Vg

, V=free stream

velocity, Vg=gust convection speed).

The exact analytical solution for the response to a traveling vertical gust

in compressible flow for small periods of time 0 ≤ s ≤ 2M
1+M

was developed

using Evvard’s [107] theorem and verified against Leishman’s [108] results from

the reverse flow theorem by Singh [109]. The exact analytical solutions are as

follows:

Cl(s) =
2s√
Mλ3

[
λ

λ+ (1− λ)M

] 1
2

(D.3)

Cmle(s) =
−s2

4
√
M3λ2

[√
2M + (1−M)λ

λ+ (1− λ)M

]
(D.4)

Figure D.3(b) shows the numerical prediction of the aerodynamic responses

of a NACA 0012 airfoil to a traveling vertical gust. The field velocity approach

which was described earlier is used to implement the unsteady flow conditions

for predicting the gust response. The effect of the gust is simulated by suitably

modifying the field velocities in the vertical direction. At any instant of time the

gust front can be calculated from the gust speed ratio. Thus, the field velocity

values at all grid points behind the gust front are modified to be equal to the

gust magnitude to simulate a propagating gust.
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Figure D.3: Response to a traveling vertical gust using field velocity approach

The initial flow conditions for the unsteady simulation is generated by obtain-

ing a steady state flow solution around the airfoil. Once the initial steady state

is obtained, the gust is initiated 15 chords upstream of the airfoil and made to

convect at the desired speed representing the gust speed ratio (Vg = V (λ−1−1)).

The instant of time s = 0 corresponds to the instant where the gust front meets

the airfoil leading edge.

For moving gusts the rate of increase of the normal force is larger for the faster

moving gusts. This is because of the acceleration effects associated with the
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Figure D.4: Correlation between computed and exact analytical results for in-

teraction of an airfoil with a traveling gust (M=0.6)
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impulsive change in the velocity field over a portion of the airfoil. This addi-

tional lift, which is the non-circulatory lift, decays rapidly and thereafter the

total circulatory lift builds up slowly towards the steady state. The steady state

magnitude is the same for all cases and is determined by the effective angle of

attack caused by the vertical gust velocity. In the limiting case of infinite gust

propagation speeds, the lift response corresponds to an indicial change in the

angle of attack of equivalent magnitude (Wagner [96] problem). The case of zero

gust speed or penetration of the airfoil in to a stationary vertical gust is called

the Küssner [110] problem.

The comparison of numerical solutions for a NACA 0012 and exact solutions for

a flat plate for four different gust speeds are presented in Figures D.4(a) and

D.4(b). The numerical solutions show excellent correlation with the exact an-

alytical results especially for the stationary gust case (λ=1); for the faster and

slower convecting gust cases there are some deviations from the exact solution.

Lower order aerodynamic models can be constructed for this problem by extract-

ing the indicial responses for aerodynamic load time history obtained from the

CFD calculations [43, 45].
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