
ABSTRACT

Title of Dissertation: Fast Timescale Traffic Engineering in MPLS Networks

Surapich Phuvoravan, Doctor of Philosophy, 2004

Dissertation directed by: Professor Mark A. Shayman

Department of Electrical and Computer Engineering

Traffic engineering can be used to solve congestion through efficient traffic

distribution. The network with differentiated classes of service is the main focus in this

work. In general, providers offer QoS guaranteed in high priority class by serving the

packets from that class before the packets from low-priority class. This strategy will

work as long as the high priority traffic share is low (5-10%). We are interested in

increasing that high priority traffic share. However, the large share of high priority

class could lead to a QoS-violation risk. Moreover, it could decrease the goodput of the

low-priority traffic as a result of its elastic nature, for example, from the congestion

control in TCP. We present two works based on the fast timescale traffic engineering.

The first work focuses on the flow migration among the parallel working paths. The

potential usefulness of fast timescale migration control is explored with packet-level

simulation and experimental testbed. The migration can improve the QoS of real-time

traffic by shifting some of the flows out of the congested links. In the design of the

migration controller, we will also consider the interaction between the controller and

the TCP congestion control mechanism. We formulate the partially observed Markov

Decision Process (MDP) problem and solve it using the dynamic programming

technique. To cope with the well-known curse of dimensionality, we also present

sub-optimal controllers, which scale well with our large network. Our second work

tried to exploit the unused backup path for QoS improvement. Many network providers

already setup a backup path for each working path. This backup path will protect the

working path upon its failure. Without any failures, the providers fill the backup path

with lower-priority traffic to increase their network’s throughput. In general, the

backup paths will not be used for high priority traffic in normal condition even with the

congestion situation of the high priority traffic. We propose the scheme to duplicate the

high priority packets to backup path in the congestion condition. With a small

throughput degradation of low-priority traffic, we could gain significant QoS

improvement of high priority class.

Fast Timescale Traffic Engineering in MPLS Networks

by

Surapich Phuvoravan

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2004

Advisory Committee:

Professor Mark A. Shayman, Chairman/Advisor
Assistant Professor Bobby Bhattacharjee
Assistant Professor Richard J. La
Professor K. J. Ray Liu
Professor A. Udaya Shankar

c
�

Copyright by

Surapich Phuvoravan

2004

DEDICATION

To my family

ii

ACKNOWLEDGEMENTS

While this dissertation bears my name, it is equally the product of many people over

many years who have challenged me, supported my work, inspired me, and made great

sacrifices toward this final goal.

Without the commitment of my advisor and mentor, Dr. Mark Shayman, this

dissertation would never have been started or completed. He strove to develop my

research logic and my ability to analyze data critically. He was and is always willing to

take time to meet me, discuss my research process and my frustration, and carefully

read and comment on my draft. If I earned the privileged title “doctor of philosophy”,

it is not because I have completed the designated requirement, but because I was

fortunate to have worked with Dr. Shayman.

I want to thank all of the committee for shaping my ideas. I am grateful to have

worked with Dr. Mark Shayman, Dr. Richard La, Dr. Samrat Bhattacharjee and Dr.

Steve Marcus. Each member brought strength and interest to the project that led to a

more interesting final dissertation. They also have made thoughtful comments for

accuracy and clarity. I am very grateful to Dr. K. J. Ray Liu and Dr. Udaya Shankar for

taking time to be on my dissertation committee. I would like to thank Robert Jaeger,

who tutored me during my early research life.

I want to thank my family and friends, who constantly support me. I have relied on

extraordinary personal and research advice from Dr. Kritchalach Thitikamol, who has

iii

become my big brother, Dr. Apinun Tunpan and Dr. Songrit Maneewongvatana. I also

would like to thank Lisa Mangkonkarn (N’Lisa) and Paweena Chittiwuttinon (N’Pui)

for checking the correctness of my dissertation. Special thanks to Tuna Guven, my

great friend and colleague, for wonder personal and research discussion. I would like to

acknowledge the support and encouragement of my little sister and my little brother,

Navaporn and Kitjapat Phuvoravan. They are always a special inspiration for me. I also

want to give heartfelt thank to special one, Chalermkwan Chantarat, who support and

believe in me.

My parents, Somboon and Nuchara Phuvoravan, have been my mind and my

inspiration during every minute of my studies. They helped me get around seemingly

impossible blockages. They knew from the beginning that I would reach this goal, even

when I did not believe it myself. Dad and Mom, I love you.

iv

TABLE OF CONTENTS

LIST OF TABLES viii

LIST OF FIGURES ix

1 Introduction 1
1.1 Motivation and Goal . 1
1.2 Background: Differentiated Service and Link Model 4
1.3 Contributions . 6
1.4 Thesis Organization . 9

2 Traffic Model 11
2.1 Video Traffic Model . 11
2.2 Voice Traffic Model . 15
2.3 TCP Traffic Model . 16

2.3.1 TCP Model for a Service Rate with Small Fluctuation 19
2.3.2 TCP Model for a Service Rate with Large Fluctuation 25

3 Reactive Control with Flow Migration. (in High Priority Network) 38
3.1 Control Algorithm . 39
3.2 Simulator Implementation . 41
3.3 Experiment setup . 42
3.4 Experimental result . 44
3.5 Conclusion . 46

4 Proactive Control with Flow Migration 48
4.1 Related Works . 50
4.2 System Model . 51
4.3 MDP State Formulation and Notation 53
4.4 Optimal Policy and Its Difficulty . 58
4.5 State Reduction . 60

v

5 Subobtimal Policy: Flow Migration Problem 68
5.1 Linear System with Quadratic Cost Approach 69

5.1.1 Linear System with Quadratic Cost Formulation 70
5.1.2 Solution to Linear System with Quadratic Cost Formulation . . 76
5.1.3 Example of a Two LSP Case 77
5.1.4 Separation Theorem for Linear System with Quadratic Cost . . 79
5.1.5 Randomized Rounding . 82
5.1.6 Conclusion on Linear System with Quadratic Cost Approach . . 84

5.2 Simulated Lookahead Approach . 85
5.2.1 Monte-Carlo Lookahead . 88
5.2.2 Iterative Lookahead . 88
5.2.3 Calculation of ����������	 and
������������	 92

5.3 Policy Evaluation and Comparison . 95
5.3.1 Network Topology and Common Parameters 96
5.3.2 Using TD(0) . 98
5.3.3 Using Packet-Level Simulation 110

5.4 Conclusion . 119

6 Congestion Control with QoS guaranteed Backup Path (Duplication Problem) 122
6.1 Related Work . 124
6.2 System model . 125
6.3 MDP State Formulation and Notation 128
6.4 Optimal Policy . 134
6.5 State Reduction . 135

6.5.1 Voice State Reduction . 136
6.5.2 Control History State Reduction 143
6.5.3 Conclusion on State Reduction 158

7 Subobtimal Policy: Duplication Problem 159
7.1 Without TCP Consideration Approach 160
7.2 Simulated Lookahead Approach . 169

7.2.1 Monte-Carlo Lookahead . 171
7.2.2 Iterative Lookahead . 171

7.3 Policy Evaluation and Comparison . 173
7.3.1 Network Topology and Common Parameters 174
7.3.2 Using TD(0) . 175
7.3.3 Using Packet-Level Simulation 184

7.4 Conclusion . 192

8 Conclusion and Future Direction 195
8.1 Summary of the Dissertation . 195
8.2 Future Direction . 196

vi

Bibliography 201

vii

LIST OF TABLES

2.1 Different sets of TCP flows in the validation of TCP model for TCP
service rate with small fluctuation. 24

2.2 Different sets of TCP flows in the validation of TCP model for TCP
service rate with large fluctuation. 32

5.1 Controllers with their associated policies. 97
5.2 Example of state aggregation in our state space 102

7.1 Controllers and their associated policies. 175

viii

LIST OF FIGURES

1.1 The link model with two classes of traffic. 5

2.1 State transition diagram for birth-death MMF model 13
2.2 network topology in the validation of TCP model for TCP service rate

with small fluctuation. 22
2.3 VDO traffic characteristic used in the validation of TCP model for TCP

service rate with small fluctuation. 23
2.4 The relationship of TCP goodput and the number of reduction, ��� . . . 25
2.5 The relationship of TCP goodput and the size of reduction, ��� 26
2.6 The TCP service rate pattern that leads to the second time-out 29
2.7 The TCP service rate pattern that leads to third time-out 30
2.8 network topology in the validation of TCP model for TCP service rate

with large fluctuation. 31
2.9 Voice traffic characteristic used in Second-ITO validation: TCP model

for TCP service rate with large fluctuation. 33
2.10 Percentage of TCP connection setup that goes to Second ITO 34
2.11 Percentage of TCP connection setup that goes to first ITO 35
2.12 Voice traffic characteristic used in Third-ITO validation: TCP model for

TCP service rate with large fluctuation. 36
2.13 Percentage of TCP connection setup that goes to Third ITO 37

3.1 Notations used in migration algorithm and their relations. 41
3.2 Network Topology. 42
3.3 The effect of burstiness (step size) of the cross traffic to the controller

performance. 45
3.4 The drop rate at different average voice load using MIG (100% threshold

and 2% safety factor), LLR and BSplit controllers. 46

4.1 The single ingress-egress pair network. 52

5.1 The illustration of simulated lookahead algorithms 89
5.2 The network topology for the performance evaluation 98
5.3 The division of state space with value of ��� 102

ix

5.4 Using TD(0) to compare the means of value function. 105
5.5 Relationship of the mean of value function and the amount of voice

traffic using TD(0). 106
5.6 Relationship of the mean of value function and the burstiness of video

traffic using TD(0). 109
5.7 Using NS to compare the performance measurements. 113
5.8 Relationship of the performance measurements and the amount of voice

traffic using NS-2. 116
5.9 Relationship of the total voice drops and the amount of voice traffic(zoomed)

using NS-2. 117
5.10 Relationship of the performance measurements and the video traffic’s

burstiness using NS-2. 118

6.1 The main LSP with its backup LSP. 126

7.1 Using TD(0) to compare the means of the value functions. 179
7.2 Using TD(0) to compare the means of the value functions. 180
7.3 Relationship of the mean of the value function and the burstiness of the

video traffic using TD(0). 181
7.4 Relationship of the mean of value function and the voice traffic amount

using TD(0). 182
7.5 Using NS to compare the performance measurements. 187
7.6 Relationship of the performance measurements and the voice traffic amount

using NS-2. 190
7.7 Relationship of the performance measurements and the video traffic’s

burstiness using NS-2. 191

x

Chapter 1

Introduction

1.1 Motivation and Goal

It has been observed that the efficiency and cost structure of the service provider

business are affected by how efficiently a service provider utilizes its infrastructure

and, specifically, the available bandwidth[7]. The provider should be able to manage

the network in such a way to avoid causing some parts of the network to be

over-utilized while the other parts are under-utilized. This traffic engineering helps

service providers to gain an advantage over their competitors. This work concentrates

on dynamic traffic engineering in a provider domain that implements Multiprotocol

Label Switching (MPLS). In a MPLS network, a short fixed length, locally significant

label is used as an identifier to a stream. The IP packets can be routed based on the

label. A router, which supports MPLS, is known as a Label Switching Router (LSR).

Tunnels are set up between ingress and egress LSRs. Tunnels, which are called Label

Switched Paths (LSPs), can be explicitly routed to satisfy traffic engineering objectives.

Multiple LSPs can be established for given ingress-egress pairs. If desired, a

bandwidth reservation can be associated with an LSP; the associated bandwidth is

referred to as the provisioned bandwidth. Nearly all major providers have either

1

deployed MPLS or are planning to do so in the future.

There is an approach to do traffic engineering in a MPLS network based on the

collected statistics of the network, for example, past day traffic demands. The so-called

traffic matrix can be estimated and constructed from the collected statistics. The

off-line optimization uses the traffic matrix to compute a globally optimal static set of

provisioned LSPs. Algorithms for the optimization are based on both linear and

nonlinear programming[3]. If the traffic matrix is a time varying function of the

time-of-day, the several sets of tunnel configurations can be computed and used for

different periods during the day. A very different approach is proposed in [20]. No

prior estimates of traffic are needed in this approach. LSPs are constructed for newly

arriving traffic demands in such a way that minimum interference to the unknown

future demand is achieved. The combination of these two approaches is in [37]. The

estimated traffic demands form the multi-community flow problem, which can be

solved numerically. The precomputed solution is used as the guideline to construct

LSPs upon the arrival of demand.

Unless the network is significantly overprovisioned, a static configuration of LSPs

may not be able to provide for variations of traffic load about the estimates in the traffic

matrix. This suggests the need for a fast timescale control. Moreover, this fast

timescale controller can be built on top of any static off-line optimization, which is

more attractive. From the above motivation, we will focus on fast timescale traffic

engineering in this dissertation.

Our fast timescale traffic engineering is divided into two different works. Our two

works use different control mechanisms, which can be designed independently.

However, they can be implemented together to let us better utilize the existing network

resources. The first work uses the flow migration as a mechanism to do fast timescale

2

traffic engineering. In this work, we focus on a network that already has a provisioned

set of parallel LSPs between the ingress-egress node pair. As a result, a flow migration

mechanism can exploit these parallel structure by freely moving flows among these

paths. In the dissertation, we will start exploring the usefulness of the migration

mechanism in high priority traffic network. Then, we will focus on the network with

two different classes of service, which are the high priority traffic class and the low

priority traffic class.1 We will design a migration mechanism to help increasing the

QoS in high priority traffic without compromising the goodput of low priority traffic.

As a result, the network can accept more traffic while keeping the same QoS level. We

will formulate the design problem as the Markov decision process and use the dynamic

programming technique to obtain a good migration strategy. Note that the control

information might be obsolete from the relative long delay (compared to a fast

timescale of the problem). Hence, there is also a need to include this long delay into

our formulation.

The second work uses a duplication mechanism to do fast timescale traffic

engineering. In this work we focus on the MPLS network with a QoS guaranteed

backup path. The backup path is provisioned to increase the reliability in the case of

failures in the main active path. This backup path is typically unused by high priority

traffic when there are no failures. Instead, it is normally filled with low priority traffic.

Our goal is to use this backup path in the congestion condition of high priority traffic,

even though there are no failures. We use a control mechanism, in which we call a

duplication mechanism to exploit this backup path. In the duplication mechanism, we

duplicate high priority packets and then send them over to both the main active path

and the backup path during the periods of congestion. The duplication mechanism can

1We will talk about these two classes in detail with the link model in Section 1.2.

3

improve the QoS of high priority traffic while it degrades a throughput of low priority

traffic. We will use the dynamic programming technique to obtain a good duplication

strategy, which determines when we should duplicate packets. The strategy should

perform a trade-off so that it provides a good QoS for high priority traffic and gives an

adequate low priority throughput.

1.2 Background: Differentiated Service and Link Model

For the entire dissertation, we divide traffic into two classes: one class for normal

internet traffic and the other class for real-time traffic. We can describe these two

classes based on a Differentiated Service Model as follows:

The Expedited Forwarding Class (EF class) is composed of flows from real-time ap-

plications. This class can also be described as a delay and loss-sensitive class.

We also call this class a high priority traffic class, which will be mentioned inter-

changeably with the EF class.

The Best Effort Class (BE class) is the service class that contains normal Internet flows.

The recent study showed that 90% of current Internet traffic uses TCP as a trans-

port protocol to adjust the transmission rate. Hence we assume that traffic in this

class has the ability to adjust the transmission rate according to available resources

of the network. We also call this class a low priority traffic class, which will be

mentioned interchangeably with the BE class.

To get better service to the EF class, we use the link model as shown in Figure 1.1.

There are two mechanisms in this link model to handle packets. The first mechanism is

a classifier. The classifier will send an incoming packet to the queue associated with

4

Figure 1.1: The link model with two classes of traffic.

the class of that packet. The second mechanism is a scheduler. The scheduler

determines the order of packet transmission. We use the scheduler that always chooses

packets in the EF queue before the packets in the BE queue. In other words, the packets

from the BE class will not be transmitted unless there are no packets from the EF class

waiting in the queue.

With this link mechanism, it is certain that drops and delays of the EF classes are

always less than those of the BE class. If an amount of the real-time traffic is always

less than a link capacity, the drops of the EF classes can be approximately zero and the

delay of it could always be fixed. These conditions are perfect for voice (or video)

decoders to replay the good voice (or video) quality at destination. However, there are

two drawbacks with this link model. First, there is a chance that real-time traffic cannot

meet its QoS requirement even in a carefully designed network. The chance comes

from the fact that an amount of packets at any given time has very high variation. At

some period of time, the amount of packets is much greater than the amount that link

can support. Hence the drops will occur. It leads to the QoS degradation. Second, the

5

throughput of the BE class can be extremely low even though there are some available

resources left. With our link model, the drops of the BE class now depend on the

amount of packets in the EF classes. The high variation of packets in EF class could

make drops unpredictable. These unpredictable drops can make the TCP protocol

behave adversely and response ineffectively to the available resource of the network.

Note that the TCP protocol of traffic in the BE class uses drops to adjust the

transmission rate.

We can see from our link mechanism that the low priority traffic only gets a link

bandwidth of only what is left over from the high priority traffic. Hence, we will call

that available bandwidth for the BE class as the TCP service rate, which we will use

interchangeably throughout the dissertation. The intuition behind the name, “TCP

service rate”, can be described by imagining our network having only one class of

service (i.e., every link treats all packets the same), and the TCP traffic is the only

traffic type there. However, the link capacity or link service rate can fluctuate over

time. That link service rate originates the name, TCP service rate. It is simply the

service rate that TCP packets will be served in the link.

1.3 Contributions

This dissertation makes the following original contributions:

� We introduce a fast timescale control in a heterogeneous network with two classes

of service. We focus on a timescale less than 1 second and possibly on the order

of 50 ms.

� We develop a control mechanism that manipulates high priority traffic. The main

goal of our control is its QoS’s preservation. At the same time, we also consider

6

the effect of the control to low priority traffic and then incorporate that effect in

the design of our control mechanism. By considering both issues at the same

time, we can better utilize the network and satisfy both the network provider’s

need and customer’s requirement. Our empirical study shows a clear advantage

of the fast timescale traffic engineering, especially when we do traffic engineering

intelligently. Moreover, it points out the advantage of having a traffic prediction by

reacting in accordance to the prediction. However, this advantage greatly depends

on the accuracy of the traffic model in both the voice and video traffic.

Migration Control

� We provide a first step towards a fast timescale migration-based control. This

migration-based traffic engineering will move high priority traffic between paral-

lel paths to preserve the QoS of that traffic.

� We develop three controllers for a fast timescale flow migration. These controllers

are the LQ, MONTE and IT controllers. The LQ controller uses Linear System

with Quadratic Cost (LQ) approach to gain a closed-form approximated solution.

This closed-form solution simplifies online calculation and scales well with large

state space in our migration problem. Both the MONTE and IT controllers are

based on limited lookahead algorithm, and they use a value function from the LQ

approach as an approximated value function for the limited lookahead algorithm.

To be able to implement online, the MONT controller uses the Monte-Carlo sim-

ulation to get an expectation in the limited lookahead algorithm. The IT controller

uses the analytical function from the LQ approach in addition to the Monte-Carlo

simulation to better estimate the expectation. Hence, the IT controller does not

require a large number of simulation samples. As a result, it is well suited for the

7

fast timescale control, which has only a small processing time and resources in a

sample simulation.

� We compare the performance of the designed controllers using both Temperal-

Difference (TD) learning and packet-level simulation. We compare them with

the other two extreme controllers, which are the NoMig controller and the BAL

controller. The NoMig controller is an extreme controller in such a way that we

do not have any fast timescale migration control. On the other hand, the BAL

controller uses a large amount of migration to keep the network load balanced at

all time.

� Our empirical study demonstrates the superiority of both the LQ and IT controllers

over the case without migration control, especially in the bursty network environ-

ment. Moreover, they yield a greater improvement over the case without migration

when the traffic amount is high but not overloaded.

Duplication Control

� To the best of our knowledge, we present the first work that exploits backup paths

for congestion control. We explore fast timescale duplication based traffic en-

gineering for this congestion control and the improvement of high priority traffic

QoS. This fast timescale control will duplicate high priority packets and send them

over both main path and backup to increase QoS.

� We develop three controllers for fast timescale duplication mechanism, which are

the NoTCP, MONT and IT controllers. The NoTCP controller is based on Cer-

tainty Equivalence Control (CEC) approach. The approximation from the CEC

control itself and the ignorance of the TCP congestion control interaction drive

8

the NoTCP approach away from the optimal solution. However, we gain a closed-

form solution that simplifies online calculation and, in turn, scales well with large

state space in the duplication problem. Both the MONT and IT controllers use the

same concept as the limited lookahead based controllers in the migration problem.

However, we use the value function from the NoTCP approach in the lookahead

algorithm, instead of that from the LQ approach.

� We compare the performance of the designed controllers using both TD learn-

ing and packet-level simulation. We compare them with the other two extreme

controllers, the NoDup controller and AllDup controller. The NoDup controller

uses an extreme approach that does not send any duplicated packets. On the other

hand, the AllDup uses another extreme approach that sends duplicated packets all

the time.

� Our empirical study demonstrates the superiority of all intelligent duplication con-

trollers (the NoTCP, MONTE, and IT approaches) over the case without any du-

plication control, especially in a bursty network environment. Moreover, they

yield a greater improvement over the case without duplication when the traffic

amount is high.

1.4 Thesis Organization

This dissertation is organized as follows: We begin with describing the various traffic

models in Chapter 2. Then, we will present two works based on the fast timescale

traffic engineering. We present the first work, which focuses on the migration

mechanism among the parallel working path, in Chapter 3, 4, and 5. In Chapter 3, we

explore the potential usefulness of fast timescale migration control in the network with

9

only high priority traffic. Subsequently, we extend our focus to a more realistic

network, which is composed of high priority and low priority traffic together in Chapter

4. In this chapter, we also formulate the dynamic programming problem and then

provide a state reduction technique to simplify the problem without compromising

solution’s optimality. In Chapter 5, we provide various sub-optimal solutions to the

previous dynamic programming problem. These sub-optimal solutions are designed to

cope with the curse of dimensionality in our large problem. We also compare those

sub-optimal policies using TD(0) and packet-level simulation. In Chapter 6 and 7, we

present our second work. In this work, we exploit the unused backup path for QoS

improvement by using a duplication mechanism. We formulate the dynamic

programming problem and provide a state reduction technique in Chapter 6. In Chapter

7, we describe various sub-optimal solutions and compare them using TD(0) and the

packet-level simulation. Finally in Chapter 8, we summarize the work that has been

done in the dissertation and discuss possible future directions of research.

10

Chapter 2

Traffic Model

There is a long history on traffic modelling for telecommunication networks. The need

to guarantee specific quality of service (QoS) levels to users motivate many researchers

to attempt capturing the statistical characteristics of actual traffic as a part of developing

traffic engineering techniques. This section does not intend to serve as a survey on

traffic modelling but it gives an intuitive reason how we chose the traffic model for our

experiments and controller design. A detailed discussion and survey on traffic model

can be found in [1, 33]. In addition to the intuitive reason in selecting traffic model, we

propose two additional TCP models that match the need of our control actions. We will

provide a simple validation of these models at the end of the chapter.

2.1 Video Traffic Model

There has been a fair amount of discussion on the impact of long-term correlation of

variable-bit-rate(VBR) video traffic on traffic engineering. The discussion is based on

the recent discovery of long-range dependence in VBR video traffic. The definition and

the detail of long-range dependence and short-range dependence is in [29]. Because a

buffer overflow probability of long-range dependent (LRD) video traffic decays

11

hyperbolically, the notion of effective bandwidth based on Markov models does not

apply. This led many researchers to believe that this LRD property of VBR video

traffic will have critical impact on traffic engineering in general.

Heyman and Lakshman[16] have shown that the LRD is not a crucial property in

determining buffer behavior of VBR video traffic. They observed large short-range

dependence (the auto-correlation function for lag one is greater than 0.95) in many

video trace sets. Comparing the Markov model with the data traces, a mean queue

length of Markov chain model matches with a mean queue length of data trace quite

well especially at low to middle traffic intensity.[16, Figure 10] In conclusion, they

showed that the Markov chain traffic model can be used to estimate the buffer

occupancy well when the buffer sizes are not too large. Small buffer size is desirable in

practical network due to the real-time application requirements.

The paper by Bong K. Ryu and Anwar Elwalid[31] strengthened the importance of

the short-range dependent traffic component. They introduced the notion of Critical

Time Scale (CTS) as the number of frame correlations that contribute to cell loss rate.

They used the large deviation theory(with infinite number of sources assumption) to

show that CTS is finite and small even in a presence of LRD (under realistic ranges of

buffer size and cell loss rate). They also used simulations to get a buffer overflow

probability. The results show that the LRD property is not practically important in

determining cell loss rate for ATM networks under a realistic buffer dimensioning.

Moreover, the short-term correlation have dominant impact on network performance.

Since the Markov model has a lot of nice properties and has been proved for the

traffic modelling as described above, we use Markov Modulated Fluid (MMF) model

for our experiment. MMF is one type of Markov traffic models that is sufficient for

aggregated video traffic. The fluid models are simple and good for simulation and

12

� � � � 0

0α �0��� α �0��� α �0��� α �α α

0β�0��� β�β3β�ββ

0��

�0���$ 0$�$�$$�

Figure 2.1: State transition diagram for birth-death MMF model

analysis. The continuous bit rate is quantized into a finite set of discrete levels and

sampled at random Poisson points or inter-sample time is exponentially distributed.

The birth-death Markov chain version is used for its simplicity in [24]. The details of

MMF model can be found in [33, 24]. We will briefly describe birth-death version

here. The state transition diagram for birth-death MMF model is shown in Fig 2.1. At

state
�
, the bit rate will be constantly generated at

���
bps where

�
is quantization step.

The transition from state
�

to state � ����� 	 is exponentially distributed with rate

��� � � 	
	 and the transition from state
����

to state � � � � 	 �� is exponentially distributed

with rate
���

This birth-death MMF model can also be viewed as an aggregation of identical

ON-OFF mini-sources[33]. Each ON-OFF mini-source has exponentially distributed

ON time with mean of
�����

seconds and exponentially distributed OFF time with mean

of
�����

seconds. At ON state, each mini-source generates constant bit rate stream at
�

bps. The MMF is the sum of the traffic from � identical independent ON-OFF

mini-sources. Let ��� ���� � be the steady state probability of ON-period. The traffic

average rate is �� ����� � ���
To understand the implication of each parameters (ie

� � � � � � �) we refer to the

13

works in [22, 23] which studied the Markov model that is similar to the MMF model,

the Markov Modulated Poisson Process (MMPP) model. Two main issues, the Link

capacity allocation and model state reduction in finite buffer networks, are extensively

analyzed in these studies. They analyzed the model using signal processing theory to

get traffic characteristic in frequency domain. We will discuss their work using the

similar notation of birth-death MMF that we already described above.

The MMPP process is built by the superposition of M i.i.d. 2-state Markov chains

mini-sources which have exponentially ON time with mean of
� ���

seconds and

exponentially distributed OFF time with mean of
� ���

seconds. Unlike the MMF

model, at ON state, the mini-source generates poisson distributed stream with average

rate of
�

bps. This is the only difference between MMF and MMPP model.

Also, let � �
����
� be the steady state probability of ON-period. The steady state

distribution of each mini-source is Bernoulli with probability � at rate A and � � � ��	 at

rate 0. Hence, the steady state distribution of our MMF model
� ��� 	 is binomial:

��� � ��� �
	 � ��
 � �

���
� ���� � � ��	������ (2.1)

So the traffic average rate is also �� � � � � ��� . They also defined input bandwidth

and variation coefficient which are respectively given by � ��� � � � � 	 ��� ��� � �� �!
So the power spectrum of the video model is expressed by

� �#" 	 �$�&% ��('*) �+" 	 � �,� ' �� '
� � � �	 ' � " ' (2.2)

From equation (2.2) and the fact that we send this process to the finite buffer

MMPP/M/1/K queue, increasing � means up-scaling the input power in the entire

frequency band. Similarly, reducing � has the effect of shifting input power from high

14

frequency band to the low frequency band, given fixed average service rate of the

queue.

We could think of increasing � is trying to increase the burstiness of the video

model for the entire frequency band while reducing � is trying to make the burstiness

of the video traffic in low frequency more.

Now let’s go back to our MMF model, we define the frequency factor ��� � � � � 	
as a way to emphasize the burstiness in high frequency band which is similar to � .

Also we define the Number of ON-OFF mini-source � as a way to adjust the

burstiness for the entire frequency band which is similar to
��� � above.(given fixed

traffic average rate and �)

2.2 Voice Traffic Model

We model the voice call with constant bit rate stream at 64 Kbps. This is the stream

rate of G.711 codec. The voice calls have Poisson arrival with rate 	 and exponentially

distributed duration time with mean of
�����

. (We set it to three minutes throughout the

experiment.)

The voice call process can be viewed as � � � ���
queueing system. Therefore, in

the steady state, the number of voice calls in the system is Poisson distributed with

parameter 	 ��� . The average number in the system is � � 	 ��� . Using constant bit rate

stream (CBR), the average bandwidth consumption of voice traffic is ��	
� ����	
�

Kbps.

We can change the voice load or the bandwidth consumption of the voice traffic

from varying the call arrival rate (), given fixed average duration time (
�����

).

15

2.3 TCP Traffic Model

The majority of Internet traffic is transported over TCP protocol. TCP is the

window-based closed-loop congestion control, which adjusts its sending rate as a

function of network conditions. Note that our traffic engineering changes the network

parameters, which in turn affect TCP performance. TCP sender maintains a window of

packets that have been sent and not yet acknowledged. After setup a connection, TCP

start with a window size of one packet. It follows a slow-start algorithm to increase the

window size multiplicatively. The slow-start ends as the window size reaches a

predefined threshold. After the slow-start phase, TCP follows congestion avoidance

algorithm, which can also be described as an

“Additive-Increase-Multiplicative-decrease” (AIMD) algorithm. In congestion

avoidance phase, the window is increased linearly in time as transmission progress

without errors and the window is halved when the missing ACK condition is detected

(from Triple-Duplicate ACK). The frequent packet drops can cause TCP sender to stop

sending for a while until time-out. The transmission eventually resumes after the

time-out with a window of one packet, and if this is successful, AIMD is resumed,

otherwise another time-out occurs with double duration. Note that the time-out

degrades TCP performance a lot, so traffic engineering must be aware of the situation

that causes the time-out and prevent the occurrence of such situation. We measure a

TCP performance from the satisfaction of TCP users. Hence the TCP performance is

just the ability of TCP to response to the requests of users.

Our model specification and general TCP model

Assume that TCP is the only protocol used in low priority traffic class. As

mentioned in Section 1.2, we use a class name, Best Effort (BE) class, interchangeably

with low priority traffic class. Also Recall that the link scheduler always serves high

16

priority packets before low priority packets. Hence, low priority traffic only get a link

bandwidth only what is left over from high priority traffic. As a result, we will call that

available bandwidth for BE class as TCP service rate.

From the mentioned link schedule, we should look for a TCP model that specify

TCP performance in term of TCP service rate. This TCP model will help us identify

the performance of TCP traffic relative to the traffic characteristic of high priority

traffic. Moreover we need a model for aggregated TCP flows because we will have a

number of TCP flows in the link. Finally, we would like to have a performance

measure from a user’s point of view. We will compare these two performance measure,

TCP throughput and TCP goodput, to illustrate our last requirement. Unlike the

throughput , which represent all transmission (including retransmission), the goodput

represent the actual transmitted amount of information, directly from the user’s point of

views (or application’s point of view). In conclusion, we need a transient behavior

model representing the performance of aggregate TCP flows. The model should be a

function of TCP service rate, which indirectly relates to high priority traffic fluctuation.

From our model requirements, we will explore and discuss TCP models in the

literature as follows:

Recently, researchers have proposed a number of analytic models that characterize

TCP performance in term of round-trip delay and packet loss rate. These

models[15, 4, 9, 26] characterize the steady state throughput in long-lived flows and

ignore the time-out, which is major performance degradation and occurred frequently

in recent study. Padhye et al.[28] include time-out in their model to better fit the TCP

behavior. Some get the throughput with interaction of active queue management[12].

These models originally were proposed to aid the design of active queue management

schemes and TCP friendly protocol. Note that All models above are inspired by the

17

Floyd et.al[13]’s proposal to identify the unresponsive flows as a way to isolate the

cause of the congestion collapse. Hence, these models show the throughput, which is

the amount seen by the router instead of the actual amount seen by applications as in

our requirements. So these models is not the model we look for.

Misra et al.[27] present the transient throughput of long lived TCP interacting with

AQM. Even though, this work is a good model of aggregated TCP flows for transient

analysis. Again, this model originally proposed for router design, which use a

throughput as a performance measure.

In the very different objective of TCP modelling, the goodput of TCP is considered

through the TCP latency [5, 35, 25]. These models represent the TCP performance

seen by end users instead of the throughput seen by the router in identifying non

TCP-friendly problem. Moreover, they can capture the short-lived flow behavior. This

is desirable because the recent studies showed that mean size of transferred data by

each TCP flow is around 10KB[14]. Capturing only the long-lived behavior clearly is

not enough. However, these models represent only behavior of individual flow instead

of the behavior of aggregate flows that we want.

To the best of our knowledge, there is no model that matches our need. However,

we learn from all models in the literature that time-out is the most degradation factor in

TCP performance. Therefore, we will present two models along with their validation.

The first TCP model is a model for a service rate with small fluctuation. This model

represents a performance of TCP traffic in the case that high priority traffic have a

continuous but small fluctuation characteristic. The second TCP model is a model for a

service rate with large fluctuation.

Comparing to the first model, this model represents a performance of TCP traffic

that have larger fluctuation of the service rate, i.e., the service rate can change between

18

very low value and very high value abruptly. The fluctuation is large enough to cause a

significant amount of drops, which leads to unavoidable time-out.

2.3.1 TCP Model for a Service Rate with Small Fluctuation

we propose a model that shows TCP performance as a function of TCP service rate as

follows:
������� � � � � � ' 	 ���
	��� �

�� � ' 	 � ��� � � � � ' ����	����	 � (2.3)

Where, � � is the TCP service rate at the last time slot, � ' is the TCP service rate at the

current time slot, ��	��� is the threshold of change, ��	��� is the arbitrary constant and� � 	 � ������� � � ���	 .
This function

������� � � � � 	 actually represents the situations that leads to TCP

time-out. Again, we learned from TCP model literature that time-out is the most

degradation factor in TCP performance. Hence, the function aim to represent the

degradation of the TCP performance, i.e., we try to represent that TCP performance is

bad when
������� � � � � 	 is large.

There are two terms in
������� � � � � � ' 	 , which are � � � � � ' ����	����	 � term and �� �! #"%$

term. The � � � � � ' �&��	��� 	 � term represents the service rate reduction, which leads to

reduction of TCP goodput. As mentioned before, the reduction of the service rate can

lead to the packet drops. Intuitively, the number of packet drops depends on how large

the service rate reduces, i.e. � � � � ' . The large amount of packet drops make many

TCP flows going to time-out; thus in turn reduces TCP goodput.1 We added the

threshold ��	��� in the reduction to represent the sensitivity of TCP to the reduction. Note

1we include the reduction of service rate in current time-step only. However, the fluctuation of service

rate in the previous time slots may effect in TCP goodput also. We will ignore that for a moment and use
'�(*),+.-�/%01/ 2

as our first step to attack this problem.

19

that TCP would notice the reduction if that reduction is large enough. Hence any

reduction that less than the threshold, � 	��� , would not affect the TCP performance. The�� �! �"%$ term represents the fact that lower the available bandwidth (service rate) for TCP,

the higher chance to get time-out. We knew from models in literature that available

bandwidth, � ' , is proportional to window size, given fixed number of connection. As

the window size is small, the chance of get time-out is large, thus in turn largely

degrade the goodput of TCP. Moreover, the concave of �� � "%$ represents fast retransmit

mechanism that can prevent the huge loss from time-out.2 To activate fast retransmit

mechanism, we need three duplicated ACKs. Hence, we need at least window size of

three or more to activate this mechanism. If � is larger, window size of each TCP flow

could be larger. Hence, it would be easier to activate fast retransmit mechanism, which

in turn make the chance of getting time-out significantly less. As a result, the marginal

increment of degradation will be less (TCP perform better) as � is getting larger, in

which we could see the concave nature of this degradation.

As mentioned earlier, this function only captures the situations that cause the

time-out. Hence it may not good representation of TCP performance in the network,

especially the network that has only the long-lived TCP flows with the dramatically

large buffer in each router. Long-lived TCP flows increase their transmission rate

linearly which makes the drops rarely happen when the large buffer can keep most

overloaded packets to transmit later. In addition to small drops, the sufficiently large

window of long-lived TCP triggers fast retransmission from Triple-Duplicate ACK.

2The fast retransmit mechanism will retransmit the packet as soon as TCP received three duplicated

ACK without waiting for a time-out. The drops will be corrected earlier than waiting for a retransmis-

sion at the end of time-out. Hence, we can prevent a huge loss from time-out with this fast retransmit

mechanism.

20

The fast retransmission prevents the time-out, which make our heuristic function

inaccurate. However, a majority of TCP flows are short lived with the average and the

median length no longer than 10KB. The short-lived TCP still stay in the slow-start

phase, which aggressively increase the sending rate. So the buffers in the routers tend

to be crowded3. Then there is a higher probability of drops when the service rate is

reduced. Moreover, the congestion window (of each TCP flow) has a relatively small

value. Hence, it does not have enough packets to get triple duplicate ACK in order to

activate the fast retransmit mechanism. As a result, packet loss always requires a

time-out to resume a transmission. All properties of short-lived TCP flow above lead us

to intuitively believe that the reduction of the service rate in our heuristic function

could correctly predict the goodput degradation.

In conclusion, our model claims that TCP performance degradation depends mainly

on a sharp reduction of TCP service rate. In other words, we have a cost associated

with a sharp reduction of TCP service rate. We can infer from the claim that the TCP

performance will be best if the TCP service rate is smooth at all time. This inference is

intuitively correct with most of transport layer congestion control. Because it can

estimate channel accurately and behaves effectively according to that channel

estimation.

Model Validation

Recall the model in Equation (2.3) has a cost associated with the reduction of TCP

service rate (available bandwidth for TCP traffic). In this section, we use ns-2

simulator[39], which is packet-level simulator, to validate this model. The validation

has two parts. First, we prove that TCP goodput depends on the reduction of TCP

3Note that the main purpose of slow-start is to quickly exploit the unused available BW. Many short-

lived flows would try to competitively exploit the BW. Hence, the buffer of the link will be crowded

21

VDO traffic

TCP traffic

60 Mbps link

Figure 2.2: network topology in the validation of TCP model for TCP service rate with

small fluctuation.

service rate. Second, we prove that TCP goodput also depends on how large the

reduction is, i.e., the reduction size of TCP service rate.

We setup a small network shown in Figure 2.2. This small network captures a

bottleneck link in a real network. There are two traffic types sent through this

bottleneck link. First is video traffic, which is high priority traffic type. As shown in

Figure 2.3, the video traffic is a CBR (Constant Bit Rate) traffic that periodically

changes its transmission rate between (� � � �) Mbps and (� � � �) Mbps every � �

second. Second traffic type is low priority traffic type, which consists of TCP traffic

flows. Recall that every link serves video packets (high priority packets) before any

TCP packets (low priority packets). Hence, the available bandwidth left from video

traffic, i.e., TCP service rate have characteristic as show in Figure 12b. This TCP

service rate periodically changes its rate between (� � � � ���) Mbps and

(� � � � � �) Mbps every � �
second. In this validation, � � 	!� Mbps.Each TCP

flow sends small files with a uniformly distributed size of 20-40 Kbytes. Upon the end

of each transmission, TCP sources will setup a new connection and begin to transmit a

new file. Recall that the new connection setup will use a initial value for ITO. The

22

∆Τ

∆Β

∆Β

B

rate (Mbps)

time (second)

Figure 2.3: VDO traffic characteristic used in the validation of TCP model for TCP

service rate with small fluctuation.

small file transmission and re-connection of flows capture a characteristic of short-lived

TCP. We have four different sets of TCP flows as shown in Table 2.1. We named those

four sets of TCP flows as FlowsSet A, B, C and D. As listed in the Table, TCP flows in

FlowsSet A have three distinct RTT value, 10ms, 30ms and 50ms. There are 15 TCP

flows with each RTT value. Therefore, there are totally 45 TCP flows in SET A. If you

follow the Table, the FlowsSet B, C and D can be described similar to the description

of FlowsSet A above. The different value of RTT represents different locations of

end-users, while a number of flows with same RTT value indicate the fact that each

location can have multiple users. Hence, we can run our simulation over these different

sets of TCP flows to show that our model suits for various network setups.

The two parts of our validation have parameter adjusted and their result as follows:

1. Reduction Dependence:

we fix � � ��� Mbps and � � ��� Mbps. With a fixed simulation length,
�����	� �

�*�*� seconds, the number of occurrences that the reduction of TCP service rate

happen, ��� , is
�
���	� � � � � � � 	 . Hence we vary � �

in such a way that � � is

23

FlowsSet RTT values number of sources per RTT value.

A 10ms, 30ms, 50ms 15

B 10ms, 30ms, 50ms 20

C 10ms, 30ms, 50ms, 70ms 15

D 10ms, 30ms, 50ms, 70ms 20

Table 2.1: Different sets of TCP flows in the validation of TCP model for TCP service

rate with small fluctuation.

varied from
� � to � � �*��� . If the TCP goodput depends on the reduction of TCP

service rate, we would expect TCP goodput to decrease as ��� increases (number

of reduction increases), i.e, TCP goodput depends on a number of reduction, ��� .

After we ran the simulation, we got the result as shown in Figure 2.4. We could

see that the experimental result follows our expectation. Hence we can conclude

that the TCP goodput depends on a reduction of TCP service rate.

2. Reduction Size Dependence:

we fix � � � � � � � second and � ����� Mbps. Then we vary ��� from � Mbps to
� �

� � Mbps. If the TCP goodput depends on how large the reduction is, we would

expect TCP goodput to decrease as � � increases (reduction size increases).

After we ran the simulation, we got the result as shown in Figure 2.5. We could

see that the experimental result follows our expectation. Hence we can conclude

that the TCP goodput depends on a reduction size of TCP service rate.

In conclusion, both parts of validation strengthen the claim that the TCP

performance depends on the TCP service rate reduction and the size of that reduction.

24

0 500 1000 1500 2000 2500
1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

number of changes

go
od

pu
t (

G
by

te
s)

FlowsSet A
FlowsSet B
FlowsSet C
FlowsSet D

Figure 2.4: The relationship of TCP goodput and the number of reduction, ���

2.3.2 TCP Model for a Service Rate with Large Fluctuation

Compare to the service rate characteristic in previous section, we now focus on the

service rate with larger fluctuation, i.e., the service rate can change between very low

value and very high value abruptly. This abrupt change of TCP service rate could cause

a significant amount of drops, which leads to unavoidable time-out. So, (also as our

assumption) we focus on the service rate characteristic that causes unavoidable

time-out

With this special TCP service rate characteristic, we will use a chance of getting to

the second and subsequent initial time-out (ITO) as our performance measure in this

TCP model. Instead considering all time-out, we considered only Initial time-out

(time-out of the connection setup procedure) because this time-out is significantly

25

5 6 7 8 9 10 11 12
1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

size of change or stepsize (Mbps)

go
od

pu
t (

G
by

te
s)

period of 0.05 sec

FlowsSet A
FlowsSet B
FlowsSet C
FlowsSet D

Figure 2.5: The relationship of TCP goodput and the size of reduction, � �

larger than other time-out. Note that TCP relies on its own packet samples to estimate

an appropriate-retransmission timeout (RTO) value[14]. For the first control packets

(SYN, SYN-ACK), and the first data packet, since no sampling data is available, TCP

has to use a fixed conservative initial timeout (ITO) value as RTO. Hence ITO is

significantly larger than other time-out. To make it even worse, the length of the next

time-out will be twice of the length of previous time-out, following Karn’s algorithm in

TCP congestion control. Hence, the second time-out (ITO) will be really large

considering the large first ITO (as large as
�

seconds). The Internet user may have to

wait a long time if he gets into the time-out during the connection setup.4 When we

4If there is the second or subsequence ITO, we could imagine how long the user have to wait after

he click at his browser. Given a normal first ITO of � seconds, the second ITO would be 6 seconds. If

26

assume that the time-out is unavoidable, the performance of TCP would depend on

whether it goes to second or subsequent time-out or not. As a result, we will use a

chance of getting the second and subsequent ITO as our performance measure in this

model.

We propose our TCP model as shown in Equation (2.4).

� ���!� ���� � � 	 	 � � ��� 	�� � � � � 	 � � � ��� �	� 	 � � ��� 	�� ' � � � � 	 � � � � � � �	� 	 � � � � � � �	� 	 (2.4)

Where �	� is the time-out length of connection procedure (ITO) in the unit of time slots.

� ��� 	�� and � ��� 	�� ' are arbitrary constant values.

We define � 	�
 time slot as an interval from time � to � � �
. Note that we let The

length of time slot is arbitrary but are equals for any time slot. Then, we let � � � 	 as a

binary variable indicate the level of TCP service rate during � 	�
 time slot, i.e.,

� � � 	 � �
indicates a low TCP service rate during � 	�
 time slot, while � � � 	 � �

indicates a high TCP service rate during � 	�
 time slot. Finally, we define a vector

�� � � 	 � � � � � � � �	� 	 � � � � � � �	� � � 	 � � � � � � � � 	 	 as a trajectory of TCP service rate

from time � � � � ��� 	 to time � � ��� 	 .
The model in Equation (2.4) actually represents the TCP service rate pattern that

lead to the second and the third ITO. So any sequence �� � � 	 that lead to second and the

third ITO will have a corresponding large value of TCP performance degradation. The

detail of TCP service rate pattern in our model can be discussed as follows:

Before going to the detail of TCP service rate pattern, we should talk about the

assumption we made to ease a modelling process. We assume that there are TCP

packet drops when we have low TCP service rate in that time slot. From the nature of

his request gets into second ITO, he will have to wait for �������� seconds. It will be even worse

with subsequence ITO. The long waiting time can make user furious and judge the network as a slow and

unreliable one.

27

this TCP service rate described earlier, the time slot with low TCP service rate

normally have a very small TCP service rate, comparing to a time slot with high TCP

service rate. Given fixed number of users, attempts to see WebPages can make

congestion over that time slot; thus in turn induce the loss of the packets. So we will

use the time slot with low TCP service rate as a sign of lost packets of TCP flows, i.e.,

we assume TCP packet drops when we have low TCP service rate in that time slot.

This assumption will not hold if our time slot is very small. However, we focus on the

time slot of 50ms, which is long enough to cause packet drops.

The first term of
� ����� ���� � � 	 	 in Equation (2.4), i.e., the � ��� 	�� � � � � 	 � � � � � �	� 	

term, represents a TCP service rate pattern that leads to second ITO. We use Figure 2.6

to illustrate this pattern. We are now at time � and recalled that � � is the ITO in the

time slot unit. If � � � � ��� 	 is one, i.e., we have a low TCP service rate over � � � � � 	 	�

time slot, many flows during � � � � � 	 	�
 time slot have had gone to time-out from

packet losses.5 The timers in TCP will start their clock during that time slot.

Eventually, those timers will expire and trigger the retransmission of the packets during

our current � �� time slot.6 If the TCP service rate in current time slot is again low

(� � � 	 � �
), the retransmitted packets will be dropped. which in turn lead to second

ITO. This TCP service rate pattern, which leads to second ITO, makes TCP users to

wait for a long time. This long waiting time represents a poor TCP performance as we

5Recalled that we assume drops when the TCP service rate is low

6To be exact, the timers of the TCP flows, in which their packets is dropped in the bottleneck link

during
- ������� 2��
	

time slot, will expire and trigger a retransmission of packets. The retransmission

packets will arrive bottleneck link during
� ��	

time slot, given a fixed delay from TCP sources to the

bottleneck link. To ease the explanation, we let that fixed delay to be zero, i.e., we describe everything as

if the TCP sources attached to the bottleneck link.

28

time
(k-ks) (k-k s+1) k (k+1)

: Don't care

: Low service rate
(duplication)

: High service rate
(no duplication)

S
er

vi
ce

 R
at

e

(Time-out) Timer
start here Timer Expire

+
Retransmit

packets
Here

. . .

ks

Figure 2.6: The TCP service rate pattern that leads to the second time-out

mentioned earlier.7

Similar to the first term, the second term of Equation (2.4), i.e., the

� ��� 	�� ' � � � � 	 � � � � � � ��� 	 � � � � � � �	� 	 term, represents a TCP service rate pattern

that leads to the third ITO. Figure 2.7 exhibits our idea. Suppose we have a low TCP

service rate during � � � � ��� 	 	�
 time slot and � � � � ��� 	 	�
 time slot, i.e.,

“ � � � � � �	� 	 � �
” and “ � � � � � ��� 	 � �

”. The timers that start their clocks during

� � � � �	� 	 	�
 time slot might expire and retransmit packets during � � � � � � 	 	�
 time slot.

However, the low TCP service rate in � � � � � � 	 	�
 time slot can cause the loss of those

retransmitted packet. In that case, the timers will restart their clocks over and will

expire again during our current � 	�
 time slot. Recall that the second timers stay twice in

length from the first time-out length. Again, if the TCP service rate in current time slot

7This TCP model assume that there is a fixed delay from sources to bottleneck link. This assumption

might not be able to hold at all time in a real network. For example, packets may wait in many queues

(of the intermediate link) before reaching bottleneck link. These queues can create a variable jitter, which

prevent the retransmitted packets to reach bottleneck link
� �

second after the first drops. In this case, our

model may not be able to predict TCP performance very well.

29

time
(k-2ks) (k-2ks+1) k (k+1)

: Don't care: Low service rate
(duplication)

: High service rate
(no duplication)

S
er

vi
ce

 R
at

e

(Time-out) Timer
start here

(2nd Time-out)
Timer

start here

.

2nd Timer Expire +
Retransmit packets

Here

(k-3ks) (k-3ks+1)

Timer Expire
+

Retransmit
packets

Here

ks 2ks

Figure 2.7: The TCP service rate pattern that leads to third time-out

is again low (� � � 	 � �
), the retransmitted packets will be dropped. which in turn lead

to the third ITO. This TCP service rate pattern, which leads to the third ITO, makes

TCP users to wait for a long time. Again we can say that this long waiting time

represents a poor TCP performance as we mentioned earlier.

Normally we will let � ��� 	�� '�� � ��� 	�� . The fact behind this setup is that the third

time-out is much longer than the second time-out. So the third time-out exhibits worse

TCP performance.

Model Validation

There are two parts in this validation. First, we will prove a TCP service rate pattern

that lead to the second ITO. That particular pattern can simply be described as the two

time slots with low TCP service rate, in which time separation between them equals to

the first ITO length. In the second part, we will prove a TCP service rate pattern that

lead to the third ITO. Note that most hosts in current Internet use first ITO value of
�

seconds. Hence we will assume from this point that first ITO value is
�

seconds. Again,

we use ns-2 simulator[39], which is packet-level simulator, to validate the model.

30

TCP traffic

60 Mbps link

Voice traffic

Figure 2.8: network topology in the validation of TCP model for TCP service rate with

large fluctuation.

We setup a small network shown in Figure 2.8. This small network captures a

bottleneck link of backup LSP in a real network. There are two traffic type sent through

this bottleneck link. First is voice traffic, which is high priority traffic type. The voice

traffic will be used to explored various patterns of TCP service rate. We will have

different voice traffic for the two different validation parts, in which we will discuss

later.

The second traffic type is low priority traffic, which consists of short-lived TCP

flows. Similar to Section 2.3.1, we use two different sets of TCP flows as shown in

Table 2.2. We named those two sets of TCP flows as FlowsSet A and B. As listed in the

Table, TCP flows in FlowsSet A have four distinct RTT value,
� � ms,

� � ms, �*� ms and
� � ms. There are � � TCP flows with each RTT value. Therefore, there are totally

� ���
TCP flows in FlowsSet A. If you follow the Table, the FlowsSet B can be described

similar to the description of FlowsSet A above. As we mentioned earlier, we ran our

simulation over these different sets of TCP flows to show that our model suits for

various network setups.

1. Second ITO validation:

31

FlowsSet RTT values number of sources per RTT value.

A 10ms, 30ms, 50ms, 70ms 25

B 10ms, 30ms, 50ms, 70ms 38

Table 2.2: Different sets of TCP flows in the validation of TCP model for TCP service

rate with large fluctuation.

In this validation part, we will use a voice traffic, which has a function of its rate

over time as shown in Figure 2.9. This rate function helps us to explore various

pattern of TCP service rate related to Second ITO. As seen in the Figure, this

function has only two intervals that have ��� Mbps rate. The rest of the time,

we keep the voice rate at zero Mbps, i.e., there is no voice traffic in bottleneck

link. The first non-zero rate interval start � �
seconds before the second non-zero

interval as shown in the Figure. We can vary � �
to generate different patterns

of TCP service rate. The length of non-zero interval is 50msec, which is our

preselected time-step.

In this validation part, we would like to show that the three-second separation of

two time-steps with low TCP service rate can cause Second ITO. In other words,

number of TCP flows that get into Second ITO is huge at � � � �
second. (We

will use “number of Second ITO” instead of number of TCP flows that get into

Second ITO from this point) Hence, we vary � �
in the simulation and monitor

the number of Second ITO. We will expect to get the result that have relatively

large number of Second ITO at � � � �
second, comparing to other value of � �

We vary � � from 	!� Mbps to ��� Mbps. The value � � � ��� Mbps represents the

case that high priority traffic takes all bandwidth away from TCP traffic, while

The value ��� � 	!� Mbps represents the case that high priority traffic still leaves

32

50 ms 50 ms

∆Β

time (second)

∆Τ

rate (Mbps)

Figure 2.9: Voice traffic characteristic used in Second-ITO validation: TCP model for

TCP service rate with large fluctuation.

some bandwidth for TCP traffic.

After we ran our simulation, we got the result shown in Figure 2.11 and 2.10.8 Fig-

ure 2.10 shows the percentage of connection setup that goes to Second ITO. For

example, at � � � �
second and � � � ��� Mbps, we can see value 10.5 percent

from the graph. This value can be interpreted as follow; out of 100 connection

setup, there are 10.5 of them have to get Second ITO. In other words, 10.5 out of

100 connection setup will suffer a long waiting time (before the connection setup

can be completed and ready to acquire data).9

8Both Figure is a result using FlowsSet B only. We do not show a result using FlowsSet A because

both FlowsSets exhibit similar result.

9Note that ��� ��� in both Figure 2.11 and 2.10 shows the case that the TCP service is high all the

time (without a time-step of low TCP service rate). We include the ��� ��� case in the Figures to show

that ITO normally happen even we have smooth and high TCP service rate. However, the low TCP service

rate still induce much more ITO

33

0 1 2 3 4 5 6
0

2

4

6

8

10

12

The separation time between two time−slots with low service rate, ∆ T (second)

co
nn

ec
tio

n
se

tu
p

th
at

 g
oe

s
to

 2
nd

 IT
O

 (
pe

rc
en

t)

∆ B = 60Mbps
∆ B = 50Mbps
∆ B = 40Mbps

Figure 2.10: Percentage of TCP connection setup that goes to Second ITO

The result in the graph show that � � � �
case has significant number of Second

ITO comparing to other value of � �
. Hence we can conclude that TCP per-

formance is badly degrading if there are three seconds separation between two

time-step with low TCP service rate. This conclusion validates our TCP model in

Equation (2.4).

The by-product of this experiment is shown in Figure 2.11. The Figure can be

used to strengthen our assumption that low TCP service rate induces first time-

out. From the Figure, we can see that 100% of connection setup, which try to start

its connection when TCP service rate is zero (� � � ��� Mbps), go to the first ITO.

In conclusion, our simulation result help strengthen our claim that a three-second

separation of time-steps with low TCP service rate can lead to the Second ITO.

2. Third ITO validation:

34

The separation time between two time−slots with low service rate, ∆ T (second)

co
nn

ec
tio

n
se

tu
p

th
at

 g
oe

s
to

 1
st

 IT
O

 (
pe

rc
en

t)

0 1 2 3 4 5 6
0

20

40

60

80

100

∆ B = 60Mbps
∆ B = 50Mbps
∆ B = 40Mbps

Figure 2.11: Percentage of TCP connection setup that goes to first ITO

In this validation part, we will use a voice traffic, which has a function of its

rate over time as shown in Figure 2.12. This rate function helps us to explore

various pattern of TCP service rate related to Third ITO. As seen in the Figure,

this function has three intervals that have � � Mbps rate. The rest of the time, we

keep the voice rate at zero bps. The first non-zero rate interval start
�

seconds10

before the second non-zero interval, while the third non-zero rate interval start � �

seconds after the second non-zero intervals shown in the Figure. We can vary � �

to generate different patterns of TCP service rate. Again, The length of non-zero

interval is 50msec, which is our preselected time-step.

In this validation part, we would like to validate the model by showing the a

10we keep it fixed at � second because we would like to make sure that TCP sources have already gone

to Second ITO. This pattern come from assumption that the separation of 3 seconds lead to Second ITO

as proved in the first experimental part.

35

50 ms 50 ms50 ms

∆Τ

time (second)

∆Β

3 seconds

rate (Mbps)

Figure 2.12: Voice traffic characteristic used in Third-ITO validation: TCP model for

TCP service rate with large fluctuation.

pattern with � � � � second can cause Third ITO. In other words, number of TCP

flows that get into Third ITO is huge at � � � � second. (Again, We will use

“number of Third ITO” instead of number of TCP flows that get into Third ITO

from this point) Hence, we vary � �
in the simulation and monitor the number of

Third ITO. We will expect to get the result that have relatively large number of

Third ITO at � � � � second, comparing to other value of � �

Like the first experimental part, we vary ��� from 	!� Mbps to ��� Mbps. The value

� � � ��� Mbps represents the case that high priority traffic takes all bandwidth

away from TCP traffic, while The value � � � 	!� Mbps represents the case that

high priority traffic still leaves some bandwidth for TCP traffic.

After we ran our simulation, we got the result shown in Figure 2.13.11 Figure 2.13

11Again, the Figure is a result using FlowsSet B only. We do not show a result using FlowsSet A

because both FlowsSets exhibit similar result.

36

5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

The separation time between two time−slots with low service rate, ∆ T (second)

co
nn

ec
tio

n
se

tu
p

th
at

 g
oe

s
to

 3
rd

 IT
O

 (
pe

rc
en

t)

∆ B = 60Mbps
∆ B = 50Mbps
∆ B = 40Mbps

Figure 2.13: Percentage of TCP connection setup that goes to Third ITO

shows the percentage of connection setup that goes to Third ITO. For example, at

� � � � second and � � � ��� Mbps, we can see value � � � percent from the graph.

This value can be interpreted as follow; out of
� ��� connection setup, there are � � �

of them have to get Third ITO. In other words, � � � out of
� ��� connection setup

will suffer a very long waiting time (before the connection setup can be completed

and ready to acquire data).

The result in the graph show that � � � � case has significant number of Third

ITO comparing to other value of � �
. Hence we can conclude that TCP perfor-

mance is badly degrading if the TCP service rate is low, six seconds right after the

three-second separation between first two time-steps with low TCP service rate.

This conclusion validates our TCP model in Equation (2.4).

37

Chapter 3

Reactive Control with Flow Migration. (in High Priority

Network)

As described earlier, we will explore the fast timescale migration control-e.g., in the

response times less than 1 second and possibly on the order of 50ms. If it proves

feasible to respond quickly to congestion by migrating flows off of paths that traverse

bottleneck links, then the network can be operated in very high utilization even for the

high priority traffic.

The first is an off-line static algorithm (Bernoulli Splitting), which provides

long-term optimal flow to LSP assignments. The second scheme is more dynamic, and

assigns flows to LSPs which are “least-loaded”, when the flow starts at the ingress

router. The detail of migration algorithm and non-migration algorithms is described in

Section 3.1.

We evaluate the benefits of these three different control strategies in context of

streaming media applications, specifically voice-over-IP and variable bit-rate video.

We present results from both packet-level simulations and a detailed implementation of

each scheme. We chose these applications since they have similar QoS requirements,

and are also likely to be significant traffic components in the next generation of IP

38

networks. Further, the video flows have high burstiness and represent a challenging test

case for the control mechanisms.

3.1 Control Algorithm

In this section, we briefly describe two algorithms —“Bernoulli Splitting” (BSplit),

“Least Load Routing” (LLR) — that we consider as non-migration algorithms, and our

migration scheme. Both non-migration algorithms apply upon arrival of a new call by

assigning it to particular LSP. An assigned call will remain in a selected LSP until it

departs.

Bernoulli Splitting (BSplit) This controller is based on an optimal off-line analysis

that assumes that the slow timescale average traffic rate between each ingress-

egress pair is known. BSplit is a randomized policy such that each new arriving

call is dispatched among LSPs according to a split rule (probability distribution).

Least Load Routing (LLR) Whenever a call arrives into a particular ingress node, this

non-migration controller in the node finds which LSP has the least load among

the LSPs that the ingress node is using for the particular egress. The new call

is simply joined into the least loaded LSP. If there is a tie, we break this with a

random assignment with equal probabilities among LSPs. The load for an LSP is

defined to be the maximum load among the links it traverses. In our experiments,

each LSP has a single bottleneck link, and each ingress node gets the current load

information by a feedback packet from the LSR at the head end of the bottleneck

link for each LSP that the ingress node is using.

Migration Algorithm (MIG) This online centralized controller is built upon the Bernoulli

39

Splitting controller (BSplit). The algorithm has two configurable parameters: the

migration threshold (� %) and safety margin(
)
%). The idea is that the controller is

triggered whenever link utilization exceeds the migration threshold; in this case,

it attempts to migrate flows to reduce the utilization of the bottleneck link to the

migration threshold minus the safety margin. In doing so, it will not cause other

link utilizations to exceed the migration threshold minus the safety margin which

in turn stabilize the system. Pseudo-code of the migration algorithm is shown

in Algorithm 1. Figure 3.1 illustrates notations used in the algorithm and their

relations.

1. In each controller time slot, get the link � with maximum utilization that is over the

threshold � %. Record amount over safety margin level � �������	� 	
2. If � exists, then discover the set
 of LSPs using it.

(we exclude LSPs that do not have any traffic at that time)

3. Find alternative LSPs for each ���

4. For each ����
 , calculate
� ����	 ��� �

available BW - safety margin (
)
%)
	 �

of its alternative LSPs,

where
� � 	 � �� min � � � � 	

5. Choose ����
 , that maximizes
� ��� 	 . The Ingress migrates amount of

�������	�
from

� to its alternative LSPs proportional to their [available BW -
)
%
	 �

values.

Algorithm 1: The migration algorithm in the network which has only real-time traffic.

40

congested link Alternative link

%

 %

 %

A
 m

ov
e

Figure 3.1: Notations used in migration algorithm and their relations.

3.2 Simulator Implementation

We used ns-2 simulator[39] for our simulations. To meet our simulation requirement,

we incorporated some new features including the multiple-path capability between

ingress and egress node pair and bandwidth guaranteed LSPs. The intelligence is added

in the ingress node to be able to classify the flows to LSPs. Due to the need to capture

the per-flow statistics, the voice traffic generator needs to be written in tcl to simulate

the Poisson distributed arrivals and exponentially distributed duration. Despite the

limited number of flow identifiers, the flow identifiers have been carefully reused

without sacrifice of the per-flow statistics and traffic properties.

41

LSP3

LSP1`

LSP2

Ingress Egress

Cross traffic

Cross traffic

Cross traffic

: LSR

: Crosss traffic
(video)

Figure 3.2: Network Topology.

3.3 Experiment setup

We considered the network topology shown in Figure 3.2 for our experiments. Inside

the network, we have two types of traffic, video and voice that belong to the same

priority class and hence have the same QoS requirements. Due to per behavior

aggregate queuing, both traffic types share the same queue inside the network.

Throughout our simulation, we fixed the packet size of video and voice traffic at

400 bytes. All links have a buffer size of 24Kbytes. This is twice the bandwidth-delay

product for a 90Mbps link with 1ms propagation delay. The ingress LSR monitors the

congested link utilization every 50ms. Based on this, it decides whether to migrate or

not at the end of the interval.

In order to study the performance of the controller algorithms better, we varied the

incoming traffic characteristics. First, we varied the voice load, i.e. the bandwidth

consumption of the voice traffic by varying the call arrival rate () while fixing the

average duration time (
�����

) at 3 minutes. Then, we varied the video traffic

characteristics using the following three parameters:

42

1. Video Load: By fixing the number of on-off sources (�) and the steady state

probability of ON-period (��� � � ��� � � ��� �), we varied the average bandwidth con-

sumption (video load) by changing its step size (
�

) according to the equation

(3.1).
���	��
 �� ����� �

�� � ��� (3.1)

2. The Fluctuation or Frequency Factor (�): As mentioned in modeling section, this

parameter is similar to the input-bandwidth-factor � of [22, 23] which affects the

burstiness in the frequency band. As � is reduced, the low frequency burstiness of

the video traffic increases.

3. The number of ON-OFF sources (�): As mentioned earlier, it is a way to adjust

the burstiness of traffic in the entire frequency domain.

The explanations on the parameters � and � , stated above and in [22, 23], are from

the Signal Processing perspective. From the Networking perspective, � can be

imagined as the frequency of bulk-traffic arrival and the duration that it remains queued

in the network, while � represents how large each bulk is.

We considered minimum drop rate as our performance metric rather than

end-to-end delay because the buffer size is so small as to keep the end-to-end delay

bounded.

The maximum number of migration requests for each 30 minute-simulation run

was 36000. Every data point was obtained by repeating the simulation for different

random number seeds to get a reasonably accurate measure of the drop rate. We ran the

simulations a number of times to get statistics sufficiently accurate.

43

3.4 Experimental result

We started with a test case to study how much voice traffic the network can sustain

under BSplit, MIG and LLR controllers, given an one percent drop rate constraint and

different burstiness levels of the video traffic. We use the one percent drop rate

constraint as an example of the QoS requirement from the application. Assume that the

application e.g. voice CODEC in our case will produce a bad sound quality if the drop

rate is larger than one percent. We varied the average number of voice calls fixing the

average video cross traffic bandwidth at 40Mbps and � at � � � , and obtained the voice

bandwidth consumption. As expected, the results showed that we can indeed fit more

voice traffic in the network as the value of � increases (that is as burstiness of video

decreases).

Figure 3.3(a) gives the average voice bandwidth in the system to get 1% average

drop rate using BSplit, MIG (with 100% threshold and 2% safety factor) and LLR

controllers. We could see that under bursty video cross traffic, MIG can accommodate

voice traffic up to 45.3 Mbps while the LLR and BSplit can sustain up to 41.2 Mbps

and 40.2 Mbps, respectively. Figure 3.3(b) gives the percentage voice bandwidth gain

of MIG and LLR controllers over the BSplit controller. The gain of MIG controller is

more than that of LLR controller for small � , which implies that MIG controller is

more beneficial when the cross traffic is more bursty. This come from the fact that

migration can move many calls in a short time (every 50 milliseconds) while the LLR

controller moves the call only when there is a new arrival (one call per 70-100

millisecond on an average). Therefore, the MIG controller can adapt to the temporary

but abrupt imbalance in load better than LLR controller.

We also consider the effect of voice load to the controller performance under the

same video traffic condition above, i.e., fixing the video traffic bandwidth at 40 Mbps

44

10 20 30 40 50 60 70
40

41

42

43

44

45

46

47

48

49

50

The number of video on−off sources

a
ve

ra
g

e
 v

o
ic

e
 b

a
n

d
w

id
th

 (
M

b
p

s)

BSplit
MIG
LLR

Most bursty Least bursty

(a) The maximum voice bandwidth to get

1% drop rate requirement

10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

The number of video on−off sources

P
e

rc
e

n
t
g

a
in

 o
ve

r
w

/o
 c

o
n

tr
o

lle
r

MIG
LLR

(b) The relative bandwidth gain

Figure 3.3: The effect of burstiness (step size) of the cross traffic to the controller per-

formance.

and parameter � at � � � . We changed the voice bandwidth by varying the call arrival rate

	 for different burstiness level (M) of video. From Figure 3.4, we can infer that the

MIG controller out-performs the LLR controller at light loads. At very high voice

loads (i.e., large) the LLR controller performs slightly better than MIG controller.

This is because LLR updates its decisions at the rate of call arrivals and hence balances

the load across the LSPs faster. But it is highly unlikely that any provider will operate

at that high a load.

We also ran the simulation to see the controller performance under different

network condition, by varying � and � . We also changed the threshold and safety

factor of the migration mechanism and explored its effect on the controller

performance. The combination of MIG and LLR mechanisms is also implemented and

compared its performance with MIG and LLR separately. (The results is not shown

45

35 40 45 50 55
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Average BW of voice traffic (Mbps).

D
ro

p
ra

te
 (

P
er

ce
nt

s)

16 sources: Most bursty

MIG
LLR
BSplit

35 40 45 50 55
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Average BW of voice traffic (Mbps).

D
ro

p
ra

te
 (

P
er

ce
nt

s)

32 sources: Mild bursty

MIG
LLR
BSplit

35 40 45 50 55
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Average BW of voice traffic (Mbps).

D
ro

p
ra

te
 (

P
er

ce
nt

s)

64 sources: Least bursty

MIG
LLR
BSplit

Figure 3.4: The drop rate at different average voice load using MIG (100% threshold

and 2% safety factor), LLR and BSplit controllers.

here)1 One of the interesting results is when we vary � ; MIG performs better in the

high values of � . Therefore we can interpret from the meaning of � that MIG performs

best in frequently changed network.

Some of experimental result is verified from testbed implementation in the

MENTER project. The LSR in the testbed is developed from FreeBSD-3.3 and

NISTswitch software. The detail implementation and the result present in our paper

and technical report[21, 30].

3.5 Conclusion

The simulation and testbed prove the advantage of fast timescale migration controller

under different network conditions. Under different network load and traffic burstiness,

1The complete results and detail discussions are shown in our technical report[30].

46

we have compared our migration scheme that operates at 50ms timescales with two

other non-migration algorithms: “Bernoulli Splitting”(no adaptation) and “Least Load

Routing” (call arrival rate timescale). Both our simulation and testbed results showed

that the end-to-end voice traffic drop rates and consecutive drops were improved under

various traffic loads when a finer timescale controller is applied. We also demonstrated

that when the cross traffic is burstier, our migration controller has better voice traffic

bandwidth gains. Also the migration controller performs better at frequently changed

network.

Overall, this work is a first step towards migration-based control. Our results show

that such an approach does have significant benefits compared to traditional

approaches. On the other hand, all controllers including migration controller suffer

from the obsolete information that sends back to it. This is due to the relatively long

delay (comparing to fast timescale of controller). So there is a need for the dynamic

programming technique to predict the traffic matrix. The dynamic programming takes

into account predictions by the traffic model in determining the action to take.

47

Chapter 4

Proactive Control with Flow Migration

Many service providers guarantee low delay and QoS of real-time traffic by

considering it as high priority traffic and by configuring the queue discipline to serve

high priority traffic before Best-Effort traffic. It works fine as long as the high priority

traffic share is low (normally 5-10%). This constraint is undesirable because it limits

the amount of high priority traffic that users can send. Moreover, users are willing to

pay for their high priority traffic’s QoS guarantee. This fact can lead to a great amount

of profit if the providers can support more high priority traffic in their existing network.

The constraint comes from dramatic fluctuation of its bandwidth utilization. If there is

a lot of high priority traffic in the network, this large fluctuation could lead to

unpredictable high traffic rate. The network might not be able to immediately support

this unpredictable high traffic rate, which could easily jeopardize QoS of the high

priority traffic.

Moreover, the fluctuation of available bandwidth to Best-Effort works adversely

with TCP congestion avoidance mechanism. As mentioned in Section 1.2, the low

priority traffic only gets a link bandwidth of what is left over from high priority traffic.

This left-over bandwidth will fluctuate if the high priority traffic fluctuates. Hence, the

low priority traffic will see the bad and fluctuated channel, in which its TCP congestion

48

avoidance mechanism could work adversely. To better illustrate the above problem, we

look at the case when the high priority load decreases, stays at low load for a fairly

long time and then significantly increases. The reduction of the high priority load

induces the TCPs, especially short-lived TCP flows, to aggressively exploit their larger

available bandwidth. TCP increases its window size faster as the network sends back

the acknowledgement packets faster without losses. More packets accumulate at the

buffers of the routers. This leads to packet drops when the service rate of Best-Effort

traffic decreases from the result of the increment in high priority loads. The drops can

cause the TCP to reduce its window by half or cause TCP to time-out. Therefore, the

throughput of TCP flows decrease significantly especially when they are caught up in

time-out phase.

Our main goal will be to design a migration control to preserve QoS when we

increase the amount of high priority traffic in the network. Besides that main goal, our

migration control should also provide a smooth channel for TCP traffic such that TCP

can get high throughput over that channel. This work does not intend to find the

multiple feasible paths between an ingress and egress pair; instead, we assume the

existence of parallel LSPs and only consider the problem of migrating flows between

these LSPs.

The main difference between the migration control in this chapter and the previous

chapter is that we designed the migration control in this chapter to be proactive. We

will proactively migrate flows to avoid a predicted congestion. On the other hand, the

migration control in Chapter 3 will not have a prediction and will migrate flows only if

there is a congestion in the network already. Recall that we usee a particular threshold

value to indicate congestion in the network. If the utilization is over that threshold, we

will assume a congestion and act upon that sign. Hence, the migration control in

49

Chapter 3 is more reactive to the congestion in contrast to our proactive control in this

chapter.

Even though our main focus in low priority traffic is TCP, as stated earlier, our

approach may apply to other transport layer protocols which have reactive congestion

control. This is due to the fact that the reactive congestion controls have to determine

the available bandwidth in the network and send the traffic according to that estimation.

In general, the smoothness of the channel makes that estimation scheme perform better.

4.1 Related Works

The migration mechanism has been used in the work by Elwalid et al.[10] to

dynamically load balance the Best-Effort traffic among parallel LSPs. From the fact

that they focus on a much longer timescale and single class of service, these make their

work different from ours

Firoiu et al.[11] use the TCP model to do a traffic engineering in the IP network.

They also include the CBR flow model in their network, which makes it a more

realistic situation. They use both steady-state throughput model and latency model of

TCP to predict the drop rate and queue length in the network. This in turn can get the

end-to-end delay bound in the network so they can have an admission control policy.

However, they focus on the traffic engineering in a longer timescale than our work.

Moreover, they focus on the single class of service as opposed to the two different

classes of service in our work.

50

4.2 System Model

We start with a relatively simple network in Figure 4.1. Similar to Chapter 3, we have

two types of high priority traffic, video and voice traffic, which have the same QoS

requirements. Due to behavior aggregate queuing, the high priority traffic types share

the same queue inside the network. The high priority queue is always served before the

low priority queue, which is filled with Best-Effort traffic. We will consider the TCP

Reno version, which is the most implemented version, as a protocol used in the

Best-Effect traffic. The voice traffic is routed through multiple LSPs from an ingress to

egress pair in the network while the video traffic and the Best-Effort traffic share the

same bottleneck links in all LSPs. Since the migration mechanism is already proven to

be useful in Chapter 3, the voice calls will be migrated between multiple LSPs as a way

to do fast timescale traffic engineering.

Although we use the simple network as a starting point, we consider locating the

controller to the ingress LSR, which is the point of migration. This can provide a

chance to consider the distributed migration algorithm that can be investigated in the

future.

There are � LSPs from ingress LSR to egress LSR. There is a propagation delay

from the ingress LSR to the bottleneck link in the upper LSP (
� � � LSP), which will be

divided into � � time slots. With the same slot length, we will divide the propagation

delay from the ingress LSR to the bottleneck link in the other LSP (
� ��

LSP) into � � time

slots, for
� ��� � � � � � � . The bottleneck links of all LSPs periodically feed the video

utilization information back to the controller. Delay of the
� ��

bottleneck information to

be seen by the controller is � � time slots. So the controller sees the
� ��

LSP’s bottleneck

information after the delay of � � time slots,1 for
� � � � � � � � � . Without loss of

1We use different notation on ��� and ��� to represent the fact that the path from ingress node to bottle-

51

LSP#N

LSP#1`

LSP#2
Ingress Egress

Cross traffic

Cross traffic

Cross traffic

: LSR

.

.

.

: Cross traffic:
(Video+TCP)

Figure 4.1: The single ingress-egress pair network.

generality, we index the LSPs such that ��� � � � � � � � ' � � ' � � � ��� ��� �
��� . To

further simplify our notation, we define total delay � � in
� 	�
 LSP as � �

�
� � � � � � for

� � � � � � � � � . Now, we have ����� � ��� ' � � � �����	� .

Below are the details of traffic models that we consider:

Voice Traffic We assume that each voice flow has a ��	 Kbps constant bit rate. The new

voice calls arrive according to the Poisson process with rate 	 � . Each voice call

has an exponentially distributed duration time with a mean of ��
 seconds. We use

a randomized policy such that each new arriving call is dispatched among LSPs

according to the statistically splitting rule. In the statistically splitting rule, we

assign the probability value
�� ��� for

����
LSP,

� � � � � � � � � . Hence, we will have

the new voice call arrival in
����

LSP according to the Poisson process with rate

neck link and the path from the bottleneck link to ingress node can be different.

52

� � ��� 	 � . As a result, the number of voice calls in each LSP is clearly a discrete-

time Markov chain with state space
� ��� � � � � � � � � � ��� for

����
LSP, where � � is the

capacity of bottleneck link in
����

LSP,
� � � � � � � � � . (Note that we represent � � as

the unit of voice calls.) A transition probability matrix � ����� � � ����� � ��� 	
	 � � � ��	
can be calculated from the above voice traffic parameters.

Video Cross Traffic Since the video and voice traffic share the same queue, this cross

traffic determines the service rate that voice traffic can be served at the bottleneck

link before some of them get dropped. For convenience, instead of specifying

the cross traffic distribution directly, we specify the distribution of “service pro-

cess”, which is the difference between the rate of cross traffic and the capacity of

bottleneck link � . In
����

LSP,
� � � � � � � � � , the service process is represented

by a Markov chain with state space
� � � ���

���� � � � � � ��� � � , a transition probability

matrix � � � � � � � � � 	�	 � � � ��	 , and a set of � � distinct rate values, which are
�
�� � � � � � � ��� � .

Low priority Traffic We will use a heuristic function as discussed in Section 2.3 as our

model for low priority traffic, which mainly use the TCP protocol.

4.3 MDP State Formulation and Notation

We will formulate our problem as a partially observed Markov Decision Process

(MDP). This MDP consists of an action space, a state space, an observation, a

state-transition structure, and a reward structure. We describe each of these

components in detail as follows:

Action Space Let � � � � 	 � � � � � � � � 	 � � � � � � � � � � , denote the control action made at

53

time k to the voice calls in
� ��

LSP while � � is the bottleneck link capacity in

that LSP. � � represents the number of calls that we “migrate out of
� ��

LSP”. The

negativity of � � � � 	 means “migration to that
����

LSP”. �� � � 	 � � � � � � 	 � � � � � � � 	 	
depend on the current state at time k. Because the calls that migrate from one

LSP must go to any of the LSPs, the constraint � �
��� � � � � � 	 � � is needed. The

admissible state-dependent action space
� � �� � � 	 	 is a subset of

� � �(� � � � � 	 �� �(� ' �*� ' 	 � � � � � � �(� � � � � 	 � determined by the constraint � �
��� � � � � � 	 � �

together with the regulation that the “out”-migrated flows cannot be greater than

the existing voice flows in each LSP.

State Space The system state has two components. The first component is voice traffic

variables �� � � 	 . This �� � � 	 is a vector representing the number of voice calls in

our sampling interval (time slot) at ingress LSR, i.e.,

�� � � 	 � � � � � � 	 � � ' � � 	 � � � � � � � � � 	 	 . Each element
� � � � 	 ��� is a number of

voice calls that is assigned to
� ��

LSP in our sampling interval (time slot) at ingress

LSR.2 Moreover,
� � � � 	 is bounded by the link capacity � � . In other words, � �� � � � 	 � � � for

� � � � � � � � � . More specifically, the vector �� � � 	 is the number of

voice calls at the ingress LSR on all LSPs at time � . From the above definition, the

voice traffic variables takes a value from ��� � � � � � � � 	 � � � �*� ' 	 � � � � � � � � � � 	 �
The second component is the recently received service rate information, desig-

nated by �� � � 	 � � � � � � 	 � � �

� � � � 	 	 , where
�
� � � 	 is the service rate information (at

time �) taken from
� � , � � � � � � � � � , as stated in section 4.2. (So �� � � 	 take value

from �	� �
��� � �� �
� � �

� �	�). The state of service process is the recently

2We can obtain this information by counting a number of voice packets at ingress LSR in our sampling

interval, e.g., from time
� ���

to time
�

. Then we divide the number of voice packets with 64Kbps to get

a number of voice calls in that sampling interval (time slot).

54

received state information, instead of the real state at the bottleneck links. We

use this recent information because of the information delay, which prevents our

controller to gain an immediate access to a real state at the bottleneck link. Hence

this �� � � 	 is the information that controller has at time � .

To gain a better understanding, we can discuss the relationship of our service rate

information and the actual state at the bottleneck link. We first refer to the ser-

vice process in
� 	�
 LSP with the above state variable

�
� � � 	 as a service process

� � . Then we define an associated service process
�
� � to be a real service process,

which actually occurs the in bottleneck link. We can see that our service process

� � is essentially the actual service process
�
� � with the � � delay. Note that both

service processes are uncontrollable from our control action, i.e., they are unaf-

fected by the control action made by our controller. Hence, we can use a simple

equation
�
� � � 	 �

��
� � ��� � � 	 to represent the relationship between these two service

processes. Where
��
� � � 	 is a state at time � of process

�
� � .

Using the above two components, we can define our system state variable
� � � 	

as

� � � 	 �

������������
�

�� � � 	
�� � � 	

�� � � ��� 	
...

�� � � � �	� 	

�������������
�

We could see that this state variable is a combination of current voice state, current

service rate state, and all of � � future service rate states. Actually, we could view

the state variable as an internal state, which some of them cannot be observed.

These future service rate states are required in order to represent the cost function,

55

which we will define later in this section.

So the complete state space is ��� � � � ����� � � � .
Observation As we mentioned before, we can partially observe the state variable

� � � 	 .
We define observation

� � � 	 as

� � � 	 �

��
� �� � � 	
�� � � 	

� �
�

In other words, we could observe only the current voice state �� � � 	 and current

service rate state �� � � 	 .
State Transition From the current state

� � � 	 , we apply a control �� so that the system

makes a transition to the new state
� � � � � 	 . The transition of each component is

as follows:

� The state of service rate information make a transition from �� � � 	 to �� � � � � 	
with probability

� � � � � � 	 � � � � � � � 	 	 � � � � � � � � � � , given by the � � � � � 	 � � � � � �
� 	 	 	�
 entry in the given matrix � � .3

� The voice traffic state �� � � 	 makes a transition from
� � � � 	 to

� � � � � � 	
(given control action � �) with probability

� � � � � � � 	 � � � 	 � � � � � � � 	 	 , spec-

ified by the � � � � � � 	 � � � 	 � � � � � � � 	 	 	�
 entry in the matrix � ��� for
� �

� � � � � � � .

MDP Cost and Value Function We define the one-step cost function at state
� � � 	 and

3Notice that transition of �
� - � 2

does not depend on control action �
� - � 2

56

control action �� � � 	 by

� � � � � 	 � �� � � 	 � � � � ��� 	 	
� ��� � � � � 	 � �� � � 	 � � � � � � 	 	 � � � � ��� � � � � 	 � �� � � 	 � � � � � � 	 	

� � ' � ��� � � � � 	 � �� � � 	 � � � � ��� 	 	 �

(4.2)

This cost function is considered as a penalized cost, in which we would like to

minimize. It depends on the current state
� � � 	 , future state

� � � ��� 	 and current

control decision �� � � 	 . Note that we will assign � � to be greater than � ' (� � �
� ') to reflect higher priority nature of real-time traffic. Each individual term of

the cost function
� � � � � 	 � �� � � 	 � � � � � � 	 	 can be described as follows:

a. Control Actions This cost term depicts the fact that the migrated flows can be

impaired, for example, from the out-of-order packets after they are migrated.

Also this cost term prevents frequent migration. This prevention is desirable

because the frequent flow migration may cause the network to become un-

stable. The associated cost is represented by

��� � � � � 	 � �� � � 	 � � � � ��� 	 	 ���	� �� � � 	
�	� ' �
where we define ��� ������ ' as � �

��� � � '� �

b. Drops of Priority Traffic Note that
� � � � 	 will share the same bottleneck link

with
��
� � � � � � 	 . Hence, the competition of

� � � � 	 and
��
� � � � � � 	 over the bot-

tleneck link can cause packet drops. We will use these drops as a penalized

cost in this high priority drops term. Recall that
�
� � � 	 �

��
� � � � � � 	 . Hence,

the drops can be calculated from the value of
� � � � 	 and

�
� � � � � � � � � 	 (or

�
� � � � � �) using a formula

� � � � � 	 � �
� � � � � � 	 	 � . As a result, our high

57

priority drop cost is denoted by

��� � � � � 	 � �� � � 	 � � � � ��� 	 	 �
��
� � �

� � � � � � ��� 	 � �
� � � � � � � � 	 	 ��� ' �

c. Reduction of TCP Goodput The reduction of TCP goodput is a result of con-

gestion control in the TCP traffic. Similar to the discussion in the high pri-

ority drops cost term above, we can get an available bandwidth in LSP from� � � � � � � � 	 � � � � � 	 	 � . With the TCP goodput function proposed in Section

2.3.1, we can get a cost associated with TCP goodput reduction as follows:

��� � � � � 	 � �� � � 	 � � � � � � 	 	

�
��
��� � � ���!�

� � � � � � � � � 	 � � � � � 	 	 � � � � � � � � � � ��� 	 � � � � � ��� 	 	 � � �

Now we obtain a cost function for our H-stage MDP problem as,

� � � ��� � "	��
 � ��
� � � � � � � � � � 	 � � � � 	 � � � � ��� 	 	� �

where
� � � " � � 	 �� � � � � � 	 .

4.4 Optimal Policy and Its Difficulty

In this section, we will discuss an optimal policy in our partially observed MDP

problem. In order to apply the DP algorithm, we will use state augmentation to

reformulate our problem to the one with perfect information. Then we will discuss the

difficulty with the DP algorithm for finding the optimal policy.

We define information vector � � � 	 as

� � � 	 � � � �#�	 � � � � 	 � � � � � � � � 	 � �� ��� 	 � �� � � 	 � � � � � �� � � � � 	 	 ��� �#� 	 � � �#� 	 �

58

We consider the class of policies that consists of a sequence of functions

% � � � � � � � � � � � � �
 � � � �
where

� � maps information vector � � � 	 into control �� � � 	 � � � � � � � 	 	 and is such that
� � � � � � 	 	 � � for all � � � 	 . Such policies will be called “admissible”. We want to find

an admissible policy % that minimizes the value function,

���
 � � �#� 	 	 � ���
 � � �#�	 	 � � � � � � � " �
 � ��
� � � � � � � � � � 	 � � � � � � � 	 	 � � � � � � 	 	�� �

Hence, an optimal policy %�� is one that minimizes the finite horizon value function;

that is,
� ���
 � � �#� 	 	 ���
	�� ���� � �
 � � ��� 	 	 �

where � is the set of all admissible policies.

By using state augmentation, we can reformulate our imperfect information

(partially observed) problem to the one with perfect information as follows: With the

information vector, we get an evolution of a new system as

� � � � � 	 � � � � � 	 � � � � ��� 	 � �� � � 	 	
and get the dynamic programming algorithm,

�
 � � � � ��� � � 	 	 ���
	����� �
 � � � � � � �
 � � ��� �� �
 � � � " � � � � ��� � � 	 � �� ��� � � 	 � � ��� 	 	 	
(4.3)

� � � � � � 	 	
���
	����� � � � � � � � � ��� �� � � � " � � � � � � 	 � �� � � 	 � � � � � � 	 	 � � � � � � � � � � � 	 � � � � ��� 	 � �� � � 	 	 	 �

(4.4)

Hence, the optimal policy %���� � � �� � � � � � � � � � � �
 � � � can be obtained by minimizing

the right-hand side of the DP Equation (4.3) and (4.4).

59

We could let � go to infinity and get a value function
� � � � �#� 	 	 for a

corresponding infinite time horizon problem; that is

� � � � ��� 	 	 � ��	��
���� � � �
 � � �#�	 	 �

Then, the optimal policy %�� for this infinite-time horizon is
� � � � � � � � � � � .

The main difficulty with the DP algorithm in Equation (4.3) and (4.4) is that it is

carried out over a state space of expanding dimension. As a new observation is added

at each stage k, the dimension of the state (the information vector � � �) increases

accordingly. This difficulty highlights the importance of state reduction in the next

section.

4.5 State Reduction

We already mentioned the difficulty from the expanding state space in the last section.

This difficulty motivates an effort to reduce the state that is truly necessary for control

purposes. We will use the concept of sufficient statistics to reduce our state space in

this section.

First we can write a definition of sufficient statistics[2] as follows

Sufficient statistic is a function
� � � � � � 	 	 of Information vector, such that a

minimizing control in Equation (4.3) and (4.4) depends on � � � 	 via
� � � � � 	 . By this we

mean that the minimization in the right-hand side of DP algorithm (4.3) and (4.4) can

be written in terms of some function � � as

�
	�� � � � � � � � � � � � � � 	 	 � � � � 	 	 �

The salient feature of sufficient statistic is that an optimal policy obtained by the

60

preceding minimization can be written as

� �� � � � � 	 	 � � � � � � � � � 	 	 	 � (4.5)

We will propose the observation
� � � 	 to be the sufficient statistic for our problem.

If we can prove that
� � � 	 is the sufficient statistic following the above definition, we

will be able to reformulate our MDP problem using
� � � 	 as our state. This new

formulation will indirectly give the optimal policy of the original problem using

Equation (4.5).

Following the above definition, we can prove that
� � � 	 is a sufficient statistic by

writing the minimization in the right hand side of the DP algorithm (4.3) and (4.4) in

terms of function � � as

� 	 ���� � � � � � � � � � 	 � �� � � 	 	 �

We shall start from Equation (4.3):

�
 � � � � ��� � � 	 	
� � 	 ���� �
 � � � � � � �
 � � � � �� �
 � � � " � � � � ��� � � 	 � �� ��� � � 	 � � ��� 	 	 	
� � 	 � �� �
 � � � � � � �
 � � � � �� �
 � � � "��������

�

��� �� ��� � � 	 ��� '
� � � � ��

� � �
� � � � ��� 	 � �

� ��� � � � 	 	 ��� '
� � ' � ��

� � � � �����
� � � � ��� � ��� � � 	 � � � ��� � � 	 	 � � � � � ��� � � � 	 � � � ��� 	 	 � �

� �������
�

� � 	 � �� �
 � � � � � � �
 � � ��� � �
 � ' ��������� � � ��� ��� �� �
 � ' ��������� � �� ��� � � �� �
 � � � "��������
�

��� �� ��� � � 	 ��� '
� � � � ��

� � �
� � � � ��� 	 � �

� ��� � � � 	 	 � � '
� � ' � ��

� � � � �����
� � � � ��� � ��� � � 	 � � � ��� � � 	 	 � � � � � ��� � � � 	 � � � ��� 	 	 � �

� �������
�

61

Now we will analyze each term above as follows:� � � �
 � � � � � �
 � ' � ������� � � � � ��� �� �
 � ' � ������� � �� ��� ��� �� �
 � � � "� ��
��� � � �����

� � � � ��� � ��� � � 	 � � � ��� � � 	 	 � � � � � ��� � � � 	 � � � ��� 	 	 � � �
� � � �� �
 � � � � �� �
 � ' � ������� � �� � � ��� �� �
 � � � � �� �
 � ' ��������� � �� ��� � � �� � � ��������� � �� �
 � � � "� ��

��� � � �����
� � � � ��� � ��� � � 	 � � � ��� � � 	 	 � � � � � ��� � � � 	 � � � ��� 	 	 � � �

� � � �� �
 � � � � �� �
 � � ��� �� � � ��������� � �� �
 � � � "� ��
��� � � �����

� � � � ��� � ��� � � 	 � � � ��� � � 	 	 � � � � � ��� � � � 	 � � � ��� 	 	 � � �
� � � �� �
 � � � � �� �
 � � ��� �� �
 � � � "� ��

��� � � �����
� � � � ��� � ��� � � 	 � � � ��� � � 	 	 � � � � � ��� � � � 	 � � � ��� 	 	 � � �

The third equality comes from Markov Property of our Markov Decision Process

(MDP) problem. The last equality comes from the fact that �� � � 	 does not depend on

�� � � 	 . At the same time, �� ��� 	 depends only on �� ��� � � 	 and �� ��� � � 	 . Hence, that

function of TCP cost does not depend on any of
� �� �#� 	 � � � � � �� ��� � � 	 � .

Similar to the TCP cost term above, we can analyze and get the other two terms,

� � � �
 � � ��� � �
 � ' ��������� � � � � ��� �� �
 � ' � ������� � �� ��� � � �� �
 � � � " � ��
��� �

� � � � ��� 	 � �
� ��� � � � 	 	 � � ' �

� � � �� �
 � � � � �� �
 � � ��� �� �
 � � � " � ��
��� �

� � � � ��� 	 � �
� ��� � � � 	 	 � � ' �

and � � � �
 � � � � � �
 � ' � ������� � � ��� � � �� �
 � ' ��������� � �� � � ��� �� �
 � � � "�� �	� �� ��� � � 	
�	� '��
� � � �� �
 � � ��� �� �
 � � ��� �� �
 � � � "�� ��� �� ��� � � 	 ��� '�� �

62

Next, we can go back to our DP algorithm; That is

�
 � � � � ��� � � 	 	
���
	�� � �
 � � �������������

�

� � �� �
 � � ��� �� �
 � � � � �� �
 � � � " � ��� �� ��� � � 	 ��� ' �
� � � � � � �� �
 � � � � �� �
 � � ��� �� �
 � � � " � �� ��� �

� � � � ��� 	 � �
� ��� � � � 	 	 � � ' �

� � ' � � � �� �
 � � � � �� �
 � � ��� �� �
 � � � "� ��
��� � �������

� � � � ��� � ��� � � 	 � � � ��� � � 	 	 � � � � � ��� � � � 	 � � � ��� 	 	 � � �

�������������
�

���
	�� � �
 � � � � � � �
 � � � � �� �
 � � � "��������
�

�	� �� ��� � � 	
�	� '
� � � � ��

��� �
� � � � ��� 	 � �

� ��� � � � 	 	 ��� '
� � ' � ��

��� � �������
� � � � ��� � ��� � � 	 � � � ��� � � 	 	 � � � � � ��� � � � 	 � � � ��� 	 	 � �

���������
�

� �
 � � � � ��� � � 	 	

Therefore, we can write the DP algorithm (4.3) in term of a function �
 � � as

� 	 ���� �
 � � � �
 � � � � ��� � � 	 � �� ��� � � 	 	 �

Now, we continue our work on the DP algorithm (4.4). Using an induction, we

assume
� � � � � � ��� 	 	 � � � � � � � � � 	 	 �

63

Then,

� � � � � � 	 	
���
	�� �� � � � � � � � � � � �� � � � " � � � � � � 	 � �� � � 	 � � � � ��� 	 	 � � � � � � � � � � � 	 � � � � � � 	 � �� � � 	 	 	
���
	����� � � � � � � � � � � �� � � � "������������

�

�	� �� � � 	
�	� '
� � � � ��

��� �
� � � � � � � � 	 � �

� � � � � � ��� 	 	 � � '
� � ' � ��

��� � �������
� � � � � � � � � 	 � � � � � 	 	 � � � � � � � � � � � � 	 � � � � � � � 	 	 � �

� � � � � � � � � � � 	 � � � � � � 	 � �� � � 	 	

� �����������
�

���
	����� � � � � � � � � ��� � � � � � ��������� � � � � ��� �� � � � � ��������� � �� ��� � � �� � � � "������������
�

�	� �� � � 	
�	� '
� � � � ��

��� �
� � � � � � � � 	 � �

� � � � � � ��� 	 	 � � '
� � ' � ��

��� � �������
� � � � � � � � � 	 � � � � � 	 	 � � � � � � � � � � � � 	 � � � � � � � 	 	 � �

� � � � � � � � � � � � � 	 	

�������������
�

Again, we will analyze each terms. First, the next stage cost becomes� � � � � ��� � � � � � � ������� � � ��� ��� �� � � � � ��������� � �� ��� � � �� � � � " � � � � � � � � � � � 	 	 �

� � � � � � ��� �� � � � " � � � � � � � � � ��� 	 	 � �

The equality comes from the fact that �� � � � � 	 and �� � � ��� 	 in
� � � � � 	 are

conditionally independent of the other variables given
� � � 	 and �� � � 	 .

For the other terms, we could analyze them the same way we did in
�
 � � � � ��� � � 	 	 . So we complete the analysis.

64

Next, we can go back to the DP algorithm,

� � � � � � 	 	
���
	����� � � ����������������

�

� � �� � � � � �� � � ��� �� � � � " � �	� �� � � 	
�	� ' �
� � � � � � �� � � ��� �� � � ��� �� � � � " � �� � � �

� � � � � � ��� 	 � �
� � � � � � � � 	 	 ��� ' �

� � ' � � � �� � � ��� �� � � ��� �� � � � "� ��
� � � � �����

� � � � � � � � � 	 � � � � � 	 	 � � � � � � � � � � ��� 	 � � � � � ��� 	 	 � � �
� � � � � �� � � � � �� � � ��� �� � � � "�� � � � � � � � � � � 	 	 �

� ��������������
�

���
	����� � � � � � � � � � � �� � � � "������������
�

��� �� � � 	 ��� '
� � � � ��

� � �
� � � � � � ��� 	 � �

� � � � � � � � 	 	 � � '
� � ' �

��
� � � � �����

� � � � � � � � � 	 � � � � � 	 	 � � � � � � � � � � ��� 	 � � � � � ��� 	 	 � �
� � � � � � � � � � � ��� 	 	

� �����������
�

� � � � � � � 	 	 �

Therefore, we can write the DP algorithm (4.4) in term of function � � as

�
	�� �� � � � � � � � � � 	 � �� � � 	 	
QED.

So,
� � � 	 is a sufficient statistic of � � � 	 , and we have the new dynamic

65

programming algorithm as,

�
 � � � � ��� � � 	 	
� � 	 � � �
 � � � � � � �
 � � ��� �� �
 � � � "��������

�

��� �� ��� � � 	 ��� '
� � � � ��

� � �
� � � � ��� 	 � �

� ��� � � � 	 	 ��� '
� � ' � ��

� � � � �����
� � � � ��� � ��� � � 	 � � � ��� � � 	 	 � � � � � ��� � � � 	 � � � ��� 	 	 � �

���������
�

� � � � � � 	 	
���
	����� � � � � � � � � � � �� � � � "������������

�

��� �� � � 	 ��� '
� � � � ��

� � �
� � � � � � ��� 	 � �

� � � � � � � � 	 	 � � '
� � ' �

��
� � � � �����

� � � � � � � � � 	 � � � � � 	 	 � � � � � � � � � � ��� 	 � � � � � ��� 	 	 � �
� � � � � � � � � � � ��� 	 	

� �����������
�

66

Now, we can reformulate the problem; we will define the new state variable as4

�� � � 	 � � � � 	 �

��
� �� � � 	
�� � � 	

� �
� �

We have a new system with a infinite horizon cost,

��	��
���� � � �� � � � " �
 � ��
� � � � � ��� �

�� � � 	 � � � � 	 	 � �

where,
� � � �� � � 	 � � � � 	 	 is a combination of control cost, high priority drop cost and

TCP goodput cost, i.e.,

� � � �� � � 	 � � � � 	 	
� � � �� � � ��� �� � � � "��������

�

��� �� � � 	 ��� '
� � � � ��

� � �
� � � � � � ��� 	 � �

� � � � � � � � 	 	 � � '
� � ' �

��
� � � � �����

� � � � � � � � � 	 � � � � � 	 	 � � � � � � � � � � ��� 	 � � � � � ��� 	 	 � �
� �������
�

4We replace observation variable
� - � 2

with a new state variable
�� - � 2

to prevent a confusion with �	�

in subsequence sections.

67

Chapter 5

Subobtimal Policy: Flow Migration Problem

In Chapter 4, we initially formulated the migration problem as a partially observed

MDP problem. Later in the chapter, we showed that this partially observed MDP

problem can be reduced to the perfect information MDP problem as far as control is

concerned. That is, we will automatically get the optimal control policy in the partially

observed MDP problem if we solve the equivalent perfect information MDP problem.

Moreover, the equivalent perfect information MDP has a much smaller state space. As

a result, it is wise to work on the perfect information MDP problem in this chapter,

instead of working on the original partially observed MDP problem.

Although we achieved a large reduction in state space by focusing on the perfect

information MDP problem, we still got into a well-known curse of dimensionality

problem. With this problem, the number of states often grows exponentially with the

number of state variables. This exponential growth can easily induce large state space.

The resulting large state space could in turn create a difficulty in finding an optimal

policy (even after we apply state reduction technique). Hence, it is nice to design

policies that yield a good approximation to the optimal policy and can be easily

calculated. In this chapter, we will propose some sub-optimal policies for the migration

problem. Then, we will evaluate and compare their performance using the Temporal

68

Difference (TD) learning and the packet-level simulation.

5.1 Linear System with Quadratic Cost Approach

The linear system with quadratic cost problem has been well studied in the control

community[2]. Its analytically closed-form solution makes this problem very

attractive. Moreover, the closed-form solution has the potential to work well in a

large-scale problem. Hence, it could help us cope with state explosion in our migration

MDP problem.

Moreover, the linear system with quadratic cost (LQ) problem and our migration

problem have very similar intuitive objectives and both objectives have a strong

correlation. The objective in our problem is “Keep drops close to zero with small

amount of migration”. Note that we use migration as our control action. On the other

hand, the objective of the LQ problem is “Keep state variables close to zero with small

amount of control action”. From the above two objectives, we could easily notice their

similarity. Now, we will try to illustrate their relationship. We slightly change the

objective of the linear system with quadratic cost (LQ) problem by elevating the system

with a constant value, e.g., mean of link utilization. The updated objective becomes

“Keep state variables close to their means with small amount of control action”. Note

that drops will occur when the amount of traffic is over link capacity. So, small drops

can be obtained if we keep traffic utilization close to its mean. This fact yields a nice

relationship between our migration’s objective and the objective of the linear system

with quadratic cost problem. If we pursue the objective of the LQ problem by keeping

traffic near the mean, this could lead to our migration’s objective getting minimum

drops. Therefore, we could get a good approximation to our migration problem

69

working on the context of the linear system with quadratic cost problem.

Before we go into detail, we establish the useful notation for our LQ approach:��� is identity matrix with dimension � � � ,

� � is all zeroes matrix with dimension � � � ,
� � is all ones matrix with dimension � � � ,

where � is a total number of LSPs.

5.1.1 Linear System with Quadratic Cost Formulation

We will now formulate our migration problem in a context of the LQ problem. Then

we will argue that this formulation yields a good approximation to migration problem.

State Variables

� � ��

����������������������
�

� � � � 	� ' � � 	
...

� � � � 	
� � � � � � � 	
� ' � � � � ' 	

...

� � � � � �	� 	

� ���������������������
�

We define
� � as a vector of ��� state variables; � variables associate with voice

calls
� � � � � 	 � � � � � � � � � 	 � and other � variables associated with video

�
� � � � 	 � � � � � � � � � 	 � . For

� � � � � � � � � ,
� � � � 	 is a difference of voice calls from its

mean in
����

LSP, i.e.,
� � � � 	 �� � � � � 	 � �� � �

70

where
� � � � 	 is the amount of voice calls at time � in

� 	�
 LSP (in unit of voice calls)

and �� � is the mean of voice calls when there is no migration, which we assume to be

fixed at all time � .

In the same manner, for
� � � � � � � � � , we define � � � � 	 as the difference of video

traffic from its mean in
����

LSP, i.e.,

� � � � 	 �� ���� � � 	 � �� � �

where � �� � � 	 is the real amount of video traffic at time � in
� 	�
 LSP (in unit of voice

calls), i.e., � �� � � 	 �� � � � �
� � � 	 .1 In addition, �� � is the mean of video traffic � �� � � 	 , which

we assume to be fixed at all time � . Note that we use a future video states � � � � � � � 	 ,
for

� � � � ��� � � � � � , as our state variables. These future states are required in order to

represent the cost function, which we will discuss later in this section.

In conclusion, the state variables,
� � , represent the deviation of voice and video

traffic from their means.

Control Actions

� � ��
��������
�

� � � � 	
� ' � � 	

...

� � � � � � 	

� �������
�

We define
� � as a vector of � � �

independent control actions
� � � � � 	 � � � � � � � � � 	 �

at time � . For
� � � � � � � � � , each � � � � 	 indicates the amount of calls migration into that

����
LSP. In other words, � � � � 	 is a control action to voice traffic in

� ��
LSP. Note that we

1Recall from Chapter 4, we defined the state variable
�
� as a service rate information, which represents

the amount of bandwidth left after the usage of video traffic.

71

have a constraint on control actions � �
��� � � � � � 	 ��� . The constraint represents the fact

that voice calls must go from one LSP to any of the other LSPs without loss from the

migration mechanism. With that constraint, we can obtain the control action for � ��

LSP immediately from our vector
� � , i.e., � � � � 	 � � � � � ���� � � � � � 	 . So it is logical not

to include � � � � 	 in
� � .

State Equation � � � � � � � � � � � � ��� � �
where

� � � ' � � � �

����������������������
�

��� � �
� � � � � � � � � � �

� � � �
� � � � � � �

� ���������������������
�

� � � ��

����������������������
�

� � � � 	
� ' � � 	

...

� � � � 	
� � � � 	
� � � � 	

...

� � � � � 	

� ���������������������
�

�

We define
� � as a vector of noise variables associated with each element in

� � .
These noises emulate all uncertainty in the system. The first � variables,
� � � � � 	 � � �

� � � � 	 � , emulate the voice calls arrival and departure, while the last �

variables,
� � � � � 	 � � �

� � � � � 	 � , emulate the fluctuation of the video traffic model. We

let the means of all noise variables be set equal to zero so it would emulate the

fluctuation of state variables around their means. In fact, in the real system,
� � has to

depend on
� � . (Call departure depends on the number of current voice calls, and video

fluctuation depends on the current state of the video traffic model.) However, to obtain

72

a closed-form solution, noise variables
� � in the LQ problem context have to be

independent random variables with a finite second moment. Moreover,
� � should not

depend on
� � and

� � [2]. Therefore, we will have to assume independence and assign

the second moment of
� � to be finite.2 This assumption yields another approximation

to our original migration problem.

From the state equation above, we can see that the next state variable
� � � � is a

weighted sum of current state variables
� � , control actions

� � , and uncertainty

variables
� � . Our migration handles only voice calls. So, the last � rows of �

associated with video is all zeros. Moreover, the � ��
row of � are all � �

to represent

the fact that � � � � 	 can be obtained from other
� � � � � 	 � � � � � � � � � 	 � with formula

� � � � 	 � ��� � � �� � � � � � � 	 as described above. Recall that � � � � 	 is a control action to

voice traffic in
� 	�
 LSP.

Cost Function ��� � � � ��
 � � � �
��
� � � � � � � �� � �
 � � � � � � �� � � � 	 � � (5.1)

2Note that, for
� � � 01/ / / 0�� , the voice traffic in

� ��	
LSP has a long-term poisson distributed num-

ber of calls with mean and variance ��� 	�
� . Hence, we assign the noise variables associated with voice

variables to have their second moment ���� � � - � 2 � ��� � � � 	
� � - � � 	
� 2 � . Recall from Section 2.1, video

traffic is modelled by birth-death Markov chain with mean ������� and variance ��� � ��� - � � ��� 2 , where

� � � ������ . Hence, we let the noise variables associated with video traffic to have their second moment

���� � � �
- � 2 � � � �!��� � � � - � � � � 2 � -

� � ��� 2 � .

73

where

� � � � � � � ��� � � �

 � � � � �� � � � � ��� 	��	� � � � � �� ' � � � ' � � � � ��� � ' 	 � � � ��� ��� 	 �
� � � �

�

The cost function in Equation (5.1) is a nice approximation to the cost function in

our migration problem. It represents two important kinds of terms, the drops cost terms

(with
� ��
 � �)and control cost terms (with

� �� � � �). Note that we do not have any

terms representing TCP cost. However, TCP cost is significantly less important than

other costs because TCP traffic is in the lower priority class, as we mentioned in

Section 4.3. So, Equation (5.1) could be a good approximation to our migration

problem’s cost function. We will now describe the relationship between the cost

function in Equation (5.1) and the cost function of our original migration problem. We

start with the control cost terms represented by
� �� � � � . From

� � � � � � � ��� � � , we

could simplify
� �� � � � into scalar form as,

� �� � � � � � �� � � � � � � � � �� ��� � � � �
�

�
�
� � ��
� � � � � � � 	��

'
� � � ��
��� � � � � � � 	 	 '

� � � � 	 ' � � � ��
� � � � � � � � 	 	 ' �

��
��� � � � � � � 	 	 ' �

We could see that this
� �� � � � is exactly the control cost term in our original migration

problem.3

3Recall that we want to minimize the following cost in our migration problem,

���	�
��� ���������������
��! "
�$# ��% �'&)(- �� - � 2 0 � - � 2�2+* 0

74

Now, we will discuss about drop cost terms represented by
� ��
 � � ,� � � � � � � � � � � . These terms actually are an approximation of the high priority drop

cost term in our original migration problem. Recall that� � � � � ��� 	��	� � � � � �� ' � � � ' � � � � ��� � ' 	 � � � ��� ��� 	 . Hence,

� ��
 � � � � �� � � � � � ��� � � ��
��� � � � � ��� � � � � 	 � � � � � � � � 	 	 ' �

Recall that �� � is a mean of voice traffic, and �� � is a mean of video traffic in
����

LSP,

for
� � � � � � � � � � � . So the mean of total traffic utilization in

� ��
LSP is �� � � �� � in unit

of voice calls. Then,

� � � � � 	 � � � � � � � � 	 	 � � � � � � 	 � �� � 	 � � � �� � � � � � 	 � �� � 	
� � � � � � 	 � � �� � � � � � 	 	 � � �� � � �� � 	 �

We could see that it represents the deviation of the traffic utilization from the utilization

mean. Note that our cost function penalizes this deviation. So the deviation will be kept

close to zero with optimal control action. This in turn leads to small drops as we

wanted in our migration problem’s objective. As we already discussed in Chapter 4

when we defined a cost function for our original problem,
� � � � 	 will share the same

bottleneck link with � � � � � � � 	 . Hence,
� � � � 	 � � � � � � � � 	 will correctly represent the

deviation of the traffic utilization from the utilization mean at the bottleneck link.

where
& (- �� - � 2 0 � - � 2#2 is a combination of control cost, high priority drop cost, and TCP goodput cost,

& (- �� - � 2 0 � - � 2�2
� ������� � � � �� � � ���

�����
�
� � �� - � 2 � � � ���
	��"

��# � � � �
- � � � 2 � �

�
- � ��� � � � 2 � ��� �

��� � 	��" ��# '�������� � � � - � ��� � 2 � � �
- � 2 � � 0 � � � - � ��� � � � 2 � � �

- � � � 2 � ���
�!
" /

75

In conclusion, the cost function in this LQ formulation is close to the cost function

in our migration problem.

5.1.2 Solution to Linear System with Quadratic Cost Formulation

The cost function in Equation (5.1) can be rearranged to� � � ����
� � � � � � � ��
 � � � � � �� � � � 	 � �

We let
��� � � � � , � � � � � � and

� � � � � . Then, we get the stationary control

vector
� � from Equation (5.2),

� � � � � � � � 	
� � � � �� � � � � � � 	 � � � �� � ��� � � � (5.2)

and value function
�
� ����� � � 	 from Equation (5.3),

�
����� � � � 	 � � �� � � � � �� � � � � � �� � � � 	 � (5.3)

where we can obtain
�

from Riccati’s Equation [8]:� � � �� � � � � � � � � �� � � � � � � 	 � � � �� � 	 ��� �
 �

To guarantee the existence of P, we need the following requirements:

1.
 � � � � � � �

2. � ��� � � � 	 stabilizable

3. � ��� � � 	 detectable; � � � �

All parameters in our LQ formulation satisfy all of the above requirements. For the

second and third requirements,
�

has eigenvalue
�
, which makes

���
to have eigenvalue

� � . Hence, � ��� � � � 	 is stabilizable, and � � � ��� 	 is detectable.

76

For the first requirement, we have to prove that
 is positive semi-definite and
�

is

positive definite. Note that � has full rank and
 �$� � � . Hence,
 is positive

semi-definite.

To prove that
�

is positive definite, we first claim that the � � �
eigenvalues of

� � � � are
� � � � � � ��� ��� � � � � ��� � . This claim follows the fact that

� � � � has rank one. So

it will have only one non-zero eigenvalue. This fact explains all zero eigenvalues. Note

that the trace of matrix equals a summation of its eigenvalues, i.e., ��� � � 	 � � �
� � � 	 � ,

where
� 	 � � 	 ' � � � � � 	�� � are eigenvalues of � by � matrix

�
. Hence, we can get a

single eigenvalue as � � �
because ��� � � � � � 	 � � � �

.

Then we can further claim that the eigenvalues of
� � � � ��� � � � � � ��� � � 	 are

� � � � � � � � � � � � � � . This claim follows the fact that eigenvalues of
� ��� � are

� 	 � ��� � � � � � 	�� ��� � if
� 	 � � 	 ' � � � � � 	 � � are eigenvalues of � by � matrix

�
, where

�

is a scalar and � is an identity matrix. Using this fact and the previous claim, we will

know that the eigenvalues of
� � � � � � � � � are

� � � � � � � � � � � � � . Hence, the eigenvalues

of
� � � � ��� � � � � � ��� � � 	 are

� � � � � � � � � � � � � � .

From all positive eigenvalues of
� �

, we can conclude that
� �

is positive definite

(
� � � �).

5.1.3 Example of a Two LSP Case

We assume that the total delay in the
� � 	 LSP is � , and the total delay in the � ��� LSP is

�
, i.e., � � �$� and � ' � �

. Moreover, we let the discount factor � � � �

�
, and � � � � �

�
.

77

Then, we got

� �

��������
�

� � � �
� � � �
� � � �
� � � �

���������
�
� � � �

��������
�

� � � � 	� ' � � 	
� � � � � � 	
� ' � � ��� 	

���������
�
�

� �

��������
�

�

� �

�
�

� �������
�
� � � �

�
� � � � 	�� � � � �

��������
�

� � � � 	
� ' � � 	
� � � � 	
� � � � 	

� �������
�

�

and

 ��� � �
��������
�

� � � � � �
� � � � � �

� � � � � �
� � � � � �

� �������
�

����� � � ��� � � �
��
� � � �� ' � � � �� ' �

� � � � ' � � � � '
���
� �

Let
� � � � � � � , �

�
� � � � � and

� � �
(since the dimension of

� � is one).

We can use MATLAB to obtain a solution
�

for the Riccati’s equation,

� �

��������
�

� � 	 � � � � � �

� � � �
	 � � 	 � � � � � �

� � � �
	
� �

� � � �
	 � � ��	 � ��� � �

� � � �
	 � � ��	 � ���
� � 	 � � � � � �

� � � �
	 � � 	 � � � � � �

� � � �
	
� �

� � � �
	 � � ��	 � ��� � �

� � � �
	 � � ��	 � ���

���������
�

�

Then,

� � � � 	 �
�
� � �

��� � � � � �

� � � ��	 � � �

� � � � � � �

� � � ��	 � �

��������
�

� � � � 	� ' � � 	
� � � � � �	
� ' � � � � 	

� �������
�

78

5.1.4 Separation Theorem for Linear System with Quadratic Cost

We can notice that the optimal control in our LQ formulation is a function of current

voice state
� � � � 	 and future video state � � � � � � � 	 . However, we have only current

voice state information
� � � � 	 and current video state � � � � 	 available at time � . So we

need to associate our LQ solution with the state information at time � . Fortunately, we

work on a nice system, a linear system with quadratic cost. There is a useful theorem

for this system called Separation Theorem, which occupies a central position in

modern automatic control theory[2]. The theorem stated that the optimal controller in a

linear system with quadratic cost can be decomposed into two parts, which are the

estimator part and the actuator part. The estimator part uses the data � � � 	 to estimate

state
� � � 	 . The optimal estimate is a conditional expectation

� � � � � 	
� � � � 	 	 . The

actuator part applies the optimal solution from linear system with quadratic cost

formulation to the system.

With the help from the separation theorem, we can obtain the optimal control

directly from the current information, which is available at time � (current voice state

information
� � � � 	 and current video state � � � �). In the estimator part, we can first

calculate
� �

� � � � � � � 	
� � � � � 	 	 as an estimate of � � � � � � � 	 given the current information

� � � � 	 . Then we could use our linear system with quadratic cost solution as an actuator

part.

In conclusion, we can get an optimal control in our linear system with quadratic

cost formulation as follows: We first calculate
� �

� � � � � � � 	 � � � � � 	 	 as an estimate of

� � � � � � � 	 given the current information � � � � 	 . Then, we can put this estimate instead

of � � � � � � � 	 in Equation (5.2); That is we get a stationary control vector
� � from

79

Equation (5.4) below,

� � � � � � �� � � � � � � 	 � � � �� � ���

����������������������
�

� �� '
...
� �� �

� � � � � � � 	
� � � � � 	 	� �
� ' � � � � ' 	
� � ' � � 	 	

...� �
� � � � � �	� 	 � � � � � 	 	

� ���������������������
�

� (5.4)

where
� �

� � � � � � � 	
� � � � � 	 	 can be analytically calculated using Lemma 5.1.1 below.

Lemma 5.1.1. Given a current video state � � � � 	 for
� 	�
 LSP, the expected value of the

future video state
���

� � � � � � � 	
� � � � � 	 	 can be obtained from

� �
� � � � � � � 	
� � � � � 	 	 � � � � � 	 � � � � � � � � ��� �

where
�

is the time-step length.
�

and
�

are parameters in the video model.

Proof Lemma 5.1.1

Recall that � � � � 	 �� � �� � � 	 � �� � where � �� � � 	 is the real amount of video traffic at

time � in
� 	�
 LSP (in unit of voice calls), and �� � is the mean of video traffic � �� � � 	 ,

which we assume to be fixed at all time � . Let � �#� 	 be a scaled continous-time version

of � �� � � 	 , i.e., � �� � � 	 � � ��� � � � 	 , where
�

is the length of our time-step. Recall from

Section 2.1, this � �#� 	 is a continuous-time Markov chain with a quantization step rate

of
�

bps. Letting ��� �#� 	 � � � � �#� 	
� � ��� 	 � � 	
, we will derive a differential equation

80

satisfied by ������ 	 . To begin, note that, given � ��� 	 :
� ��� � � 	 �

������ ����� � ��� 	 � � � 	����
	
 ��� � � 	 � 	��� � � � � ��� 	 	 � � � � � � 	
� ��� 	 � ��� 	����
	
 ��� � � 	 � 	��� � ��� 	 � � � � � � 	
� ��� 	 � 	����
	
 ��� � � 	 � 	��� � � � � � � � � � � 	 � ��� 	 	 � � � � � 	

where,
� � � � � and � are the parameters associated with our video model defined in

Section 2.1.

Hence, taking expectations yields� � � ��� � � 	 � � �#� 	 	 � � ��� 	 � � � � � ��� 	 	 � � � � ��� 	 � � � � � � 	 �

Take expectations respected to � ��� 	 once again yields

��� ��� � � 	 � ������ 	 � � � � � � � � � 	 � �#� 	 � � � � � 	 �

or
������ � � 	 � ������ 	� � � � � � � � � 	 � �#� 	 � � � � 	� �

Letting
� 	 � gives

� �
� ��� 	 � � � � � � � � 	 ��� ��� 	 �

As a result, we get

��� ��� 	 � � �
� � � ��� � � � � � � � � �

Since ������ 	 � � ��
� � ��� � �

,
� � � � � ��

� � , we obtain

������ 	 � � �
� � � ��� � � � �

� � ��� � � � � � � � � �

Recall that � �� � � 	 � � ��� � � � 	 . Hence,

���
� �� � � � � � 	 � � �� � � 	 	 � � � � ��

� � ��� � �� � � 	 � � � � ��
� ��� � � � � � � � � ��� �

81

Also � � � � 	 � � �� � � 	 � �� � . Hence,

� �
� � � � � � � 	 � �� � � � � � � 	 � �� �

	 � � � � ��
� � � � � � � � 	 � �� � �

� � � ��
� � � � � � � � � � � ��� �

We could get a mean of video traffic[33] from �� � �
� � � ��

� � . Then,

� �
� � � � � � � 	
� � � � � 	 	 � � � � � 	 � � � � � � � � ��� �

QED.

5.1.5 Randomized Rounding

Control actions obtained from Equation (5.4) can be any real number. However, the

nature of our migration control is an integer number. The migration control operates on

voice traffic by moving one or more calls from one LSP to other LSPs. The voice call

cannot be moved fractionally because it can be moved only by an integer number of

calls. So our control action needs to be integer also.

Srinivasan [36] explained an approach to obtain an approximation solution to

Integer Programming. The approach started with relaxing an integer constraint. Then,

he obtained a real number solution of that relaxed problem. Finally, he used

Randomized Rounding to get an integer solution from the relaxed solution. This

approach yields a nice bound to optimal solution.

The real number solution from a linear system with quadratic cost solver can be

viewed as relaxation in the integer programming context. Then, we can obtain an

integer solution from Randomized Rounding. In our problem, the procedure of

Randomized Rounding can be illustrated with the following example. Suppose we get

� � � � 	�� �
� 	 (control action to � �� LSP) from the solver. We will round this to an

82

integer value
�� � � � 	 � �

with probability � � � and to integer value
�� � � � 	 � 	 with

probability � � 	 . This rounding will get
� � �� � � � 	 	 � �

� 	 , which is exactly the number

� � � � 	 from the linear system with quadratic cost solver.

The complete algorithm of our linear system with quadratic cost approach for the

migration problem is shown in Algorithm 2. The algorithm needs a state of the system,� � , as an input and it will generate
� �� � � � � � � �� � � as an output of the algorithm.

LQ(
� �)

� � � � � � �� � � � � � � 	 � � � �� � ���

����������������������
�

� �� '
...
� ����

� � � � � � � 	 � � � � � 	 	���
� ' � � � � ' 	 � � ' � � 	 	

...� �
� � � � � �	� 	
� � � � � 	 	

�����������������������
�

for � � � � ��� � � � 	 �

��� �� � � � � � 	�� � 	�� � 	
 ��� � � 	 ��	 �� � � � � 	 ��� � � � � 	��
� � � � � 	�� � 	�� � 	
 ��� � � 	 ��	 �� � � � � � 	�� � � � � � 	�� � � � 	�� � � � � ���� � �� � � � 	

*Note that ���
	 is the largest integer that is less than � if ��� � , or the smallest integer that is greater than � if �� � . ���
� is the

smallest integer that is greater than � if ��� � , or the largest integer that is less than � if �� � . � is pre-calculated off-line.

Algorithm 2: The algorithm of linear system with quadratic cost approach.

83

5.1.6 Conclusion on Linear System with Quadratic Cost Approach

We modify the model in our migration problem to suit for linear system with quadratic

cost formulation. Then, we use that modified model, the LQ model, to approximate the

optimal solution in our migration problem. There are four modifications from the

original model to our LQ model. First, we make all uncertainty in the LQ model

independent from its state variable. (In the original model, uncertainty depends on state

variables, e.g., call departure depends on number of voice calls, which is one of the

state variables.) Second, we use deviation of traffic from its mean as a way to quantify

a chance of getting drops. By penalizing that deviation in our new cost function, we

can also approximate a goal to minimize drops. Third, we omit the cost associated with

the TCP traffic. Because of the relatively small cost compared to drops and control

action in the original cost function, we still get a good approximation to the original

model. Fourth, we let the solution from the LQ model to be a real number instead of

strictly an integer number in the original model. With that real number solution, we use

Randomized Rounding to convert it to a good integer solution later.

These modifications drive our LQ solution away from the optimal value. However, they

provide a closed-form solution that simplifies online calculation and in turn scales well

with large state space in our migration problem.

84

5.2 Simulated Lookahead Approach

Limited lookahead is a well-known technique in dynamic programming to approximate

an optimal solution. Given good approximation of the optimal value function4 � � � � 	 ,
the limited lookahead can achieve a nearly optimal solution [2]. In our migration

problem, we use a value function from the linear system with quadratic cost approach

as an approximated value function for the limited lookahead. This approximated value

function has a big advantage from its closed form solution. The closed form solution

can be calculated quickly with a small memory requirement. Hence, it reduces the

computational complexity of the limited lookahead, especially an online version of the

limited lookahead. We chose an online version because it scales better with a large

state space. We also use a simulation to better cope with large state space. More

precisely, we use simulation to approximate the expectation in the limited lookahead

formula. We first explore a simulation approach that directly derives from the

Monte-Carlo simulation. This combination of the limited lookahead and Monte-Carlo

simulation, which we named Monte-Carlo Lookahead, have been proposed and

extensively used in other applications. Then, we introduce a new approach that is better

suited to the nature of our fast timescale problem. The small time and processing

power in the fast timescale control limits the number of simulation samples generated.

Our new approach, which we named Iterative Lookahead, uses additional information

to reduce a need of large simulation samples.

Online vs. Off-line So far we have explored off-line approaches, i.e., linear system

4The optimal value function � ��� - �� - � 2�2 can be obtained from

� ��� - �� - � 2�2 � ����� � � ���������� � "
�$# � % � & (- �� - � 2 0�� - �� - � 2�2�2+* 0

where
& (- �� - � 2 0�� - �� - � 2�2#2 is the stage cost in the MDP problem.

85

with quadratic cost approach. In those off-line approaches, the control policy is

calculated off-line and can be used directly during the controller’s operation. In this

section, we will explore an online approach. In an online approach, the current state of

a system is observed and the control action for that state is calculated on-the-fly. The

most prominent advantage of the online approach is that we do not need to compute

control policy for every states in state space in advance. So, it will scale well with large

state space in our problem.

Limited lookahead

In the dynamic programming technique, we could obtain the optimal action � � from

Equation (5.5),

� � � �
 ��� 	 � � � � � " � � �������� � � 	 � � � � ��� � 	 	 � (5.5)

where we use � as a generalized state variable and � as a generalized control action. We

also use � � as a generalized state variable that represents the next state after applying

action � to current state � . From these generalized variables, our stage cost will be
� �������� � � 	 . We use these generalized state variable instead of the real state variable
�� � � 	 to draw a reader’s attention to the algorithm and the explanation, instead of the

variables themselves.5

In many cases, � � ����	 is difficult to obtain. The limited lookahead is introduced to

ease that difficulty. Instead of the optimal value function, � � ����	 , the limited lookahead

5Recall that the stage cost
& -�� 0�� 0�� (2 in our MDP problem is��������

�
� � �� - � 2 � � �
��� 	 �"

��# � � �
- � � � 2 � �

�
- � � � � � � 2 � � � �

��� � 	 �" ��# '������ � � � � - � ��� � 2 � � �
- � 2 � � 0 � � � - � � � � � � 2 � � �

- � � � 2 � ���

�
"
/

86

uses some approximation of true value function instead. In this migration problem, we

use a value function from the linear system with quadratic cost approach, � ����� � 	 , as an

approximated value function. So, we get the limited lookahead policy, � � , as shown in

Equation (5.6). Given good approximation of value function, the limited lookahead

can achieve a nearly optimal solution [2].

� � ���
 ���
	�� � � � � " � � �������� � � 	 � � ��� ����� � 	 	 � (5.6)

From previous sections, the linear system with quadratic cost approach yields a

closed-form solution for both the policy and value function. The closed-form solution

makes ������� ��	 calculation easy. Moreover, it does not require large memory to store

pre-calculated values. Then, it makes on-the-fly calculations possible in a limited

calculation time. So, the linear system with quadratic cost approach is an ideal choice

for base policy, especially in our online version of the limited lookahead algorithm.6

The detailed calculation of ������������	 will be shown in Section 5.2.3.

Simulated Lookahead

Note that the online version of the limited lookahead reduces state explosion

problem by considering only a single current state at a time. However, calculation of

Equation (5.6) still suffers from state explosion. Let
� � � � � ���� 	 be the transition

probability of the next state � � , given the current state � and action � . To directly

compute the expectation in Equation (5.6), we need
� � � � � ���� 	 for every � � in state

space. Although we consider only a single current state � to reduce calculation

complexity, we still need to consider all of the next state � � to obtain that expectation.

As you could imagine, the calculation of the expectation will be tedious because our

6In the online version of the limited lookahead algorithm, we get a current state
�

and obtain the action
���

from Equation (5.6).

87

state space is large.

So we will use simulation to approximate that expectation. We will explore two

simulation approaches. The first approach is Monte-Carlo Lookahead and the second

approach is Iterative Lookahead.

5.2.1 Monte-Carlo Lookahead

The Monte-Carlo simulation is a good alternative to get an approximate value to that

expectation. Given current state � and action � , we can generate ��� samples of the next

state,
� � � � ��� � ' � � � � � � � ��� � . For each sample � �� for

� � � � � � � � ��� , we can calculate the

associated value of
� � �������� � �� 	 � � ��� ������� �� 	 	 . Then we can average them up as shown

in Equation (5.7) to obtain the estimate of
� � � " � � � ������ � �� 	 � � � ��� ����� �� 	 	 . We can

illustrate this description in Figure 5.1(a). Note that the Monte-Carlo simulation

provides a good estimate if the number of samples ��� is large (��� � 	 �
).

��� � ���
 ���
	�� �
�

��� �
����
� � � � � �������� � �� 	 � � � � ����� � �� 	 	 (5.7)

The application of the Monte-Carlo simulation to the limited lookahead has been

proposed in a context of games as mentioned in [2]. This limited lookahead algorithm

also uses the Monte-Carlo simulation. So, we called it the Monte-Carlo lookahead with

its detail in Algorithm 3.

5.2.2 Iterative Lookahead

As mentioned before, the Monte-Carlo simulation provides a good estimate only if we

have a large number of samples. In other words, we need to simulate the samples many

times to obtain a nice controller. However, we cannot simulate that many samples in

88

E[R+ VLQG]

R+ VLQG

Average

(a) Using Monte-Carlo simulation

QLQG(s,a)

E[R+ VLQG]

R+ VLQG

R+ VLQG

Average

(b) Using Iterative simulation

Figure 5.1: The illustration of simulated lookahead algorithms

89

Monte(s)

� � � � � 	�� � , ��� � � ��	

for
� � � � � � � � ���

for ��� � � ��	

- simulate � �� from � and �

-
� � � � � 	�� � �������	 � � � �������� � �� 	 � � � � ����� � �� 	 	

��� � � �
 ���
	�� ��� � � �
� �

� �

Algorithm 3: Simulated lookahead algorithm using the Monte-Carlo simulation.

our fast timescale control. Time and processor capability limit a number of samples

that we can generate. Hence, we might not get a good estimate of the expectation using

the Monte-Carlo lookahead approach.

Fortunately, we can use a
 ����� � � � 	 (which is
� � � " � � ��� � � � � ��� � 	 � � � ������� � 	 	 from

the linear system with quadratic cost approach7) to improve the accuracy of the

estimate. Note that
 � ���������	 is a weighted sum of
� � � � �������� � �� 	 � � ����� ��� �� 	 	 , i.e.,

 � � �������	 � � � � " � � ������������ � � 	 � � ��� ����� � 	 	
� ��	��� ��� �� � � �

��� � � � ������������ � �� 	 � � � � ����� � �� 	 	 �

Hence, having
 ��� � � � � 	 is equivalent to having a large number of� � ����� � � � ��� �� 	 � � � ������� �� 	 	 . We can use these large number of available samples� � ����� � � � ��� �� 	 � � � ������� �� 	 	 from
 � ���������	 to approximate additional� � �������� � �� 	 � � � ����� � �� 	 	 samples that we want. This
� � � ���������� � �� 	 � � ����� ��� �� 	 	 might

7 &���� -�� 0 �*0�� (2 is a stage cost when we formulate our migration problem in the linear system with

quadratic cost context, i.e.,
& ��� - � 0
	.0 � (2 � � (�� � � 	 & 	

. This is clearly the estimation of the real

stage cost. Refer to Section 5.1 for further detail.

90

not be a good approximation but it is better than the case that we do not have any

approximation at all and rely only on the small available samples.8 Hence, we will use

this
������ � � � 	 and the real simulation samples
� � �������� � �� 	 � � � ������� �� 	 	 to obtain better

estimate of
� � � � � � � ��� � 	 � � � ��� ��� � 	 	 . We can illustrate this idea in Figure 5.1(b). So,

we could view the
 �����������	 usage as an artificial way to increase the number of

samples.

From another point of view, we consider
 � � �������	 as a good starting estimate so

we do not need a large number of samples. Note that we will get a better estimate every

update using additional samples. If we update using large enough samples, the estimate

will eventually converge to
� � � " � � � � � � ��� � 	 � � � ������� � 	 	 . However, we could update a

fewer number of times if the initial value is good enough. This fact appears in many

optimization techniques. For example;

� Newton’s method: If the initial feasible point is near the optimal point, it takes

only a few steps to reach the optimal point.

� Value iteration method in the dynamic programming technique: If the initial value

function is good enough, it takes a few iterations to get an optimal solution.

The detailed calculation of
 ����� �������	 will be shown in Section 5.2.3.

Due to its nature of updating iteratively, we call this extension of the limited

lookahead algorithm as Iterative Lookahead. The detail of the algorithm is shown in

Algorithm 4.

8This case is the case using the Monte-Carlo lookahead algorithm.

91

Iterative(s)

 �������	��
 ��� �������	 , ��� � � ��	

for
� � � � � � � � ���

for ��� � � ��	

- simulate � �� from � and �

-
 �������	 �
 � � � � 	 � � � � � � ������ � �� 	 � � ��� ������� �� 	 �
 � � � � 	 	
� � � � �
 ���
	�� �
 �������	

Note that � is a step-size in updating � ���� � � �
Algorithm 4: Simulated lookahead algorithm using the iterative simulation.

5.2.3 Calculation of
���
	�����

and � ��	���������
Recall that our LQ formulation minimizes the cost function below,� � � ����

� � � � �� � ��
 � � � � � �� � � � 	�� �

or � � � � � ��
 � � � �
��
� � � � � � � �� � �
 � � � � � � �� � � � 	� �

We could see that only the second term of the above equation follows the cost function

in our migration problem.9

9Without TCP consideration, the cost function that we want to minimize in our migration problem is

 � ������������ "
�$# � % ��� � � �� - � 2 � � � � � 	 �"

��# � � �
- � � � 2 � �

�
- � � � � � � 2 � � � ��� * 0

in which the stage cost is the combination of current control cost � � �� - � 2 � � � and drops cost� ���# - � � �
- � � � 2 � �

�
- � ��� � � � 2 � � 2 � , which depends on future state variables. This stage cost can

be modeled by the second term of LQ cost function above.

92

From the above LQ cost function, we can write the associated value function�
� ����� � � 	 as

�
��� ��� � � 	 ���
	�� � � � � � ��
 � � � � � �� � � � � � � �� � �
 � � � � � � � � � 	 � � � � � 	 	 �

� � ��
 � � � � � �
	�� � � � � � �� � � � � � � �� � �
 � � � � � � � � � 	 � � � � � 	 	 � �

We can take
� ��
 � � out of minimization terms because

� � is given. As we discussed

earlier, only the second term follows the migration problem. Hence, the desired value

function ����� � � � 	 , which follows the migration problem, is

��� ��� � � 	 ���
	�� � � � � � �� � � � � � � �� � �
 � � � � � � � � � 	 � � � � � 	 	 �
� �� �

� ����� � � 	 � �� � ��
 � �
� �� � �� � � � � �� � � � � � �� � � � 	 � �� � ��
 � �
� �� � �� � � �
 	 � � � �� � � � � � �� � � � 	

�

As a result, we can analytically calculate � ����� � � 	 from Equation (5.8).

� ����� � � 	 � �� � �� � � �
 	 � � � �� � � ��� � �� � � � 	 (5.8)

Now, we get to the calculation of
 ����� � � � � � 	 . Like the calculation of � ����� � � 	 ,
we will first get a relationship between
 ����� � � � � � 	 and

�

������ � � � � � 	 .

Similar to the discussion about � ����� � � 	 , we can write
 ����� � � � � � 	 associated

with migration cost function as

������ � � � � � 	 � � � � � � � � ��� � � ��
 � � 	
� � � �
	�� � � � ����

� � � � � � � �� � �
 � � � � � � � � � 	 � � � � � 	 	� �

93

Associated with the cost function of our LQ formulation, we can write
�

 � ��� � � � � � 	 as

�

 ��� � � � � � � 	 � � ��
 � � � � � � � � �

� � � � 	 � � � � � � ��
 � � � �
��
� � � � � � � �� � �
 � � � � � � � � � 	 � � � � � 	 	�

� � ��
 � � � � � � � � � � � � � � � ��
 � � 	
� � � � 	 � � � � � ��

� � � � �� � �� � �
 � � � � � � � � � 	 � � � � � 	 	� �

Hence, we get a relationship between
 ��� � � � � � � 	 and
�

������ � � � � � 	 as shown in

Equation (5.9).

 ��� � � � � � � 	 �
�

������ � � � � � 	 � � ��
 � � � � � � � 	 � ��� � � ��
 � � 	 (5.9)

From the intensive study on linear system with quadratic cost, we can get a

closed-form solution of
�

���� � � � � � � 	 as follows: With the LQ formulation, we have

�

 ��� � � � � � � 	 � � � � � � ��
 � � � � � � � � � � �

�
��� ��� � � � � � � � � � � 	 	

� � ��
 � � � � � � � � � � � � � ��� � �� ����� � � � � � � � ��� � 	 	 �

Davis and Vinter[8] give a nice closed-form of
� � � � �� ����� � � � � � � � � � � 	 	 as� � � � �� ����� � � � � � � � ��� � 	 	 � � � � � � � � � 	 � � � � � � � � � � 	 � �

� � �
��� � �� � � � 	

�

Hence, we write
�

������ � � � � � 	 analytically as shown in Equation (5.10).

�

 ��� � � � � � � 	 � � ��
 � � � � � � � � �

� � � � � � � � � � 	 � � � � � � � � � � 	 � �� � � � � � �� � � � 	 (5.10)

Using the relationship of
 ����� � � � � � 	 and
�

������ � � � � � 	 in Equation (5.9) and the

analytical solution of
�

 � � � � � � � � 	 in Equation (5.10), we can get a desired

94

������ � � � � � 	 , which follows the migration problem. That is,

 � � � � � � � � 	 �
�

������ � � � � � 	 � � ��
 � � � � � � � 	 � ��� � � ��
 � � 	

� � � � � 	 � ��� � � ��
 � � 	 � � � � � � �
� � � � � � � � � � 	 � � � � � � � � � � 	 � �� � � ��� � �� � � � 	

� � � � � 	 � � � � � � � � � � � � ��� � 	 �
 � � � � � � � � ��� � 	 	
� � � � � � � � � � � � � � � � � 	 � � � � � � � � � � 	 � �� � � � � � �� � � � 	

� � � � � � � � � � � �� � � � � � 	
 � �� � � � 	 � � 	
� � � � � � � � � 	 � � � � � � 	
 � � � 	 � � � � � � � � 	 �

As a result, we can analytically calculate
 ��� � � � � � � 	 from Equation (5.11).

 � ��� � � � � � 	 � � � � � � � � ��� � �� � � � � � 	
 � �� � � � 	 � � 	� � � � � � � � � 	 � � � � � � 	
 � � � 	 � � � � � � � � 	 (5.11)

5.3 Policy Evaluation and Comparison

So far, we have proposed a number of sub-optimal policies. In this section, we will

evaluate and compare the performance of proposed policies. We will first evaluate them

using TD(0), which is a learning method to estimate the value function of policies.

Then we will use a packet-level simulation to strengthen the evaluation results.

We will compare five different migration controllers, which are NoMig, BAL, LQ,

MONTE and IT controller. These controllers are the fast timescale controllers that

acquire state information and make a migration decision every 50ms. Moreover, these

five controllers implement five policies, in which three of them are the policies

designed earlier in this chapter. The first two policies are extreme policies that we want

to compare our three designed policies with. The two controllers that implement the

two extreme policies are as follows: The NoMig controller implements one extreme

95

migration policy in such a way that we do not migrate any traffic at all. The BAL

controller implements another extreme migration policy that always keeps the load in

both LSPs balanced at all times. The BAL does not use the traffic models, instead it

uses the current state information and performs load balancing so they are unable to

take into account the delay in the network.

Unlike the first two controllers, the next three controllers implement our

compromise policy that migrate flows intelligently. These policies have their frequency

of migration between the least frequent policy, NoMig and the most frequent policy,

BAL. The LQ controller implements LQ policy, the MONTE controller implements

Monte-Carlo lookahead policy, and the IT controller implements Iterative lookahead

policy. To get more detail on these policies, we will refer to Section 5.1 for LQ policy

and Section 5.2 for Monte-Carlo lookahead policy and Iterative lookahead policy. We

can summarize our controllers in Table 5.1

Note that all controllers are online controllers that build up on the Bernoulli

Splitting (Bsplit) controller. As we described in Section 3.1, the BSplit controller

implements an optimal slow timescale policy, which randomly dispatches new arriving

calls among LSPs according to a split rule (probability distribution).10 Given this long

term optimality from the slow timescale BSplit controller, we hope to see the further

improvement using the fast timescale migration.

5.3.1 Network Topology and Common Parameters

We evaluate each policy using our network topology as shown in Figure 5.2, which is

the case of � ��� in our general topology shown in Figure 4.1. In this network, we

10This BSplit controller is already included in our formulation in Section 4.2, which is modeled by the

probability value
� � � � , for

� ��	
LSP,

� � � 0���0 / /1/ 0�� .

96

Controller Policy

NoMig do not migrate

BAL Always balance

LQ LQ policy

MONTE Monte-Carlo Lookahead Policy

IT Iterative Lookahead Policy

Table 5.1: Controllers with their associated policies.

provision two LSPs for voice traffic. We choose � � ��� and � ' � �
, i.e., we setup the

propagation delay from ingress LSR to the bottleneck link in the
� � 	 LSP and the � ���

LSP to be 2 timeslots (100ms) and 1 timeslot (50ms), repectively. Moreover, we also

choose � � � � ' ��� , i.e., we assume that there is no information delay from bottleneck

links to ingress LSR. The voice traffic arrival is governed by Poisson distribution with

mean 	 . The voice call duration is exponentially distributed with mean of
�����

, which

we fixed at
�

minutes. According to the optimal splitting rule, we assigned the

probability value �' for both LSPs. With this voice traffic setup, we get an average voice

traffic rate of �' 	�� � ����� � � � ��	 Mbps in each LSP, given a 64Kbps constant bit rate voice

call, as discussed in Section 2.2. The bottleneck links in both LSPs have statistically

identical video traffic. Both video traffic streams have the same statistical parameters
� � � � � � and

� ��� � � � . All links including the bottleneck links have capacity of

90Mbps, which can fit (90Mbps/64Kbps)=1406 voice calls. Moreover, the TCP traffic

also share the bottleneck link in both LSPs with video traffic and voice traffic.

Throughout this performance evaluation, we will fix all parameters in our cost

function and TCP model as follows: � � ��� �

�
, � ' � � � ��� �

, discount factor (�) � � �

�
,

97

LSP#2

LSP#1`

Ingress Egress

Cross traffic

Cross traffic

: LSR

: Cross traffic:
(Video+TCP)

Figure 5.2: The network topology for the performance evaluation

� 	��� � �
, and ��	��� � � ��� .11 Moreover, we will have a number of simulation samples

��� � � � in both IT policy and MONTE policy.12 We provide only a small number of

samples in this evaluation (� � � � �) to illustrate the limited time and processing

power, which frequently occur in the fast timescale control.

5.3.2 Using TD(0)

TD(0) is a version of Temporal-Difference learning. This TD learning is a well-known

prominent learning method for estimating value functions. It has great advantages in its

deterministically fast convergence because it updates estimates based in part on other

learned estimates (bootstrap). Moreover, it learns directly from raw experience without

a model of the environment’s dynamics, which in turn eases the estimation of the value

function. The detail of TD learning can be found in many dynamic programming book

11The detail of the TCP model parameters is discussed in Section 2.3.1

12The detail of the
���

are discussed in Section 5.2

98

including [38]. Because of the above advantages, we will choose TD(0) to evaluate our

designed sub-optimal policy.

We will start our TD(0) evaluation with a discussion about state aggregation. This

state aggregation helps us cope with the large state space in our problem. Then, we will

present an algorithm for our TD(0) with state aggregation. Finally, we will show the

result of the comparison.

State Aggregation

As we mentioned earlier, we have the well-known curse dimensionality problem. With

this problem, the number of states often grows exponentially with the number of state

variables. With a large number of states, it is not only difficult to find an optimal

control policy, but also difficult to evaluate a performance of control policy.

In this section, we will use state aggregation to combat with the explosion of state

space. Generally, the state aggregation leads to a difficulty in the calculation of the

transition probability, which is needed to calculate the value function � ����	 for a given

control policy
�

. This difficulty could be a problem in our performance evaluation,

which compares the value function � ����	 of different policies
�

.

However, TD learning can cope with this difficulty from the state aggregation. TD

learning was introduced as an alternative method for cases where there is no explicit

model and cost structure. It is also desirable in the cases where the simulated trace is

easier to generate than the calculation of transition probability distribution. We could

see that the latter cases represent the difficulty we got from the state aggregation. So

the combination of the state aggregation and TD learning has the potential to yield a

good approximation to the value function � ����	 .
With the state aggregation, we will aggregate many states together and represent

99

them with a so-called superstate. So we could have a small number of superstates that

can represent the whole range of our state space. Moreover each superstate
�� will have

an associated value
�
� � ���	 . This

�
� � ���	 gives an approximation of real value function

� ����	 of the state � , for
� � � �� .

Now, we will determine how we should aggregate the states so that we can get a

good approximation. Clearly, we should aggregate similar states together, which yield

similar value function. Moreover, we should aggregate less aggressively if the state

represents some value near link capacity. So we could get a better approximation of

� ����	 near link capacity. The intuitive reason comes from the fact that migration

should be done more carefully when the state is near link capacity.13 Hence, a better

approximation of � � � 	 near link capacity is desirable in order to gain a better

performance evaluation of different migration policies.

With the above state aggregation guideline, we will now select some proper state

variables to aggregate. Then, we will show how we could use the guideline introduced

previously to aggregate the chosen state variable. Recall that state space, � , is

composed of two components. The first component is the voice call traffic state,� � � � � � � � � � � � .
� � � � � � � � � � 	 takes value from ��� , the state space of the voice

component. The second component is the service rate information
�
� � � � � � � � � � � .� � � � � � � � � � 	 takes value from �	� , the state space of the service rate information

component. So, our complete state space � ����� � �	� . Throughout the rest of this

state aggregation section, we will define the video traffic state, � � � � � � � � � � � � . Where

� �
�
�$� � � �

� � � � � � � � � � � and � � is the capacity of the
� 	�
 LSP. In other words, we will

13We can compare this fact with a walking strategy near a cliff. We would rather walk with smaller

steps than when we are further away from the cliff. We would execute more precision control where we

have a higher chance of falling off the cliff.

100

use
�

� � � � � � � � � 	 , which is directly the amount of video traffic, to represent the state

variable
� � � � � � � � � � 	 .14 These � � variables will ease all explanations later in this state

aggregation section.

Generally, ��� is large compared to ��� . Note that each voice call consumes

relatively small bandwidth. So a large number of voice calls can be filled in one LSP

before reaching its capacity. Note that
� � represents the number of voice calls in

� ��

LSP. So �	� , which is the state space of
� � � � � � � � � � 	 , is large. On the other hand, ��� is

small. Even though ��� generally cannot be small, we will assume that we already

applied a state reduction technique, which is available for video traffic, e.g. the

technique in [6]. So we can further assume that ��� is small and do not need state

aggregation.

Now, we know that we need to aggregate the state variables that are related to the

voice component of our state space. If we write all state variables in one single vector,� 	 , we could convert it into another vector,� 	 , without information loss. We define ��� as� � � � � � � � � � � � � � � , which simply is the utilization of high priority traffic in
� ��

LSP.

Now, we can use our guideline to aggregate variable � � to superstate variable
���� . In

other words, we will aggregate the state vector
� 	 to the superstate

vector
� �� � � � � � � �� � � � � � � � � � � � 	 . The aggregation strategy to our new state variable � � is

shown in Figure 5.3.

We apply our state aggregation technique in a network with 90Mbps links. So the

link capacity in a unit of voice calls is 90Mbps/64Kbps = 1406. (We can put at most

1406 voice calls in 90Mbps link.) We can divide the state variable � � as shown in Table

14Recall from Chapter 4, we define the state variable
�
� as a service rate information, which represent

the amount of bandwidth left after the usage of video traffic.

101

C0

superstate 0 superstate 1 #2 #3 #4 #5 #6 #7

value of zi

Figure 5.3: The division of state space with value of � �

Minimum of � � Maximum of � � superstate

0 700 0

701 980 1

981 1204 2

1205 1297 3

1298 1368 4

1369 1406 5

1407 1450 6

1451 1550 7

1551 1700 8

1701
�

9

Table 5.2: Example of state aggregation in our state space

5.2. As a result, this aggregation will be used in this TD(0) evaluation.

Algorithm

Algorithm 5 shows our off-line algorithm of our TD(0). For notation simplicity, we

will use � instead of
��

in this algorithm. The function � ��� � � � � � � � �� 	 represents the

policies, in which we want to evaluate their performance including NoMig, BAL, LQ,

Monte and IT policies.

102

TD(0)-mig[]

Initialize � � � 	

Repeat [Outer Loop]

for every value of
��

� � uniform random on range of
��

Repeat [Inner Loop]
�
within episode �

�� � � 	 ��� � � 	�� � � 	
� � � simulate next state from � and ���� � � locate superstate from � �
� � � �

� ��� � � �
 ���
 � � �� �� � � �
� � �� 	 � � � ���	 � � � � � � � �
	 � � �� � 	 � � � ���	 �

� ���
 Update � � � 	

�� � �� �
� � � �

� �
��
 replace next state with current state

*Note that �� is current superstate � is current real state �� is current action

���� is next superstate ��� is next real state � is updating step-size

�
��� ����� � ��� � � � is a sub-optimal policy that we want to evaluate

Algorithm 5: The TD(0) algorithm with the state aggregation for the migration prob-

lem.

103

Results and Discussion

To evaluate the performance of different controllers, we will compare the mean of the

value function, which is generated from TD(0). Figure 5.4 shows an example result of

this performance evaluation. Figure 5.4(b), which is a zoomed version of Figure 5.4(a),

provides a better view to the gain in using our controllers. In this example, we fixed the

average video traffic rate at
� � � 	 Mbps and the average voice traffic rate at 	 � � � Mbps,

which totally corresponds to 	���� of the bottleneck-link bandwidth. We also fixed the

number of steps (�) parameter in video traffic at
� � , i.e., � � � � .

We can see that the BAL policy gives the worst performance, as shown in Figure

5.4(a). The reason comes from the fact that the BAL policy does not take into account

the delay in the system and the fact that we chose � � � �
. Without the delay

consideration, the received information might be out of date, which in turn reduces the

performance of the BAL controller. Even though there is no clear restriction on the

value of � � , we chose � � � �
in this evaluation. We believe that this choice will help

emphasize the possibility that migration could interfere with a long-term optimality of

the statistical splitting rule. As a result of � � � �
, we put more penalty toward our

migration action. This in turn leads to the policies with small number of flow migration.

As shown in Figure 5.4(b), the LQ, MONTE and IT controllers provide a better

performance over the NoMig controller. Moreover, this figure also illustrates an

inaccuracy of the Monte-Carlo simulation technique under a small processing time.

Recall that we have total number of simulation samples ��� � � � for both MONTE and

IT policies to illustrate the limited time and processing power, which frequently occur

in the fast timescale control. With this small number of samples, the Monte-Carlo

simulation technique could yield an inaccurate estimate of the expectation in Equation

(5.6). Hence, MONTE controller, which depends on Monte-Carlo simulation, cannot

104

1
0

2

4

6

8

10

12

x 10
4

m
ea

n
of

 v
al

ue
 fu

nc
tio

n

NoMig
BAL
LQ
MONTE
IT

(a) Unzoomed version

m
ea

n
of

 v
al

ue
 fu

nc
tio

n

1
2.6

2.8

3

3.2

3.4

3.6
x 10

4

NoMig
BAL
LQ
MONTE
IT

(b) Zoomed version

Figure 5.4: Using TD(0) to compare the means of value function.

give a good performance.

We also see that the IT controller provides the best performance. This result can

come from the fact that the IT policy is an improvement of the LQ policy, and it does

not require a large number of simulation samples in its algorithm.

Now we can compare the performance of our controllers in various network

environments. We use two experiments to do so.

The first experiment is an experiment designed to observe the performance of our

controllers with different amounts of voice traffic. Hence, we will vary only an average

voice traffic rate, while we keep others fixed. We can vary the voice rate by varying the

arrival rate of the voice call, as discussed in Section 2.2.

Figure 5.5 shows the result of this experiment. In the experiment, we fixed the

average video traffic rate at
� � � 	 Mbps with number of steps (� � � �). We varied the

105

20 30 40 50 60 70
2

4

6

8

10

12

14
x 10

4

Amount of Voice traffic (Mbps)

m
ea

n
of

 v
al

ue
 fu

nc
tio

n

NoMig
BAL
LQ
MONTE
IT

(a) Unzoomed version

30 40 50 60
2

2.5

3

3.5

4
x 10

4

Amount of Voice traffic (Mbps)

m
ea

n
of

 v
al

ue
 fu

nc
tio

n

NoMig
BAL
LQ
MONTE
IT

(b) Zoomed version

Figure 5.5: Relationship of the mean of value function and the amount of voice traffic

using TD(0).

average voice traffic rate from ��	 � � Mbps to ��� Mbps, which corresponds to the varying

of total traffic in the bottleneck link from
� � to

� � � percent of the link capacity.

The result shows that all intelligent migration policies (the LQ, MONTE and IT

policies) always give a good improvement over the NoMig policy. As the voice traffic

increases, the improvement of the LQ policy over the NoMig policy increases at the

beginning of the graph (at ��	 � � Mbps), but it decreases at the end (at �*� Mbps). we can

notice that ��� Mbps correspond to 110% load, which is overloaded and the providers

normally do not operate their network under this load condition. Hence, we could also

say that the improvement of the LQ policy over the NoMig controller decreases when

the traffic is overloaded.

There are two facts that govern this improvement pattern. The first fact governs the

increasing improvement at the beginning (at ��	 � � Mbps), while the second fact governs

106

the decreasing improvement at the end (at ��� Mbps).

As the first fact, the control action becomes more valuable when the load increases.

Recall that the LQ controller keeps adjusting the utilization to its mean value (using

migration). This adjustment will not be very helpful at the relative light load because

this light load yields only small drops. Those small drops need only a small amount of

migration, as opposed to the adjustment of utilization toward its mean value, which

needs a large amount of migration. When the load increases, the same adjustment of

the LQ controller can alleviate more drops with the same control cost. As a result, the

LQ controller yields a greater improvement when the load increases.

As the second fact, the penalty of a wrong prediction increases when the load

increases. In our stochastic environment, there is a possibility that our controller could

give an incorrect prediction. The migration decision using this incorrect prediction

could lead to the packet drops, especially in the receiving LSPs (LSPs that receive the

migrated flows). With a relatively light load, the LSP will have more spare space for

incoming (migrated) flows, including the mistaken ones. When the load increase, the

spare space decreases, which leads larger drops (penalty). Although the controller still

yields a good performance improvement using migration, the more penalties from

incorrect prediction can continuously reduce that performance improvement when the

load increases.

From the description of both facts above, we can summarize the information for

better understanding as follows: The LQ controller’s migration strategy is “to keep

adjusting the utilization to the mean value”. According to the first fact, this strategy

will not effective at light to medium load because it is unnecessary to keep utilization

near the mean. A small amount of migration will be enough. On the other hand, the

second fact shows that the LQ’s strategy will not be effective at a overloaded situation

107

from the risk of wrong prediction.

Hence, we can conclude that the LQ controller gives the greatest performance

improvement over NoMig when the load are high but not overloaded.

In addition, we can also see that that the IT controller yields a similar performance

pattern compared to the LQ controller. This result follows the fact that the IT policy is

an improvement of the LQ policy. Hence, it should react to the voice load in the same

way that the LQ policy does. However, the MONTE controller does not give any

improvement over the LQ policy. As we discussed earlier, the Monte-Carlo simulation

technique, which is the main ingredient of the MONTE controller, requires a large

number of simulation samples. We also recall that we have a small number of samples

in this evaluation (��� � � �) to illustrate the limited time and processing power, which

frequently occur in the fast timescale control. Hence, the MONTE controller will have

a difficulty giving a good performance in this fast timescale environment.

Moreover, the figure also shows the superiority of the IT controller over the

comparing controllers. This result strengthens our belief that our proposed Iterative

lookahead policy is a good solution for this fast timescale problem.

The second experiment is an experiment designed to study the performance of our

controllers under a various bursty level of video traffic. We can vary the burstiness of

video traffic by changing the number of steps (�) defined in Section 2.1. We consider

the video traffic to be bursty if the number of steps (�) is small. As we already

described in Section 2.1, a small number of steps makes the stepsize (
�

) large, given a

fixed average video traffic rate. The large stepsize (
�

) indicates a big jump between the

traffic rate of the video traffic, which makes the video traffic more bursty.

Figure 5.6 shows the result of this experiment. In the experiment, we varied the

108

10 12 14 16 18 20
2

4

6

8

10

12

14
x 10

4

Number of steps in Video traffic

m
ea

n
of

 v
al

ue
 fu

nc
tio

n

NoMig
BAL
LQ
MONTE
IT

(a) Unzoomed version

10 12 14 16 18 20
2.6

2.8

3

3.2

3.4

3.6
x 10

4

Number of steps in Video traffic

m
ea

n
of

 v
al

ue
 fu

nc
tio

n

NoMig
BAL
LQ
MONTE
IT

(b) Zoomed version

Figure 5.6: Relationship of the mean of value function and the burstiness of video traffic

using TD(0).

number of steps (�) parameter in video traffic from
� � to �*� . We fixed the average

video traffic rate at
� � � 	 Mbps and the average voice traffic rate at 	 � � � Mbps, which

totally corresponds to 	�� � of bottleneck link’s capacity.

According to the result of this experiment, all intelligent migration policies (the

LQ, MONTE, and IT polices) outperform the NoMig policy, which represents a case

without any migration mechanism. Moreover, they give a greater improvement over the

NoMig policy under bursty condition. Note that the migration mechanism will be most

helpful in the situation when some LSPs are under-utilized while other LSPs are

over-utilized. The bursty condition promotes a chance of getting that situation. Hence,

the migration mechanism will have a higher chance to alleviate high priority drops. As

a result, our migration mechanism provides a greater improvement under bursty

condition. This result confirms that the migration mechanism is helpful for the QoS

109

improvement in the network, especially under bursty condition.

Among these three intelligent migration policies, we can see that the IT policy

always performs best. As we discussed earlier, this result could come from the fact that

the IT policy is an improvement of the LQ policy, and it does not require a large

number of simulation samples in its algorithm (which the MONTE policy does). Along

with the conclusion from the first experiment, this result further strengthens our belief

that our proposed Iterative lookahead policy is a good solution for this fast timescale

problem.

5.3.3 Using Packet-Level Simulation

The packet-level simulation can help us understand the behavior of our controller in the

real network. Note that the packet-level simulation allows us to simulate the interaction

of packets and routers, which are implemented our controller. Hence, it could give an

evaluation that is close to the evaluation in an actual network.

As discussed earlier, we will compare the performance of our intelligent migration

policies (the LQ, MONTE, and IT controllers) with two extreme policies (the NoMig

and BAL controllers). These policies are computed online during our simulation.

Moreover, this computation is done in a flow-level (we designed our policy based on

the arrival and departure of flows),as opposed to a packet-level of our simulation itself.

We will monitor the amount of packets and convert the number into a units of flows.

The controller will use that number of flows to obtain the amount of migration based

on their underline policy. The controller will calculate the amount of migration online

upon the received information. For example, we monitored the link and found out that

a total
� � Mbps of voice packets were sent through the link. Because we send the voice

flows at a constant bit rate at ��	 Kbps, we can interpret that the link has �*��� voice calls.

110

Then the controller can use this information about number of flow and make a online

decision on the migration amount, say 200 voice calls have to move from � ��� LSP to

	 	�
 LSP. From this example we can see that the calculation of the policy is done in the

flow-level while the simulation proceed in a packet-level.

Simulator implementation

We use ns-2 simulator[39] for our simulations. As already discussed in Section 3.2, we

add ability to migrate flows. Moreover, we add the receiver to keep track out-of-order

packets, which is one of the consequences of the migration mechanism.

Simulation Setup and Parameters

We use a network topology and some common parameters as we stated in Section

5.3.1. With ns-2, we use a Reno version of TCP, which is already in the ns-2 package.

In our simulation, we setup short-lived TCP traffic flows in backup LSP. Each TCP

flow sends small files with a uniformly distributed size of 20-40 Kbytes. Upon the end

of each transmission, TCP sources will setup a new connection and begin to transmit a

new file. Recall that the new connection setup will use a initial value for ITO. The

small file transmission and re-connection of flows capture a characteristic of short-lived

TCP flows. These flows have three distinct RTT value, 10ms, 30ms and 50ms. There

are 15 TCP flows with each RTT value. Therefore, there are a total of 45 TCP flows.

As discussed in Section 2.3, the different RTT values represent different locations of

end-users, while a number of flows with the same RTT value indicates the fact that

each location can have multiple users.

111

Result and Discussion

We can get the performance measurements from monitoring the total voice drops

(include drops from out-of-order packets), the out-of-order drops and the TCP goodput.

Beside above measurements, we will also collect a total number of voice flows that we

decide to migrate, in which we will refer as “NumMig”. This NumMig enables us to

gain an access to the operation of our controllers.

Figure 5.7 shows the example of how our control affects each performance

measurement. In this experiment, we fixed the average video traffic rate at
� � � 	 Mbps

and the average voice traffic rate at 	 � � � Mbps, which correspond to 	�� � of the

bottleneck link’s capacity. We also fixed the number of steps (�) parameter in video

traffic at
� � , i.e., � � � � . Note that the study in [17] points out that the losses greater

than 2% affect end-to-end quality of VoIP calls. Hence, we assume that the quality of

voice and video traffic is not good if their drops are greater than 2%. In the figure,

voice traffic has drops around 3.3% and TCP goodput around
� 	 � � Mbps without the

migration mechanism (or the NoMig policy). If we naively migrate voice flows to keep

the load balanced all the time, we would get unbearable 13.4% voice drops and a small
� � �

�
Mbps goodput, as we can see in the figure with the BAL policy. We can see that

the BAL policy gives the incredible large voice drop. As we discussed earlier, the

reason could come from the fact that the BAL policy does not take into account the

delay in the system. Without the delay consideration, the received information might

be out of date, which in turn reduces the performance of the BAL controller.

We could carefully migrate flows and get smaller voice drops at 2.8% and 1.9%

with the LQ controller and the IT controller, respectively. You can see that the network

with the IT controller has acceptable voice drops under 2%. Moreover, the LQ

controller and the IT controller yield around
� � Mbps TCP goodput. This TCP goodput

112

1
0

2

4

6

8

10

12

T
ot

al
 V

oi
ce

 D
ro

ps
 (

P
er

ce
nt

ag
e)

NoMig
BAL
LQ
MONTE
IT

(a) Total voice drops (include out-of-order)

1
0

5

10

15

20

25

G
oo

dp
ut

 in
 b

ot
h

LS
P

s
(M

bp
s)

(b) Goodput

Figure 5.7: Using NS to compare the performance measurements.

is still higher (better) than that of the BAL controller even though it is smaller (worse)

than that of the NoMig controller.

This example shows that we could use a migration mechanism to improve quality

of high priority traffic up to an acceptable quality level. Moreover, it lets us see the

benefit of applying the Iterative lookahead algorithm. For instance (as we can see in the

figure), the voice drops when applying the IT policy is better than applying LQ policy

while both policies produce the same TCP goodput.

Even though we see the high TCP goodput with the MONTE controller, it does not

mean the MONTE controller try to maximize the TCP goodput. It might be because the

MONT controller make a lot of high priority drops so that there is more rooms for TCP

traffic. This might also be an unpredictable behavior of the MONT controller because

of the inaccuracy in the Monte-Carlo simulation under small number of samples.

Like the setup of the TD(0) experiment in Section 5.3.2, we will compare the

113

performance of our controllers in various network environments. The first experiment

is an experiment designed to see the performance of our controller under different

amounts of voice traffic. The second experiment is an experiment designed to see the

performance of our controller over changes in the burstiness level of video traffic.

Figure 5.8 shows a result of the first experiment. We varied the average voice traffic

rate from � � Mbps to � � �

�
Mbps, which correspond to the varying total traffic in the

bottleneck link from 70 to 100 percent of the link capacity. We also kept video traffic

fixed at
� � � 	 Mbps with the number of steps (� � � �).

Since this experiment is a performance comparison of our controller with different

amounts of voice traffic, the experiment corresponds to the first experiment with TD(0)

in Section 5.3.2. Like the experiment with TD(0), we also get the same conclusion that

both the LQ policy and the IT policy always perform better than the NoMig policy.

However, we have one exception at the voice load of � � �

�
Mbps, which the LQ policy

does not outperform the NoMig. However, this average voice load corresponds to 100

percent of the link capacity, a condition in which networks typically do not operate

under. Hence, we can refer to this condition as a overloaded condition.

Additionally, we also get the same performance improvement pattern, i.e., as the

voice traffic increases, the improvement of the LQ policy over the NoMig increases at

the beginning of the graph (at � � Mbps), but it decreases at the end (at � � �

�
Mbps). We

can see this improvement pattern from Figure 5.8. As shown in Figure 5.8(a), the LQ

policy gives only � � 	 	 � performance improvement over the NoMig policy at a � � Mbps

average voice traffic. At a 	 � � � Mbps average voice traffic, the LQ policy gives � � ��	 �
improvement. In the same figure, the LQ policy gives � � � � ��� improvement (� � � ���
performance degradation) at a � � �

�
Mbps average voice traffic. On the other hand, the

LQ policy gives approximately the same goodput degradation over the NoMig policy

114

with a different voice load as shown in Figure 5.8(c).

From the discussion in the last paragraph and the fact that we consider voice drops

more important than the TCP performance, we can conclude that the LQ controller

yields the greatest improvement over the NoMig policy when the load are high, but not

overloaded.

Moreover, we can see that the IT controller, which is a policy that gives an

improvement over the LQ policy, follows the same improvement pattern as the LQ

controller over the NoMig controller. As a result, we could also conclude that IT

controller yields the greatest improvement over NoMig policy when the load is high,

but not overloaded. On the other hand, the MONTE controller gives an undesirable

result coming from the small processing time as we discussed earlier.

To sum it all up, this result further strengthens our belief that the well-designed

migration mechanism is helpful in improving the QoS, especially when the traffic load

is high (but not overloaded).

Again, we assume that the quality of voice and video traffic is not good if their

drops are greater than 2%. Using Figure 5.9, which is a zoomed version of Figure

5.8(a), we can quantify another advantage of the migration mechanism as follows:

Without the migration mechanism (the NoMig policy), we can accept a voice traffic up

to
� � Mbps before its quality is unacceptable. On the other hand, we can accept up to

	 �
Mbps with the migration mechanism using the IT policy. Hence, the existing

network can accept �*� � more voice traffic. In other words, the network can accept�*� � more high priority traffic. With this capability to increase high priority traffic with

an acceptable QoS, network providers gain a profit increase.

Figure 5.10 shows a result of the second experiment. As we mentioned before, this

experiment aims to compare the performance of our controllers over changes in the

115

25 30 35 40 45 50 55
0

5

10

15

20

Average Bandwidth of Voice traffic (Mbps)

T
ot

al
 V

oi
ce

 D
ro

ps
 (

P
er

ce
nt

)

NoMig
BAL
LQ
MONTE
IT

(a) Total voice drops (include out-of-order)

25 30 35 40 45 50 55
0

1

2

3

4

5

6

7

8

Average Bandwidth of Voice traffic (Mbps)

V
oi

ce
 O

ut
−

of
−

or
de

r
D

ro
ps

 (
P

er
ce

nt
)

NoMig
BAL
LQ
MONTE
IT

(b) Out-of-order voice drops

25 30 35 40 45 50 55
5

10

15

20

25

30

35

40

45

Average Bandwidth of Voice traffic (Mbps)

G
oo

dp
ut

 o
f T

C
P

 tr
af

fic
 in

 b
ot

h
LS

P
s

(M
bp

s) NoMig
BAL
LQ
MONTE
IT

(c) Goodput

25 30 35 40 45 50 55
0

5

10

15

20

25

Average Bandwidth of Voice traffic (Mbps)

N
um

be
r

of
 M

ig
ra

te
d

V
oi

ce
 C

al
ls

 (
x1

06)

NoMig
BAL
LQ
MONTE
IT

(d) Number of migrated flows

Figure 5.8: Relationship of the performance measurements and the amount of voice

traffic using NS-2.

116

25 30 35 40 45 50
0

1

2

3

4

5

Average Bandwidth of Voice traffic (Mbps)

T
ot

al
 V

oi
ce

 D
ro

ps
 (

P
er

ce
nt

)

NoMig
BAL
LQ
MONTE
IT

Figure 5.9: Relationship of the total voice drops and the amount of voice traffic(zoomed)

using NS-2.

burstiness level of video traffic. As we discussed eariler, we consider the video traffic

bursty if the number of steps (�) is small. We varied the number of steps (�) from
� �

to
� � . In addition, we fixed the average video traffic rate at

� � � 	 Mbps and average

voice traffic rate at
� � Mbps, which correspond to a 83%load.15

We could see that there is an increasing gain of our IT controller over the NoMig

controller (the case without any migration) when the network is more bursty. As shown

in Figure 5.10(a), both the LQ controller and the IT controller gives an increasing gain

of the total voice drops. Also, the IT controller also gives a slightly increasing gain of

the goodput when the network is more bursty as shown in Figure 5.10(c). Hence, we

could conclude that our IT controller performs better in a bursty network.16 This

conclusion on the IT controller complies with the conclusion of the second experiment

15In other words, the average traffic in the bottleneck link is 83% of the link capacity.

16However, the LQ controller gives an decreasing gain of goodput over the NoMig controller. As a

result, we do not have a good conclusion for the LQ controller

117

10 15 20 25 30
0

2

4

6

8

10

12

Number of Steps in Video traffic

T
ot

al
 V

oi
ce

 D
ro

ps
 (

P
er

ce
nt

)

NoMig
BAL
LQ
MONTE
IT

(a) Total voice drops (include out-of-order)

10 15 20 25 30
0

1

2

3

4

5

6

7

Number of Steps in Video traffic

V
oi

ce
 O

ut
−

of
−

or
de

r
D

ro
ps

 (
P

er
ce

nt
)

NoMig
BAL
LQ
MONTE
IT

(b) Out-of-order voice drops

10 15 20 25 30
16

18

20

22

24

26

28

30

32

Number of Steps in Video traffic

G
oo

dp
ut

 o
f T

C
P

 tr
af

fic
 in

 b
ot

h
LS

P
s

(M
bp

s)

NoMig
BAL
LQ
MONTE
IT

(c) Goodput

10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

Number of Steps in Video traffic

N
um

be
r

of
 M

ig
ra

te
d

V
oi

ce
 C

al
ls

 (
x1

06)

NoMig
BAL
LQ
MONTE
IT

(d) Number of migrated flows

Figure 5.10: Relationship of the performance measurements and the video traffic’s

burstiness using NS-2.

118

with TD(0) in Section 5.3.2.

The out-of-order voice drops are shown in Figure 5.8(b) and Figure 5.10(b). These

graphs compared to the total voice drops graphs (Figure 5.8(a) and Figure 5.10(a))

show that the majority of drops are not out-of-order drops, especially at high load. This

result let us to believe that the majority of drops, especially at high load, comes from

the migration decision using the incorrect prediction. Moreover, The out-of-order

drops with the BAL controller decrease when the voice load increases as shown in

5.8(b). This could come from the fact that the drops, which could have been

out-of-order, could be dropped earlier in the network from the increasing congestion

potential, resulting from increasing load.

In addition, These graphs show that the BAL controller gives a significant

out-of-order drops compared to the other controllers. This could come from the fact

that the BAL controller migrate more frequent than the other controllers as we can see

in Figure 5.8(d) and Figure 5.10(d). These two figures (Figure 5.8(d) and Figure

5.10(d)) present the total number of migrated flows resulting from our migration

policies.

5.4 Conclusion

We have introduced a fast timescale control traffic engineering, which is based on flow

migration. This migration scheme exploits the same fact used in statistical

multiplexing. With this fact, migration will migrate flows from over-utilized LSPs to

under-utilized LSPs with an associated migration cost. Hence, we have a design goal

using flow migration to improve the QoS of high priority traffic despite of the cost of

the migration. Additionally, we also consider the interaction of migration and TCP

119

congestion control.

A controller, which resides in ingress LSR, will have to intelligently make a

migration decision for every fixed time slot. We have designed three intelligent

controllers named the LQ controller, the MONTE controller and the IT controller.

The LQ controller implements the LQ policy, which is a reformulation of our problem

in a context of linear system with quadratic cost (LQ). This reformulation drives

our LQ policy away from the optimal policy. However, it provides a closed-form

solution that simplifies online calculation and in turn scales well with large state

space in our migration problem.

The MONTE controller implements the Monte-Carlo lookahead policy, which is based

on the limited lookahead algorithm. We use a value function of the LQ policy as

an approximated value function for the limited lookahead algorithm. To be able

to implement online, we use the Monte-Carlo simulation to get the expectation in

the limited lookahead algorithm.

The IT controller implements the Iterative lookahead policy, which is again based on

the limited lookahead algorithm. Like the Monte-Carlo lookahead policy, we use

a value function of the LQ policy as an approximated value function and use sim-

ulation to get the expectation in the limited lookahead algorithm. However, this

policy is designed for a fast timescale control, which has a small processing power

and time to get simulation samples. Hence, this IT controller is an improvement

of the MONTE controller in a fast timescale implementation.

With TD(0) and the packet-level simulation, we compared the above three

controllers with two other extreme controllers, which are the NoMig controller and the

BAL controller.

120

The NoMig controller stands for No migration. This controller will not migrate any

flows. In other words, this controller presents the case of having no migration

mechanism at all.

The BAL controller will migrate flows to make the load balanced. This controller

presents the case that we naively migrate flows to load balance traffic without

taking the delay into account.

All controllers are online controllers that build up on the Bernoulli Splitting

(Bsplit) controller. This BSplit controller implements an optimal slow timescale policy,

which randomly dispatchs new arriving calls among LSPs according to a split rule

(probability distribution). Moreover, the BSplit controller is already included in our

formulation. Hence, all of our migration policies (the LQ, MONTE and IT policies)

already take this long term optimality into account.

Our empirical study demonstrates the superior of our intelligent migration

controllers (the LQ, MONTE, IT controllers) over the case without migration control,

especially in the bursty network environment. Moreover, they yielded a greater

improvement over the case without migration when the traffic amount is high but not

overloaded.

This empirical study also shows a clear advantage of the migration scheme,

especially when we migrate intelligently. In addition, it points out the advantage of

having a traffic prediction by reacting accordance to the prediction. However, this

advantage greatly depends on the accuracy of the traffic model in both the voice and

video traffic.

121

Chapter 6

Congestion Control with QoS guaranteed Backup Path

(Duplication Problem)

In this work, we exploit an unused backup LSP to alleviate congestion that might occur

in main LSPs. Figure 6.1 serves as an example of our idea. We provision one main LSP

and its backup LSP for real-time high priority traffic from ingress LSR to egress LSR.

There are cross traffics with the same priority class in bottleneck links in both the main

LSP and backup LSP. We will call the cross traffic in the main LSP as the
� � � cross

traffic, and the cross traffic in the backup LSP as the � � �
cross traffic. Under normal

operation (without congestion), the high priority traffic uses only the main LSP which

shares the bottleneck link with the
� � � cross traffic. The backup LSP will be filled with

lower priority traffic, which is mostly composed of TCP flows. It shares the bottleneck

link with the � � �
cross traffic. We assume that the high priority traffic uses UDP.

Moreover it is served before the low priority traffic in every link following the link

schedule in Section 1.2.

We introduce a duplication mechanism, which helps the QoS of high priority traffic

as follows: Upon the predicted congestion in the main LSP, the ingress router

duplicates the high priority traffic and sends it in both main LSP and backup LSP. Note

122

that, without the duplication mechanism above, this backup LSP will be used (for high

priority traffic) only if a failure occurs in the main active LSP. That is, the backup path

remains unused even thought there is congestion. With the duplication mechanism, the

real-time traffic can choose protocol, like RTP, to take care the duplicated information

at receiver end.1 As a result, the QoS of real-time traffic is unlikely degrading even in

the situation of congestion.2

However, the duplication mechanism could yield some drawbacks if we do not

carefully design. As a first drawback, the high priority traffic in the backup LSP could

experience a frequent congestion. The duplicated packets will increase an amount of

high priority packets in the backup LSP. Hence, there is a higher chance of congestion.

The second drawback is the fact that the duplication mechanism could work adversely

with the congestion control of the TCP traffic. As a result of the decision to duplicate,

the (lower priority) TCP traffic backs off and takes time to return back to original

throughput. The TCP traffic might have no chance to transmit if we decide to duplicate

packets again before the throughput of TCP sufficiently recovers (from their back-off

mechanism in TCP).

We will design controllers to decide when we should duplicate the traffic. Our main

goal is to improve the QoS of the real-time while we let TCP traffic to get a reasonable

throughput. Definitely, we will consider the high priority traffic to be more important

than the TCP traffic in our design. Moreover, we name this problem as “duplication

problem”, which is a result of its control nature.

1The Real-time Transport Protocol (RTP) simply discards the duplicated packets.[32]

2The cross traffic is also a high priority traffic. Hence, the providers might set up the backup path for

it already. As a result, we could use the duplication control to improve the QoS of the cross-traffic as well

(using its own backup path).

123

Beside the main design goal, we will also take into account the delay in the

network. We consider two types of delay. The first type is the propagation delay. This

delay could make our control decision, which is made at ingress node, obsolete when it

reaches the bottleneck links. The second type is the information delay. This delay is the

delay of information from the bottleneck link to the ingress node. This delay can make

the information about the bottleneck link obsolete when it reaches the controller that is

located at the ingress node. We will use traffic models as a tool to predict traffic

characteristic. This prediction aims to compensate the delay that we mentioned above.

6.1 Related Work

Because the real-time traffic is sensitive to delay and we must provision a network to

satisfy the Service Level Agreement (SLA), the path protection, which uses backup

path in MPLS network, has been considered enormously in the research community. In

MPLS network, providing a backup LSP can increase the reliability of Label Switched

Paths (LSPs). All traffic can be switched to the backup LSP upon a failure in the active

LSP. There are attempts to find routing protocols that find both active LSP and backup

LSP at the same time according to a QoS-requirement[18, 19]. Such works are still

open, and they represent the need of the backup path in the real network. In the MPLS

recovery framework [34], there are two types of protection switching:

� In 1+1 (“one plus one”) protection, the resources (bandwidth, buffers, processing

capacity) on the recovery path are fully reserved, and carry the same traffic as the

working path. Selection between the traffic on the working and recovery paths is

made at the path merge LSR (PML)

� In 1:1 (“one for one”) protection, the resources (if any) allocated on the recov-

124

ery path are fully available to preemptible low priority traffic except when the

recovery path is in use due to a fault on the working path.

The 1+1 protection consumes twice the bandwidth of the network without any

backups. So providers seem to be interested in the 1:1 protection, which uses the same

bandwidth, given that they put low priority traffic in the backup LSP. Note that the

backup LSP will not be used by the high priority traffic even though there is congestion

in the active LSP. It will be used when failures occur in active LSP.

Clearly, our duplication scheme can be viewed as a hybrid solution between 1:1 and

1+1 protection. However, our goal is to improve both high throughput and Quality of

Service, instead of improving the reliability in the above protection works.

To the best of our knowledge, we are the first one to take the advantage of the

existing backup path for the congestion control management in this type of network.

In some cases, the backup path can be shared for different active paths, especially

the active paths with different ingress nodes.[18, 19] Given a single point of failure,

these shared backup paths are acceptable. We do not consider the above shared backup

paths case. Instead, we consider only a backup path that associates with one and only

one active path. However, our controller is implemented in ingress router. Hence, we

do not eliminate the chance of using distributed algorithm to deal with the shared

backup path case in the future.

6.2 System model

From Figure 6.1, the voice traffic is routed to main LSP from ingress LSR to egress

LSR. The video cross traffic shares the same bottleneck link in both main LSP and

backup LSP while the best-effort shares only the bottleneck link in the backup LSP.

125

backup LSP

main LSP
Ingress Egress

Cross traffic

Cross traffic

: LSR

: Cross traffic:
(Video)

TCP traffic

Figure 6.1: The main LSP with its backup LSP.

Both voice and video flows are in the same high priority class, and they are served in

the link before lower priority traffic. Currently, we consider only the network in which

each backup path is dedicated entirely to one and only one active path. In the other

words, the shared backup path is not considered here. Also our controller is located in

the ingress LSR.

There is a propagation delay from the ingress node to the bottleneck link in the

main LSP,which will be divided into � � time slots. With the same time slot length, we

will divide the propagation delay from the ingress node to the bottleneck link in the

backup LSP into � ' time slots. The bottleneck links of both LSPs periodically feed the

video utilization back to the controller. Delay of the main LSP’s and backup LSP’s

bottleneck information to be seen by the controller is � � and � ' time slots, respectively.

To simplify the notation, we define � � � � � � � � as a total delay in main LSP, and we

also define � ' � � ' � � ' as a total delay in backup LSP. Moreover, we let � � � � as

max � � � � � � � � ' � � ' 	
126

Below are the details of traffic models that we consider:

Voice Traffic We assume that each voice flow has a ��	 Kbps constant bit rate. The new

voice calls arrive according to the Poisson process with rate 	 � . Each voice call

has an exponentially distributed duration time with a mean of �
 seconds. The

number of voice calls in the main LSP is clearly a Markov chain with state space

���������	� � � � � � � � � � � , where � is the capacity of links in the entire network.3

(We represent � as in the unit of voice calls.) A transition probability matrix

� � � � ��
 � � � � � ��
 � � � � 	 	 � � � ��	 can be calculated from the above voice traffic

parameters.

Video Cross Traffic Since the video and voice traffic share the same queue, this cross

traffic determines the service rate that voice traffic can be served at the bottleneck

link before some of them get dropped. For convenience, instead of specifying

the cross traffic distribution directly, we specify the distribution of “service pro-

cess”, which is the difference between the rate of cross traffic and the capacity of

bottleneck link � . In
����

LSP,
� � � � � , the service process is represented by a

Markov chain with state space ����� ��� � � � � � � � � � � , a transition probability matrix

� � � � � � � � � 	 	 � � � ��	 , and a set of distinct rate values, which are
� � � � � � � � ��� .

Note that we refer to the
� � � LSP as main LSP and the � � �

LSP as backup LSP.4

Low priority Traffic We do not attempt to monitor TCP packets and use them to es-

timate the goodput and fairness of TCP flows. Instead, we use the information,

3We assume that the entire network have same link capacity

4These two Markov Chains are assumed independent, e.g., the service rate is not used to do admission

control on voice calls

127

which we got using high priority traffic model, to indirectly determine the TCP

performance. We will discuss more details later in Section 6.3.

6.3 MDP State Formulation and Notation

A Markov Decision Process (MDP) consists of an action space, a state space, a

state-transition structure, and a cost structure. We describe each of these components in

details as follows:

Action Space Let � � � 	 � � � � � � denote the control action made at time � . � � � 	 �
�

represents the duplication made at time � while � � � 	 � � means there is no

duplication. Hence, we have the action space
� � � � � � � .

State Space The system state has three components. The first component is voice traffic

variables
� � � 	 . This

� � � 	 � � is a number of voice calls that is assigned to the

main LSP in our sampling interval (time slot) at ingress LSR.5 Moreover,
� � � 	 is

bounded by the link capacity � , i.e., � � � � � 	 � � . From above definition, the

voice traffic variable takes a value from �
 � � � � �*� 	 �
The second component is the recently received service rate information, desig-

nated by �� � � 	 � � � � � � 	 � � ' � � 	 	 where
� � and

� ' are the service rate information

taken from ��� and �� , respectively. So �� takes value from � � � � � � �� . With

the same reasoning as in Section 4.3, the state of service process is the recently

received state information, instead of real state at the bottleneck links. We use

5We can obtain this information by counting a number of voice packets at ingress LSR in our sampling

interval, e.g., from time
� ���

to time
�

. Then we divide the number of voice packets with 64Kbps to get

a number of voice calls in that sampling interval (time slot).

128

this recent information because of the information delay, which prevents our con-

troller to gain an immediate access to a real state at the bottleneck link. Hence

this �� � � 	 is the information that controller has at time � .

To gain a better understanding, we can discuss the relationship of our service rate

information and the actual state at the bottleneck link. We first refer to the ser-

vice process in
� 	�
 LSP with the above state variable

�
� � � 	 as a service process

� � . Then we define an associated service process
�
� � to be a real service process,

which actually occurs in bottleneck link. We can see that our service process � �

is essentially the actual service process
�
� � with the � � delay. Note that both ser-

vice processes are uncontrollable from our control action, i.e., they are unaffected

by the control action made by our controller. Hence, we can use a simple equa-

tion
�
� � � 	 �

��
� � � � � � 	 to represent the relationship between these two service

processes, where
��
� � � 	 is a state at time � of process

�
� � .

The third component is the control history. Let a vector of � � � � elements, �� � � 	 �� � � � � � � 	 � � ' � � � 	 � � �

� � � � 	 � � � 	 	 represent the past control decisions. Each element

� ��� � � � 	 denotes the control decision at time � � ����	 . The value � � is associated to

the initial time-out value (ITO), which we will describe when we talk about TCP

cost function below.

Using the above three components, we can define our system state variable
� � � 	

129

as

� � � 	 �

���������������
�

� � � 	
�� � � 	

�� � � ��� 	
...

�� � � � � ��� � 	
�� � � 	

� ��������������
�

We could see that this state variable is a combination of past control history, cur-

rent voice state, current service rate state and all of � � future service rate states.

Actually, we could view the state variable as an internal state, which some of

them cannot be observed. These future service rate states are required in order to

represent the cost function, which we will define later in this section.

So the complete state space, � , is � � � � � � ������� � � � � � � � � � � � 	
Observation As we mentioned before, we can partially observe the state variable

� � � 	 .
We define observation

� � � 	 as

� � � 	 �

�����
�
� � � 	
�� � � 	
�� � � 	

� ����
�

In other words, we could observe only the past control history, the current voice

state �� � � 	 and the current service rate state �� � � 	 .
State transition From the current state

� � � 	 , we apply a control � so that the system

makes a transition to the new state
� � � � � 	 . The transition of each component is

as follows:

� The state of service rate information makes a transition from �� � � 	 to �� � � � � 	

130

with probability
� � � � � � 	 � � � � � � � 	 	 � � � � � � , given by the � � � � � 	 � � � � � � � 	 	 	�

entry in the given matrix � � .
� The voice traffic state

� � � 	 makes a transition from
� � � 	 to

� � � � � 	 with

probability
� � � � � 	 � � � � � � � 	 	 , specified by the � � � � � 	 � � � � � � � 	 	 	�
 entry

in the matrix � � .6
� The control history �� � � 	 updates as � � � � � � ��� 	 � � � � 	 and � ��� � � � ��� 	 �
� ��� � � � � � 	 , for � ��� � � � � � � ��� .

MDP Cost and Value Function We define the one-step cost function at state
� � � 	 and

control action � � � 	 by

� � � � � 	 � � � � 	 � � � � ��� 	 	
� � � � ��� � � � � 	 � � � � 	 � � � � ��� 	 	 � ��� � � � � 	 � � � � 	 � � � � � � 	 	

� � ' � ��� � � � � 	 � � � � 	 � � � � ��� 	 	 � � � � � � � 	 � � � � 	 � � � � ��� 	 	 �

(6.1)

This cost function is considered as a penalized cost, in which we would like to

minimize. It depends on the current state
� � � 	 , the immediate future state

� � � �
� 	 and the current control decision �� � � 	 . Each individual term of the cost function
� � � � � 	 � �� � � 	 � � � � ��� 	 	 can be described as follows:

a. Voice Drops We will focus on the drops of the voice traffic, which is normally

sent in the main LSP. As you could imagine, The information loss from

these drops can be alleviated if we duplicate the packets.7 Note that
� � � 	

6Notice that both transition of �
� - � 2

and � - � 2 does not depend on control action � - � 2
7It is still possible that the duplicated packet also get dropped in the backup LSP. However, we will

totally lose the information only when both the original packet and duplicated packet are dropped. The

probability of this event is small. Hence, we assume that the duplicated packet always helps protecting

the information loss. As a result, we will not get any information loss when the control decision is to

duplicate.

131

will share the same bottleneck link with
�� � � � � � � 	 in main LSP. Hence,

the competition of
� � � 	 and

�� � � � � � � 	 over the bottleneck link can cause

packet drops, which gives our drops term in the cost function. Recall that
� � � � 	 �

�� � � � � � � 	 . Hence, drops can be calculated from the value of
� � � 	

and
� � � � � � � � � � 	 or

�
� � � � � � 	 using a formula

� � � � 	 � � � � � � � � 	 	 � .

Moreover, we assume that drops in main LSP is treated fairly between voice

and video traffic. This gives the cost as follows,

��� � � � � 	 � � � � 	 � � � � � � 	 	
� � � � � � � 	 	 � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � 	 � � � � � � � � ��� 	 	 � �

b. Video Drops in backup LSP This drops will not happen if we do not dupli-

cate voice packets. Note that we ignore video drops in the main LSP because

these drops still exist no matter we duplicate the packets or not. Similar to

the calculation of drops in main LSP above, drops in backup LSP can be

calculated from
� � � 	 and

� ' � � � � ' �
� ' 	 or

� ' � � � � ' 	 using a formula� � � � 	 � � ' � � � � ' 	 	 � . Again, we assume that drops in backup LSP is treated

fairly between voice and video traffic.

��� � � � � 	 � � � � 	 � � � � � � 	 	
� � � � 	 � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � ��� 	 � � ' � � � � ' � � 	 	 � �

c. Cost of Preempt TCP Traffic The TCP traffic will be preempted by the du-

plicated packets. Hence, this cost term represents the loss of the bandwidth

of TCP traffic due to the duplication decision.

��� � � � � 	 � � � � 	 � � � � ��� 	 	
� � � � 	 � � � ' � � � � ' � � 	 � � � ' � � � � ' � � 	 � � � � � � 	 	 � 	 �

d. TCP Congestion Control Cost There is a reduction of the TCP performance

as a result of the congestion control in TCP. With the TCP model proposed

132

in Section 2.3.2, we can get the cost associated with TCP congestion control

as

� � � � � � 	 � � � � 	 � � � � � � 	 	
��� ��� 	�� � � � � 	 � � � � 	 � � � 	 � � ��� 	�� ' � � � � 	 � � � ' �
	 � � � 	 � � � � � 	 � � � 	 �

where ��� is the time-out length of connection procedure (ITO) in the unit of

time slots.

The first term and the second term represent the duplication behavior that

lead to the first Initial Time-Out (ITO) and the second ITO, respectively. We

chose this TCP model because it follows the nature of the network when we

implemented the duplication mechanism. Note that our duplication mech-

anism can make channel for TCP traffic (and hence TCP service rate) to

change abruptly between very low value and very high value. That is, the

time slot with the duplicate decision will have a low TCP service rate while

the time slot without the duplicate decision will have a high TCP service

rate. Hence, we chose this TCP model, which is a model for the case of TCP

service rate with a large fluctuation. The detail and the validation of this

TCP model is described in Section 2.3.2.

Note that the duplication may not alleviate all drops in the main LSP but it can

cause high priority drops in the backup LSP. Hence, we will consider the drops

in the backup LSP (which are the result of duplication) to be more important than

the drops in the main path. As a result, we will use � � � �
, which enables the

controller to duplicate only if necessary.

In addition, we will also let � ' � � � to show that the real-time traffic have higher

priority than the TCP traffic.

133

Now we obtain a cost function for our H-stage MDP problem as,� � � ��� � " ��
 � ��
� � � � � � � � � � 	 � � � � 	 � � � � ��� 	 	 � �

where
� � � " � � 	 �� � � � � � 	 .

6.4 Optimal Policy

In this section, we will discuss an optimal policy in our partially observed MDP

problem. In order to apply DP algorithm, we will use state augmentation to reformulate

our problem to the one with perfect information. Then we will discuss the difficulty

with the DP algorithm for finding the optimal policy.

We define information vector � � � 	 as

� � � 	 � � � �#�	 � � � � 	 � � � � � � � � 	 � � �#�	 � � � � 	 � � � � � � � � � � 	 	 ��� �#� 	 � � �#� 	 �

We consider the class of policies that consists of a sequence of functions

% � � � � � � � � � � � � �
 � � � �
where

� � maps information vector � � � 	 into control � � � 	 � � � � � � � 	 	 and is such that
� � � � � � 	 	 � � for all � � � 	 . Such policies will be called “admissible”. We want to find

an admissible policy % that minimizes the value function,

���
 � � �#� 	 	 � ���
 � � �#�	 	 � � � � � � � " �
 � ��
� � � � � � � � � � 	 � � � � � � � 	 	 � � � � � � 	 	 � �

Hence, an optimal policy %�� is one that minimizes the finite horizon value function;

that is,
� ���
 � � �#� 	 	 ���
	�� ���� � �
 � � ��� 	 	 �

where � is the set of all admissible policies.

134

By using state augmentation, we can reformulate our imperfect information

(partially observed) problem to the one with perfect information as follows: With the

information vector, we get an evolution of a new system as

� � � ��� 	 � � � � � 	 � � � � ��� 	 � � � � 	 	 �
and get the dynamic programming algorithm as

�
 � � � � ��� � � 	 	 ���
	�� � �
 � � � � � � �
 � � ��� � �
 � � � " � � � � ��� � � 	 � � ��� � � 	 � � ��� 	 	 	
(6.2)

� � � � � � 	 	
���
	�� � � � � � � � � � ��� � � � � " � � � � � � 	 � � � � 	 � � � � � � 	 	 � � � � � � � � � � � 	 � � � � ��� 	 � � � � 	 	 	 �

(6.3)

Hence, the optimal policy %���� � � �� � � � � � � � � � � �
 � � � can be obtained by minimizing

the right-hand side of the DP Equation (6.2) and (6.3).

We could let � go to infinity and get a value function
� � � � �#� 	 	 for a

corresponding infinite time horizon problem; That is

� � � � �#� 	 	 � � 	��
���� � � �
 � � ��� 	 	

Then, the optimal policy % � for this infinite-time horizon is
� � � � � � � � � � � .

6.5 State Reduction

The main difficulty with DP algorithm in Equation (6.2) and (6.3) is that it is carried

out over a state space of expanding dimension. When a new observation is added at

each stage k, the dimension of the state (the information vector � � �) increases

accordingly. This difficulty highlights the importance of state reduction in the this

section. We will start our state reduction by first considering voice state reduction.

135

Then we will consider reducing control history state space. Finally we will conclude

the result of our state reduction.

6.5.1 Voice State Reduction

We use the concept of sufficient statistics to reduce the voice state space. We start by

writing a definition of sufficient statistic[2] as follows,

Sufficient statistic is a function
� � � � � � 	 	 of Information vector, such that a

minimizing control in Equation (6.2) and (6.3) depends on � � � 	 via
� � � � � 	 . By this we

mean that the minimization in the right-hand side of DP algorithm (6.2) and (6.3) can

be written in terms of some function � � as

�
	�� � � � � � � � � � � � � � 	 	 � � � � 	 	 �

The salient feature of sufficient statistic is that an optimal policy obtained by the

preceding minimization can be written as

� �� � � � � 	 	 � � � � � � � � � 	 	 	 � (6.4)

We will propose the observation
� � � 	 to be the sufficient statistic for our problem.

If we can prove that
� � � 	 is the sufficient statistic following the above definition, we

will be able to reformulate our MDP problem using
� � � 	 as our state. This new

formulation will indirectly give the optimal policy of the original problem using

Equation (6.4)

Following above definition, we can prove that
� � � 	 is a sufficient statistic by

writing the minimization in the right hand side of DP algorithm (6.2) and (6.3) in

terms of function � � as

�
	�� �� � � � � � � � � � 	 � �� � � 	 	
136

.

Before the proof, we should simplify some of notation to ease the explanation in

the proof. We start with our stage cost
� � � � � 	 � � � � 	 � � � � ��� 	 	 . From Equation (6.1),

the stage cost can be written as

� � � � � 	 � � � � 	 � � � � ��� 	 	
� � � � � � � 	 	 � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � 	 � � � � � � � � ��� 	 	 �
� � � � 	 � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � ��� 	 � � ' � � � � ' ��� 	 	 �
� � � � 	 � � � ' � � � � ' ��� 	 � � � ' � � � � ' � � 	 � � � � � � 	 	 � 	
� � ��� 	�� � � � � 	 � � � �
	 � � � 	 � � ��� 	�� ' � � � � 	 � � � ' � 	 � � � 	 � � � � �
	 � � � 	

We could alternately write the stage cost
� � � � � 	 � � � � 	 � � � � ��� 	 	 as

� � � � � 	 � � � � 	 � � � � 	 	 � � � � � � � 	 	 � � � � � � � � � 	 � � � � � � � � � � 	 	
� � � � 	 � � ' � � � � ��� 	 � � ' � � � � ' � � 	 	
� � � ���� � � 	 � � � � 	 	

where,
� � � � � � 	 � � � � �

� � � � � � � � � � � � 	 �
� ' � � � � 	 �

� � �� � � � � � � � � � � � 	 � � � ' � � � � � � � � 	 � 	
� � ���� � � 	 � � ��� 	�� � � � � � � 	 � � � ��� 	�� � � � � � � ' � 	 � � � � � � 	 �

137

Now we shall start the proof from Equation (6.2):

�
 � � � � ��� � � 	 	
���
	�� � �
 � � � � � � �
 � � ��� � �
 � � � " � � � � ��� � � 	 � � ��� � � 	 � � ��� 	 	 	
���
	�� � �
 � � � � � � �
 � � ��� � �
 � � � "

�����
�
� � � � ��� � � 	 	 � � � � � ��� 	 � � � ��� � � � 	 	
� � ��� � � 	 � � ' � � ��� 	 � � ' ��� � � ' 	 	
� � � ���� ��� � � 	 � � ��� � � 	 	

� ����
�

���
	�� � �
 � � � � � � �
 � � � � � �
 � ' � ������� � � � � ��� � �
 � ' � ������� � � ��� ��� � �
 � � � "�����
�
� � � � ��� � � 	 	 � � � � � ��� 	 � � � ��� � � � 	 	� � ��� � � 	 � � ' � � ��� 	 � � ' ��� � � ' 	 	
� � � ���� ��� � � 	 � � ��� � � 	 	

������
�

Now we will analyze each term above as follows:� � � �
 � � ��� � �
 � ' ��������� � � ��� � � � �
 � ' ��������� � � � � ��� � �
 � � � " � � � � � ��� � � 	 	 � � � � � ��� 	 � � � ��� � � � 	 	 	
� � � � �
 � � ��� � �
 � ' ��������� � � ��� � � � �
 � � ��� � �
 � ' � ������� � � � � ��� � �
 � � � � � �
 � ' ��������� � � ��� � "� � � � � ��� � � 	 	 � � � � � ��� 	 � � � ��� � � � 	 	 	
� � � � �
 � � ��� � �
 � � � � � �
 � � ��� � �
 � ' � ������� � � � � � " � � � � � ��� � � 	 	 � � � � � ��� 	 � � � ��� � � � 	 	 	
� � � � �
 � � ��� � �
 � � � � � �
 � � � " � � � � � ��� � � 	 	 � � � � � ��� 	 � � � ��� � � � 	 	 	

The third equality comes from Markov Property of our Markov Decision Process

(MDP) problem. The last equality comes from the fact that
� � � 	 and

� � � 	 do not

depend on � � � 	
Similar to the first term above, we can analyze and get the other two terms,� � � �
 � � ��� � �
 � ' ��������� � � � � ��� � �
 � ' � ������� � � ��� � � � �
 � � � " � � ��� � � 	 � � ' � � ��� 	 � � ' ��� � � ' 	 	 	
� � � � �
 � � � � � �
 � � ��� � �
 � � � " � � ��� � � 	 � � ' � � ��� 	 � � ' ��� � � ' 	 	 	

138

and � � � �
 � � ��� � �
 � ' ��������� � � � � ��� � �
 � ' � ������� � � ��� � � � �
 � � � " � � � ���� ��� � � 	 � � ��� � � 	 	 	
� � � �� �
 � � � � �� �
 � ' � ������� � �� ��� � � � �
 � ' ��������� � � ��� ��� � �
 � � � " � � � ���� ��� � � 	 � � ��� � � 	 	 	
� � � �� �
 � � � � � �
 � � � " � � � ���� ��� � � 	 � � ��� � � 	 	 	 �

Last equality comes from the fact that we need only �� ��� � � 	 and � ��� � � 	 to

calculate
� � ���� ��� � � 	 	 .

Next, we can go back to our DP algorithm; That is

�
 � � � � ��� � � 	 	
��� 	 � � �
 � � ������

�
� � � �
 � � ��� � �
 � � � � � �
 � � � " � � � � � ��� � � 	 	 � � � � � ��� 	 � � � ��� � � � 	 	 	� � � � �
 � � � � � �
 � � ��� � �
 � � � " � � ��� � � 	 � � ' � � ��� 	 � � ' ��� � � ' 	 	 	
� � � �� �
 � � ��� � �
 � � � " � � � ���� ��� � � 	 � � ��� � � 	 	 	

� ����
�

��� 	 � � �
 � � � � � � �
 � � ��� � �
 � � � "
�����
�
� � � � ��� � � 	 	 � � � � � ��� 	 � � � ��� � � � 	 	� � ��� � � 	 � � ' � � ��� 	 � � ' ��� � � ' 	 	
� � � ���� ��� � � 	 � � ��� � � 	 	

� ����
�

� �
 � � � � ��� � � 	 	 �

Therefore, we can write the DP algorithm (6.2) in term of a function �
 � � as

� 	 � � �
 � � � �
 � � � � ��� � � 	 � �� ��� � � 	 	 �

Now we continue our work on the DP algorithm (6.3). Using induction, we assume

� � � � � � ��� 	 	 � � � � � � � ��� 	 	

139

Then

� � � � � � 	 	
���
	�� � � � � � � � � � � � �� � � � " � � � � � � 	 � � � � 	 � � � � ��� 	 	 � � � � � � � � � � � 	 � � � � � � 	 � � � � 	 	 	
���
	�� � � � � � � � � � � � � � � � "

��������
�

� � � � � � 	 	 � � � � � � � � � 	 � � � � � � � � � � 	 	
� � � � 	 � � ' � � � � ��� 	 � � ' � � � � ' � � 	 	
� � � ���� � � 	 � � � � 	 	
� � � � � � � � � � � 	 � � � � ��� 	 � � � � 	 	

� �������
�

���
	�� � �
 � � � � � � � � ��� � � � � � ��������� � � � � ��� � � � � � ��������� � � ��� � � � � � � "��������
�

� � � � � � 	 	 � � � � � � � ��� 	 � � � � � � � � ��� 	 	
� � � � 	 � � ' � � � � � � 	 � � ' � � � � ' ��� 	 	
� � � ���� � � 	 � � � � 	 	
� � � � � � � � � � � � � 	 	

���������
�

Again, we will analyze each terms. First, the next stage cost becomes� � � � � ��� � � � � � � ������� � � ��� ��� � � � � � ��������� � � � � ��� � � � � " � � � � � � � � � � � 	 	 �

� � � � � � ��� � � � � " � � � � � � � � � ��� 	 	 � �

The equality comes from the fact that �� � � � � 	 , �� � � � � 	 and �� � � � � 	 in
� � � � � 	 are

conditionally independent of the other variables given
� � � 	 and � � � 	 .

For the other terms, we could analyze them the same way we did in
�
 � � � � ��� � � 	 	 . So we complete the analysis.

140

Next, we can go back to the DP algorithm,

� � � � � � 	 	
��� 	 � � � � ���������

�

� � � � � � � � � � ��� � � � � " � � � � � � � 	 	 � � � � � � � ��� 	 � � � � � � � � ��� 	 	 	
� � � � � � � � � � � ��� � � � � " � � � � 	 � � ' � � � � ��� 	 � � ' � � � � ' ��� 	 	 	
� � � �� � � � � � � � � " � � � ���� � � 	 � � � � 	 	 	
� � � � � � � � ��� � � � � " � � � � � � � � � � � 	 	 �

���������
�

��� 	 � � � � � � � � � � ��� � � � � "��������
�

� � � � � � 	 	 � � � � � � � � � 	 � � � � � � � � � � 	 	
� � � � 	 � � ' � � � � � � 	 � � ' � � � � ' � � 	 	
� � � ���� � � 	 � � � � 	 	
� � � � � � � � � � � ��� 	 	

� �������
�

� � � � � � � 	 	 �

Therefore we can write the DP algorithm (6.3) in term of function � � as

� 	 � � � � � � � � � � � 	 � �� � � 	 	 �

QED.

So
� � � 	 is a sufficient statistic of � � � 	 , and we have the new dynamic programming

Algorithm as,

�
 � � � � ��� � � 	 	

��� 	 � � �
 � � � � � � �
 � � ��� � �
 � � � "
�����
�
� � � � ��� � � 	 	 � � � � � ��� 	 � � � ��� � � � 	 	� � ��� � � 	 � � ' � � ��� 	 � � ' ��� � � ' 	 	
� � � ���� ��� � � 	 � � ��� � � 	 	

� ����
�

141

and

� � � � � � 	 	
��� 	 � � � � � � � � � � ��� � � � � "

��������
�

� � � � � � 	 	 � � � � � � � ��� 	 � � � � � � � � ��� 	 	
� � � � 	 � � ' � � � � � � 	 � � ' � � � � ' ��� 	 	
� � � ���� � � 	 � � � � 	 	
� � � � � � � � � � � � � 	 	

���������
�

Now we can reformulate the problem as follows: We will define a new state

variable8

� � � 	 � � � � 	 �

�����
�
� � � 	
�� � � 	
�� � � 	

� ����
� �

and we have a new system with an infinite horizon cost,

� 	��
 � � � � � ��� � " ��
 � ��
� � � � � ��� � � � � 	 � � � � 	 	� �

where
� � � � � � 	 � � � � 	 	 � � ��� � � � � � 	 � � � � 	 	 � � � � � � � 	 � � � � 	 	 �

given
� ��� � � � � � 	 � � � � 	 	 is the cost of high priority drops in main LSP , backup LSP and

preempt TCP traffic, respectively.
� � � � � � 	 � � � � 	 	 is a cost of TCP congestion control

8We replace observation variable
� - � 2

with a new state variable � - � 2 to prevent a confusion with � �

in subsequence sections.

142

mechanism, i.e.,

� ��� � � � � � 	 � � � � 	 	
� � � � � � ��� � � � � "

�����
�
� � � � � � � � � 	 	 � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � ��� 	 � � � � � � � � ��� 	 	 �
� � � � 	 � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � 	 � � ' � � � � ' ��� 	 	 �
� � ' � � � � 	 � � � ' � � � � ' ��� 	 � � � ' � � � � ' ��� 	 � � � � ��� 	 	 � 	

������
�

and

� � � � � � 	 � � � � 	 	 ��� ��� 	�� � � � � 	 � � � � 	 � � � 	 � � ��� 	�� ' � � � � 	 � � � ' � 	 � � � 	 � � � � � 	 � � � 	 �

6.5.2 Control History State Reduction

Following the last section on voice state reduction, we now mathematically prove that

we need only three control history state variables instead of all
� � � control history state

variables �� .

So far, we have a MDP problem with associated cost function� � � � � � " �
 � ��
� � � � � � � � � � � � 	 � � � � 	 	 	 � �

where our state variable is
� � � 	 �

�
�� � � 	 � � � � 	 � � � � � � � 	 � � � � � � � � � 	 � � � 	�� .

In this section, we will define a reduced order MDP problem, which is sampled

every ��� time slot from original problem. More specifically, we will focus on a MDP

problem with a new cost function� � � � � � " � � � ��
� � � � � � 	 � � � � � � � �	� 	 � � � � 	 	 	 � �

We can easily see that the cost function in this N-stage problem comes from

sampling original cost function for every � � time slot, i.e. cost sampled at

� � �	��� � �	��� � � � ��� � � � 	��	� . In this reduced order problem, we will define a new state

143

variable as � � � 	 �� � � � � 	 � �� � � 	 � � � � 	 � � � 	 � � � ' � 	 � � � 	 � � � � � 	 � � � 	 � . Actually, we could

view � � � 	 as a mapping function from our state variable
� � � 	 to the new state variable

such that

� � � 	 ��� � � � � 	 	 �
� � � � 	 � �� � � 	 � � � � 	 � � � 	 � � � ' � 	 � � � 	 � � � � � 	 � � � 	 � �

We now have a reduced system that progress � � time-steps instead of only single

time-step in original system. The system equation or state transition of this reduced

system can be described as follows:

The state transitions of
� � � 	 and �� � � 	 are still governed by a discrete-time Markov

chain. The transitions of � � � � � � 	 are changed because the reduced system has only

three control history variables instead of all
� � � variables in the original system. In the

reduced system, � � � 	 becomes � � � 	 � � � � �	� 	 in the next ��� time-steps, � � � 	 � � � 	
becomes � � ' � 	 � � � � ��� 	 in the next ��� time-steps, and � � ' � 	 � � � 	 becomes � � � � 	 � � � � �	� 	
in the next ��� time-steps. This state transition can be summarized to� � � 	 	 � � � � �	� 	 �

�� � � 	 	 �� � � � �	� 	 �
� � � 	 	 � � �
	 � � � � �	� 	 �
� � �
	 � � � 	 	 � � ' �
	 � � � � �	� 	 �
� � ' � 	 � � � 	 	 � � � � 	 � � � � �	� 	 �

Considering � -stage problem for this reduced system, we can use the dynamic

programming algorithm to obtain its optimal policy �� � ���� � � � � � ���� � � �
Now we go back to

� � ��� � -stage (or � -stage) problem9 for original system. We

9Through the rest of this section, we will assume that � is divisible by
� �

. Hence we can get � �
� � �

. One can easily relax this assumption and get the same claim.

144

would like to claim that the optimal policy for original system is

% � �

�
� �� � � � � � � �� �� ��� ��
	 ���� � � � � � � �� �� ��� ��
	 ��� � � � �� � � � � � � � � �� � � �� ��� �� 	

�
�

�

In other words, we would like to claim that the optimal policy%���� � � �� � � � � � � � � � � �
 � � 	 for original system is

� �� � � � � 	 	 � �� � � � � � 	 	 �
where � � � �� 	 � , for � ��� � � � � � � � � � �

.

With this claim, we can obtain the optimal policy of original problem via optimal

policy of reduced order problem. Hence, we can work on reduced order system, which

has much smaller state space.

The intuitive reason behind this claim can be explained as follows: We start by

taking a closer look at
� � � � � � 	 � � 	 � � � � 	 	 term in our stage cost

� � � � � � 	 � � 	 � � � � 	 	 ,
� � � � � � 	 � � 	 � � � � 	 	 � � ��� 	�� � � � � 	 � � � � 	 � � � 	 � � ��� 	�� ' � � � � 	 � � � ' � 	 � � � 	 � � � � � 	 � � � 	 �

We could see that
� � � � � � 	 � � 	 � � � � 	 	 uses only three variables out of all ��

variables. These three variables are evenly set apart from each other, i.e., every � �
time-steps. Moreover, they are the only variables from �� that are used to calculate the

optimal control because there is no �� variables in
� ��� � � � � � 	 � � � 	 � � � � 	 	 at all.

Subsequently, there is a strong potential that we can keep only these three variables and

eliminate the rest from our state variable vector to reduce the state space.

Now, we will mathematically prove our claim in detail as follows: we will first state

the dynamic programming algorithm for this original problem. Then we will state the

dynamic programming algorithm for the reduced order problem. Following these two

dynamic programming algorithms, we will propose our proposition as an accurate

version of our claim above. Then we will mathematically prove the proposition.

145

Dynamic Programming Algorithm of
��
 � � � � � � 	 	

In this new finite time horizon problem, we could restate the dynamic programming

algorithm as follows:

For every initial state
� �#� 	 , the optimal cost

�� � �
 � � �#� 	 	 is equal to
��
 � � � � �#�	 	 ,

given by the last step of the following algorithm, which proceeds backward in time

from period � � �
to period 0:

��
 �
 � � ��� 	 	 ���
��
 � � � � � � 	 	 ��� 	 � � � � � � � � � � � " � ��� � � � � 	 � � � � 	 	 � � �

��
 � � � � � � � � ��� 	 	 �
for � ��� � � � � � � � � � �

Moreover, the optimal policy at time � ,
� �� � � � � 	 	 , can be obtained from � � � 	 that

minimize the right hand side of
��
 � � � � � � 	 	 in its � 	�
 dynamic programming algorithm

step.

Dynamic Programming Algorithm of � ��� � � � � � ��� 	 	
As mentioned before, we will setup reduced order MDP Problem by Sampling

every ��� . So we look at the problem with cost function� � � � � � " � � � ��
� � � � � � 	 � � � � � � � �	� 	 � � � � 	 	 	 � �

As define earlier, we have new state variable

� � � 	 �� � � � � 	 � �� � � 	 � � � � 	 � � � 	 � � � ' � 	 � � � 	 � � � � �
	 � � � 	 � . Recall that we could view � � � 	
as a mapping function from our state variable

� � � 	 to the new state variable, i.e.,

� � � 	 ��� � � � � 	 	 �
� � � � 	 � �� � � 	 � � � �
	 � � � 	 � � � ' �
	 � � � 	 � � � � �
	 � � � 	�� �

We will now define new cost-to-go function � ��� � � � � � �	� 	 	 and our new dynamic

programming Algorithm as follows:

� ��� � � � � � �	� 	 	 ���

146

� ��� � � � � � �	� 	 	 ���
	�� � � � � � � � � � � 	 � " � ��� � � � � �	� 	 � � � � 	 	 � � � 	 ������� �
� � � � � � �	� � �	� 	 	 �

for � � � � � � � � � � � � �
.

With this new cost-to-go function, we define a function, �� � � � � � �	� 	 	 , associated to

� � � 	 that minimizes the right hand side of �
 � � � � � � �	� 	 	 in its � 	�
 dynamic

programming algorithm step; That is

�� � � � � � �	� 	 	 ���
 ��� 	 � � � � � � � � � � � 	 � "�� � � � � � � ��� 	 � � � � 	 	 � � � 	 � � ��� �
� � � � � � �	� � �	� 	 	 � �

for � � � � � � � � � � � � �
.

Proposition 6.5.1. The optimal policy %�� � � � �� � � �� � � � � � � �
 � � 	 of the original system

can be written in term of the optimal policy of reduced order problem as

� �� � � � � 	 	 � �� � � � � � 	 	 �
where � � � �� 	 � , for � � � � � � � � � � � � �

.

Moreover, the value function
��
 � � � � � � 	 	 of original problem can be written in term

of the value function � ��� � � � � � �	� 	 	 of reduced order problem as

��
 � � � � � � 	 	 � � ��� � �� 	 	 � � � � 	 	 � � � � � � � "�� �
	�� ��
��� � � � � � ��� � � $

�
� 	 	 � � � � � � 	 	�� �

for � ��� � � � � � � � � � ��� � �
,

��
 �
 � � � � ��� � � 	 	 � ����� � � � � � ��� � � 	 	 � � � � �
 � � � " � � � ��
� � � � � � � � � ��� � � � � � ��� � � 	 	 � �

for � ����� � � � � � � �	� , and

��
 �
 � � � � ��� � � 	 	 � � ��� � � � � � ��� � � 	 	 �

147

Proof of Proposition 6.5.1

We will use induction to prove this proposition.

Initial step: at � � �

��
 �
 � � � � ��� � � 	 	
��� 	 � � �
 � � � � � � �
 � � � " � � � � � ��� � � 	 � � ��� � � 	 	 	
��� 	 � � �
 � � � � � � �
 � � � " � � � � � ��� � � 	 � � ��� � � 	 	 	
� � ��� � � � � � ��� � � 	 	

The second equality comes from the fact that we need only some parts of state variable
� ��� � � 	 to calculate

� � � � ��� � � 	 � � ��� � � 	 	 . Moreover, we could see that

� �
 � � � � ��� � � 	 	 � �� � � � � � ��� � � 	 	 �

Instead of presenting the rest of boundary condition, i.e., steps of� � � � � � � � � � � � � � � � �	� , we will now present induction step, where� ��� � � � � � � � � � �	� � �
. The reason to rearrange the proof is their similarity; as the

readers understand the induction step, the steps of � � � � � � � � � � � � � � � � � � is

almost trivial.

Induction step: we will first assume

��
 � � � � � � � � ��� 	 	

� � ��� � � $ � 	 	 � � � � � � 	 	 � � � � � � � � � " � � 	 � ��
��� � � � � � ��� � � $

� $ � 	 	 � � � � � � ��� 	 	� �

148

Then,

��
 � � � � � � 	 	
� � 	 � � � � � � � � � � � " � ��� � � � � 	 � � � � 	 	 � � �

��
 � � � � � � � � � � 	 	 �
� � 	 � � � � � � � � � � � "

���
�
��� � � � � 	 � � � � 	 	 � � � � ��� � � $ � 	 	 � � � � ��� 	 	
� � � � � � � � � � � " � � 	 � ��

��� � � � � � ��� � � $
� $ � 	 	 � � � � � � � � 	 	��

� ��
�

� � 	 � � � � �
�������
�

� � � � � � " � � � � � � � 	 � � � � 	 	 	
� � � � � � � � � " � � ��� � � $ � 	 	 � � � � ��� 	 	 	
� � � � � � � � � " � � � � � � � � " � � 	 � ��

��� � � � � � ��� � � $
� $ � 	 	 � � � � � � � � 	 	 �

��������
�

� � 	 � � � � �
�������
�

� � � � � � " � ��� � � � � 	 � � � � 	 	 	
� � � � � � � � � " � � ��� � � $ � 	 	 � � � � ��� 	 	 	
� � � � � � � � � "�� � 	 � ��

��� � � � � � ��� � � $
� $ � 	 	 � � � � � � � � 	 	��

� ������
�

� � 	 � � � � �
�������
�

� � � � � � " � � � � � � � 	 � � � � 	 	 	
� � � � � � � "�� � 	 � ��

��� � � � � � ��� � � $
�

� 	 	 � � � � � � 	 	 �
� � � 	 � � � � � � � " � � ��� � � $ � 	� 	 	 � � � � � �	� 	 	 	

� ������
� �

We could write out all state variables of � � � � � 	 and get,

��
 � � � � � � 	 	
���
	�� � � � ����������

�

� � � � � � " � � � � � � � 	 � � � � 	 	 	
� � � � � � � " ��

� � 	 � ��
��� � � � � � ��� � � $

�
� 	 	

�� � � � � � 	 � �� � � � � 	 �
� � � 	 � � � � � 	 � � � ' � 	 � � � � � 	 � � � � � 	 � � � � � 	

� �� � �
�

� � � 	 � � � � � � � " � � ��� � � $ � 	� 	 	 � � � � � �	� 	 	 	

����������
�

�

From state transition: � �
� � � � � � 	 � � � � � � � � � � � � � 	 � � � � � � � � � � � � � 	 , for

149

� � � � �	� and �	� � � � � �	� ,
��
 � � � � � � 	 	
���
	�� � � � �

���������
�

� � � � � � " � � � � � � � 	 � � � � 	 	 	
� � � 	 � � � � � � � " � � ��� � � $ � 	� 	 	 � � � � � �	� 	 	 	
� � � � � � � " ��

� � 	 � ��
��� � � � � � ��� � � $

�
� 	 	

�� � � � � � 	 � �� � � � � 	 �
� � �
	 � � � � � 	 � � � ' � 	 � � � � � 	 � � � � � 	 � � � � � 	

� �� � �
�

� ��������
�

�

We can see that all
� � � � � 	 � �� � � � � 	 � � � �
	�� � � � � 	 � � � ' �
	 � � � � � 	 and � � � �
	 � � � � � 	 	 are

independent of � � � 	 . The reason for such independence is as follows:
� � � � � 	 and

�� � � � � 	 are uncontrollable variables as we discussed earlier. Hence, they will not

depend on � � � 	 . The control history state variables, � � � 	 � � � � � 	 � � � ' � 	 � � � � � 	 and

� � � � 	 � � � � � 	 	 are given in
� � � 	 . Hence, they are independent of � � � 	 . As a result of the

above dependences, � ��� � � $
�

� 	 	 � � 	 , which is a function of those independent state

variables, would be independent of � � � 	 as well. Hence, we can take all � ��� � � $
�

� 	 	 � � 	
terms out of our minimization,

��
 � � � � � � 	 	
��� 	 � � � � � � � � � � � � " � � � � � � � 	 � � � � 	 	 	 � � � 	 � � � � � � � " � � ��� � �� 	 	 � � � � � � � �	� 	 	 	 �

� � 	 � ��
� � � � � � �

� � � � � "�
� ��� � � $

�
� 	 	 �

� � � � � 	 � �� � � � � 	 � � � � 	 � � � � � 	 � � � ' � 	 � � � � � 	 � � � � � 	 � � � � � 	 	 �
��� 	 � � � � � � � � � � � � " � � � � � � � 	 � � � � 	 	 	 � � � 	 � � � � � � � " � � ��� � �� 	 	 � � � � � � � �	� 	 	 	 �

� � 	 � ��
� � � � � � �

� � � � � " � � ��� � � $ �� 	 	 � � � � � � 	 	 � �

(6.5)

Recall that the optimal policy at time � ,
� �� � � � � 	 	 , can be obtained from � � � 	 that

minimize the right hand side of
��
 � � � � � � 	 	 in its � 	�
 dynamic programming algorithm

150

step. Hence, we can obtain
� �� � � � � 	 	 from

� �� � � � � 	 	
� �
 �*� 	 � � � � � � � � � � � � " � ��� � � � � 	 � � � � 	 	 	 � � � 	 � � � � � � � " � � ��� � �� 	 	 � � � � � � � �	� 	 	 	 �

� � 	 � ��
� � � � � � �

� � � � � " � � ��� � � $ �� 	 	 � � � � � � 	 	 �
� �
 �*� 	 � � � � � � � � � � � � " � ��� � � � � 	 � � � � 	 	 	 � � � 	 � � � � � � � " � � ��� � �� 	 	 � � � � � � � �	� 	 	 	 � �

We actually can see that this
� �� � � � � 	 	 is the same as if we get a � � � 	 that

minimizes the right hand side of � ��� � � � � � �	� 	 	 in its � 	�
 dynamic programming

Algorithm step; That is
� �� � � � � 	 	 � �� � � � � � 	 	 �

where � � � �� 	 � .
Also from Equation (6.5), we can write out the minimizing term and get

��
 � � � � � � 	 	 � � ��� � �� 	 	 � � � � 	 	 � �
	�� ��
��� � � � � �

� � � � � " � � ��� � � $ �� 	 	 � � � � � � 	 	 � �

Now we will go over the rest of boundary condition, i.e., steps of� � � � � � � � � � � � � � � � �	� ,
��
 �
 � � � � ��� � � 	 	 � ����� � � � � � ��� � � 	 	 � � � � �
 � � � " � � � ��

� � � � � � � � � ��� � � � � � ��� � � 	 	 � �

for � ����� � � � � � � �	� .
We start at step of � ��� such that we can prove

��
 �
 � ' � � ��� � � 	 	
���
	�� � �
 � ' � � � � �
 � ' � " � � � � � ��� � � 	 � � ��� � �	 	 � � �

��
 �
 � � � � ��� � � 	 	��
���
	�� � �
 � ' � � � � �
 � ' � " � � � � � ��� � �	 � � ��� � �	 	 � � � � ��� � � � � � ��� � � 	 	 � �

151

We could write out all state variables of � ��� � � 	 and get

��
 �
 � ' � � ��� � �	 	
���
	�� � �
 � ' ������

�
� � � �
 � ' � " � � � � � ��� � �	 � � ��� � �	 	 	
� � � � �
 � ' � " ��

� � � � ��� � � �
��
 � ��� � � 	 � �� ��� � � 	 �
� � �
	 � ��� � � 	 � � � ' � 	 � ��� � � 	 � � � � � 	 � ��� � � 	

���
�

���
�

������
� �

From state transition, � �
� � ��� � � 	 � � � � � � � ��� � � 	 , for � �$��� � � �	� and

� ��� ,
��
 �
 � ' � � ��� � �	 	
� � 	 � � �
 � ' ����������

�

� � � �
 � ' � " � � � � � ��� � �	 � � ��� � �	 	 	
� � � � �
 � ' � "��

� � ������� � � �
�� � ��� � � 	 � �� ��� � � 	 �
� � �
	�� � � ��� � � 	 � � � ' �
	 � � � ��� � � 	 � � � � �
	�� � � ��� � �	

� �� � �
�

� ��������
�

�

Similar to the discussion in induction step, we can see that all� ��� � � 	 � �� ��� � � 	 � � � �
	 � � � ��� � �	 � � � ' �
	�� � � ��� � � 	 and � � � �
	�� � � ��� � � 	 are

independent of � ��� � �	 . The reason for such independence is as follows:
� ��� � � 	

and �� ��� � � 	 are uncontrollable variables as we discussed earlier. Hence, they will not

depend on � ��� � �	 . The control history state variables,

� � � 	 � � � ��� � �	 � � � ' � 	 � � � ��� � �	 and � � � � 	 � � � ��� � �	 are given in
� ��� � �	 . Hence,

they are independent of � ��� � � 	 . As a result of the above dependences,

����� � � � ��� � � 	 , which is a function of those independent state variables, would be

independent of � ��� � �	 as well. Hence, we can take � ��� � � � ��� � � 	 term out of our

152

minimization,

��
 �
 � ' � � ��� � �	 	
���
	�� � �
 � ' � � � � � �
 � ' � " � � � � � ��� � � 	 � � ��� � � 	 	 	 �

� � � � �
 � ' � " ��
� � � ����� � � �

�� � ��� � � 	 � �� ��� � � 	 �
� � � 	 � � � ��� � �	 � � � ' � 	 � � � ��� � �	 � � � � � 	 � � � ��� � � 	

���� ���
�

���
	�� � �
 � ' � � � � � �
 � ' � " � ��� � � ��� � � 	 � � ��� � � 	 	 	 �
� � � � �
 � ' � " � � � ����� � � � � � ��� � � 	 	 	 �

We can easily see that our minimization term is exactly the same as the equation of

����� � � � � � 	 ; That is,

��
 �
 � ' � � ��� � �	 	
� ����� � � � � � ��� � �	 	 � � � � �
 � ' � " � � � ����� � � � � � ��� � � 	 	 	 �

We get an optimal policy
� �
 � '�� � ��� � �	 	 from

� �
 � '�� � ��� � �	 	 � �� � � � � � ��� � �	 	
Now we can get to step of � � � � 	 � � � � � � � , such that we can prove

��
 �
 � � � � ��� � � 	 	 � ����� � � � � � ��� � � 	 	 � � � � �
 � � � " � � � ��
� � � � � � � � � ��� � � � � � ��� � � 	 	 � �

for � � � � 	 � � � � � �	� .
To use an induction to prove this, we first assume

��
 �
 � � � � � � � � ��� � � � � � 	 	 	

� ����� � � � � � ��� � � � � � 	 	 	 � � � � �
 � � � � � � � " � � � '�
��� � � � � � � � � � � ����� � � � � � ��� � � 	 	�� �

153

Then,

��
 �
 � � � � ��� � � 	 	
� � 	 � � �
 � � � � � � �
 � � � " � ��� � � ��� � � 	 � � ��� � � 	 	 � � �

��
 �
 � � � � � � ��� � � � � 	 	 �
� � 	 � � �
 � � � � � � �
 � � � "

���
�
��� � � ��� � � 	 � � ��� � � 	 	 � � � � ��� � � � � � ��� � � ��� 	 	
� � � � � � �
 � � � � � " � � � '�

��� � � � � � � � ������� � � � � � ��� � � 	 	 �
� ��
�

� � 	 � � �
 � � �
�������
�

� � � �
 � � � " � ��� � � ��� � � 	 � � ��� � � 	 	 	
� � � � � � �
 � � � " � � ��� � � � � � ��� � � � � 	 	 	
� � � � � � �
 � � � " � � � �
 � � � � � " � � � '�

��� � � � � � � � � � � ����� � � � � � ��� � � 	 	��
� ������
�

� � 	 � � �
 � � �
�������
�

� � � �
 � � � " � � � � � ��� � � 	 � � ��� � � 	 	 	
� � � � � � �
 � � � " � � ��� � � � � � ��� � � � � 	 	 	
� � � � � � �
 � � � " � � � '�

� � � � � � � � � � � ��� � � � � � ��� � � 	 	��
��������
�

� � 	 � � �
 � � �
���
�
� � � �
 � � � " � � � � � ��� � � 	 � � ��� � � 	 	 	
� � � � � � �
 � � � "�� � � ��

� � � � � � � � � ��� � � � � � ��� � � 	 	��
� ��
� �

We could write out all state variables of � ��� � � 	 and get

��
 �
 � � � � ��� � � 	 	
���
	�� � �
 � � ����������

�

� � � �
 � � � " � � � � � ��� � � 	 � � ��� � � 	 	 	
� � � � � � �
 � � � "��

� � � ��
��� � � � � � ������� � � �

�� � ��� � � 	 � �� ��� � � 	 �
� � � 	 � ��� � � 	 � � � ' � 	 � ��� � � 	 � � � � � 	 � ��� � � 	

� �� � �
�

� ��������
�

�

From state transition, � �
� � ��� � � 	�� � � � � � � ��� � � � � 	 � � � � � � � � � � � � � ��� ��� 	 ,

154

for � � � � � and �	� � � � � �	� ,
��
 �
 � � � � ��� � � 	 	
���
	�� � �
 � � ���������������

�

� � � �
 � � � " � � � � � ��� � � 	 � � ��� � � 	 	 	
� � � � � � �
 � � � "�������

�

� � ��
� � � � � � �

� � ��� � � �
�� � ��� � � 	 � �� ��� � � 	 �
� � � 	 � � � � � ��� � � 	 � � � ' � 	 � � � � � ��� � � 	 � � � � � 	 � � � � � ��� � � 	

� ��
� ������
�

� �������������
�

�

Similar to the discussion in the induction step, all� ��� � � 	 � �� ��� � � 	 � � � � 	 � � � � � ��� � � 	 � � � ' � 	 � � � � � ��� � � 	 and � � � � 	 � � � � � ��� � � 	 are

independent of � ��� � � 	 (for
� � � or � � � � � � �). The reason for such

independence is as follows: As we discussed earlier,
� ��� � � 	 and �� ��� � � 	 are

uncontrollable variables. Hence, they will not depend on � ��� � � 	 . Moreover, the

control history state variables, � � �
	 � � � � � ��� � � 	 � � � ' � 	 � � � � � ��� � � 	 and

� � � �
	 � � � � � ��� � � 	 are given in
� ��� � � 	 . Hence, they are also independent of

� ��� � � 	 . As a result of the above dependencies, � ��� � � � ��� � � 	 , which is a function

of those independent state variables, would be independent of � ��� � � 	 as well. Then,

155

we can take all � ��� � � � ��� � � 	 terms out of our minimization,

��
 �
 � � � � ��� � � 	 	
���
	�� � �
 � � � � � � � �
 � � � " � � � � � ��� � � 	 � � ��� � � 	 	 	 �

� � � � � � �
 � � � "��
� � � ��
��� � � � � � � � ��� � � �

�� � ��� � � 	 � �� ��� � � 	 �
� � � 	 � � � � � ��� � � 	 � � � ' �
	 � � � � � ��� � � 	 � � � � �
	 � � � � � ��� � � 	

� �� � �
�

���
	�� � �
 � � � � � � � �
 � � � " � � � � � ��� � � 	 � � ��� � � 	 	 	 �
� � � � � � �
 � � � " � � � ��

��� � � � � � � ����� � � � � � ��� � � 	 	� �

We can see that our minimization term is exactly the same as the equation of

����� � � � � � 	 . Hence, we get

��
 �
 � � � � ��� � � 	 	
� ����� � � � � � ��� � � 	 	 � � � � � � �
 � � � " � � � ��

��� � � � � � � ����� � � � � � ��� � � 	 	� �

and we get an optimal policy
� �
 � � � � ��� � � 	 	 from

� �
 � � � � ��� � � 	 	 � �� � � � � � ��� � � 	 	 �

for � � � � 	 � � � � � �	� .
This completed the proof of the Proposition.

QED.

Now we can reformulate the problem as follows: We will define new state variable,

�� � � 	 �
� � � � �	� 	
�

� � � � �	� 	 � �� � � �	� 	 � � � �
	 � � � �	� 	 � � � ' � 	 � � � �	� 	 � � � � �
	 � � � �	� 	 � �

156

We have a new system with an infinite horizon cost,

��	��
���� � � �� � � � "	�
 � ��
� � � � � � � �

�� � � 	 � � � � 	 	�� �

where
� � � �� � � 	 � � � � 	 	 � � ��� � � �� � � 	 � � � � 	 	 � � � �

�� � � 	 � � � � 	 	 �
� ��� � � �� � � 	 � � � � 	 	 is the cost of high priority drops in main LSP , backup LSP and

Preempt TCP traffic, respectively.
� � �

�� � � 	 � � � � 	 	 is a cost of TCP congestion control

mechanism, i.e.,

� ��� � � �� � � 	 � � � � 	 	
� � � �� � � ��� � � � � "�����

�
� � � � � � � � � 	 	 � � � �*� 	 � � �� � �*� 	 � � � � � � � � � ��� 	 � � � � � � � � � � � ��� ��� 	 � � � � � �	� � � � ��� 	 	 �
� � � � 	 � � � � � � �*�
	 � � � � � �� � �*� 	 � � � � � � � � � �*� 	 � � � � � � � � � � � �	� ��� 	 � � ' � � �	� � � ' ��� 	 	 �
� � ' � � � � 	 � � � ' � � �	� � � ' � � 	 � � � ' � � �	� � � ' ��� 	 � � � � ��� � � 	 	 � 	

������
�

and

� � �
�� � � 	 � � � � 	 	 � � ��� 	�� � � � � 	 � � � � 	 � � � �	� 	 � � ��� 	�� ' � � � � 	 � � � ' � 	 � � � �	� 	 � � � � � 	 � � � �	� 	 �

157

6.5.3 Conclusion on State Reduction

With our state reduction technique from previous sections, we successfully get a new

value function � �� �
�� ��� 	 	 ,

� � �
�� �#�	 	 ���
	�� � � �� � � � " � �� � � � � � � 	�	 � �

� � � � �� � � 	 � � � � 	 	 � � �

with a new state variable vector
�� � � 	 ,

�� � � 	 �
� � � � �	� 	 � �� � � �	� 	 � � � �
	 � � � �	� 	 � � � ' � 	 � � � �	� 	 � � � � �
	 � � � �	� 	 � �

where
��� � �� � � 	 � � � � 	 	 � � ��� � � �� � � 	 � � � � 	 	 � � � �

�� � � 	 � � � � 	 	 �
� ��� � � �� � � 	 � � � � 	 	 is the cost of high priority drops in main LSP , backup LSP and

preempt TCP traffic, respectively.
� � �

�� � � 	 � � � � 	 	 is a cost of TCP congestion control

mechanism, i.e.,

� ��� � � �� � � 	 � � � � 	 	
� � � �� � � ��� � � � � "�����

�
� � � � � � � � � 	 	 � � � �*� 	 � � �� � �*� 	 � � � � � � � � � ��� 	 � � � � � � � � � � � ��� ��� 	 � � � � � �	� � � � ��� 	 	 �
� � � � 	 � � � � � � �*� 	 � � � � � �� � �*�
	 � � � � � � � � � �*� 	 � � � � � � � � � � � �	� ��� 	 � � ' � � �	� � � ' ��� 	 	 �
� � ' � � � � 	 � � � ' � � �	� � � ' � � 	 � � � ' � � �	� � � ' ��� 	 � � � � ��� � � 	 	 � 	

� ����
�

and

� � �
�� � � 	 � � � � 	 	 � � ��� 	�� � � � � 	 � � � � 	 � � � �	� 	 � � ��� 	�� ' � � � � 	 � � � ' � 	 � � � �	� 	 � � � � � 	 � � � �	� 	 �

158

Chapter 7

Subobtimal Policy: Duplication Problem

We achieved a large reduction in state space by converting the partially observed MDP

problem into the equvalent perfect information MDP problem in Chapter 6. In the

chapter, we showed the duplication problem, which we originally formulated as a

partially observed MDP problem, can be reduced to the perfect information MDP

problem as far as control is concerned. That is, we will automatically get the optimal

control policy for the partially observed MDP problem if we solve that perfect

information MDP problem. Since the perfect information MDP has a smaller state

space, it is wise to work on the perfect information MDP problem in this chapter,

instead of working on the original partially observe MDP problem.

In spite of the large state reduction from the original partially observe MDP

problem, we still encounter a well-known curse of dimensionality problem. With this

problem, the number of states often grows exponentially with the number of state

variables. This exponential growth can easily induce large state space. The resulting

large state space could adversely create a difficulty in finding an optimal policy (even

after we apply state reduction technique). Hence, it is nice to design policies that yield

a good approximation to the optimal policy and can be easily calculated. In this

chapter, we will propose some sub-optimal policies for the duplication problem. Then

159

we will evaluate and compare their performance using the Temporal Difference (TD)

learning and the packet-level simulation.

7.1 Without TCP Consideration Approach

Recall from Section 6.5, the optimal policy � � �
�� �#� 	 	 for duplication problem (after

our state reduction) can be obtained from minimizing the cost below:

� � �� ��� � " ��
� �� � � � � � � 	 	 � �

��
� ��� � � �

�� � � 	 � � � � 	 	
� � � �

�� � � 	 � � � � 	 	
� �
�

� �
� � (7.1)

where
� ��� � � �� � � 	 � � � � 	 	 is the cost of the voice drops in the main LSP, the video drops

the backup LSP, and the preempt TCP traffic, respectively.
� � �

�� � � 	 � � � � 	 	 is the cost

of the TCP congestion control mechanism, i.e.,

� ��� � � �� � � 	 � � � � 	 	
� � � �� � � ��� � � � � "�����

�
� � � � � � � � � 	 	 � � � �*�
	 � � �� � �*� 	 � � � � � � � � � ��� 	 � � � � � � � � � � � ��� ��� 	 � � � � � �	� � � � ��� 	 	 �
� � � � 	 � � � � � � �*� 	 � � � � � �� � �*� 	 � � � � � � � � � �*� 	 � � � � � � � � � � � �	� ��� 	 � � ' � � �	� � � ' ��� 	 	 �
� � ' � � � � 	 � � � ' � � �	� � � ' � � 	 � � � ' � � �	� � � ' ��� 	 � � � � ��� � � 	 	 � 	

� ����
�

and

� � �
�� � � 	 � � � � 	 	 � � ��� 	�� � � � � 	 � � � �
	 � � � �	� 	 � � ��� 	�� ' � � � � 	 � � � ' �
	 � � � �	� 	 � � � � �
	 � � � �	� 	 �

with a state variable,

�� � � 	 �
� � � � �	� 	 � �� � � �	� 	 � � � � 	 � � � �	� 	 � � � ' � 	 � � � �	� 	 � � � � � 	 � � � �	� 	 � �

To simplify our equation, we let

� � � � � � 	 ��� � � �
� � � � � � � � � � � � 	 � �

� ' � � � � 	 �
� � �� � � � � � � � � � � � 	 � � � ' � � � � � � � � 	 � 	

�

160

Hence, we can rewrite
� ��� � � �� � � 	 � � � � 	 	 as

� ��� � � �� � � 	 � � � � 	 	
� � � �� � � � � � � � � "

��
� � � � � � � 	 	 � � � � � � � �	� ��� 	 � � � � � �	� � � � � � 	 	
� � � � 	 � � ' � � � � �	� � � 	 � � ' � � �	� � � ' � � 	 	

���
� �

In this section, we propose a suboptimal policy based on Certainty Equivalent

Control (CEC). The CEC approach often performs well in practice and yields

near-optimal policies[2]. Hence, the CEC approach could work well in our problem

also.

Using the concept of the Certainty Equivalent Control, we fix all uncertain

quantities (noise) and substitute them with their means. Hence, our CEC control can be

obtained by minimizing the cost function��
� �� � � � ��� �
	 	 � �

��
� �

���!�� � � �
�� � � 	 � � � � 	 	

� � � �
�� � � 	 � � � � 	 	

���
�

���
� �

where

� ���!���� � �
�� � � 	 � � � � 	 	

� � � � � � � 	 	 � � � � � � � � �*� 	 � " � � � � �	� ��� 	 	 � � � � � �*� 	 � " � � � � � �	� � � � ��� 	 	 	
� � � � 	 � � ' � � � � � ��� 	 � " � � � � �	� ��� 	 	 � � � � � �*� 	 � " � � ' � � �	� � � ' ��� 	 	 	 �

We perform a further approximation by ignoring the cost associated with the TCP

congestion control mechanism
� � �

�� � � 	 � � � � 	 	 . We call this control policy as a NoTCP

control. This NoTCP control minimize the cost below

��
� � � � � � 	 	 � �

� � ���!���� � �
�� � � 	 � � � � 	 	�� �

Remind you that the
� � � � � � 	 terms, in which we ignored, are less importance than

the other terms in the cost function. Hence, this new cost function of NoTCP control is

161

likely to be a good approximation of the cost function of the previous CEC control. As

we already discuss, CEC often performs well in practice and yields near-optimal

policies. Hence, the NoTCP control, which is close to the CEC control, is likely to

perform well also.

So far, we have a new dynamic programming problem with the cost function in

Equation (7.2).

� ��������	� �
�� ��� 	 	 ��� 	 �

��
� � � ��� � 	 	�� �

� � ���!���� � �
�� � � 	 � � � �� � � 	 	 	 � (7.2)

Next, we find the optimal policy
� � � 	��� to this new problem. This policy

� � � 	��� will

serve as an approximation to the optimal policy
� � of our original duplication problem.

To find the policy
� � � 	��� , we first claim that this new DP problem can be simplified to a

simple step-by-step minimization problem. The step-by-step minimization problem is a

problem in which its optimal policy depends only on the current state,
�� �#� 	 . Note that

an optimal policy of a normal DP problem depends on both current state and future

states,
�� � � 	 � � � � . This claim eases the calculation of optimal policy. As a result, we

can show a closed-form solution of this optimal policy after the claim.

Lemma 7.1.1. The MDP problem with the cost function � �����
��� �
�� ��� 	 	 is a step-by-step

minimization problem, i.e., a problem in which its optimal policy depends only on a

current state. Hence, the policy
� � � 	��� � �� � � 	 	 can be obtained from

� � � 	��� � �� � � 	 	
���
 ���
	�� � � � � � � � � � � � ��� ���� � �

�� � � 	 � � � � 	 	 �
���
 ���
	�� � � � � � � � � ���

� � � � � � � 	 	 � � � � � � � � ��� 	 � " � � � � �	� ��� 	 	 � � � � � �*�
	 � " � � � � � �	� � � � ��� 	 	 	
� � � � 	 � � ' � � � � � �*� 	 � " � � � � �	� ��� 	 	 � � � � � �*�
	 � " � � ' � � �	� � � ' ��� 	 	 	

� �
� �

162

In order to easily understand the behavior of our control, the control policy
� � � 	��� � �� � � 	 	 in Lemma 7.1.1 can be alternatively written as follows:

� � � 	��� � �� � � 	 	 �

��� �� � 	 � � � � � � �� � 	 � � � � � � 	
� 	 � � � � � � �� � 	 � � � � � � 	 �

where � � � � � �� � 	�� � � � � � � � ��� 	 � " � � � � �	� ��� 	 	 � � � � � �*�
	 � " � � � � � �	� � � � ��� 	 	 	 �� � � �� � 	 � � ' � � � � � �*� 	 � " � � � � �	� � � 	 	 � � � � � �*�
	 � " � � ' � � �	� � � ' � � 	 	 	 �

From the above equation, � � � � � �� � 	 is the occurring cost when there is no

duplication in time slot � , while � � � � � 	 is an occurring cost when there is a

duplication in time slot � . From another point of view,, � � � � � �� � 	 is the cost that the

voice traffic will suffer from the drops in the main LSP. On the other hand, � � � � � �� � 	 is

the cost that the video traffic in the backup LSP will suffer from the drops and the TCP

traffic will suffer from the loss of their bandwidth.

We could see that a closed-form solution for
� �

� � ���
is computable if we can

analytically calculate
� � � � �*� 	 � " � � � � �	� � � 	 	 , � � � � �*�
	 � " � � ' � � �	� � � ' ��� 	 	 and� � � � �*� 	 � " � � � � � �	� � � � ��� 	 	 .

Lemma 7.1.2. Given a current voice state
� � � 	 , the expected value of the future voice

state
� � � � � � " � � � � � � � 	 	 can be obtained from� � � � � � " � � � � � � � 	 	 �

�
 � � � � � 	 � �

 � � � �� � � �
where

�
is the time-step length. 	 is the arrival rate and

�����
is the mean duration time

of the voice calls.

Lemma 7.1.3. Given a current video state
� � � 	 , the expected value of the future video

state
� � � � � � " � � � � � � � 	 	 can be obtained from� � � � � � " � � � � � � � 	 	 � � � � � � ��

� � ��� � � � 	 � � � � � � � ��
� � 	 � � � � � � � � � � � �

163

where
�

is the time-step length and � is the link capacity.
� � � � � and � are the

parameters in the video model.

With Lemma 7.1.2 and Lemma 7.1.3, we get the closed-form solution for our

sub-optimal control. We called this policy as “NoTCP” policy to indicate the absence

of the terms associated with the TCP congestion control.

Proof Lemma 7.1.1

The intuition behind Lemma 7.1.1 is that
�

and �� are uncontrollable. In other

words, the amount of voice traffic
�

and the service rate (from video traffic) �� do not

depend on our duplication decision.1 Moreover,
� ��� �� � � �

�� � � 	 � � � � 	 	 , depends only on� � � 	 , �� � � 	 and � � � 	 . (It does not depend on � � � 	 � � � 	 , � � ' � 	 � � � 	 and � � � � 	 � � � 	 in our

state variable
�� � � 	 .) Hence,

� ��� �� � � �
�� � � 	 � � � � 	 	 is independent of any other control

decisions except the control decision � � � 	 .
Recall that we have our value function � �������	� �

�� ��� 	 	 of our NoTCP control as

shown in Equation (7.2). From that value function, we can get the optimal policy
� � � 	��� from

� � � 	��� ���
 ���
	�� � � � � � � ��� ���� � �
�� � � 	 � � � � 	 	 � ��� � 	 	 � � ��������	� � �� � � ��� 	 	 � � (7.3)

where

� �����
��� �
�� � � � � 	 	 ��� 	 � � � � � � � � � � � � ' ��������� ��

� � � � � � � � 	 	 � �
� � � ������ � �

�� � ��	 � � � � 	 	 � �

Note that � �����
��� �
�� � � � � 	 	 , which is in the second minimizing term of Equation

(7.3), consists of
� ��� ���� � �

�� � ��	 � � � ��	 	 ,for � � � . From the independence that we

discussed above, this � �����
��� �
�� � � � � 	 	 will not depend on � � � 	 . Hence, we can easily

see that the policy
� � � 	��� can be obtained by minimizing only

� ��� ���� � �
�� � � 	 � � � � 	 	 .

1Recall that the duplication decision is our control decision.

164

Now we can prove the lemma in detail as follows: From Equation (7.2),

� �����
��� �
�� ��� 	 	 can be obtained from minimizing the following cost function

� �� � � ��� � 	 	 � �
� � ��� �� � � �

�� � � 	 � � � � 	 	 �
�

��
� � � � � � 	 	 � �

��
� � � � � � � 	 	 � � � � � � � � �*� 	 � " � � � � �	� � � 	 	 � � � � � �*� 	 � " � � � � � �	� � � � � � 	 	 	
� � � � 	 � � ' � � � � � �*� 	 � " � � � � �	� ��� 	 	 � � � � � �*� 	 � " � � ' � � �	� � � ' ��� 	 	 	

���
� �

Notice that all the terms above do not depend on � � � 	 � � � 	 � � � ' �
	 � � � 	 � � � � �
	 � � � 	
components in

�� � � 	 . Hence, � � ���
�	� �
�� �#� 	 	 will become � �������	� � � ��� 	 � �� ��� 	 	 .

Moreover, we can write � �����
��� � � �#�	 � �� ��� 	 	 in a recursive form as

� �����
��� � � � � �	� 	 � �� � � �	� 	 	
���
	�� � � � � � � � � ������

�
� � � � � � 	 	 � � � � � � � � �*�
	 � " � � � � �	� ��� 	 	 � � � � � �*� 	 � " � � � � � �	� � � � � � 	 	 	
� � � � 	 � � ' � � � � � �*� 	 � " � � � � �	� � � 	 	 � � � � � �*� 	 � " � � ' � � �	� � � ' � � 	 	 	
� ��� � 	 	 � � � � � ��� 	 � � �� � �*� 	 � � " �

� � ���
�	� � � � � � � � 	��	� 	 � �� � � � ��� 	 ��� 	 	 �
� ����
� �

Since
� � � 	 and �� � � 	 are the uncontrollable variables, the term� � � � � � � �� � � � � " �

� �� ���
�	� � � � � ��� 	 � �� � � ��� 	 	 � does not depend on the control decision

� � � 	 . As a result, we can take it out of the minimization terms

� �������	� � � � � �	� 	 � �� � � �	� 	 	
��� 	 � � � � � � � � � ���

� � � � � � � 	 	 � � � � � � � � �*� 	 � " � � � � �	� � � 	 	 � � � � � �*� 	 � " � � � � � �	� � � � � � 	 	 	
� � � � 	 � � ' � � � � � ��� 	 � " � � � � �	� ��� 	 	 � � � � � �*� 	 � " � � ' � � �	� � � ' � � 	 	 	

���
�

� ��� � 	 	 � � � � � �*� 	 ��� �� � �*� 	 � � " �
� �����
��� � � � � � ��� 	 ��� 	 � �� � � � � � 	��	� 	 	 �

165

Similar to the above derivation, we can get the policy
� � � 	��� from

� � � 	��� � �� � � 	 	
� �
 ��� 	 � � � � � � � � � ������

�
� � � � � � 	 	 � � � � � � � � �*� 	 � " � � � � �	� ��� 	 	 � � � � � �*� 	 � " � � � � � �	� � � � � � 	 	 	
� � � � 	 � � ' � � � � � �*� 	 � " � � � � �	� � � 	 	 � � � � � �*� 	 � " � � ' � � �	� � � ' � � 	 	 	
� ��� � 	 	 � � � � � ��� 	 � � �� � �*� 	 � � " �

� �� ���
�	� � � � � � � � 	��	� 	 � �� � � � ��� 	 ��� 	 	 �
� ����
� �

Again, we could see that the last term does not depend on � � � 	 . Hence,

� � � 	��� � �� � � 	 	
� �
 ��� 	 � � � � � � � � � ���

� � � � � � � 	 	 � � � � � � � � �*� 	 � " � � � � �	� ��� 	 	 � � � � � �*� 	 � " � � � � � �	� � � � � � 	 	 	
� � � � 	 � � ' � � � � � �*� 	 � " � � � � �	� � � 	 	 � � � � � �*� 	 � " � � ' � � �	� � � ' � � 	 	 	

� �
� �

Or,
� � � 	��� � �� � � 	 	
���
 ���
	�� � � � � � � � � � � � ���!���� � �

�� � � 	 � � � � 	 	 � �

This is clearly an minimization problem that depends only on the current state

variable
�� � � 	 .

QED.

Proof Lemma 7.1.2

Let
� �#� 	 be a continuous-time version of

� � � 	 , i.e.,
� � � 	 � � � � � 	 , where

�
is the

length of our time-step. From Section 2.2, this
� ��� 	 is the continuous-time Markov

chain. By letting � � ��� 	 � ��� � �#� 	
� � �#� 	 � � 	
, we can derive a differential equation

satisfied by � � �#� 	 .

166

To begin, for a given
� ��� 	 ,

� �#� � � 	 �

������ �����
� �#� 	 ��� � 	 � � 	
 � � � � 	 ��	��� 	 � � � � � 	
� �#� 	 � � � 	 � � 	
 � � � � 	 ��	��� � ��� 	 � � � � � � 	
� �#� 	 � 	 � � 	
 � � � � 	 ��	��� � � � 	 � � � ��� 	 	 � � � � � 	

Their expectations yields��� � �#� � � 	 � � �#� 	 	 � � �#� 	 � � 	 � � � ��� 	 	 � � � � � 	 �

Taking expectations once again (with respected to
� ���) yields

� � ��� � � 	 � � � ��� 	 � � 	 � � � � ��� 	 	 � � � � � 	 �

or,
� � �#� � � 	 � � � ��� 	� � 	 � � � � �#� 	 � � � � 	� �

Letting
� 	 � gives

� �
� ��� 	 � 	 � � � � �#� 	 �

We can solve this differential equation and obtain,

� � �#� 	 � 	� ��� � � � � �

Since � � �#� 	 �
�
 ��� � �

and
� � � �

�
 , we have that

� � ��� 	 � 	� � � � � 	� � � � � �

Recall that
� � � 	 � � � � � 	 . Hence,

� � � � � � � � 	
� � � � 	 	 �
�
 ��� � � � 	 � �

 � � � � � � �

QED.

167

Proof Lemma 7.1.3

Let define � � � 	 be an amount of video traffic, where � � � 	 ��$� � � � � 	 and � is the

link capacity. Recall that
� � � 	 is the service rate from video traffic, i.e., the available

bandwidth after we subtract the video traffic utilization.2 Like the proof of Lemma

5.1.1, we also let � ��� 	 be a scaled continous-time version of � � � 	 , i.e.,

� � � 	 � � ��� � � � 	 , where
�

is the length of our time-step. Recall from Section 2.1, this

� ��� 	 is a continuous-time Markov chain with a quantization step rate of
�

bps. Letting

������ 	 � ��� � ��� 	 � � �#� 	 � � 	
, we will derive a differential equation satisfied by � ���� 	 . To

begin, note that, given � ��� 	 :
� ��� � � 	 �

������ ����� � ��� 	 � � � 	����
	
 ��� � � 	 � 	��� � � � � ��� 	 	 � � � � � � 	
� ��� 	 � ��� 	����
	
 ��� � � 	 � 	��� � ��� 	 � � � � � � 	
� ��� 	 � 	����
	
 ��� � � 	 � 	��� � � � � � � � � � � 	 � ��� 	 	 � � � � � 	

Their expectations yields� � � ��� � � 	
� � �#� 	 	 � � �#� 	 � � � � � ��� 	 	 � � � � ��� 	 � � � � � � 	 �

Taking expectations once again (with respected to � �#� 	 yields

��� ��� � � 	 � ������ 	 � � � � � � � � � 	 � �#� 	 � � � � � 	 �

or,
������ � � 	 � ������ 	� � � � � � � � � 	 � �#� 	 � � � � 	� �

Letting
� 	 � gives

� �
� ��� 	 � � � � � � � � 	 ��� ��� 	 �

2Instead of working directly on
� - � 2

, we define �
- � 2

to be the complementary part of
� - � 2

. Since v(k)

comes from the original video model that we describe in Section 2.1, it is easier to work on compared to
� - � 2

.

168

We can solve this differential equation and get,

��� ��� 	 � � �
� � � ��� � � � � � � � � �

Since ������ 	 � � ��
� � ��� � �

,
� � � � � ��

� � , we obtain that

������ 	 � � �
� � � ��� � � � �

� � ��� � � � � � � � � �

Recall that � � � 	 � � ��� � � � 	 . Hence,

���
� � � � � � 	 � � � � 	 	 � � � � ��

� � � � � � � 	 � � � � ��
� � � � � � � � � � � � � �

Also
� � � 	�� � � � � � 	 . Hence,

� � � � � � � � � � 	 � � � � � � 	 	 � � � � ��
� � � � � � � � � 	 � � � � ��

� � � � � � � � � � � � � �

Then,� � � � � � � � 	
� � � � 	 	 � � � � � � ��
� � � � � � � � � 	 � � � � ��

� ��� � � � � � � � � � �
� � � � � � ��

� � ��� � � � 	 � � � � � � � ��
� � 	 � � � � � � � � � � � �

QED.

7.2 Simulated Lookahead Approach

As we mentioned in Section 5.2, the limited lookahead is a well-known technique in

the dynamic programming to approximate an optimal solution. We can briefly review

the limited lookahead as follows: The optimal action � � in our duplication problem can

be found using Equation (7.4),

� � ���
 ���
	�� � � � � " � � ���� � � � � 	 � � � 	 � � � � � � 	 � � (7.4)

169

where � is a generalized state variable and � is a control action. � � is a generalized state

variable that represents the next state after applying the action � to the current state � .
We use this generalized state variable � instead of the real state variable

�� � � 	 to draw a

reader’s attention to the algorithm and the explanation. With these generalized

variables, our stage cost will be
� ���� � � � � 	 . 3

In many cases, � � ����	 is difficult to obtain. The limited lookahead is introduced to

ease that difficulty. The limited lookahead uses some approximated function
�
� � � 	 to

approximate the optimal value function, � � ����	 in its algorithm. So we get the limited

lookahead policy, � � , as shown in Equation (7.5). Given a good approximation of the

optimal value function, the Limited lookahead can achieve a nearly optimal solution

[2].

� � ���
 ���
	�� � � � � " � � � �� � � � � 	 � � �
	 �
�
� ��� � 	 � � (7.5)

We will use � �����
��� ��� � 	 developed in Section 7.1 as our approximated value

function
�
� ��� � 	 . As we discussed earlier, the NoTCP policy could provide a good

approximation to optimal policy. Moreover, we could get a closed-form solution of its

value function. Hence, the value function � � ���
�	� ��� � 	 seem to be a good choice as our

approximated value function.

As we already discussed in Section 5.2, the simulated lookahead is introduced to

3Recall that The stage cost
& - � 0 � 0�� (2 in our MDP problem is��������

�
� 	 � � � � - � 2 � 	 � � � ��� � �� � � � � � � � �) ������� � � ����� � � � � 	 � � - � � � � � 2 � � - � ��� ��� � � 2 � �
� � - � 2 	 �) ���
	 � � ��� ��� 	 � � �� � � ��� � � � �) ���
	 � � ��� ��� 	 � � � 	 � � - � � � � � 2 � �

�
- � � � ��� � � � 2 � �

��� � 	 � - � 2 	 � � � - � � � � � � � � 2 � � � � - � � � ��� � � � 2 � � - � � � � � 2 � � �
������ ����� 	 � - � 2 	 � � � � � - � � � 2 ������ ����� � 	 � - � 2 	 � � � � � � - � ��� 2 	 � ��� � � � - � ��� 2

�
"
/

170

cope with state explosion problem. It will use a simulation to approximate the

expectation
� � � " � � 	 in Equation (7.5). Note that the direct calculation of that

expectation uses
� � � � � �� � 	 (the transition probability of the next state � � given the

current state � and the action �), which we have to explicitly calculate
� � � � � �� � 	 for

every � � in the state space. If the state space is large, the calculation can be tedious.

Hence, we will use the simulation to approximate the expectation
� � � " � � 	 .

We have two simulation approaches. The first approach is Monte-Carlo lookahead

and the second approach is Iterative lookahead.

7.2.1 Monte-Carlo Lookahead

In this approach, we use the Monte-Carlo simulation to estimate the expectation in

Equation (7.5). In our Monte-Carlo simulation, we will simulate totally � � of the next

state � �� , � � � � � � � � � ��� � , given the current state � . Then we will get the Monte-Carlo

lookahead policy � � � from Equation (7.6).

��� � � �
 ���
	�� �
�
��� �

� ��
��� �

� � � � � � ��� � 	 � � � 	 � � �� ������� ��� �� 	�� (7.6)

As mentioned before, the Monte-Carlo simulation provides a good estimate if the

number of samples � � is large. (��� � 	 �
). We show the algorithm of our

Monte-Carlo lookahead approach in Algorithm 6.

7.2.2 Iterative Lookahead

As already discuss in Section 5.2, the Monte-Carlo simulation provides a good estimate

only if we can have a large number of samples. In other words, we need to simulate the

samples many times to obtain a nice controller. However, we cannot simulate that

171

Monte(�)
� � � � � 	 � � , � � � � � � �
for

� � � � � � � � ���

for � � � � � � �
- simulate � �� from � and �
-
� � � � � 	 � � ���� � 	 � � � � �� � � � �� 	 � � � 	 � � �����
��� ��� �� 	 �

��� � � �
 ���
	�� � �
� � � � �
� �

Algorithm 6: Simulated lookahead algorithm using Monte-Carlo simulation.

many samples in our fast timescale control. Time and processors capability limit a

number of samples that we can generate. Hence, we might not achieve a good

expectation estimate using Monte-Carlo lookahead approach.

With the same objective in Section 5.2, we introduced the Iterative lookahead

approach to cope with the above problem of a small sample amount. Recall that we

want to estimate
� � � " � � � � � � ��� � 	 � � � 	 � ��������	� ��� � 	 � . In this approach, we try to use a

good starting estimate (estimation point). From that starting point, we keep update with

simulation samples to get better estimate. Even with small number of simulation

samples, we could obtain better policy than Monte-Carlo approach if that starting point

is good enough. In other words, we use a good starting point instead of any random

point to reduce convergence time. With a short convergence time, only a small number

of samples is needed in order to achieve a good estimate. The same idea appears in

many optimization technique. For example, a good starting point in the Newton’s

method and a good initial value function in the value iteration method in the dynamic

programming technique.

172

We use
�� � ����� � � � � 	 as our good starting point. In Q-learning terminology, this

�� � ����� � � � � 	 is a Q-function such that we could get � �������	� ����	 from, i.e.,

� �����
��� ����	 ���
	�� �
�� � ���!� ���� � 	 �
and vice versa, we can get
�� � ����� � � � � 	 from � �������	� ����	 ,

�� � ���!� ���� � 	 � � ���!���� � � � � � 	 � � � 	 � � �����
��� ��� � 	 �

where � � is obtained from applying � to current state variable � .
The algorithm of this Iterative lookahead approach is shown in Algorithm 7.

Iterative(�)

 ���� � 	��
�� � ���!� ���� � 	 , � � � � � � �
for

� � � � � � � � ���

for � � � � � � �
- simulate � �� from � and �
-
 ���� � 	��
 ���� � 	 � � �

� � � �� � � � �� 	 � � �
	 � � �����
��� � � �� 	 �
 ���� � 	 �

� � � � �
 ���
	�� �
 � � � � 	

Note that � is a step-size in updating � � � � � �
Algorithm 7: Simulated lookahead algorithm using Iterative simulation.

7.3 Policy Evaluation and Comparison

So far, we have proposed a number of sub-optimal policies. In this section, we will

evaluate and compare the performance of the proposed policies. We will first evaluate

them using TD(0), which is a learning method to estimate the value function of

173

policies. Then we will use a packet-level simulation to strengthen the evaluation

results.

We will compare five different duplication controllers, which are the Nodup,

Alldup, NoTCP, MONTE and IT controllers. Like the controllers in the migration

problem, these controllers are the fast timescale controllers that acquire state

information and make a migration decision every 50ms. These five controllers

implement five policies, in which three of them are the policies designed earlier in this

chapter. The first two policies are extreme policies that we want to compare our three

designed policies with. The two controllers that implement the two extreme policies

are as follows: The Nodup controller implements one extreme duplication policy that

we do not send any duplicated packets at all. The Alldup controller implements another

extreme duplication policy that we always send duplicated packets to the backup LSP.

Unlike the first two controllers, the next three controllers implement our

compromise policy that send the duplicated packet intelligently. These policies have a

frequency of duplication between the least frequent policy Nodup, and the most

frequent policy Alldup. The NoTCP controller implements the NoTCP policy, the

MONTE controller implements the Monte-Carlo lookahead policy, and the IT

controller implements the Iterative lookahead policy. To get more detail on these

policies, we will refer to Section 7.1 for NoTCP policy and Section 7.2 for

Monte-Carlo Lookahead policy and Iterative Lookahead policy. We can summarize our

controller in Table 7.1

7.3.1 Network Topology and Common Parameters

We evaluate each policy using a simple network topology as already shown in Figure

6.1. In our network, we provision one main LSP and one backup LSP for voice traffic.

174

Controller Policy

Nodup do not duplicate

Alldup Always duplicate

NoTCP NoTCP policy

MONTE Monte-Carlo Lookahead Policy

IT Iterative Lookahead Policy

Table 7.1: Controllers and their associated policies.

We choose � � �$� and � ' � �
, i.e., we setup the propagation delay from the ingress

LSR to the bottleneck link in the main LSP and the backup LSP to be 2 timeslots

(100ms) and 1 timeslot (50ms), respectively. Moreover, we also choose � � � � ' ��� ,

i.e., we assume that there is no information delay from bottleneck links to ingress LSR.

The voice traffic arrival is governed by Poisson distribution with mean 	 . The voice

call duration is exponentially distributed with the mean of
� ���

, which we fixed at
�

minutes. With this voice traffic setup, we get an average voice traffic rate at

	 � � ��� � � � � ��	 Mbps, given a ��	 Kbps constant bit rate voice call, as discussed in

Section 2.2. The bottleneck links in both LSPs have statistically identical video traffic.

Both video traffic streams have the same statistical parameters
� ��� � � � and

� ��� � � � .
All links including the bottleneck links have capacity of 90Mbps, which can fit

(90Mbps/64Kbps)=1406 voice calls. Moreover, the TCP traffic also shares the

bottleneck link with video traffic and duplicated voice traffic in the backup LSP.

7.3.2 Using TD(0)

As we discussed in Section 5.3.2, TD(0) is a version of Temporal-Difference learning.

We choose this TD(0) to evaluate our designed sub-optimal policy because it has a fast

175

convergence from the fact that it updates estimates based in part on other learned

estimates (bootstrap). Moreover, it learns directly from raw experience without a model

of the environment’s dynamics, which in turn eases the estimation of the value function.

We will start our TD(0) evaluation with a discussion about the state aggregation.

This state aggregation helps us cope with the large state space in our problem. Then,

we will present an algorithm for our TD(0) with the state aggregation. Finally, we will

show the result of the comparison.

State Aggregation

As described in Section 5.3.2, we need state aggregation to make our problem

manageable. We will start discussing how to select proper state variables to be

aggregated. Then we will specify an actual number of state aggregation in our TD(0)

evaluation.

We will aggregate only voice component in our state space.4 In general, the state

space of voice component (
� � � �) is large, especially when we compare it with the

state space of video component (���). Recall that the voice component
�

represents a

number of voice calls in the main LSP. It follows the fact that each voice call consumes

relatively small bandwidth. Hence, a large number of voice calls can be filled in one

LSP before reaching its capacity. In other words, � , which represents the total

maximum number of voice calls in LSP, is large. So
� � � � 	 , which is the state space of

4Recall that the state space,
�

, is composed of three components. First is video traffic state,
� and

�
� . �

� 0 � � � takes value from
���

, state space of video component. Second component is voice call traffic

state, � . � take value from � � 0�� � , state space of voice component, where
�

is link capacity in unit of

voice calls. The last component is control history variable � � � ��� � 0 � � � ��� � 0 � � � ��� � � . � � � ��� � 0 � � � ��� � 0 � � � ��� � �
takes value from � � 0 ��� � . So our complete state space

� � ���	� � � 0�� � � � � 0 ��� � .

176

�
, becomes large as well.

On the other hand, we would have a small state space of video component (� �). As

discussed earlier, we can apply a state reduction technique, which is available for video

traffic, e.g. the technique in [6] in the case that the state space is large. Hence, we will

always assume that ��� is small and do not need state aggregation.

For simplicity, we will evenly aggregate the voice component of our state space. Let

define
��

be an aggregated superstate variable. In this experiment, we have � � � 	!��� .

Hence, we will have 10 superstate, in which each superstates has around 140 states.

Algorithm

Algorithm 8 shows our off-line algorithm of our TD(0). To simplify our notation, we

will use � instead of
��

in this algorithm. The function � � � � � � � � � ����	 represents the

policies, in which we want to evaluate their performance including the Alldup, Nodup,

NoTCP, MONTE and IT policies.

Results and Discussion

In the first experiment, we compare the performance of different policies when

changing discount factor in the cost function but keeping the network setup fixed.

Figure 7.1 shows a mean of our value function from different duplication policies.

Figure 7.2, which is a zoomed version of Figure 7.1, provides a better view to the gain

for using our intelligent controllers. In the experiment, we fixed the average video

traffic rate at
� � Mbps and the average voice traffic rate at 	 �

� � Mbps. We also fixed the

number of steps (�) parameter in the video traffic at
� � , i.e., � � � � . We chose other

parameters in our cost function as follows: � � � � � � ��� ' � � � � � � � ��� 	�� ��� �

�
and

� ��� 	�� ' � �
� � . The left graph in the Figure 7.2 and Figure 7.1 represents the

177

TD(0)-dup[]

Initialize � � � 	

Repeat [Outer Loop]

for every value of
��

� � uniform random on range of
��

Repeat [Inner Loop]
�
within episode �

� � ��� 	 � � ��	 � ����	
� � � simulate next state from � and ��� � � locate superstate from � �
� � � �

� ��� � � �
 ���
 � � �� � � � �
� � �� 	 � � � ���	 � � � � � � � �
	 � � �� � 	 � � � ���	 �

� ���
 Update � � � 	

�� � �� �
� � � �

� �
��
 replace next state with current state

*Note that �� is current superstate � is current real state � is current action

���� is next superstate ��� is next real state � is updating step-size
� � � ��� � ��� � � � is a sub-optimal policy that we want to evaluate

Algorithm 8: The TD(0) algorithm with the state aggregation for the duplication prob-

lem.

178

1 2
0

200

400

600

800

1000

1200

1400

1600

1800

experimental set

m
ea

n
of

 v
al

ue
 fu

nc
tio

n

No−dup
All−dup
Notcp
Monte
IT

Figure 7.1: Using TD(0) to compare the means of the value functions.

performance comparison with the discount factor � � 	 ��� �

�
. On the other hand, the left

graph in both figures represents the performance comparison with the discount factor

� � 	 ��� � 	 .
We can see that the Alldup policy gives the worst performance. The reason comes

from the fact that we let � � � �
, i.e. we consider drops of voice traffic (in main LSP)

less important than drops of the video traffic in backup LSP. As we already mentioned

before, we setup the � � parameter this way because we want to prevent a large number

of video packet drops in the backup LSP. Without duplication mechanism, there is no

significant drops in this video traffic.

We also see that the IT controller provides the best performance in both discount

factor parameters.

The second experiment is an experiment designed to observe the performance of

179

experimental set

m
ea

n
of

 v
al

ue
 fu

nc
tio

n

1 2
160

170

180

190

200

210
No−dup
All−dup
Notcp
Monte
IT

(a) zoomed at set1

experimental set

m
ea

n
of

 v
al

ue
 fu

nc
tio

n

1 2
520

540

560

580

600

620

No−dup
All−dup
Notcp
Monte
IT

(b) zoomed at set2

Figure 7.2: Using TD(0) to compare the means of the value functions.

our controllers under a various bursty levels of video traffic. As we discussed eariler,

we can vary the burstiness of video traffic by changing the number of steps (�).

Furthermore, we consider the video traffic to be bursty if the number of steps (�) is

small.

Figure 7.3 shows the result of this experiment. In the experiment, We varied the

number of steps (�) parameter in the video traffic from
� � to �*� . We fixed the average

video traffic rate at
� � Mbps and the average voice traffic rate at 	 �

� � Mbps, which

totally corresponds to the ��	 � of bottleneck link bandwidth. In addition, we chose all

parameters in our cost function as follows;

� � ��� � ����� ' ��� � � � ��� ��� 	�� ��� �

� ��� ��� 	�� ' � �
� � and the discount factor (� �
) � � �

�
.

The result shows that all intelligent duplication policies (the NoTCP, MONTE and

IT policies) always outperform the Nodup policy, which represents a case without any

duplication mechanism. Moreover, they give greater improvement over Nodup policy

with the increasing level of bursiness. Note that the duplication mechanism will be

180

10 12 14 16 18 20
100

200

300

400

500

600

700

Number of steps in Video traffic

m
ea

n
of

 v
al

ue
 fu

nc
tio

n

No−dup
All−dup
Notcp
Monte
IT

Most bursty Least Bursty

(a) unzoomed version

10 12 14 16 18 20
180

185

190

195

200

205

210

Number of steps in Video traffic

m
ea

n
of

 v
al

ue
 fu

nc
tio

n

No−dup
All−dup
Notcp
Monte
IT

Most bursty Least Bursty

(b) zoomed version

Figure 7.3: Relationship of the mean of the value function and the burstiness of the

video traffic using TD(0).

most helpful in the situation when video amount is high in the main LSP while it is low

in the backup LSP. The bursty condition promotes a chance of getting that situation.

Hence, the duplication mechanism will have a higher chance to alleviate voice drops

without significant video drops in backup LSP. As a result, our duplication mechanism

provide a greater improvement under bursty condition. This result confirms that

duplication mechanism is helpful for QoS improvement, especially under bursty

condition.

In addition, the figure shows that the IT policy always performs best. For example,

the IT policy gives
� � �

� � improvement over the Nodup policy in the most bursty

network, while the NoTCP policy and the MONTE policy only give � � ��� and
� � � ���

improvement. Follow our discussion in Section7.2, both the MONTE and IT policies

are the improvement of the NoTCP policy. Hence, they provide better results than the

181

10 15 20 25 30 35 40 45
400

600

800

1000

1200

1400

1600

1800

Average Bandwidth of Voice traffic (Mbps)

m
ea

n
of

 v
al

ue
 fu

nc
tio

n

No−dup
All−dup
Notcp
Monte
IT

(a) unzoomed version

15 20 25 30 35 40 45

460

480

500

520

540

560

580

600

620

Average Bandwidth of Voice traffic (Mbps)

m
ea

n
of

 v
al

ue
 fu

nc
tio

n

No−dup
All−dup
Notcp
Monte
IT

(b) zoomed version

Figure 7.4: Relationship of the mean of value function and the voice traffic amount

using TD(0).

NoTCP policy. Compared to the MONTE policy, the IT policy gives a better result

because of its good starting point as we already discussed in Section 7.2.2. This result

strengthens our belief that our proposed Iterative lookahead Policy is a good solution

for this fast timescale problem.

The third experiment is an experiment designed to study the performance of our

controllers with different amounts of voice traffic. Hence, we will vary only an average

voice traffic rate, while we keep others fixed. As you know, we can vary the voice rate

by varying the arrival rate of the voice call.

Figure 7.4 shows the result of this experiment. In this experiment, we fixed the

average video traffic rate at
� � Mbps with the number of steps (� � � �). We varied

average voice traffic rate from
� � Mbps to 	 	 Mbps, which corresponds to varying total

traffic in the bottleneck link from � � to � � percents of the link capacity. Similar to the

182

second experiment, we chose all parameters in our cost function as follows:

� � ��� � ����� ' ��� � � � ��� ��� 	�� ��� �

� ��� ��� 	�� ' � �
� � and the discount factor (� �
) � � � 	 .5

Again, the result shows that all intelligent duplication policies (the NoTCP,

MONTE and IT policies) always give a superior performance compared to the Nodup

policy. Moreover, they give slightly greater improvement over the Nodup policy when

there is more voice traffic, i.e., there is a slightly larger gain when the average voice

traffic rate is larger. As discussed earlier, the duplication mechanism will be most

helpful in the situation when the video amount is high in the main LSP while it is low

in the backup LSP. If the controller is good, it can identify the occurrence of this

situation correctly and, in advance, duplicate the traffic to compensate the voice drops

in the main LSP. When the average voice load increases, the successful compensation

of the voice drops increases. Note that the compensation amount indicates the gain of

the duplication control over the case without it (the case with the NoDup controller).

Hence, the gain of the duplication control increases when the average voice load

increases. As a result, our intelligent duplication policies give a increasing gain over

Nodup policy when there is more voice traffic. This result further confirms our

conclusion in the second experiment that duplication mechanism is helpful for QoS

improvement under various network condition.

Among these three intelligent duplication policies, we again see that the IT policy

always performs best. For example, the IT policy gives a
� � � ��� improvement over the

Nodup policy under the heaviest traffic, while the NoTCP policy and the MONTE

policy only give
� � � � � and

���
� ��� improvement, respectively.6 Along with the

5Note that the experiment result of % ��� � � /�� and % ��� � � / � are similar. Hence, we decided to show

the case of % ��� � � /�� in the second experiment and the case of % ��� � � / � in the third experiment. With

this decision, the reader could get a benefit of seeing a wide range of experiment results.

6Notice that the relative gain in this experiment, which have % � � � � / � , are different from the

183

conclusion in the second experiment, this result further strengthens our belief that our

proposed Iterative lookahead policy is a good solution for this fast timescale problem.

7.3.3 Using Packet-Level Simulation

The packet-level simulation can help us understand the behavior of our controller in the

real network. Note that the packet-level simulation allows us to simulate the interaction

of packets and routers, which implemented our controller. Hence, it could give a

meaningful evaluation, which is close to the evaluation in an actual network.

As we discussed in Section 5.3.3, we compute all policies online during the

simulation. The computation is done in a flow-level (we designed our policy based on

the arrival and departure of flows),as opposed to a packet-level of our simulation itself.

We will monitor the amount of packets and convert the number into a units of flows.

The controller will use that number of flows to obtain the amount of migration based

on their underline policy. The controller will calculate the amount of migration online

upon the received information.

Simulator implementation

We used ns-2 simulator[39] for our simulations. In addition to our modification done in

Section 3.2 and Section 5.3.3, we added some new features to meet our control action

in this duplication problem. We added an ability to duplicate the packets, which allows

relative gain in the second experiment, which have % ��� � � /�� . For example, the IT policy gives

a 12.2% improvement in this experiment while give a 10.7% improvement in the second experi-

ment. The main reason comes from the fact that the � � - �� - � 2#2 is calculated from � � - �� - � 2�2 �
 �������� � ��� �

� # � - % � � 2 � 	 � & (- �� - � 2 0 � - �� - � 2�2#2���� . Hence � � - � - � 2#2 will change when % � � changes and

so does the relative gain.

184

us to send the same information to the same destination with different paths. Moreover,

we added a new packet receiver to be able to keep track the packet loss. This receiver

can buffer packets up to 100 packets. Hence, it can cope with the out-of-order packets,

which normally happen when the duplicated packets is sent on the LSPs with different

propagation delay.

Simulation Setup and Parameters

We use a network topology and some common parameters as we stated in Section

7.3.1. With ns-2, we use a Reno version of TCP, which is already in the ns-2 package.

In our simulation, we setup short-lived TCP traffic flows in the backup LSP. Each TCP

flow sends small files with a uniformly distributed size of 20-40 Kbytes. Upon the end

of each transmission, the TCP source will setup a new connection and begin to transmit

a new file. Recall that the new connection setup will use a initial value for ITO. This

small file transmission and the re-connection of flows capture a characteristic of

short-lived TCP. These TCP flows has four distinct RTT value, 10ms, 30ms, 50ms and

70ms. There are 25 TCP flows that have the same RTT value each. Therefore, there are

totally 100 TCP flows. As discussed in Section 2.3, the different value of RTT

represents different locations of end-users, while a number of flows with same RTT

value indicate the fact that each location can have multiple users.

Results and Discussion

We can get the performance measurements from monitoring the voice drops, the video

drops in backup LSP, the TCP goodput and the total number of second ITO in TCP

traffic.

Figure 7.5 shows the example how our control affects each of performance

185

measurements. In this experiment, we fixed the average video traffic rate at
� � � 	 Mbps

and the average voice traffic rate at 	 � Mbps. We also fixed the number of steps (�)

parameter in video traffic at
� � , i.e., � � � � . Moreover, we chose the parameters in

our cost function as follow; � � � � � � ��� ' � � � � � ��� ��� 	�� ��� �

� � � ��� 	�� ' � �
� � and the

discount factor (� �) � � �

�
.

As we mention before, the study in [17] shows that the losses greater than 2% affect

end-to-end quality of VoIP calls. Hence, we assumed that the quality of voice and

video traffic is not good if their drops are greater than 2%. In the figure, the voice

traffic has drops around 4% without the duplication mechanism (or the Nodup policy).

At the same time, there is negligible video traffic drops in the backup LSP (, which we

refer in the figure as “VDO#2 Drops”). If we naively duplicate voice packets all the

time, we would have around 1.48% voice drops while we have unbearable 8.83% video

drops in the backup LSP with the Alldup policy. However, we could intelligently

duplicate voice packets as needed and get both the voice drops and video drops under

2% with either the MONTE policy or the IT policy. This example shows that we could

use the duplication mechanism, which is a very simple control action, to improve

quality of the voice traffic up to the acceptable quality level without causing the video

traffic to be in the unacceptable quality level.

Moreover, the number of second ITO with the Alldup controller is significantly

high compared to that with the other controllers. This indicates that we could get a long

waiting time for internet users when we naively duplicate all the time. Recall that the

approximation from the CEC control itself and the ignorance of the TCP congestion

control cost drive the NoTCP policy away from the optimal solution. We can see that

the MONTE and IT policies help improve the sub-optimality of the NoTCP policy. As

shown the figure, the MONTE and IT policies can improve the NoTCP by gaining a

186

P
er

ce
nt

ag
e

1 2 3
0

2

4

6

8

10
Nodup
Alldup
Notcp
Monte
IT

Voice Drops VDO#2 Drops 2nd ITO

Figure 7.5: Using NS to compare the performance measurements.

significant reduction of voice drops with a small increment of the second ITO as its

trade-off. Ones might expect a lower number of the second ITO with both the MONT

and IT controllers compared to that with the NoTCP controller. However, the mistake

of the NoTCP in voice drops is more important than its mistake in TCP control cost.

Like the TD(0) experiment setup in Section 7.3.2, we also compare our controllers’

performance in various network environments. The first experiment is the experiment

designed to observe the performance of our controllers under different amounts of

voice traffic. The second experiment is the experiment designed to study the

performance of our controllers over changes in the burstiness level of video traffic.

Figure 7.6 shows results in the first experiment. We varied the average voice traffic

rate from � � Mbps to � � �

�
Mbps, which corresponds to the varing of the total traffic in

the bottleneck link from 70 to 100 percent of the link capacity. We also kept the video

187

traffic fixed at
� � � 	 Mbps with the number of steps � � � � . Again, We chose all

parameters in our cost function as follow;

� � ��� � ����� ' ��� � � � ��� ��� 	�� ��� �

� ��� ��� 	�� ' � �
� � and the discount factor (� �) � � �

�
.

Since this experiment is the performance comparison of our controller with

different amount of voice traffic, it corresponds to the third experiment with TD(0) in

Section 7.3.2. Like the experiment with TD(0), we also get the same conclusion that all

intelligent duplication policies (the NoTCP, MONTE and IT policies) give a greater

improvement over the Nodup policy when there is more voice traffic, i.e., there is a

larger gain when average voice traffic rate is larger. We could see this conclusion from

all graphs in Figure 7.6 as follows: As shown in Figure 7.6(a), the IT policy and the

MONTE policy give an increasing improvement of voice drops over the Nodup policy.

For example, they give only a � �

� � % improvement of voice drops over the Nodup

policy at a � � Mbps average voice traffic, while they give as high as a � � � %

improvement of voice drops over the Nodup policy at � � �

�
Mbps average voice traffic.

On the other hand, our intelligent controller and Nodup controller give approximately

the same performance using other performance measurements including video drops,

TCP goodput and number of second ITO, shown in Figure 7.6(b),7.6(c) and 7.6(d),

respectively. Recall that we consider the voice drops and the video drops more

important than the TCP performance. Hence, we can conclude that all intelligent

duplication policies (the NoTCP, MONTE and IT policies) give a greater improvement

over the Nodup policy when there is more voice traffic. Again, this result further

strengthen our belief that duplication mechanism is helpful to improve QoS, especially

under high voice traffic load.

Again, we assume that the quality of voice and video traffic is not good if their

drops are greater than 2%. We can quantify another advantage of duplication

188

mechanism from Figure 7.6(a). Without the duplication mechanism (the Nodup

policy), we can accept the voice traffic up to
� � Mbps before its quality is unacceptable.

On the other hand, we can accept up to 	
� Mbps with the duplication mechanism using

the IT policy. Hence, the existing network can accept � � � more voice traffic. In other

words, we have an ability to increase the high priority traffic using the duplication

mechanism. This ability could lead to a profit increase of the network provider.

Figure 7.7 shows the results of the second experiment. As we mentioned before,

this experiment aim to compare the performance of our controllers over changes in the

burstiness level of video traffic. We varied the number of steps (�) from
� � to 	!� . In

addition, we fixed the average video traffic rate at
� � � 	 Mbps and the average voice

traffic rate at 	 � �

�
Mbps, which corresponds to 90%load.7 Moreover, we fixed all

parameters in our cost function as follows:

� � ��� � ����� ' ��� � � � ��� ��� 	�� ��� �

� ��� ��� 	�� ' � �
� � and the discount factor (� �) � � �

�
.

We can see the increasing gain of our intelligent controllers (the NoTCP, MONTE

and IT controllers) over the Nodup controller (case without any duplication) in all

Figure 7.7(a), 7.7(b),7.7(c) and 7.7(d). Recall that our cost function is a linear

combination of the voice drops, the video drops in the backup LSP, the TCP goodput

and the second ITO cost. Hence, the increasing gain in all figures leads to the

increasing gain over the cost function. As a result, we can conclude that our intelligent

controllers (the NoTCP, MONTE and IT controllers) perform better than the Nodup

controller, especially in a bursty network. This conclusion complies with the

conclusion from the second TD(0) experiment in Section 7.3.2.

7The average traffic in the bottleneck link is 90% of link capacity.

189

25 30 35 40 45 50 55
0

1

2

3

4

5

6

7

Average Bandwidth of Voice traffic (Mbps)

V
oi

ce
 D

ro
ps

 (
P

er
ce

nt
)

No−dup
All−dup
NoTCP
MONTE
IT

(a) Voice Drops

25 30 35 40 45 50 55
0

2

4

6

8

10

12

14

Average Bandwidth of Voice traffic (Mbps)

V
id

eo
 D

ro
ps

 in
 b

ac
ku

p
LS

P
 (

P
er

ce
nt

)

No−dup
All−dup
NoTCP
MONTE
IT

(b) VDO Drops

25 30 35 40 45 50 55
0

10

20

30

40

50

60

Average Bandwidth of Voice traffic (Mbps)

G
oo

dp
ut

 o
f T

C
P

 tr
af

fic
 in

 b
ac

ku
p

LS
P

 (
M

bp
s)

No−dup
All−dup
NoTCP
MONTE
IT

(c) Goodput

25 30 35 40 45 50 55
0

5

10

15

20

25

30

35

40

Average Bandwidth of Voice traffic (Mbps)

P
er

ce
nt

ag
e

of
 c

on
ne

ct
io

n
se

tu
p

th
at

 g
o

to
 2

nd
 IT

O

No−dup
All−dup
NoTCP
MONTE
IT

(d) Second ITO

Figure 7.6: Relationship of the performance measurements and the voice traffic amount

using NS-2.

190

10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

Number of Steps in Video traffic

V
oi

ce
 D

ro
ps

 (
P

er
ce

nt
)

No−dup
All−dup
Notcp
Monte
IT

Least burstyMost bursty

(a) Voice Drops

10 15 20 25 30
0

1

2

3

4

5

6

7

Number of Steps in Video traffic

V
id

eo
 D

ro
ps

 in
 b

ac
ku

p
LS

P
 (

P
er

ce
nt

)

No−dup
All−dup
Notcp
Monte
IT

Least burstyMost bursty

(b) VDO Drops

10 15 20 25 30
0

10

20

30

40

50

Number of Steps in Video traffic

G
oo

dp
ut

 o
f T

C
P

 tr
af

fic
 in

 b
ac

ku
p

LS
P

 (
M

bp
s)

No−dup
All−dup
Notcp
Monte
IT

(c) Goodput

10 15 20 25 30
0

5

10

15

20

25

30

Number of Steps in Video traffic

P
er

ce
nt

ag
e

of
 c

on
ne

ct
io

n
se

tu
p

th
at

 g
o

to
 2

nd
 IT

O

No−dup
All−dup
Notcp
Monte
IT

Least burstyMost bursty

(d) Second ITO

Figure 7.7: Relationship of the performance measurements and the video traffic’s bursti-

ness using NS-2.

191

7.4 Conclusion

We introduced the fast timescale control traffic engineering, which based on the

duplication scheme. This duplication scheme exploited the unused backup path in

order to increase a quality of service of the high priority traffic. Upon the predicted

congestion in the main LSP, our duplication control would duplicate packets and send

them in the backup LSP, in addition to their normal transmission over the main LSP.

This duplicated packets served as redundancies to the packets in the main LSP. These

redundancies reduced a chance of getting information loss from packet drops and

hence increased the QoS of our high priority traffic. Moreover, we assumed that the

above duplication decision is made every fixed time slot from the controller, which

resides in the ingress LSR.

We designed three intelligent controllers, which are the NoTCP controller, the

MONTE controller and the IT controller.

The NoTCP controller implements the NoTCP policy, which is based on the Certainty

Equivalence Control (CEC). Moreover, we ignore the TCP congestion control

term, which relatively less important than other terms in the cost function. The

small ignorance of the relatively less important term and a practically proven CEC

could make this NoTCP policy performs well.

The MONTE controller implements the Monte-Carlo lookahead policy, which is based

on the limited lookahead algorithm. In the limited lookahead algorithm, we

choose a value function from NoTCP policy to approximate the optimal value

function. We also approximate the expectation in the algorithm using the Monte-

Carlo simulation.

The IT controller implements the Iterative lookahead policy, which is again based on

192

the limited lookahead algorithm. Like Monte-Carlo lookahead policy, we use a

value function of NoTCP policy as an approximated value function and use simu-

lation to get an expectation in Limited lookahead algorithm. However, this policy

is better designed for the fast timescale control, which has a small processing

power and time to calculate the simulation samples.

With TD(0) and the packet-level simulation, we compared the above three

controllers with two other extreme controllers, which are the Nodup controller and the

Alldup controller.

The Nodup controller stands for “No Duplication”. This controller will not duplicate

any packets. In other words, this controller presents the case that we do not have

duplication mechanism at all.

The Alldup controller will duplicate packets all the time. This controller presents that

case that we naively send duplicated packets all the times.

The above two controllers gave two extreme results. The Nodup controller, which does

not duplicate any packets, gave the highest information loss in the main LSP while it

gave the smallest drops in the backup LSP. On the other hand, the Alldup controller,

which duplicates all the time, gave the smallest information loss in the main LSP while

it gave the largest drops in the backup LSP.

Our empirical study exhibited the superior of our intelligent duplication controllers

(the NoTCP, MONTE, IT controllers) compared to the case without the duplication

mechanism (the Nodup controller), especially under the bursty network environment.

Moreover it also showed the greater improvement of our intelligent controllers over the

Nodup controller when the traffic amount is higher.

193

This empirical study also confirmed our belief that the duplication mechanism is

effective for the QoS improvement. We demonstrated the benefit of proactive control

using the traffic prediction. Nevertheless, this benefit relies on the precision of the

traffic model.

194

Chapter 8

Conclusion and Future Direction

8.1 Summary of the Dissertation

In this dissertation, we presented the design and evaluation of two fast timescale

controls to do traffic engineering. The first fast timescale control traffic engineering is

based on the migration mechanism. In the migration mechanism, we moved high

priority traffic around to preserve the QoS. We designed the migration control by

taking into account both the propagation delay of the packets and the information delay

to the controller. Moreover, the designed migration control also considered its

interaction with the TCP congestion control in the low priority traffic.

We evaluated our migration design using both Temporal-Difference (TD) learning

and packet-level simulation. The evaluation result displayed the superiority of the

designed controllers over the case without migration control, especially in the bursty

network environment. Moreover, they yielded a greater improvement over the case

without migration when the traffic amount is high but not overloaded.

The second fast timescale control traffic engineering is based on the duplication

control. We exploited the unused backup path, in which a provider normally set it up to

increase the network reliability. This backup path is normally unused even when there

195

is congestion in its working path. Upon the predicted congestion in the working path,

we would duplicate the packets and send them in both the working path and the backup

path. The duplicated packets increased the QoS of the traffic that they duplicated from.

However, the duplicated packets could degrade both the low priority and the high

priority traffic that was normally sent through the backup path. We designed the

duplication control, which determines the appropriate duplication period. Like the

migration work, we also took into account both the propagation delay of the packets

and the information delay.

We also evaluated the designed duplication control using both Temporal-Difference

(TD) learning and packet-level simulation. The designed duplication controllers

yielded their superiority over the case without duplication control, especially in the

bursty network environment. Additionally, they achieved a greater improvement over

the case without duplication when the amount traffic is high.

Overall, our empirical study showed a clear advantage of the fast timescale traffic

engineering. It also pointed out the advantage of having a traffic prediction, by reacting

in accordance to the prediction. However, this advantage greatly depends on the

accuracy of the traffic model.

8.2 Future Direction

We could extend the works from this dissertation as follows:

Extension of Migration Control

We can explore a distributed migration control with shared bottleneck links. The

migration problem in the dissertation can be extended in such a way that we allow each

196

bottleneck links to carry the traffic from the different ingress-egress node pairs. Then,

we could explore a distributed algorithm to allow the controllers (which are located in

the different ingress nodes) to make their separate migration decision. In this new

problem, we could face the following two technical issues.

The first issue is the available information issued for each controller. It is

unrealistic for all controllers to have the information about the traffic in every link. As

one possible solution, we could define a set of the reachable links, from which each

ingress can get information. For example, the controller could only have the

information about the traffic in the links that have a path passing through those links.

The second issue is the coordination issue among controllers that share the same

bottleneck link. With the independent decision made from each controller, there is a

need to coordinate two or more controllers that shares the same bottleneck links. We

can use an example to illustrate this issue. Suppose we have two ingress nodes that

have paths sharing the same bottleneck link. They could simultaneously receive the

information indicated that the bottleneck link is under-utilized. Without any

coordination, they might simultaneously migrate flows in order to exploit that

under-utilized link. As a result, that link could suddenly be over-utilized, which in turn

could lead to a serious QoS violation.

As one possible solution for this issue, we could identify a set of the controllers that

has a need to communicate to one another. More specifically, we could have a

constraint that the communication among controllers is required if those controllers

share the same bottleneck link. The communication between the two controllers can be

direct or can be indirect through the other controllers. Moreover, the communication

content could be only the controllers’ decision, or it could be all information about the

traffic in their ingress node.

197

Extension of Duplication Control

We can allow a shared backup path for two or more working paths. Many providers

assume that there is single link or node failure at a time. Hence, they setup two or more

working paths to have some part of their backup path shared. This setup certainly is not

desirable for our duplication controller in this dissertation because we assumed that

there is a dedicated backup path for each working path. In this new problem, we could

explore a distributed algorithm to allow the duplication controllers (which are located

in different ingress node) to make the independent decision. This extended duplication

problem can be faced with the similar technical issues as the extended migration

problem.

The first issue is also the available information issue for each controller. This is the

same technical issue as in the extended migration problem. Hence, we can use the

same possible solution by setting up a set of reachable links, from which each

controller can get information.

Again, the second issue is the coordination issue among controllers that share the

same bottleneck link. We will use another example to illustrate the need of this

coordination. Suppose we have two working paths and a part of their backup paths

share the same link. It is possible that both the working paths could simultaneously

have congestions. Without any coordination, the controllers, which are in the ingress of

both working paths, could independently duplicate their traffic. As a result, it could

lead to undesirable drops in the shared links. Because of the similarity with this

problem, we could use the same possible solution from the extended migration

problem. That is, we could define a set of the controllers that need to communicate to

one another.

198

Combination of Migration and Duplication Control

We can consider combining the migration control and duplication control into a

single optimization problem. We can explore the following two potential combinations.

The first combination considers the multiple working paths with their own separate

(non-shared) backup paths. In this combination, we let each parallel path to have their

own backup paths. Now, we can choose to either migrate flows or duplicate packets if

there is a congestion in a LSP.1

The duplication control will help improve the traffic’s QoS in that LSP. However,

the high priority cross traffic still suffer from a degraded QoS. It is because the

duplication control does not alleviate the congestion in the working path. On the other

hand, the migration control will relieve the congestion in that LSP by migrating flows

away. As a result, both the traffic in that LSP and the high priority cross traffic can get

a better QoS together. However, there is a risk of getting out-of-order packets and a risk

of making other parallel LSPs congested. We will make a choice of either using

migration or duplication. At some point of time migration would be better because it

will also help the drops in cross traffic. However, duplication would be great in

situations when all paths are congested.

In general, the migration control will not be a good choice when all link are

overloaded. As we can see from the empirical result of this dissertation, the benefit of

having migration control is diminished in an overloaded situation. Hence, the

duplication control can be a good alternative in this situation. As a result, the controller

1We will not consider migrating flows to the backup path even though it has a room for high priority

traffic. The main reason comes from the fact that we still have to reserve the backup path in case of failure

in the working path. If failure does occur, we will have to shift all traffic into that backup path.

199

will have to choose either a migration or duplication control based on the situation at

hand.

The second combination considers the multiple working paths with a single shared

backup path. In this combination, we let all parallel working paths share one and only

one backup path. With the shared backup path, we will have to carefully duplicate the

traffic. There could be significant drops if two or more working paths send duplicated

packets to the shared backup path at the same time. This situation should be prevented

because the cross traffic in the backup path could risk causing a significant QoS

violation.

200

Bibliography

[1] Abdelnaser Adas. Traffic models in broadband networks. IEEE Communications

Magazine, 35(7):–, July 1997.

[2] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, volume I.

Athena Scientific, Belmont, MA, 2 edition, 2000.

[3] T. Bogovic, J.E. Burns, T. Carpenter, K.R. Krishnan, T. Ott, and D . Shallcross.

Path selection and bandwidth assignment in MPLS. In Proceedings of MPLS2000

International Conference, Octobor 2000.

[4] Stephan Bohacek, Joao P. Hespanha, Junsoo Lee, and Katia Obraczka. Analysis

of a tcp hybrid model.

[5] Neal Cardwell, Stefan Savage, and Thomas Anderson. Modeling TCP latency. In

Proceedings of the Conference on Computer Communications (IEEE Infocom), Tel

Aviv, Israel, March 2000.

[6] Costas Courcoubetis, Antonis Dimakis, and George Stamoulis. Traffic equivalence

and substitution in a multiplexer. In Proceedings of the Conference on Computer

Communications (IEEE Infocom), New York, March 1999.

[7] Bruce Davie and Yakov Rekhter. MPLS: Technology and Applications. Morgan

Kaufmann, CA, 2000.

201

[8] M. Davis and R. Vinter. Stochastic Modelling and Control. Chapman and Hall,

London, 1985.

[9] Francois Baccelli Dohy. The AIMD model for TCP sessions sharing a common

router.

[10] Anwar Elwalid, Cheng Jin, Steven Low, and Indra Widjaja. MATE: MPLS adap-

tive traffic engineering. In Proceedings of the Conference on Computer Communi-

cations (IEEE Infocom), Anchorage, Alaska, April 2001.

[11] V. Firoiu, I. Yeom, and X. Zhang. A framework for practical performance evalua-

tion and traffic engineering in ip networks, 2000.

[12] Victor Firoiu and Marty Borden. A study of active queue management for con-

gestion control. In Proceedings of the Conference on Computer Communications

(IEEE Infocom), Tel Aviv, Israel, March 2000.

[13] Sally Floyd and Kevin Fall. Promoting the use of end-to-end congestion control in

the internet. IEEE/ACM Transactions on Networking, 7(4):458–472, August 1999.

[14] Liang Guo and Ibrahim Matta. The War between Mice and Elephants. In Proceed-

ings of ICNP’2001: The 9th IEEE International Conference on Network Protocols,

Riverside, CA, November 2001.

[15] Go Hasegawa and Masayuki Murata. Analysis of dynamic behaviors of many TCP

connections sharing tail-drop/RED routers. In Proceedings of the IEEE Conference

on Global Communications (GLOBECOM), November 2001.

202

[16] D. P. Heyman and T. V. Lakshman. What are the implications of long-range depen-

dence for VBR-Video traffic engineering. IEEE/ACM Transactions on Networking,

4(3):301–317, 1996.

[17] Keith Kim, Petros Mouchtaris, Suil Samtani, Rajesh Talpade, and Larry Wong.

Qos provisioning for voip in bandwidth broker architecture: A simulation ap-

proach. In In SCS WMC01, January 2001.

[18] S. Kini, M. Kodialam, T. Lakshman, and C. Villamizar. Shared backup label

switched path restoration. Internet Draft, Internet Engineering Task Force, Novem-

ber 2000. Work in progress.

[19] Murali Kodialam and T. V. Lakshman. Dynamic routing of bandwidth guaranteed

tunnels with restoration. In Proceedings of the Conference on Computer Commu-

nications (IEEE Infocom), Tel Aviv, Israel, March 2000.

[20] Murali Kodialam and T. V. Lakshman. Minimum interference routing with applica-

tions to MPLS traffic engineering. In Proceedings of the Conference on Computer

Communications (IEEE Infocom), Tel Aviv, Israel, March 2000.

[21] K-T Kuo, S. Phuvoravan, T. Guven, L. Sudarsan, H.S. Chang, S. Bhattacharjee,

and M.A. Shayman. Fast Timescale Control for MPLS Traffic Engineering, Sub-

mitted to Globecom 2002.

[22] San-Qi Li, Song Chong, and Chia-Lin Hwang. Link capacity allocation and net-

work control by filtered input rate in high-speed networks. IEEE/ACM Transac-

tions on Networking, 3(1):10–25, February 1995.

203

[23] San-qi Li and Chia-Ling Hwang. On input state space reduction and buffer non-

effective region. In Proceedings of the Conference on Computer Communications

(IEEE Infocom), 1994.

[24] Basil Maglaris, Dimitris Anastassiou, Prodip Sen, Gunnar Karlsson, and John D.

Robbins. Performance models of statistical multiplexing in packet video commu-

nications. IEEE Transactions on Communications, 36(7):834–844, July 1988.

[25] Marco Mellia Member. Tcp model for short lived flows.

[26] Archan Misra, John Baras, and Teunis Ott. The window distribution of multiple

TCPs with random loss queues. Technical report, Institute for Systems Research,

University of Maryland, 1999.

[27] Vishal Misra, Wei-Bo Gong, and Donald F. Towsley. Fluid-based analysis of a

network of AQM routers supporting TCP flows with an application to RED. In

SIGCOMM, pages 151–160, 2000.

[28] Jitendra Padhye, Victor Firoiu, Donald F. Towsley, and James F. Kurose. Modeling

TCP reno performance: a simple model and its empirical validation. IEEE/ACM

Transactions on Networking, 8(2):133–145, April 2000.

[29] Kihong Park and Walter Willinger. Self-similar network traffic and performance

evaluation. John Wiley & Sons, NY, 2000.

[30] S. Phuvoravan, K-T Kuo, T. Guven, L. Sudarsan, H.S. Chang, S. Bhattacharjee,

and M.A. Shayman. Fast Timescale Control for MPLS Traffic Engineering. Tech-

nical Report CS-TR-4351 and UMIACS-TR-2002-31, University of Maryland,

College Park, 2002.

204

[31] Bong K. Ryu and Anwar Elwalid. The importance of long-range dependence of

VBR video traffic in ATM traffic engineering: Myths and realities. In SIGCOMM,

pages 3–14, 1996.

[32] Schulzrinne, Casner, Frederick, and Jacobson. RTP: A transport protocol for real-

time applications. RFC 1889, Jan 1996.

[33] Mischa Schwartz. Broadband integrated networks. Prentice Hall, NJ, 1996.

[34] V. Sharma et al. Framework for MPLS-based recovery. Internet Draft, Internet

Engineering Task Force, July 2001. Work in progress.

[35] B. Sikdar, S. Kalyanaraman, and K. Vastola. Analytic models for the latency and

steady-state throughput of tcp tahoe, reno and sack, 2001.

[36] Aravind Srinivasan. Approximation algorithms via randomized rounding: a sur-

vey. In M. Karonski and H. J. Promel, editors, Lectures on Approximation and

Randomized Algorithms, Series in Advanced Topics in Mathematics, pages 9–71.

Polish Scientific Publishers PWN, 1999.

[37] Subhash Suri, Marcel Waldvogel, and Priyank Ramesh Warkhede. Profile-based

routing: A new framework for MPLS traffic engineering. In Fernando Boavida,

editor, Quality of future Internet Services, number 2156 in Lecture Notes in Com-

puter Science, pages 138–157, Berlin, September 2001. Springer Verlag. An earlier

version is available as Washington University Computer Science Technical Report

WUCS-00-21, July 2000.

[38] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: an introduction.

The MIT press, 1998.

205

[39] UCB/LBNL/VINT. Network simulator - ns (version 2).

206

