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The core subject of this thesis is the development of coordinated atmospheric, in-water, 

and laboratory measurements leading to characterization of in-water optical properties in 

the estuarine environment of northern Chesapeake Bay, where natural and human-

induced processes strongly interact. One of the main objectives is obtaining a sufficiently 

complete suite of measurements, combined with detailed radiative transfer calculations, 

so as to produce a closure experiment for the underwater inherent and apparent optical 

properties. The in-situ results are applied to the interpretation of satellite (MODIS) water 

leaving radiance data and their validation. The applicability of bio-optical models and 



 

parameterizations currently used in satellite algorithms are examined for the case of the 

optically complex Chesapeake Bay waters. Relationships between remotely sensed water 

leaving radiances and properties of optically active components in these waters are 

investigated. The resulting techniques and analysis should be broadly applicable to other 

coastal areas of the world. The results from this thesis, and other future work, will 

contribute to our ability to obtain more accurate information from remotely measured 

optical characteristics of estuarine and coastal regions.  The combined use of in-situ 

measurements and detailed radiative transfer modeling enables the improvement of both 

the theoretical models and satellite remote sensing algorithms needed to a better 

understanding of biotic responses to environmental forcing. 
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(blue pixels correspond to measurements performed in summer and fall 2001, red 
pixels correspond to measurements performed in 2002). (B) Profiles of salinity    
(in ppt) measured at the four stations HB (blue), JT (red), PI (yellow), TI (green) 
during the fall 2001 cruises: a) 26 Sept.  b) 28 Sept. c) 4 Oct. d) 30 Oct. e) 13  
Nov., and during the spring and summer cruises in 2002: f) 6 May g) 15 May  
h) 22 May i) 6 June j) 18 June k) 28 June……………………………………………..

Figure 2.3-3: Daily total rainfall amount (in inches) recorded at the SERC site, 
during the years 2001 and 2002. The dates of the seventeen cruises performed in  
the northern part of the Chesapeake Bay, are also shown as red lines…………..…... 

Figure 2.3-4(a): Profiles of at-w(412) (in m-1) measured at the HB, JT, PI and TI  
stations, during the spring, summer, early and late fall cruises of 2001 and 2002……  

Figure 2.3-4(b): Profiles of at-w(676) (in m-1) measured at the HB, JT, PI and TI 
stations, during the spring, summer, early and late fall cruises of 2001 and 2002….. 

Figure 2.3-4(c): Profiles of ct-w(412) (in m-1) measured at the HB, JT, PI and TI 
stations, during the spring, summer, early and late fall cruises of 2001 and 2002….. 

Figure 2.3-4(d): Profiles of ct-w(676) (in m-1) measured at the HB, JT, PI and TI 
stations, during the spring, summer, early and late fall cruises of 2001 and 2002….. 

Figure 2.3-5: Average values of at-w(412), at-w(676), ct-w(412) and ct-w(676),  
along with the standard deviations (x-axis error-bars), for each ‘season’(spring, 
summer, early, late fall), at HB (blue pixels), JT (red pixels), PI (yellow pixels),   
TI (green pixels) stations…………………………………………………………..... 

Figure 2.3-6: Profiles of bb(530) (in m-1) measured at the HB, JT, PI and TI 
stations, during the spring, summer, early and late fall cruises of 2001 and 2002….. 

Figure 2.3-7: Temporal variation in surface (0-1m) total backscattering values    
at 530 nm, bb(530), measured at HB, JT, PI and TI stations……….……………….. 

Figure 2.3-8: Backscattering fraction, bb/b, measured (a) at various depths in    
the water column (0-9m) and (b) only within the 3 meters below the water 
surface, at the stations HB, JT, PI and TI, during the 2001-2002 cruises in the 
Chesapeake Bay. (HB station: blue diamonds, JT station: red squares, PI station: 
yellow triangles, JT station: white circles). The two largest bb/b values, bb/b = 
0.026 and bb/b = 0.036 (shown in (a)) were measured at JT station on 9 July 2001, 
at depths 4.9 and 5.4 m respectively, close to the bottom of the water column at JT 
station during that cruise…………………………………………………………….. 

Figure 2.3-9(A): Normalized spectra, anpp(λ)/anpp(440), measured at (a) HB (b) 
JT (c) PI and (d) TI stations (400-715nm). The average normalized spectra along 
with the standard deviations and the non-linear exponential fit, are shown    in 
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with the standard deviations and the non-linear exponential fit, are shown    in 
figures (e), (f) (g) (h)……………………………………………………………..…        

Figure 2.3-9(B): Normalized spectra, anpp(λ)/anpp(440), measured at (a) HB (b)  
JT (c) PI and (d) TI stations (300-750nm). The average normalized spectra along 
with the standard deviations, are shown in figures (e), (f) (g) (h) for each station… 

Figure 2.3-10: Temporal variation in anpp(440) measured at the four stations HB 
(blue circles), JT (red squares), PI (yellow triangles), TI (white circles), during    
the 2001 and 2002 cruises in the Bay……………………………………….……… 

Figure 2.3-11(A): Normalized spectra, aphyt(λ)/aphyt(676), measured at (a) HB   
(b) JT (c) PI and (d) TI stations (300-750 nm). The average normalized spectra 
along with the standard deviations are shown in figures (e), (f) (g) (h) for each 
station………………………………………………………………………………. 

Figure 2.3-11(B): Normalized spectra, aphyt(λ)/aphyt(676), measured at HB, JT,   
PI and TI stations during the fall 2001 (a,b,c,d) and also during the spring and 
summer 2001-2002 (e,f,g,h) cruises when strong absorption by MAAs was   
evident in the UV wavelengths…………………………………………………….. 

Figure 2.3-12: Temporal variation in aphyt(676) measured at the four stations    
HB (blue circles), JT (red squares), PI (yellow triangles), TI (white circles),   
during the 2001 and 2002 cruises in the Bay………………………………...…….. 

Figure 2.3-13(A): Normalized spectra, aCDOM(λ)/aCDOM(440), measured at (a)  
HB (b) JT (c) PI and (d) TI stations (400-715 nm). The average normalized   
spectra along with the standard deviations are shown in figures (e), (f) (g) (h) for 
each station…………………………………………..……………………………... 

Figure 2.3-13(B): Normalized spectra, aCDOM(λ)/aCDOM(440), measured at (a) 
HB (b) JT (c) PI and (d) TI stations (300-750 nm). The average normalized 
spectra along with the standard deviations are shown in figures (e), (f) (g) (h) for 
each station…………………………………………………………………………. 

Figure 2.3-14: Measurements of aCDOM(440) performed at the four stations, HB 
(blue pixels), JT (red squares), PI (yellow triangles) and TI (white circles)……..…. 

Figure 2.3-15: Comparison between SCDOM values obtained when applying a  
non-linear exponential fit to measured aCDOM(λ) values in the wavelength regions 
290-700 and   400-700 nm………………………………………………………..…. 

Figure 2.3-16: Comparison between the measured and fitted aCDOM values at the 
visible wavelengths 443, 488 and 555 nm, for the two cases when the non-linear 
exponential fit was applied to aCDOM measurements i) in the 290-700 nm 
wavelength region (blue pixels) and ii) in the visible wavelengths 400-700nm 
(white pixels)……………………………………………………………………….. 

Figure 2.3-17: Average values of the residuals aCDOM(λ)measured - aCDOM(λ)fitted , at 
several visible wavelengths, along with the estimated standard deviations, for the 
two cases when the non-linear exponential fit was applied to measurements (a) in  
the 290-700 nm wavelength region and (b) in the visible wavelengths 400-700nm... 

Figure 2.3-18: Relationship between (a) aCDOM(440) (m-1) and SCDOM(400-700nm) 

(nm-1), (b) aCDOM(440) (in m-1) and SCDOM(290-700nm) (in nm-1), for measurements  
performed at HB, JT, PI and TI stations………………………………………….… 
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Figure 2.3-19: Relationship (a) between aCDOM(440) (m-1) and salinity (in ppt) 
(blue circles) and SCDOM(400-700nm) (nm-1) and salinity (white circles), (b) between 
aCDOM(340) (m-1) and salinity (in ppt) (blue circles) and SCDOM(290-700nm) (nm-1) and 
salinity (white circles), for measurements performed at HB, JT, PI and TI stations…  

Figure 2.3-20: Average percent contribution of phytoplankton (graph at the top) 
non-pigmented particulate matter (at the middle) and CDOM (at the bottom) to 
total (minus pure water) absorption, at-w, along with the ± 1 standard deviation 
(n=136). Results are shown at the nine wavelengths 412, 443, 488, 510, 532, 555, 
650, 676 and 715 nm……………………………………………………………….. 

Figure 2.3-21: Average percent contribution of phytoplankton (graph at the top), 
non-pigmented particulate matter (graph at the middle) and CDOM (graph at the 
bottom) to total (minus pure water) absorption, at-w, at the four stations HB (blue 
pixels), JT (blue squares), PI (white triangles) and TI (white squares). Results are 
shown at the nine wavelengths 412, 443, 488, 510, 532, 555, 650, 676 and 715   
nm. Standard deviations are not shown (in order to be easier to separate the  
various symbols), but are similar to those shown in figure 2.3-20…………………. 

Figure 2.3-22: Relationship between anpp(440) and aphyt(676) measured at (a) HB 
(b) JT (c) PI and (d) TI station…………………………………………………….… 

Figure 2.3-23: Relationship between aCDOM(440) and aphyt(676) measured at (a) 
HB (b) JT (c) PI and (d) TI station………………………………………………….. 

Figure 2.4-1: Decrease in salinity (in psu) measured at the SERC dock (black 
line) and at the mouth of the Rhode River sub-estuary (red line), probably 
associated with a spike in flow from the Susquehanna River about 2 weeks earlier 
(Gallegos, personal communication)………………………………………………. 
 
CHAPTER 3: 

Figure 3.2.2.1: Average downwelling surface irradiance, Esavg(λ), measured at 
PI station on 28 September 2001, bracketed by the lines of  ± 3%, MicroPro  
irradiance sensors’ accuracy……………………………………………………...…. 

Figure 3.2.2.2: Percent change in (a) Ed(z) and (b) Lu(z), estimated at depths           

z = 0,1, 2, 3, 4, 5, 6m, according to: 
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Figure 3.2.2.3: Percent change in (a) Lw and (b) Rrs estimated according to: 
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 (similarly for Rrs)………………………………….…. 

Figure 3.2.2.4:  Percent differences of (a) the total minus the water absorption,  
at-w and (b) the total absorption, at = aw + aPA + aCDOM, between case-1 (assumption 
that at-w (715) = 0) and case-2 (at-w (715) = [(aPA (715) / β) + aCDOM (715)] for β=2), 
and between case-1 and case-3 (at-w (715) = [(aPA (715) / β) + aCDOM (715)] for 
β=1)………………………………………………………………………………..… 

Figure 3.2.2.5:  Percent differences in Ed(λ), between (a) case-1 and case-2 and  
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(b) case-1 and case-3, estimated as 
)1(

)1()3__2(
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casecaseorcase

Ed

EdEd −
, for various depths  

(0-6m) …………………………………………………………………...………….. 
Figure 3.2.2.6:  Percent differences in Lu(λ), between (a) case-1 and case-2 and 

(b) case-1 and case-3, estimated as 
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case

casecaseorcase

Lu

LuLu −
, for various depths  

(0-6m)………………………………………………………………………...……... 
Figure 3.2.2.7:  Percent differences in (a) Lw and (b) Rrs estimated according  

to: 
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casecaseorcase

Lw
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 (similarly for Rrs)……………………………………

Figure 3.2.2.8: (a) Lw and (b) Rrs spectra estimated for cases 1, 2, 3. Low Ed 
and Lu values in the blue and red wavelengths are due to the high absorption by 
CDOM and non-pigmented particulate matter (blue wavelength region) and by 
pure sea-water (red region). The maximum in Lu at ~ 685 nm is due to the  
chlorophyll fluorescence…………………………………………………………….. 

Figure 3.2.2.9: Measurements of bb/b, performed at depths 0-6 m, at PI station, 
on 28 September 2001, using an ECOVSF instrument (to measure backscattering, 
bb, at 450, 530 and 650 nm) and an AC9 instrument (to measure scattering, bt-w, at 
seven wavelengths in the region 412-715 nm)……………..……………………..….

Figure 3.2.2.10: Estimated bb/b using (a) the ‘average particle’ Petzold phase 
function (bb/b=1.83%) and (b) a Fournier-Forand phase function with bb/b=1.5%… 

Figure 3.2.2.11: (a) Ed(z=5m) and (b) Lu(z=0-) spectra estimated using the three 
different bb/b ratios………………………………………………………….………. 

Figure 3.2.2.12: Percent differences in Ed(z) (depths 0-5m) estimated between 
(a) case 3 (bb/b=0.015) and case 1 (bb/b measured using ECOVSF) and (b) case 2 
(bb/b Petzold “average particle”) and case 1 (bb/b measured using ECOVSF).The 

percent differences were estimated according to: 
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case

casecaseorcase

Ed

EdEd −
………. 

Figure 3.2.2.13: Percent differences in Lu(z) (depths 0-5m) estimated between 
(a) case 3 (bb/b=0.015) and case 1 (bb/b measured using ECOVSF) and (b) case 2 
(bb/b Petzold “average particle”) and case 1 (bb/b measured using ECOVSF) . The  

percent differences were estimated according to: 
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casecaseorcase

Lu

LuLu −
………. 

Figure 3.2.2.14: (a) Rrs spectra estimated using the three different bb/b ratios 
and (b) percent differences in Rrs between cases 2 and case 1 (solid line) and case  
3 and case 1 (dotted line)………………………………………………………...….. 

Figure 3.2.2-15: Percent differences in (a) Ed(z) (depths 0-5m) and (b) Lu(z) 
(depths 0-5m), estimated between running Hydrolight with bb = bb avg and          
bb= bb avg+ standard-error (dotted lines) and between running Hydrolight with     
bb= bbavg and bb= bb avg-standard-error (solid lines). The percent differences were  
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estimated for Ed (and similarly for Lu) according to: 
)(

)()(

bbavg

bbavgsterrorbbavg

Ed

EdEd −± ….... 

Figure 3.2.2-16: (a) Rrs spectra and (b) percent differences in Rrs, estimated 
between running Hydrolight with bb = bb avg and bb = bb avg + standard-error 
(dotted lines) and between running Hydrolight with bb = bb avg and                         
bb=bb avg - standard-error (solid lines). The percent differences were estimated  

according to: 
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bbavg

bbavgsterrorbbavg

Rrs

RrsRrs −± ……………………………………..………

Figure 3.2.2-17: Percent change in (a) Ed(z) and (b) Lu(z), estimated at depths z 

= 0,1, 2, 3, 4, 5m, according to: 
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 and similarly for Lu. 

As was expected increased absorption by the water medium results in lower Ed  
and Lu values in the water column…………………………………………….……. 

Figure 3.2.2-18: Percent change in (a) Ed(z) and (b) Lu(z), estimated at depths 

z = 0,1, 2, 3, 4 and 5m, according to: 
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Ed
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 (similarly for Lu)….  

Figure 3.2.2-19: Percent changes in water leaving radiance, Lw, estimated for 
(a) changes in mean measured absorption, a, by ± standard error and (b) changes  
in mean measured attenuation, c, by ± standard error………………………………. 

Figure 3.2.2-20: Percent differences in the estimated by the model (a) Ed(z) and 
(b) Lu(z) values, between case 1 (chl-fluorescence included, for the measured chl-
a concentration, [Chl-a] = 7.25mg m-3) and case 2 (chl-fluorescence not included), 
and between case 1 and case 3 (chl- fluorescence included, for [Chl-a] = 14.5 mg 
m-3). The % differences were estimated as:  
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Figure 3.2.2-21: Model estimations of (a) Rrs and (b)Lw, for case 1 (chl-
fluorescence included, [Chl-a]=7.25mg m-3) (solid line), for case 2 (chlorophyll 
fluorescence not included) (squares, dotted line), and case 3 (chlorophyll  
fluorescence included, [Chl-a]=14.5mgm-3) (squares, solid line)……………………

Figure 3.2.2-22: Percent differences in the model estimated (a) Rrs and (b) Lw 
values, between case 1 (chl-fluorescence included, for the measured [Chl-a], [Chl-
a]=7.25mgm-3) and case 2 (chl-fluorescence not included), and between case 1 
and case 3 (chlorophyll fluorescence included, for [Chl-a] = 14.5 mg m-3). Percent 

differences were estimated as: 
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Figure 3.2.2-23: Percent differences in the estimated by the model (a) Ed(z) and 
(b) Lu(z) values, between case 1 and case 3  (positive % changes) and between 
case 2 and case 3 (negative % changes). The percent differences were estimated  
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according to: 
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casecaseorcase

Ed

EdEd −
 (similarly for Lu)………………………….

Figure 3.2.2-24: Percent differences in the model estimated Rrs and Lw values, 
between case 1 and case 3 (solid line) and between case 2 and case 3 (dotted line). 

The percent differences were estimated as: 
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(similarly for Lw)……………………………………………………………………. 
Figure 3.2.2-25: Percent differences in the model estimated (a) Ed(z) and (b) 

Lu(z), between case 1 (CDOM fluorescence included, for the measured CDOM 
absorption spectrum, aCDOM(440)=0.3m-1 and SCDOM = 0.019nm-1) and case 2 
(CDOM fluorescence not included), and between case 1 and case 3 (CDOM 
fluorescence included, for aCDOM(440)=0.6m-1). The percent differences were 

estimated according to:
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Figure 3.2.2-26: Percent differences in the estimated by the model Rrs and Lw 
values, between case 1 (CDOM fluorescence effect included, for the measured 
CDOM absorption spectrum, aCDOM(440)=0.3m-1 and SCDOM = 0.019nm-1) and case 
2 (CDOM fluorescence not included), and between case 1 and case 3 (CDOM 
fluorescence included, for aCDOM(440)=0.6m-1).The percent differences were 

estimated as: 
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 (similarly for Lw)………………………………………………………..………….. 
Figure 3.2.2-27:  Percent differences in the estimated by the model (a) Ed(z) and 

(b) Lu(z) values, between case 1 (Raman scattering included) and case 2 (Raman 

scattering not included), estimated as: 
)(

)()_(

Raman

RamanRamanno

Ed
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 (similarly for Lu) 

at depths 0-5m……………………………………………………………………….. 
Figure 3.2.2-28: Percent differences in the model calculated (a) Rrs and (b) Lw  

values, estimated according to: 
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RrsRrs −
 (similarly for Lw)…...….. 

Figure 3.2.2-29: Percent difference in estimated Ed values (a) just below the 
water surface and (b) at 5 meters below the water surface, for clear skies (0% 
cloudiness) and cloud cover of 10, 30, 50, 80 and 100%. The percent differences 

were estimated according to: 
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clearclouds

Ed

EdEd −
 (sza=20o)……………...………… 

Figure 3.2.2-30: Percent difference in estimated Lu values (a) just below the 
water surface and (b) at 5 meters below the water surface, for clear skies (0% 
cloudiness) and cloud cover of 10, 30, 50, 80 and 100%. The percent differences 
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 were estimated according to: 
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LuLu −
 (sza=20o)…………………..…… 

Figure 3.2.2-31: Percent differences in estimated (a) Rrs (sza=52o), (b) Lw 
(sza=52o),   (c) Rrs (sza=20o), and (d) Lw (sza=20o) for clear skies (0% 
cloudiness) and cloud cover of 10, 30, 50, 80 and 100%. The percent differences 

were estimated according to: 
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 (similarly for Lw)…….……… 

Figure 3.2.2-32: Percent difference in estimated Ed values (a) just below the 
water surface and (b) at 5 meters below the water surface, for wind speed, ui, 1, 3, 
5, 7, 10 m/s (compared to 0m/s). The % differences were estimated according to: 
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Figure 3.2.2-33: Percent difference in estimated Lu (a) just below the water 
surface and (b) 5 meters below the water surface, for wind speed, ui, 1, 3, 5, 7, 10 
m/s (compared to   u=0 m/s). The percent differences were estimated according to: 
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Figure 3.2.2-34:(a) Estimated Rrs for various wind speeds (0, 1, 3, 5, 7, 10m/s)             
(b) percent differences in estimated Rrs values for 1, 3,5, 7, 10 m/s (compared to 0 

m/s). Percent differences were estimated according to: 
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Figure 3.2.2-35: Percent difference in estimated (a) Lu values just below the 
water surface and  (b) Rrs, for sza=20o, and for wind speed of 1, 3, 5, 7, 10 m/s 
(compared to    0 m/s). The percent differences were estimated according to: 
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Figure 3.3-1: Measurements of Lu(z) (in µWnm-1cm-2sr-1) and Ed(z)  (in   
µWnm-1cm-2) (logarithmic scale) at (a) 443, (b) 555 and (c) 670 nm, performed at 
PI station on 28 September 2001, using the MicroPro Satlantic multi-spectral 
profiler………………………………………………………………………………..  

Figure 3.3-2: Measurements of downwelling surface irradiance, Es, (in      
µWnm-1cm-2)  performed at PI station on 28 September 2001……………...………. 

Figure 3.3-3: Fresnel reflectance, r, as a function of incident angle θ’, for index 
of refraction of seawater nw=1.367 and nw=1.329. After Mobley (1994)…………… 

Figure 3.4-1: In-situ measurements (blue lines) and model estimations   (red 
lines) of upwelling radiances (Lu) and downwelling irradiances (Ed), at 412, 555 
and 670 nm, for 26 September 2001……………………………………………...…. 

Figure 3.4-2: Same as figure 3.4-1, for 28 September 2001……………………..... 
Figure 3.4-3: Same as figure 3.4-1, for 30 October 2001………………………..... 
Figure 3.4-4: Same as figure 3.4-1, for 6 May 2002…………………...…………. 
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Figure 3.4-5: Same as figure 3.4-1, for 15 May 2002…………………………….. 
Figure 3.4-6: Same as figure 3.4-1, for 22 May 2002…………………………...... 
Figure 3.4-7: Water-leaving radiances, Lw, measured in-situ (red pixels) and 

estimated by the model (blue line), for measurements performed on 26 September 
2001…………………………………………………………………………………. 

Figure 3.4-8: Same as figure 3.4-7 for measurements performed on 28  
September 2001………………………………………………………...…………… 

Figure 3.4-9: Same as figure 3.4-7 for measurements performed on 30 October 
2001…………………………………………………………………………………. 

Figure 3.4-10: Same as figure 3.4-7 for measurements performed on 6 May 
2002…………………………………………………………………………………..

Figure 3.4-11: Same as figure 3.4-7 for measurements performed on 15 May 
2002……………………………………………………………………………...…...

Figure 3.4-12: Same as figure 3.4-7 for measurements performed on 22 May 
2002…………………………………………………………………………………. 

Figure 3.5-1: Comparison between measured (blue lines) and model-estimated 
(thick red lines) Lu(z) and Ed(z) profiles at 443, 555 and 670 nm, for 
measurements performed at TI station, on 26 September 2001, (a) assuming that 
at-w(715)=0 and (b) assuming that at-w(715)= aCARY(715). When the assumption   
at-w(715)=0 was used, the model overestimated both Ed(z) and Lu(z) at 555 nm 
(and similarly for other wavelengths close to 555nm, such as 510 and 532 nm, not 
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CHAPTER 1 
 

General Introduction 
 
 

1.1 Outline of the thesis  
 
 

Human activities have fundamentally affected marine ecosystems over the whole 

world, especially within the last decades, via over-fishing, aquaculture, addition of 

nutrients and chemical pollutants, industry, agricultural runoff, modification or 

destruction of critical habitats. According to the 1998 Report of the OEUVRE (Ocean 

Ecology: Understanding and Vision for Research) Workshop, little if any of the ocean 

remains, today, unaffected, either directly or indirectly, by humans. And, as the human 

population increases, according to current projections, the effects on coastal regions and 

open oceans will be more and more profound. As a result, there is an urgent need to 

develop new techniques that enable us to recognize ecological changes and perturbations, 

understand the effects of these perturbations on marine ecosystems, and try to facilitate 

restoration of damaged communities. The first step to protect marine ecosystems is to 

gain knowledge of how ocean systems function and obtain a better understanding of the 

responses of aquatic organisms to physical and chemical forces. To accomplish this goal 

we require a combination of in-situ and laboratory measurements to determine the in-

water physical, biological, optical properties and marine composition (chlorophyll, 

dissolved organic matter, land runoff pollutants, etc.) within regional scales, as well as 

validated remote sensing observations to extend in-situ measurements over the vast areas 

encompassed by coastal and open-ocean areas. The research described in this thesis is an 

attempt to combine in-situ and laboratory measurements of optical properties with 
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detailed radiative transfer modeling of underwater radiation fields and satellite remote 

sensing observations of ocean color for a region within the Chesapeake Bay.  

 

Three decades ago, detecting anthropogenic change on a global scale was not possible. 

Today, in-situ measurements and satellite sensors have the potential to provide the 

previously unavailable information. Remote sensing observations rely on measurements 

of the spectral composition of light that emerges from the ocean surface (ocean color), 

carrying information on the optical characteristics of the water and its constituents. By 

using appropriate bio-optical models and previous knowledge on how various substances 

influence the ocean color, remote sensing measurements can provide information on the 

water composition, the chlorophyll content and the primary production in the upper ocean. 

However, current uncertainties in our knowledge of marine optical characteristics and our 

ability to model the underwater radiation fields strongly indicate that much additional 

research is still needed, especially in the more complicated estuarine and coastal regions.  

 

This project is focused on a study of the inherent optical properties of the estuarine 

Chesapeake Bay waters and how these properties affect the light penetration into the 

water column and especially the effective amount of light radiating from the ocean 

surface, since this is the quantity measured remotely by a satellite sensor or an airborne 

instrument. At the same time, I am interested in the inverse problem of how water leaving 

radiance measurements could be used to get information on the amount and composition 

of optically active components (such as phytoplankton, dissolved material and non-

pigmented particulate matter) present in these waters. Measurements of the relative 

amounts of these components bear directly on quantifying changes in water quality. 
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In-situ measurements of in-water properties, together with theoretical models and 

laboratory experiments are essential to our efforts to understand and study light in the 

marine environment. Validation of remote sensing observations from satellite instruments 

with in-situ measurements and radiative transfer modeling permit these ‘ocean color data’ 

to be used to investigate biological activity, marine optical properties, and changes in the 

concentration and composition of material in surface waters, over larger temporal and 

spatial scales. Since both satellite and in-situ measurements are available for studies of 

light penetration in the Chesapeake Bay waters, it is important to study the degree of 

agreement between these two types of measurements and the main issues that affect the 

accuracy of satellite estimations. A specific question addressed in the framework of this 

thesis, is how well satellite estimations of water-leaving radiances and surface 

chlorophyll concentrations compare with in-situ measurements under varying conditions 

of water optical properties and atmospheric composition in the estuarine environment of 

Chesapeake Bay?  

 

To address the above issues, I have performed in-situ measurements of in-water optical 

properties and radiation fields, analyzed laboratory measurements of marine optical 

properties, as well as made measurements of atmospheric transmission characteristics, 

within the northern Chesapeake Bay area, using measuring equipment from NASA, 

Goddard Space Flight Center (GSFC) and the Smithsonian Environmental Research 

Center (SERC) (chapter 2). The measured data have been combined and analyzed using 

detailed radiative transfer modeling of the underwater environment. The combination of 

detailed in-situ and laboratory measurements is essential in gaining a better knowledge of 

the optical characteristics of the less thoroughly studied, case 2, estuarine waters.   
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In-situ measurements of upwelling and downwelling radiation within the water and just 

above the water surface permit the validation of the components of the radiation field 

resulting from radiative transfer model estimations (chapter 3). The combination of 

measurements performed in the framework of our detailed measurements program in 

Chesapeake Bay, forms a “closure experiment”, since measured inherent optical 

properties can be used as input information to perform the model simulations, while 

measured radiance and irradiance profiles can be compared to the model’s output. Such a 

closure experiment may reveal errors related to the accuracy of instruments or the 

methodology of the in-situ measurements, as well as uncertainties in parameterizations 

used in satellite algorithms, or in assumptions of underwater optical properties used in the 

model estimations. The extensively validated Hydrolight underwater radiative transfer 

program (Mobley, 1989) has been used in the framework of this project to perform the 

model calculations.  The results demonstrate the conditions under which theoretical 

calculations can produce close agreement with experimental results, and show the causes 

of any disagreement between measured and modeled quantities. 

 

The in-situ results were also applied to the interpretation and validation of satellite 

(MODIS) observations, under various atmospheric conditions and in-water optical 

characteristics (chapter 4). Most of the satellite algorithms used in estimates of 

chlorophyll concentration and attenuation in the water are based on “standard” 

parameterizations and bio-optical models (chapter 5). One of the goals in my research 

project is to study how absorption by phytoplankton, non-pigmented particulate matter 

and dissolved material could be modeled for some specific sites in the Chesapeake Bay 

area. What is the contribution of these components to the total attenuation of light and 
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what are the relationships between remote sensing reflectances and water optical 

properties (such as chlorophyll concentration and backscattering) that could be used in 

this optically complex, estuarine environment? Are the bio-optical models used currently 

in satellite algorithms applicable for the Chesapeake Bay waters? 

 

Coastal and estuarine areas, such as the Chesapeake Bay, are among the most 

biologically productive and vulnerable areas of the world oceans, and as such they are 

some of the most intensely studied areas for environmental scientific research. However, 

due to the complexity of the interactions between physical, chemical and biological 

phenomena along these regions, near shore waters are among the most challenging sites 

for systematic scientific study. The presence of quite shallow areas, high turbidity in the 

water, and suspended sediments, greatly complicates theoretical model calculations of 

light propagation in these waters. Satellite ocean color observations over coastal regions, 

are significantly affected by proximity to land, shallow and turbid waters, urban 

pollution, and large concentrations of highly absorbing aerosols carried over the oceans 

by the wind. A major obstacle to the remote estimation of concentrations of optically 

active components (such as chlorophyll) in case 2 waters, has been the lack of precise 

information concerning the optical characteristics of inland, estuarine or coastal waters. 

The core subject of this thesis is the characterization and modeling of in-water optical 

properties in the estuarine environment of northern Chesapeake Bay, where natural and 

human-induced processes strongly interact. Because of the complications mentioned 

above, and also because of the direct importance of estuarine and coastal regions to 

human interests, more research in the future should be directed toward these regions of 

the ocean.  
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1.2 Why I am particularly interested on Coastal Environments 
 
 

Throughout history, human populations have shown a tendency to settle along the 

world's 440,000 km of coastline. Out of the 71% of Earth covered by ocean, it is this 

narrow coastal strip that has significantly influenced, and is influenced by, human 

activities. Today, over half the people in the world are estimated to live within 100 km 

off the coast for the region’s real and intangible benefits (see, e.g. figure 1.2-1). Coastal 

regions support tourism, recreational activities, they are important for fishing, shipping 

and national security. Therefore, from a human perspective, coastal areas are among the 

most desirable areas of the world. Moreover, near-shore regions contain some of the most 

diverse and biologically productive habitats on our planet. As the population has 

increased, these regions have been under the greatest environmental stress during the last 

decades and, as coastal population continues to grow more rapidly than total world 

population, the effects of human activities will become increasingly and distressingly 

apparent.  

 

 

Figure 1.2-1: The high percentage of human population living along the world’s 
coastlines is revealed in this composite satellite view of Earth at night (courtesy NASA). 
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Coastal zones are complex and dynamic environments, where terrestrial, oceanic, 

atmospheric and human inputs of energy and matter converge. Residential and 

commercial development, water pollution and waste disposal are concentrated around 

bays and estuaries where the sea’s richest fisheries are found. An increasing pollution 

load entering the oceans worldwide comes from human activities, especially the 

introduction of nutrients, sediments and pathogens from land-based sources. Agricultural 

and urban waste flows into the water from the land, smoggy clouds originating in 

industrial areas deposit their contaminants into the coastal waters, and shipping vessels 

flush their tanks discharging hazardous wastes and non-indigenous species. The 

pollutants coming from these activities contribute significantly to an increased incidence 

of toxic algal blooms (red tides), increased blocking of sunlight in coastal waters, anoxic 

conditions and suffocating of fish in coastal habitats (e.g., the “dead-zone” in the Gulf of 

Mexico). As a result, coastal habitats and fisheries are declining from pollution and 

excessive fishing, causing disruptions that affect the whole ocean ecosystem. At the same 

time, human health is also affected through changes in food supplies, water quality, and 

accumulation of wastewater.   

 

Since coastal and estuarine waters are among the most important and vulnerable areas 

of the world oceans, there is a need to increase the coastal research and monitoring 

programs, so as to improve our understanding of how coastal ecosystems function, and 

how to better manage interactions between human-induced and natural processes within 

these regions. In these research efforts, measurements of light penetration into the water 

column and studies of the water optical properties play a critical role, since the water 
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optical characteristics are strongly related to biological, chemical and physical processes 

in the water. Continuous in-situ measurements of water optical properties are used to 

determine changes in the biological composition and concentration of optically active 

substances in coastal regions, monitor the water quality and identify the underlying 

causes (human activities or natural processes) of any changes in the water characteristics. 

At the same time, remote sensing observations of ocean parameters rely on detecting the 

electromagnetic radiation, which, after interacting with the water and its constituents, 

emerges from the ocean carrying with it information about the water’s optical 

characteristics. By using appropriate bio-optical models remote sensing measurements of 

ocean color can provide information on the distribution and abundance of dissolved and 

particulate material in the upper ocean, over large temporal and spatial scales. This 

information can be used to investigate biological productivity in the oceans, and study the 

interaction between physical processes (e.g. currents) and ocean biology as well as the 

effects of human activities on the oceanic environment. 

 

However, the large variety of physical, chemical and biological phenomena along the 

coastal regions poses great difficulties for systematic scientific studies. The presence of 

quite shallow areas, high turbidity and re-suspended sediments in the water, as well as the 

proximity to landmass, greatly complicate both measurements and model calculations. 

Satellite estimations of underwater properties are also significantly complicated by 

atmospheric urban pollution and large concentrations of highly absorbing aerosols carried 

over the oceans by the wind (e.g., dust and smoke plumes blown off the coasts, notably 

western Africa and eastern Asia). Relative to the total radiation intensity emerging at the 
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top of the atmosphere and measured by a sensor on a satellite, the underwater radiance 

emerging from the ocean represents only a few percent (10% or less) of the total signal. 

For a clear, clean atmosphere, removal of the atmospheric portion of the signal requires 

accurate modeling of the molecular atmosphere. When pollution is present, the perturbed 

atmospheric conditions complicate atmospheric correction algorithms in satellite 

retrievals, reducing the accuracy of satellite-estimated ocean optical characteristics. In 

addition to the atmospheric correction problem, a major obstacle to the remote 

observations of coastal chlorophyll concentrations or distribution of other optically active 

substances, has been the lack of precise information concerning the optical properties of 

inland, estuarine and coastal waters. While bio-optical models currently used in satellite 

algorithms adequately describe the optical properties of open-ocean waters, where 

phytoplankton is the major optical component, they are not necessarily applicable in the 

coastal zones, where bio-optical characteristics depend on the composition, distribution 

and concentration of various living and non-living, dissolved and particulate, 

autochthonous and allochthonous material. My interests in the research described in this 

thesis, as well as the desire to continue similar work in the future, are driven by a desire to 

understand the complexities of the interaction between optical properties and biological 

processes in coastal environments, and the direct economic and environmental importance 

of estuarine and coastal regions. 
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1.3 Chesapeake Bay  

 

Chesapeake Bay is the largest estuary in the United States, and, historically, one of the 

most productive in the world. The Bay extends from the mouth of the Susquehanna River 

at Havre de Grace, Maryland, in the north, to the Cape Henry and Cape Charles in 

Virginia, in the south (fig. 1.3-1). As with most estuarine environments, Chesapeake Bay 

supports several plant communities, fresh, brackish and saltwater wetlands, 

phytoplankton, benthic algae, epiphytic algae, submerged aquatic vegetation, and a wide 

variety of fish and other marine creatures. As a result, the Bay is a “powerhouse” of 

photosynthetic activity. At the same time, the abundance of nutrients (such as nitrogen 

and phosphorus) and the presence of dissolved organic material, detritus, other suspended 

organic particles and inorganic compounds such as clay minerals and quartz sand, 

significantly complicate the chemical, biological and optical properties of these estuarine 

waters, making the research in this type of environment extremely interesting and 

challenging.     

 
Table 1.3-1: Chesapeake Bay physical characteristics 

Physical characteristics of Chesapeake Bay 
Area 2500 sq miles 
Length  200 miles (320 km) 
Minimum Width 4 miles (near Annapolis, MD) 
Maximum Width 30 miles (mouth of Potomac River) 
Average depth  21 ft (6.4 m) 
Maximum depth 174 ft (53 m) 
Drainage Area 64,000 sq miles 
Shoreline 11,684 miles 

 

Chesapeake Bay is a typical temperate coastal plain estuary, very long (320 km), 

narrow (20 km) and shallow (mean depth = 6.5 m) (table 1.3-1). With an opening to the 
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sea in the south, tidal flushing and circulation of oxygen and nutrients in the bay are 

vigorous. A dynamic interaction among freshwater input to the bay, the salinity input 

from the ocean, and the tidal flow, drives the estuarine circulation with strong north-south 

gradients in nutrient concentrations and phytoplankton biomass.  

 

 
 

Figure 1.3-1: The Mid-Atlantic coast of the United States and the Chesapeake Bay 
(Ellison and Nichols, 1975). 

 

 

One hundred and fifty rivers, creeks and small streams that drain six states, are sources 

of fresh water in the bay, as well as an input of detritus, dissolved gases, nutrients and 

minerals, each important to plant growth and the whole food chain in the estuary. Eight 
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out of the forty-six major tributaries, (the Susquehanna, Patuxent, Potomac, 

Rappahannock, York, James, and Choptank rivers and the West Chesapeake drainage 

area) contribute about 90% of the inflowing fresh water to the Bay. The largest single 

source of freshwater is the Susquehanna River, which accounts for 50% of freshwater 

inflow to the entire bay (80% to 90% to the region above the Potomac River mouth), 70% 

of the nitrogen load and 60% of the phosphorus load (C. White, 1989). Although this 

freshwater input is barely one ninth of the volume of seawater flowing into the bay at any 

moment, it has a significant influence on the estuary, since it can alter the salinity 

structure and the net outflow to the ocean. Fresh water from inland sources is less saline 

and dense than salt water inbound from the Atlantic. The difference in density causes the 

fresh and ocean waters to occupy different layers in the estuary, with the lighter, less 

saline water at the upper layers and the heavier, salty water at larger depths. Frictional 

forces between the two layers of fresh and salty water cause some mixing and exchange 

of water across the density barrier, creating a “moderately stratified environment” in the 

Chesapeake Bay estuary. In the zone of maximum turbidity, nutrients, sediments and 

other organic and inorganic particles are mixed, affecting the biological and optical 

properties in the water column. The basic surface (horizontal) salinity pattern in the Bay 

is an increase of salinity seaward, as the input of the high-density salty water occurs at 

the mouth of the estuary. At the same time, due to the rotation of the earth, the Northern 

Hemisphere Coriolis force deflects flowing water to the right. As a result, fresh water 

moving south down the Chesapeake Bay estuary is forced towards the western shore, 

while the saltier, ocean water moving north up the estuary is deflected toward the eastern 

shore.   
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 The slow mixing of fresh and salt water creates distinct biological zones along the 

salinity gradient, affecting the distribution of plant and animal species within the Bay. 

The salinity gradient varies in amplitude, depending on the seasons and the amount of 

year-to-year rainfall. During the spring, rainfall and melting snow from inland send a 

freshwater flow into the estuary decreasing salinity, compared to salinity levels observed 

during the dry, winter months. Strong riverine discharges, during storm and rainfall 

events, carry large amounts of fresh water and nutrients into the Bay, significantly 

affecting the water quality and the bio-chemical processes in the Bay.  

 

Tidal currents also play a very important role on the salinity structure and circulation 

patterns in the bay. These currents are moderate averaging less than 0.5 knots or 0.925 

km/hr (White, 1989) except in narrows and bottlenecks where they can reach 3 knots. As 

the tide moves into the bay, it drives salt water from the ocean further up to the estuary, 

changing the salinity patterns. The vertical range of the tides averages 0.6 m at the area of 

the main Bay, and it can reach 0.7-0.8 m at the capes. The average time for a tide to 

travel up, from the mouth of the estuary to the northern part of the bay, is 12-13 hours, 

just about the same as the time between two adjacent tidal highs. Therefore, when a tidal 

high reaches the upper limit of the bay, the next tidal high begins at the mouth, and a 

semi-diurnal tidal pattern persists in the Bay.  

 

Thousands of years of continuous change since the last ice age have resulted in the 

form and conditions of Chesapeake Bay as we know it today.  Humans have been a part 

of this complex ecosystem, first for subsistence living, and then for the past 200 years 
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with activities that significantly affect the Bay's ecology (Boynton, 1995). Modern 

industrial and agricultural activities, as well as residential development, affect the 

ecosystem balance mostly in a negative way. Although nutrients are essential to plant 

life, an excess of nutrients can be harmful. During the last years, the amount of nutrients 

entering the Bay's water through run-off has increased considerably. This excess amount 

of nutrients can cause dense algal blooms that block sunlight from reaching critical 

depths. Without sufficient light, plants cannot photosynthesise and survive, with negative 

effects for the whole food chain. These dense phytoplankton blooms are critical to 

deleterious processes in the estuary, such as the seasonal development of subpycnocline 

anoxia, which has become a pervasive problem in the Chesapeake Bay waters, with 

severe biological and economic consequences. (Taft et al., 1980; Officer et al., 1984; 

Seliger et al, 1985; Tuttle et al, 1987; Cooper and Brush, 1991; Malone, 1992; Harding et 

al. 1994)  

 

The magnitude, timing, position, and longevity of the phytoplankton blooms in the 

Chesapeake Bay are mainly dependent on photic conditions, the intensity of vertical 

density stratification, and the magnitude of freshwater flow, carrying nutrients and 

suspended particulate matter in the Bay waters (Harding and Itsweire, 1991; Harding et 

al, 1986; 1994; Fisher et al, 1988; Malone et al, 1986; 1988).  

 

To study the Bay’s water quality and assess progress in reversing the Bay 

eutrophication, in-situ measurements of optical properties as well as physical, chemical, 

and biological indicators of the Bay’s health, have been performed in the framework of 
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several ship-based monitoring programs, during the last decades. These programs 

include, among others, the extensive multi-agency monitoring program of the EPA 

(Environmental Protection Agency) Chesapeake Bay Program (CBP), the Chesapeake 

Bay Remote Sensing Program (CBRSP), the Chesapeake Bay Observing System 

(CBOS), and the Land-Margin Ecosystem Research (LMER) Trophic Interactions in 

Estuarine Systems (TIES) programs (University of Maryland, Center for Environmental 

Sciences; Maryland Sea Grant; funded by NOAA, NASA, NSF), measurements 

performed by Naval Research Laboratory (NRL), monitoring of freshwater flow through 

USGS (U.S. Geological Survey), water quality monitoring through the NOAA/NERRS 

(National Estuarine Research Reserve System) program (e.g. Harding et al, 1992; 

Harding et al, 1994, Glibert et al, 1995; Hopkinson et al, 1998; Darrell et al, 1998; 

Langland, 1998; Johnson et al, 2001; Langland et al, 2002) 

 

Although continuous in-situ measurements are very important in monitoring water-

quality in the Chesapeake Bay estuarine waters, the spatial and temporal coverage of 

ship-board measurements is often insufficient in studies of ephemeral and localized 

phytoplankton bloom events. The application of remote sensing (satellite observations, or 

aircraft measurements for higher spatial resolution) can provide synoptic observations of 

surface water optical properties at temporal and spatial scales unattainable with          

ship-board measurements alone (Harding et al, 1994). 

 

Within the last decades, several aircraft ocean color instruments (using both “passive” 

and “active” systems) have been used to remotely measure chlorophyll concentrations in 
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the Chesapeake Bay (e.g. Hoge and Swift, 1981; Grew, 1981; Campbell, 1981, Lobitz et 

al, 1998). Observations performed in the framework of the Chesapeake Bay Remote 

Sensing Program (CBRSP) (University of Maryland, Center for Environmental Sciences) 

comprise one of the largest datasets of remotely sensed observations in estuarine waters 

using aircraft ocean color sensors (e.g. Harding et al, 1992; Harding, 1994; Harding et al, 

1994; Harding et al. 1995; Harding and Perry; 1997; Harding et al, 2002). 

 

Although great progress has been made recently on ocean color observations using 

satellite sensors (SeaWiFS and MODIS), only a limited number of studies (e.g. Harding 

and Magnuson, 2001 using SeaWiFS data and algorithms) have been published on the 

interpretation and validation of satellite imagery for the Chesapeake Bay. The detailed in-

situ measurements of water optical properties, performed in the northern Chesapeake Bay 

region, in the framework of this thesis, are applied to the interpretation of MODIS ocean 

color data and their validation. The applicability of bio-optical models and 

parameterizations currently used in MODIS algorithms are examined for these optically 

distinct, case 2, estuarine waters. 
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1.4 Classification of ocean waters 
 
 

The degree of optical complexity of natural waters can vary greatly among different 

aquatic environments that are influenced by a variety of physical, biological and chemical 

processes. Since water bodies that are of similar optical character can often be described 

by similar bio-optical models, it was long ago realized that it would be useful to classify 

marine waters into different categories, depending on their optical characteristics and the 

way these affect the magnitude and spectral quality of light penetrating into the water 

column.   

 

A number of schemes have been proposed in order to describe the optical complexity of 

natural waters. Pelevin and Rutkovskaya (1977) proposed that the waters be classified 

according to values of the irradiance diffuse attenuation coefficient at 500 nm, Kd(500). 

According to Smith and Baker (1978), in regions not significantly influenced by 

terrigenous material or resuspended sediments, phytoplankton and covarying detrital 

material are mainly responsible for light attenuation. Therefore, in such regions, the total 

aquatic content of chlorophyll and chlorophyll-like pigments could provide a sufficient 

basis for optical classification of the waters. Kirk (1980) proposed an optical 

classification scheme applicable mainly to inland waters, which was based upon the 

spectral absorption properties of particulate and soluble fractions measured in Australian 

waters. The classification by Kirk separates the waters into type G (“gelbstoff” or 

chromophoric dissolved organic matter (CDOM) dominated), type T (“tripton” or non-

pigmented particulate matter dominated) and type A (phytoplankton dominated) and 

various combinations of these types. A similar classification for open-ocean, as well as 
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for coastal and inland water masses, was proposed by Prieur and Sathyendranath (1981), 

based on the relative proportions of absorption due to algal pigments, dissolved organic 

mater and non-pigmented particles of biologic or terrestrial origin. Different waters are 

classified as C' (contribution by phytoplankton pigments is predominant), Y' (absorption 

by CDOM dominates) or P' type (light attenuation mainly due to the presence of non-

chlorophyllous particles), or a combination of these basic types, C'Y', C'P', P'Y'. 

 

Two of the most frequently used classification schemes are those proposed by Morel 

and Prieur (1977) and Jerlov (1976). These two schemes are described in more details in 

the following paragraphs. 

 

Classification by Morel and Prieur 

 

An optical classification scheme that has been applied widely, especially in studies 

relating to remote sensing observations, is the one proposed by Morel and Prieur (1977). 

According to Morel and Prieur, oceanic waters may be classified into two basic optical 

types: case 1 and case 2 waters. Case 1 are these waters where the concentration of 

phytoplankton is high compared to nonbiogenic particles and the phytoplankton pigments 

and covarying detrital material play an important role in actual absorption. Depending on 

the phytoplankton concentration, case 1 waters can range from very clear (oligotrophic) 

to very turbid waters (eutrophic). In case 2 waters other substances, which may not 

covary with chlorophyll, significantly affect water optical properties. Such substances 

include suspended inorganic sediments, CDOM, coccolithophores, detritus (non-living 
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organic particles) and bacteria. Absorption by pigments is relatively less important in 

determining the total absorption in case 2 waters. According to Morel and Prieur (1977) 

an ideal case 1 would be a pure culture of phytoplankton and an ideal case 2 a suspension 

of non-living material with a zero concentration of pigments. Natural waters can be 

characterized as case 1 or case 2 depending on whether the chlorophyll concentration is 

high or low relative to the scattering coefficient (Morel and Prieur, 1977).  

 

According to Mobley (1994), roughly 98% of the world’s open ocean and coastal 

waters fall into the case 1 category. Most bio-optical research has been directed toward 

these relatively ‘less-complex’, phytoplankton-dominated waters, and many bio-optical 

models and parameterizations have been developed (Prieur and Sathyendranath, 1981; 

Gordon and Morel, 1983; Gordon et al, 1988; Morel, 1991), that relate water’s optical 

properties (such as absorption and backscattering) to remote sensing reflectances and 

chlorophyll concentration, in case 1 waters.  Such bio-optical models, however, are not 

applicable to case 2 waters. Case 2 are typically near-shore, coastal and estuarine waters, 

characterized by higher degree of optical complexity. Within such environments, natural 

as well as human-induced processes are sources of significant optical variability.  

 

Jerlov Classification scheme of ocean waters  

 

Another frequently used classification scheme for oceanic waters was developed by 

Jerlov (1976). This classification scheme is based on the spectral shape of the 

downwelling irradiance diffuse attenuation coefficient, Kd(z,λ), defined as: 

                                      Kd (z, λ) = - d [ln Ed(z, λ)] / dz        (1.4-1)  
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where Ed(z, λ) is the downwelling irradiance at depth z and wavelength λ. The bulk 

diffuse attenuation coefficient could be regarded as a quasi-inherent optical property of 

the water whose variability does not depend significantly on the changes in the external 

environment, but on the variability of the inherent optical properties of the water (e.g. 

total absorption and backscattering).  Observations show that Kd(z, λ) is rather insensitive 

to environmental effects (Baker and Smith,1979) except for extreme conditions such as in 

the case of very large solar zenith angles and, according to Gordon (1989), in most cases 

corrections can be made for the environmental effects present in Kd. The Jerlov 

classification of ocean waters is based on water clarity as quantified by the spectral shape 

of diffuse attenuation coefficient, Kd(w, λ) where w is the depth just below the water’ 

surface (fig. 1.4-1). The types are numbered I (clearest), IA, IB, II and III (most turbid) 

for open ocean waters and 1 (clearest) through 9 (most turbid) for coastal waters. The 

Jerlov types I – III generally correspond to case 1 waters (according to Morel & Prieur) 

where phytoplankton is the predominant absorbing component and types 1-9 correspond 

to case 2 waters where CDOM and non-pigmented particles dominate the optical 

properties.   

 
 

 
 
 
 
 
 
 
 
 

 
Figure 1.4-1: Downwelling Irradiance Diffuse Attenuation Coefficient, Kd(λ), used to 
define the Jerlov water types (revised values by Austin and Petzold, 1986) 
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1.5 Optical Properties of natural waters 

 

The amount of light that penetrates to a given depth depends mainly on the properties 

of the air-water interface and the optical properties of the water column, such as the bulk 

absorption, scattering, and scattering phase function. The transmission of solar radiation 

through the air-water interface varies with time, primarily depending on cloud cover, 

wind speed and solar zenith angle. Changes in the angular distribution of incident 

irradiance and the effect of surface waves, are factors that both modulate the intensity at a 

particular depth and the amount of light reflected back into the air.   

 

According to Preisendorfer (1976), the optical properties of water can be divided into 

two groups: inherent and apparent properties. Apparent optical properties (AOPs) depend 

on both the water’s composition and the geometrical distribution of the light field. AOPs 

include properties such as vector and scalar irradiances, reflectances, average angles of 

incident radiation and irradiance attenuation coefficients. Inherent optical properties 

(IOPs) depend solely on the water’s composition and the optical characteristics of each 

individual constituent and include absorption, scattering and attenuation coefficients, 

index of refraction, scattering phase functions, all of which are spectrally dependent.  

 

1.5.1 Composition of natural waters 

 

Natural waters are complex media composed by living or non-living, organic or 

inorganic, “dissolved” or “particulate” mater. Although seawater contains a continuum of 
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discrete units varying in size from that of large mammals to that of a water molecule, the 

constituents of natural waters are traditionally divided into “dissolved” and “particulate” 

matter, based on the operational definition that “dissolved’ material is everything that 

passes through a filter whose pore size is ~ 0.2 – 0.4 µm. Pure sea water, particulate 

mater and dissolved substances, all determine the optical characteristics of natural water 

bodies and affect the amount of light that can penetrate to a certain depth.  

 

i) Pure seawater consists of pure water plus various dissolved salts that average about 

35‰ (35 parts per thousand) by weight. These salts increase scattering by about 30%, 

relative to pure water. Their effect on absorption is considered to be negligible at visible 

wavelengths (Mobley, 1994). However, these dissolved salts can increase absorption 

slightly at ultraviolet wavelengths and significantly at very long wavelengths (λ>0.1 µm) 

(paragraph 1.5.2). 

 

ii) Both fresh and saline waters contain varying concentrations of dissolved organic 

material (DOM). Autochthonous primary production and river run-off of terrestrial 

organic matter (allochthonous production) are the major sources of DOM. The optically 

active fraction of dissolved organic matter is known as chromophoric dissolved organic 

material, CDOM, and plays a major role in determining underwater light availability in 

oceans. Due to its strong absorption in the short, ultraviolet wavelengths (see also 

paragraphs 1.5.6 and 2.3.4.3), CDOM is one of the major components controlling the 

amount of underwater UV, especially in lakes, rivers, estuaries and coastal environments 

where its concentration is usually higher than in open ocean waters.   
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iii) Particulate matter consists of a) living organic particles such as zooplankton,  

phytoplankton, viruses and bacteria, b) non-living organic particles such as colloids and  

organic detritus and c) inorganic particles.  

 

Zooplankton are small (sizes range from tens of µm to 5 cm), living organisms of only 

limited mobility. They are generally considered to be ineffectual aquatic colorants and, 

consequently, are ignored in most water-color models. One reason for this is their small 

concentration compared to the many orders of magnitude higher concentrations of 

phytoplankton and bacterioplankton. However, there are locations where zooplankton 

populations can be substantial enough to affect water optical properties. Even at large 

concentrations, these large particles tend to be missed by optical instruments that 

randomly sample small volumes of water (Mobley, 1994). 

 

Phytoplankton, the principal primary producers of the oceans, are free-floating 

microscopic plants with sizes from 2µm (nanoplankon) to more than 2cm 

(macroplankton). Phytoplankton are primarily responsible for determining the optical 

properties of most oceanic (case 1) waters. Their chlorophylls (a, b, c) and other 

photosynthetic pigments strongly absorb light in the red and blue wavelength range. 

Phytoplankton are also efficient scatterers of light, influencing the total scattering 

properties of sea water. Due to their relatively large size, the larger phytoplankton species 

contribute relatively little to backscattering in the visible. The principal phytoplankton 

taxonomic groups include diatoms (class Bacillariophyceae), dinoflagellates (class 

Pyrrophyceae), coccolithophores (class Prymnesiophyceae) and silicoflagellates (class 
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Chysophyceae). In estuarine, lake and coastal environments other taxonomic groups may 

locally predominate, such as euglenoid flagellates (class Euglenophyceae), green algae 

(class Chlorophyceae), blue-green algae (class Cyaniphyceae) and brown colored 

phytoflagellates (class Haptophyceae) (Kennish, 2001).  

 

Living bacteria are microscopic unicellular organisms, in the size range 0.2-2µm in 

diameter. Recent studies (Spinrad et al 1989, Morel and Ahn 1990, Stramski and Kiefer 

1991) suggest that free-living heterotrophic bacteria are significant scatterers and 

absorbers of light, especially at blue wavelengths and in oligotrophic waters with low 

chlorophyll concentrations. According to Stramski and Kiefer (1991) and Morel and Ahn 

(1990) heterotrophic bacteria are likely the most significant backscatterers among 

microorganisms.  

 

The concentration of virus particles (size range: 20-250 nm) in natural marine waters 

can range from 106 to as high as 1015 particles per m3 in eutrophic regions (Kepner et al, 

1998, Bergh et al 1989). Viruses infect all members of the marine plankton and are 

thought to play an important role in the ecological control of planktonic microorganisms 

(Proctor and Fuhrman, 1990). In spite of their large numbers, it is unlikely that viruses 

contribute significantly to the absorption and total scattering properties of natural waters, 

since they are inefficient absorbers and scatterers on a per particle basis (Mobley, 1994). 

However, since they are very small particles, there have been speculations that viruses 

may contribute significantly to the backscatter coefficient, bb, at least at blue and UV 

wavelengths in very clear waters. According to a recent study by Balch et al. (2000), this 
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is not very likely. Laboratory experiments in which the volume scattering functions of 

four bacterial viruses (bacteriophages) of varying sizes were measured with a laser – 

scattering photometer using a He-Ne and/or Argon ion laser (632.8 and 514 nm, 

respectively) suggest that viruses, while highly abundant in the sea, are not a major 

source of backscattering (Balch et al, 2000). 

 

Inorganic particles generally consist of trace metals, clay minerals, sand, quartz, silt, in 

a wide range of sizes. Little is known on the optical properties of inorganic particles 

present in natural waters. However, it is recognized that these particles can significantly 

affect light penetration especially in turbid, coastal waters, where their concentration can 

be substantially high as a result of large river discharges, heavy sediment load and long 

and short range transport of atmospheric particulates followed by dry deposition. Detrital 

particles are non-living organic particles of various sizes, fragments of decayed plants 

and animals along with their excretions. Absorption by non-pigmented particulate matter, 

including contribution by detrital and inorganic, mineral substances, is more significant at 

the shorter wavelengths and generally decreases in an exponential fashion with increasing 

wavelength (Kishino et al, 1985, Roesler et al, 1989) (paragraph 2.3.4). According to 

Stramski and Kiefer (1991) sub-micron detrital and mineral particles of low-index-of 

refraction are among the most significant backscatterers in the ocean. 
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1.5.2  Optical characteristics of pure sea water. Absorption and scattering 

 

“Pure” water is most often taken to imply water that is free from the optical effects of 

any terrestrially, atmospherically, biologically derived organic and inorganic matter. 

According to Bukata et al (1995), pure water can be defined as a chemically pure 

substance comprised of a mixture of several water isotopes of various molecular masses. 

Pure sea-water consists of pure water plus various dissolved salts that average about 35‰ 

(35 parts per thousand) by weight (Mobley, 1994). Several studies (Pegau and Zaneveld, 

1993, Hojerslev and Trabjerg, 1990, Buiteveld et al, 1994) have shown that absorption by 

water is weakly dependent on temperature, especially in the red and near-infrared   

(∂a/∂T ≈ 0.003m-1 oC-1 between 10oC and 30oC over the wavelength range 400-600 nm 

according to Hojerslev and Trabjerg (1990), ∂a/∂T≈ 0.01 m-1 oC-1 at λ=750 nm according 

to Pegau and Zaneveld (1993), ∂a/∂T ≈ 0.016 m-1 oC-1 at λ=750 nm according to 

Buiteveld et al (1994)) and slightly dependent on salinity. Absorption by water molecules 

is dominant relative to scattering by water at wavelengths larger than 550 nm. However, 

water scattering becomes very important at wavelengths smaller than 500 nm.  

 

Since pure water is the main component of natural waters, knowledge of its spectral 

optical characteristics is very important for biological, chemical, physical, meteorological 

studies. Therefore, a large number of researchers have studied the scattering and 

absorption properties of pure water, using a variety of techniques (Sawyer, 1931; 

Hodgman, 1933; Grundinkina, 1956; Sullivan, 1963; Hale and Querry, 1973; Palmer and 

Williams, 1974; Hass and Davisson 1977; Tam and Patel, 1979; Ravisankar et al,1988; 
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Quickenden and Irvin, 1980; Smith and Baker, 1981; Sogandares and Fry, 1997; Pope 

and Fry, 1997). 

 
 

Absorption properties of pure water 

 

The numerical values derived for the water absorption spectra show some 

inconsistencies, particularly in the spectral region below 500 nm, that could be attributed 

to the use of different methods in the estimation of these values, to experimental errors, 

or even to the variability in sample purity used by different investigators. Fournier (2002) 

suggests that most of the problem of inconsistent values in the ultraviolet wavelength 

range can be accounted for by the presence of residual dissolved oxygen and trace  

organic materials in the water samples. 

 

A set of absorption values for pure sea-water that has been widely used since its 

publication in 1981, is the Smith and Baker water absorption coefficients. Smith and 

Baker made an indirect determination of the upper boundary of the spectral absorption 

coefficient, aw(λ), of pure sea water in the wavelength range 200 nm < λ < 800 nm. In 

their work they assumed that for the case of ‘clearest waters’: i) absorption by salts or 

other dissolved substances is negligible ii) the only scattering is by water molecules and 

salt ions and iii) there is no inelastic scattering. Based on these assumptions they derived 

(from radiative transfer theory) the relation: 

 

aw (λ) ≤ Kd(λ) – ½ b sw (λ)        (1.5-1)  
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where bsw is the spectral scattering coefficient for pure sea water. Assuming that bsw is 

known, and using measured values of the diffuse attenuation function Kd(λ) from very 

clear waters, Smith and Baker estimated aw(λ)  from eq. (1.5-1). These values of the 

absorption coefficients for pure seawater are shown in figure 1.5-1. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.5-1: Absorption coefficients for pure seawater as determined by Smith and 
Baker (1981). 
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these values can be due to the fact that Kd, an apparent optical property, is influenced by 

environmental conditions. Also, the values of aw (λ) at wavelengths below λ =300 nm are 

‘merely an educated guess’ (Mobley, 1994). Smith and Baker estimated that the accuracy 

of these values is between +25% and –5% for wavelengths between 300 and 480 nm, and 

+10% to –15% for wavelengths between 480 and 800 nm.  
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the blue wavelengths that is significantly lower than the Smith and Baker data. According 

to Sogandares and Fry this difference is most probably due to the high purity of the 

sample used and the fact that their technique is independent of scattering effects in the 

sample. However, according to Fry (2000) this technique is very difficult to implement.      

 

Another set of values for the spectral absorption coefficient of pure water was obtained 

by Pope and Fry (1997) using an integrating cavity absorption meter (ICAM) that was 

developed by Fry, Kattawar and Pope (Fry et al, 1992). According to Pope and Fry 

(1997) the integrating cavity technique is essentially free of scattering effects in the 

sample, is relative simple to implement and is very sensitive to weak absorption.  The 

Pope and Fry absorption coefficients cover the spectral region between 380 and 700 nm 

and are probably one of the most reliable sets in the visible wavelength range (Zhao et al, 

2002). As in the case of the Sogandares and Fry (1997), the Pope and Fry absorption 

coefficients in the blue wavelengths are much lower compared to those estimated by 

Smith and Baker.  

 

According to Pope and Fry (1997), absorption values for pure seawater measured by 

Tam and Patel (1979), Smith and Baker (1981), Buiteveld et al (1994), Sogandares and 

Fry (1997) and Pope and Fry (1997), are in very good agreement in the near-infrared 

region of the spectrum (wavelengths greater than 600nm). In this area of the spectrum 

scattering by water molecules is insignificant and the absorption coefficients are 

relatively large. However, as we move to the shorter wavelengths large inconsistencies 

become apparent (fig. 1.5-2). This could be because i) absorption coefficients get lower 
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and small inaccuracies in the measurements affect the result significantly,                       

ii) contamination can easily dominate the water absorption and iii) scattering effects 

become large comparing to absorption. Measurements in the near- ultraviolet spectral 

region (λ < 400 nm) become even more difficult.     

 

 

 
 
 
 
 
 
 
 
 
 

Figure 1.5-2: Spectral absorption coefficients for sea water (380 nm- 620 nm) as 
determined by Pope and Fry (1997) and by Smith and Baker (1981). 
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absorption coefficients in the blue wavelengths.  
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For the pure water absorption coefficients in the UV-visible-NIR wavelength region, a 

combination of absorption data sets can be used. According to Fry (2000) the most 

reliable data for the wavelength region 380 to 700 nm appear to be those of Pope and Fry 

(1997). For shorter wavelengths in the region 196 to 320 nm, the most reliable data are 

probably those of Quickenden and Irvin (1980). For the gap between these two data sets, 

Fry (2000) suggests that a best guess is a straight extrapolation between the 320 nm data 

of Quickenden and Irvin and the 380 nm data of Pope and Fry (fig. 1.5-3). 

 

                    
Figure 1.5-3. Absorption by pure water as measured by Pope and Fry (1997) in the 
wavelength region 380-700nm, and Quickenden and Irvin (1980) at 280-320 nm. 
 
 
 

In the infrared region of the spectrum, the liquid-water absorption spectrum is driven 

by harmonics of the O-H vibrational modes whose fundamental frequencies are            

v1=3280 cm-1 for the symmetric stretch, v2=1645 cm-1 for the scissors mode, and   

v3=3490 cm-1 for the anti-symmetric stretch. In the liquid phase, these features are 

significantly broadened and shifted by intermolecular interaction. As wavelength 
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decreases from the near infrared to the shorter wavelengths, the third-, fourth-, fifth-, and 

sixth-harmonic combinations of the O-H stretch modes appear as shoulders in the 

spectrum at approximately 960, 740, 600, and 520 nm, respectively. Data from 

Sogandares and Fry (1997) showed shoulders due to the seventh- and eighth- harmonics 

at 455 and 405 nm. 

 
 
Scattering properties of pure water 

 

The theory and observations pertaining to scattering by pure water and by pure          

seawater have been reviewed in detail by Morel (1974). Random molecular motions give 

rise to fluctuations in the number of molecules in a given volume ∆V. According to the 

Einstein – Smoluchowski “fluctuation theory” of scattering, these fluctuations in 

molecule number density are associated with fluctuations in the index of refraction, and 

the interaction of the radiation field with these inhomogeneities gives rise to scattering. 

What happens in sea water is that random fluctuations in the concentrations of the various 

ions (Cl-, Na+, etc ) give even larger index of refraction fluctuations and thus, greater 

scattering. The volume scattering function for pure water or pure sea-water (fig. 1.5-4) 

has the form: 

     ßw (ψ, λ) =   ßw (90o, λ o) [λ o / λ ] 4.32 ( 1 + 0.835 cos2 ψ )              (1.5-2)   

where ßw (ψ,λ) is the volume scattering function for pure water, ψ is the scattering angle 

and λ is the wavelength. 
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Figure 1.5-4: Volume scattering function for pure water and pure sea water, for λ=500nm  

 

 

The function in eq 1.5-2 is similar to the function for atmospheric Rayleigh scattering: 

           ßRayleigh (ψ, λ) =   ßRayleigh (90o, λ o) [λ o / λ ] 4 ( 1 +  cos2 ψ )   (1.5-3)   

The wavelength dependence of λ-4.32 (rather than λ-4) in eq. 1.5-2 results from the 

wavelength dependence of the index of refraction in sea water, while the 0.835 factor 

(rather than 1) is attributable to the anisotropy of the water molecules. There is a similar, 

but smaller, anisotropy function for air. Because of the similarity between eq (1.5-2) and 

eq (1.5-3), scattering by pure water is also commonly known as Rayleigh scattering. The 

total scattering coefficient bw(λ) is given by: 

                                    bw (λ) = 16.06 [λo /λ] 4.32  ßw (90o, λo)      ( 1.5-4)  

 
 

According to Morel (1974), the pure seawater (salinity, S = 35-39 ‰ ) scattering 

coefficients are about 30% greater than the pure water values (measurements in the 350-

600 nm shown in Morel (1974)) because of the presence of the dissolved salts. The Smith 

and Baker scattering coefficients for pure seawater are shown in figure 1.5-5. 
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Figure 1.5-5 Smith and Baker scattering coefficients for pure sea-water. 
 
 
 
The effect of inelastic Raman scattering by water molecules also affects light 

penetration into the water in the green to red (λ>550 nm) wavelength region (Chang and 

Young, 1972; Sugihara et al, 1984; Marshall and Smith, 1990). Raman scattering is a 

process by which an incident photon excites a molecule into a higher rotational and 

vibrational quantum state. The excited molecule emits a photon of wavelength longer 

than that of the incident photon, while the energy difference is retained by the molecule 

as internal (vibrational or rotational) energy. If the molecule is already in an excited state, 

then the molecule may emit a photon of shorter wavelength than the incident photon, 

returning to the ground state. However, at the temperatures of liquid water, Raman 

scattering from longer to shorter wavelengths is insignificant (Mobley, 1994). An 

appropriate volume inelastic scattering function, that can be used in order to incorporate 

Raman scattering into radiance transfer equations, has been developed by Haltrin and 

Kattawar (1991, 1993). 
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1.5.3 Absorption characteristics of phytoplankton   
                  
 

Phytoplankton, microscopic, plantlike organisms that float or swim in waters 

(phytoplankton comes from the Greek words phyton = plant + planktos = wandering) are 

among the most significant live substances that determine the optical and biological 

characteristics of open ocean and coastal waters. Phytoplankton occur with incredible 

diversity of species, size, shape and concentration. Their cell size can range from less 

than 1 µm to more than 200 µm.  On a global scale, phytoplankton are the most important 

biomass producers in aquatic ecosystems.  They constitute the basis for the intricate food 

web in the oceans and are thus a prerequisite for the production of fish, crustaceans and 

mollusks. Phytoplankton account for nearly half of the total photosynthesis on the planet, 

reducing the amount of carbon dioxide in the atmosphere while releasing oxygen. 

 

For growth and reproduction, phytoplankton require sunlight, water, and nutrients, such 

as nitrogen and iron. Because sunlight is most abundant at and near the sea surface, most 

phytoplankton must remain in the upper part of the water column (near-surface and mid 

water column). When surface waters are cold, deeper waters can upwell, bringing 

essential nutrients toward the surface where the phytoplankton may use them. However, 

when surface waters are warm and less dense (as during an El Niño), they do not allow 

the colder, deeper currents to upwell and effectively block the flow of life-sustaining 

nutrients. As phytoplankton starve and die, so too do the fish and mammals that depend 

upon them for food.  Some smaller phytoplankton (< 2 µm) can be increasingly 

important, in terms of community and structure, deep in the water column. According to 

Johnson et al (1999) during the US JGOFS Arabian Sea cruises (1994-1996) a strong, 
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secondary chlorophyll maximum was observed at the base of the euphotic zone          

(120-140 m depth) at several locations. This chlorophyll maximum was coincident with 

the transition layer between oxic and anoxic conditions. At these depths, nutrients were 

found to be high (Johnson et al., 1999). However, light levels were extremely low, 

suggesting light limitation for phytoplankton production. If light is limited and there are 

adequate nutrients immediately above the deep population maximum, there must be an 

additional advantage for this population of small phytoplankton, such as predator 

avoidance due to anoxic conditions at that water column location (Johnson et al., 1999). 

 

Light absorption by phytoplankton occurs in various photosynthetic pigments and 

depends on the particular species, as well as cell size and physiological state, which in 

turn depend on environmental factors (such as ambient light and nutrient availability, 

mentioned above). Phytoplankton pigments absorb light and transform the energy of 

sunlight into chemical energy through the process of photosynthesis. Since each pigment 

displays a characteristic absorption spectrum, the absorption properties of different 

species of phytoplankton cells depend upon their pigment composition. There are three 

basic types of photosynthetic pigments, the chlorophylls, the carotenoids and the 

biliproteins. While all photosynthetic plants contain chlorophyll and carotenoids, the 

biliprotein chloroplast pigments are most often found in certain blue-green and red algae 

(divisions of Rhodophyta, Cryptophyta and Cyanophyta). 

 

Chlorophylls are the main photosynthetic pigments in plants. There are several 

chemically distinct types of chlorophyllous pigments, chlorophylls a, b, c and d. All 

photosynthetic plants contain chl-a, while most classes of plants contain in addition chl-b 
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or chl-c. It is still uncertain as to whether or not chl-d plays a role in photosynthesis 

(Bukata et al, 1995). The basic structure of a chlorophyll molecule is a porphyrin ring, 

co-ordinated to a central magnesium atom (fig. 1.5-6). The difference between the two 

pigments chl-a and chl-b is in the composition of a sidechain. In chl-a this sidechain is a  

-CH3, while in chl-b it is a  -CHO.  This difference  'tunes' the absorption spectrum to 

slightly different wavelengths in the two chlorophylls. Chlorophylls -a and -b have one 

strong absorption band (band ‘a’) in the red region of the spectrum (~675 nm for chl-a 

and ~650 nm for chl-b), and a stronger absorption band (‘Soret’ band) in the blue 

wavelengths (~440 nm for chl-a and ~460 nm for chl-b) (fig. 1.5-7). Chl-c represents a 

mixture of slightly spectrally distinct components chl-c1, chl-c2 and chl-c3, which absorb 

strongly in the blue region of the spectrum (intense Soret band), while they show some 

smaller absorption maxima at larger wavelengths (~ 580 and ~630 nm) (fig. 1.5-8) (table 

1.5-1).  The term “chlorophyll concentration” in practice refers to the sum of the main 

chlorophyllous pigment chl-a, and the related pheophytin-a (a pheophytin-a molecule is a 

chl-a without the magnesium atom). This sum is often called ‘pigment concentration’. 

Chlorophyll concentrations range from 0.01 mg m-3   in the clearest waters, to more than 

100 mg m-3 in eutrophic estuaries or lakes (Mobley, 1994). 

 
 
 

                                           
Figure 1.5-6: Basic structure of a chlorophyll molecule. For chl-a, R = -CH3, while 
for chl-b, R = -CHO (Kirk, 1994) 
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Table 1.5-1: Absorption maxima by chlrorophyll, carotenoids and biliproteins 
phytoplankton pigments 
 

Pigment groups    Main Absorption 

chlorophylls a  ~ 440 nm, ~675 nm 

 b  ~ 460 nm,  ~650 nm 
 c c1 ~ 460 nm 
  c2 ~ 580 nm 
  c3 ~ 630 nm 

carotenoids    450 - 550 nm 

biliproteins   480 - 600 nm 
                          
 
 

                                 
 
Figure 1.5-7: Absorption by chl-a and chl-b, in diethyl ether at a concentration of 
10µg/ml and 1 cm pathlength. After Kirk (1994), using data by French (1960).            
(chl-a: solid line, chl-b: dashed line ) 
 
 

                            
Figure 1.5-8: Absorption by chl-c1 and chl-c2, in acetone containing 2% pyridine with a 
pathlength of 1cm. After Kirk (1994), using data by Jefrey S.W. (chl-c1 (2.68µg/ml): solid 
line, chl-c2 (2.74µg/ml): dashed line) 
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Accessory pigments (such as biliproteins and caretonoids) assist plants in catching 

radiant energy by having absorption bands at different wavelengths than chlorophyll. In 

this way, changes in the spectral distribution of light can be compensated by 

phytoplankton making more accessory pigments. This ability of phytoplankton to change 

the amount and type of pigments in response to changes in the intensity and spectral 

distribution of light is called photoadaptation. The carotenoids represent more than 100 

different pigments that absorb mainly between 450 nm to 550 nm. For example, 

chloroplast carotenoids include a-carotene, β-carotene, diadinoxanthin, fucoxanthin, 

diatoxanthin, peridinin and other pigments. β-carotene is present in all phytoplankton, 

except Cryptophyta. Since carotenoids absorb in the green-blue wavelengths, their 

characteristic colors are yellow to red. The biliproteins are found only in red and blue-

green algae (divisions Rhodophyta, Cryptophyta and Cyanophyta). The biliprotein 

pigments are divided into three classes, the phycoerythrins - phycoerythrocyanins, the 

phycocyanins, and the allophycocyanins. Their main absorption is between 480 -600 nm. 

  

Different species of phytoplankton contain photosynthetic pigments in different 

proportions. Diatoms (class Bacillariophyta, division Chrysophyta), at times the major 

components of phytoplankton in most marine and fresh water environments (Kirk, 1994), 

are usually yellow, yellow-brown due to xanthophyll (fucoxanthin and diatoxanthin) 

carotenoids. Dinoflagellates (division Pyrrophyta), second to diatoms in total marine 

abundance (Kennish, 2001), are characterized by a brownish to reddish color that 

becomes most prominent during dinoflagellates bloom events, known as ‘red tides’. The 

reddish color is caused by the carotenoid pigment ‘peridinin’, present in some 
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dinoflagellates, which shows strong absorption bands in the 500-560 nanometer range. 

Coccolithophorids (division Chryshophyta, class Haptophyceae), major constituents of 

the marine phytoplankton particularly in the warm open ocean waters, have also yellow, 

yellow-brown cells. Since the coccolithophorid-cells are covered externally by small 

calcareous plates that strongly reflect light, bloom events may appear as milky turquoise 

patches in the ocean. Green algae, found mainly in freshwater environments, form the 

phylum Chlorophyceae and are named for their green chloroplasts (dominant pigments 

chl-a, chl-b). Figure 1.5-9 shows the chlorophyll-specific phytoplankton absorption 

spectra, a*
phyt(λ) , (absorption per unit concentration of chl-a + pheopigments) for eight 

species of phytoplankton based on laboratory measurements made by Sathyendranath, 

Lazzara and Prieur (1987). Considerable variability among the phytoplankton absorption 

curves is observed. The eight phytoplankton species belong in the groups of 

Chlorophyceae, Haptophyceae and Bacillariophyceae. According to Sathyendranath et al. 

(1987), specific absorption at the Soret band, a*
phyt(440), varied between 0.019 and 0.047 

m2mg-1, while a*
phyt(676) varied between 0.011 and 0.023 m2mg-1. Studies by Prieur and 

Sathyendranath (1981) found a*
phyt(440) to vary within the range 0.013 to 0.077 m2mg-1. 

                      
Figure 1.5-9: Chl-specific absorption spectrum of eight phytoplankton species based on 
laboratory measurements (Sathyendranath et al., 1987).  
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1.5.4 Absorption by non-pigmented particulate matter  
 

 
 

Non-pigmented particulate matter includes suspended, non-living, organic and 

inorganic particles, or sediments re-suspended during mixing processes (e.g wind-

induced turbulence, tidal currents). Detrital particulates are non living organic particles, 

fragments of decayed plants and animals along with their excretions. Inorganic particles 

may include minerals, such as fine clay, silt particles, sand, or precipitates such as iron 

and manganese hydroxides and calcium carbonate (Bukata et al, 1995).  

 

A number of different methods have been used to separate the total particulate 

absorption into absorption by living phytoplankton and non-living, non-pigmented 

particulate matter. Itturiaga and Siegel (1989) used a microphotometric technique, based 

upon the direct determination of the absorption efficiency factor, geometric cross 

sectional area and taxonomic information for many individual particles. Another 

approach is to use statistical methods based on typical absorption spectra of 

phytoplankton and detritus (Morrow et al , 1989) or modeling based on assumed 

functional form for detrital absorption (Bricaud and Stramski, 1990). A method that has 

been widely used is the method proposed by Kishino et al (1985), which is based on 

measurements of particulate absorption retained on glass fiber filters, before and after 

chemical extraction (e.g. using methanol) of the living phytoplankton pigments. A 

disadvantage of the chemical extraction method is that some detrital pigments such as 

pheophytin and pheophorbide are also extractable using methanol, while some of the 

phytoplankton pigments are not easily extracted. As a result absorption associated with 

these pigments may be included in the ‘non-pigmented’ absorption spectrum.       
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From early measurements of non-pigmented particulate absorption (Yentch, 1962) it 

became apparent that the non-pigmented particulate component intensifies particulate 

absorption at the short, ultraviolet wavelengths, and that the spectral shape of non-

pigmented particulate absorption is similar to that of chromophoric dissolved organic 

material (more details on CDOM absorption are given in paragraph 1.5.6). More recent 

studies on the absorption characteristics of non-pigmented particles (Kishino et al, 1985; 

Roesler et al, 1989; Morrow et al, 1989) have shown that non-pigmented particulate 

absorption increases exponentially with decreasing wavelength. According to Roesler et 

al (1989) an exponential model can be used to fit the absorption spectra:    

anpp(λ) = anpp(λ ο)· exp[ - Snpp· (λ - λο)]     (1.5-5) 
 
where anpp(λ) and anpp(λo) are the non-pigmented particulate absorption coefficients at 

wavelength λ and a reference wavelength λo and Snpp is a constant that defines how 

rapidly the absorption decreases with increasing wavelength. Roesler et al (1989), using 

water samples from different sites near the San Juan Islands, Washington, found an 

average value of 0.011 nm-1 for the exponential coefficient, Snpp (measurements 

performed in the wavelength range 400-750nm). Measurements performed by Gallegos et 

al (1990) in the Rhode River, a turbid sub-estuary on the western shore of Chesapeake 

Bay, showed that Snpp had a mean value of 0.0104 nm-1. Other studies on the absorption 

by non-pigmented particulate material present in water samples collected from various 

aquatic environments (e.g. Kishino et al, 1986 (studies in NW Pacific); Maske and 

Haardt, 1987(studies in Kiel Harbor); Morrow et al, 1989; Iturriaga and Siegel, 1988; 

Bricaud and Stramski (studies in the Sargasso Sea)) found values for the exponential 

coefficient Snpp in the range 0.006 to 0.014 nm-1. Measurements of non-pigmented 
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particulate matter absorption spectra, anpp(λ), that show the exponential decrease of 

absorption with increasing wavelength, are shown in figures 1.5-10 and 1.5-11. 

 
 

                             
                                                        wavelength (nm) 

Figure 1.5-10: Absorption spectra of detrital material, ad, measured by Bricaud and 
Stramski (1990) at various depths (5-250 m) in the Sargasso Sea (figure by Bricaud and 
Stramski, 1990).  
                                       
 

                                
Figure 1.5-11: Absorption spectra of suspended particles, total particulate material, ap, 
non-pigmented particulate matter, here shown as ad, and the difference ap-ad=aph, which 
corresponds to absorption by pigmented, phytoplankton particles (figure obtained by 
Kishino et al., 1986)   
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1.5.5 Scattering by particles 
 

 
 

Particulate matter, which is always present even in the “clearest” natural waters, affects 

the propagation of light within the aquatic medium not only through the process of 

absorption, but also through forward and backward scattering. Scattering intensifies 

attenuation mainly by increasing the pathlength a photon must traverse (and therefore the 

likelihood of this photon being absorbed), as well as by redirecting light into the 

backscattered direction and eventually out of the water. The total scattering coefficient by 

particles, bp, and the backscattering coefficient, bbp, (measured in m-1) are defined as:  

                                   ( ) ( ) ψψλψπλ
π

dsin,ß2b
0

p ∫= p                                               (1.5-6) 

 ( ) ( ) ψψλψπλ
π

π

dsin,ß2b
/2

bp ∫= p                                               (1.5-7) 

 

where λ is the wavelength, ψ is the scattering angle and βp(ψ,λ) is the particles’ volume 

scattering function that describes the angular distribution of scattered radiation 

(Preisendorfer, 1961). Particles that occur in natural waters have a continuous size 

distribution. The Rayleigh (for gasses) and Einstein-Smoluchowski (for liquids) theories 

of molecular scattering apply only when the scattering centers are small relative to the 

wavelength of light. A theoretical basis for predicting the light scattering behavior of 

spherical particles of any size was developed by Mie (1908). Mie scattering calculations 

can reproduce measured volume scattering functions and scattering coefficients, given 

the appropriate particle refractive indexes and size distributions (Stramski and Kiefer, 

1991).  
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The scattering coefficients of most natural waters are much higher than pure sea-water. 

Scattering coefficients for various types of waters are given in Kirk (1983) (in his table 

4.1), with b(λ) values in the visible wavelengths ranging from as low as 0.016 m-1 (at 546 

nm, in Tyrrhenian Sea, 1000 m depth) to more than 50 m-1 (400-700 nm) in certain inland 

and estuarine waters. Estuarine and coastal waters are typically characterized by much 

higher scattering (Kirk, 1983) than open oceanic, oligotrophic waters, mainly due to the 

much larger concentration of organic particulate matter, the presence of terrigenous 

particles and minerals in coastal regions and the re-suspension of sediments (caused from 

wave action, tidal currents and wind-induced turbulence in shallow waters).     

 

The volume scattering functions measured in natural waters are significantly different 

from the symmetric (around ψ=90o) volume scattering function of pure water, and they 

are highly peaked in the forward direction. Several particle volume scattering functions 

determined from in situ measurements in a variety of waters, ranging from very clear to 

very turbid, are shown in figure 1.5-12 (Kullenberg, 1974). As is shown in figure 1.5-12, 

the particles cause significant increase (at least a four-order magnitude increase) in the 

forward scattering, between ψ = 90o and ψ = 1o (Mobley, 1994). The contribution of 

water (density fluctuation scattering) to the total scattering is small, except at 

backscattered directions (ψ ≥ 90o) in clear natural waters (Morel and Prieur, 1977; Morel 

and Gentili, 1991). Among the most widely cited measurements of volume scattering 

function are those performed by Petzold (1972) in clear (Bahama Islands), coastal ocean 

(San Pedro Channel, California) and moderately turbid waters (San Diego Harbor). 

According to these measurements, the backscattering (ψ > 90o) to total scattering ratio, 
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bb/b, is 4.4% in the case of clear waters (50% for pure sea water) and only 1.3 % in the 

case of coastal ocean and 2% in the case of turbid-harbor waters (Mobley, 1994; his table 

3.11). The “average particle” Petzold phase function (with bb/b =0.018), estimated by 

three sets of Petzold’s data from waters with high particulate load, has been widely used, 

as being typical for moderately turbid waters. However, bb/b values can vary 

considerably, depending on the water type, and measurements of the backscattering 

fraction bb/b are really important for accurate predictions of the underwater light field 

using radiative transfer calculations (Mobley, 2002) (see also discussion in chapter 3). 

 
 
Figure 1.5-12: Particle volume scattering functions ßp(ψ, λ) determined from in-situ 
measurements in a variety of waters, for various wavelengths (Kullenberg, 1974) 

 
 
 
Scattering by phytoplankton cells varies from one species to another. According to Kirk 

(1983) algae such as diatoms, in which a substantial proportion of the total biomass 
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consists of mineralized cell walls, scatter more light (per unit chlorophyll) than ‘naked’ 

flagellates. Coccolithophores exhibit enhanced backward scattering, caused mainly by the 

presence of small calcareous plates that cover externally the living algal cells. This is 

why coccolithophoric bloom events may appear as milky turquoise patches in the ocean. 

The presence of gas vacuoles in blue-green algae also increases the intensity of 

scattering. According to Stramski and Kiefer (1991) small microbes in the size range 0.2-

8 µm are responsible for the largest proportion of the light scattering by living organisms. 

Free-living heterotrophic bacteria (size fraction 0.2-2 µm) appear to account for 10 to 

50% of the total particulate scattering. However, microorganisms larger than 2 µm appear 

to have negligible effect on backscattering, while backscattering is more important in the 

small, picoplankton cells, such as heterotrophic bacteria (Stramski and Kiefer, 1991).  

 

According to studies by Bricaud et al (1983) and Stramski and Morel (1990), the 

backscattering fraction bb/b is much lower for living cells (0.1% - 0.4%), than for mineral 

and detrital particles (~1.9 %). This could be due to the difference in the refractive 

indexes between living cells and inorganic particles (Bricaud et al, 1983).  According to 

Morel and Bricaud (1981), Stramski and Kiefer (1991), Bukata et al (1991), Gallie and 

Murtha (1992), Whitlock et al (1981), the major source of particulate backscattering is 

associated with small (<0.6 µm), non-living, organic (detrital) or inorganic suspended 

material, whose concentrations are considerably larger in turbid, estuarine and coastal 

waters compared to open oceans.   
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Scattering by pure water shows significant wavelength dependence (b~λ-4.3). Although 

particle scattering is not as strongly wavelength dependent as the ‘density fluctuation’ 

scattering, studies by Morel (1973), Kopelevich (1983), Kopelevich and Mezhencher 

(1983) suggest that particulate matter scatters the shorter wavelengths more intensely 

than longer wavelengths. According to measurements of particle volume scattering 

functions performed by Morel (1973), β(ψ,λ) shows a wavelength dependence of the 

form β(ψ,λ) ∼ λ−n (for measurements in the clear Tyrrhenian Sea waters and the turbid 

English Channel (Morel, 1973) n was in the range 0.8-1.9). A stronger wavelength 

dependence is expected for backward scattering, since the contribution by ‘density 

fluctuation’ scattering is more pronounced for ψ >90o (backward directions). According 

to Kopelevich (1983) and Kopelevich and Mezhencher (1983), ‘small’ particles (mostly 

minerals less than 1 µm in size and with high index of refraction relative to water) 

contribute more to scattering at large angles, have a more symmetric (about ψ=90o) 

scattering phase function and stronger wavelength dependence, n=1.7. For ‘larger’ 

particles (biological particles larger than 1 µm in size and with a low index of refraction), 

diffraction dominated scattering shows scattering phase function highly peaked at small 

angles (in agreement to studies by Bricaud et al, 1983 and Stramski and Morel, 1990, 

mentioned above), while the wavelength dependence is weak, n=0.3. More studies on the 

backscattering properties of particulate matter are definitely needed, especially since 

backscattering is extremely important in the estimation of water-leaving radiances and 

the interpretation of remote sensing observations. 
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1.5.6 Optical properties of chromophoric dissolved organic matter 
 

 
 

Both fresh and saline waters contain varying concentrations of dissolved organic 

material. Dissolved organic matter (DOM) is recognized as one of the largest reactive 

pools of organic carbon in the biosphere and, as such, is a major component of the global 

carbon cycle. Processes that control DOM production, consumption, and distribution are 

biochemically significant with regard to carbon export and carbon storage within the 

ocean. Understanding these processes is critical to climate-change studies. The optically 

active fraction of dissolved organic matter, known as chromophoric dissolved organic 

material, plays a major role in determining the underwater light field in oceans.  

 

CDOM, or else ‘yellow’ substance, ‘gilvin’, ‘aquatic humus’ or ‘gelbstoff” (a term that 

means ‘yellow’ and was adopted by early German oceanographers, Jerlov (1976) and 

Leyendekkers (1967)), consists mainly of fulvic and humic acids. These compounds are 

yellow or brown in color and, therefore, when concentration of CDOM is large, water 

may have a yellowish brown color. Autochthonous primary production and river run-off 

of terrestrial organic matter (allochthonous production) are the major sources of CDOM 

in natural waters. According to Kopelevich and Burenkov (1977) oceanic CDOM 

consists mainly of two components, a component resulting from recent decomposition of 

phytoplankton (in agreement with reported observations of large CDOM concentrations 

during phytoplankton bloom events), as well as a more stable, much older component 

that results from biological activity in oceans, averaged over a long period (Bricaud et al, 

1981). According to Blough and Del Vecchio (2002) the precise mechanisms and 

magnitude of the autochthonous CDOM production are still not well known. In the 
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complex and dynamic estuarine and coastal environments, where terrestrial, oceanic, 

atmospheric and human inputs of energy and matter converge, CDOM is subject to 

various transformations. Mixing, photochemical and microbial processes, as well as 

human activities (such as agriculture, changes in land use, logging and wetland drainage), 

can significantly impact delivery of dissolved material to the estuary and, most 

importantly, alter CDOM’s composition, structure and optical properties.     

 

 Dissolved organic material is considered to be non-scattering. However, due to its 

strong absorption in the short, ultraviolet wavelengths CDOM is one of the major 

components controlling the amount of underwater UV, especially in lakes, estuaries and 

coastal environments where its concentration is usually found to be higher than in open 

ocean waters. Radiation in the short, ultraviolet wavelengths causes a broad spectrum of 

genetic and toxic effects on aquatic organisms and affects many photochemical processes 

(Smith and Cullen, 1995; Neale et al, 1998; Neale, 2000; Neale and Kieber, 2000). 

According to recent studies (Gibson et al 2000, Pienitz and Vincent 2000) climate-change 

related modifications of CDOM concentrations in aquatic environments, through changes 

in cloudiness, intensity and frequency of storm events, mixing processes and river run-

off, affect biologically destructive UVB (290-315 nm) exposure to an extent comparable 

to ozone depletion, with significant consequences on the aquatic biota, the composition of 

the aquatic food webs and the overall structure and dynamics of the ecosystem. In 

addition, CDOM changes affect the underwater penetration of UVA (315-400 nm), which 

is almost unaffected by ozone changes.  In coastal waters, CDOM absorption can extend 

well into the visible wavelengths, resulting in significant reductions in photosynthetically 
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active radiation available to phytoplankton. Moreover, because of its impact upon the 

underwater light field, CDOM can influence the accuracy of global satellite-based 

measurements of ocean chlorophyll and primary productivity. Although there has been a 

growing research effort, recently, towards obtaining a better understanding of the optical 

characteristics, transformation and cycling of CDOM in estuarine and coastal ecosystems, 

our current knowledge is still limited.  

 

CDOM absorption spectra typically decrease with increasing wavelength, in an 

exponential fashion. Therefore, CDOM absorption can be described by the model 

(Bricaud et al, 1981): 

                          aCDOM (λ) = aCDOM (λo) · exp [- SCDOM · (λ - λ o) ]                (1.5-8) 
 

where aCDOM(λ) and aCDOM(λo) are the absorption coefficients at wavelength λ and at a 

reference wavelength λo (often chosen to be λo = 440 nm), and SCDOM is the spectral 

slope coefficient that determines the rate of the exponential decline at longer 

wavelengths.  

 

                            
Figure 1.5-13: Absorption spectra of chromophoric dissolved organic material, ag(λ), 
(“g” for gelbstoff) as measured by Roesler et al (1989) at San Juan Islands.   
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The magnitude of CDOM absorption may vary substantially across fresh and marine 

waters. According to studies on CDOM optical characteristics (e.g. Green and Blough, 

1994; Carder et al, 1989; Vodacek et al, 1997; Seritti et al, 1997) values of CDOM 

absorption coefficients at 355 nm, aCDOM (355), may range from less than 0.05 m-1, in 

very clear, oligotrophic waters, to more than 15 m-1 in some rives, lakes, and coastal 

regions (Table I, in Blough and DelVecchio, 2002). Variability in SCDOM is associated 

with changes in the composition of the dissolved material present in the water. Values of 

SCDOM have been observed to vary between 0.011 and 0.035 nm-1.  

 

Transect studies in coastal waters of eastern US (Vodacek et al, 1997) have shown that 

CDOM absorption coefficients decrease, while values of SCDOM increase with distance off 

shore. This is probably because dissolved materials originating from the land usually 

show larger values of absorption and lower values of spectral slope. Variations of the 

absorption and slope, SCDOM, may be related to differing proportions of fulvic and humic 

acids contained within CDOM. According to measurements in the Gulf of Mexico, 

performed by Carder et al (1989), fulvic acids are characterized by higher SCDOM and 

lower mass-specific absorption coefficients at 440 nm, a*
CDOM(440), (Sf = 0.0194 ± 

0.00044 nm-1 , a*
CDOM(440)=0.007 ± 0.001 m2g-1 ) compared to humic acids (Sh = 0.011 ± 

0.00012 nm-1 , a*
CDOM(440)=0.1302 ± 0.00005 m2g-1). Therefore, the larger spectral 

slopes of marine CDOM may be related to the higher percentage of fulvic acids in marine 

CDOM (Malcolm, 1990).  At the same time photochemical or biological processes, or a 

combination of the two, can result in changes of SCDOM values. According to Pages and 

Gadel (1990) and Vodacek et al. (1997) photochemical degradation and bacterial activity 
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may alter the molecular weight of CDOM and cause subsequent increases in SCDOM. 

Recent studies in the Chesapeake and San Francisco Bays (Boyd and Osburn, 2003) 

suggest that bacterial degradation of specific components of CDOM may impact 

CDOM’s spectral characteristics. Coble and Brophy (1994) have suggested that 

biological production of certain compounds, such as proteins and amino acids, that 

absorb more strongly in UV than in the visible, may result in changes in the value of the 

CDOM exponential slope. According to Whitehead et al (2000) photobleaching of low 

molecular weight CDOM, can result in increase of the slope SCDOM, since, as Gao and 

Zepp’s (1998) studies indicate, photobleaching of low molecular weight (LMW) material 

under full-spectrum light is slower in the UVB wavelength range than in the UVA range.  

 

The above studies, among many others, suggest that the CDOM optical properties are 

partially a function of the CDOM’s origin and mixing history. More research on the 

mixing, photochemical and biological processes that affect CDOM’s composition, 

structure and optical properties is definitely needed.  
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CHAPTER 2 
 
 
Field Observations of Optical Properties in the Chesapeake Bay estuarine waters  
 
 
2.1 Introduction 
 
 

In the framework of this research project, I performed in-situ measurements of in-water 

optical properties and radiation fields, analyzed laboratory measurements of 

phytoplankton, non-pigmented particulate matter and CDOM absorption properties, and 

made measurements of atmospheric transmission characteristics within the northern part 

of the main stem of the Chesapeake Bay estuary. This has been a detailed measurements 

program that started in June 2001, in collaboration with the Smithsonian Environmental 

Research Center (SERC) and NASA, Goddard Space Flight Center (GSFC). 

Measurements were taken by using the SERC's and GSFC’s facilities and 

instrumentation.  

 

The combination of detailed in-situ and laboratory measurements is essential in gaining 

a better knowledge of the optical characteristics of the less thoroughly studied, case 2, 

estuarine waters.  Among the main objectives of the project was obtaining a sufficiently 

complete suite of measurements so as to be able: i) to perform detailed radiative transfer 

calculations with minimum assumptions on the water’s optical characteristics and 

produce a closure experiment for the underwater inherent and apparent optical properties 

in these optically complex waters, ii) to apply the detailed in-situ and laboratory 

measurements to the interpretation and validation of satellite ocean color observations.   
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2.2 Methodology  
 
 

2.2.1 Location and duration of measurements 
 
 
Seventeen cruises were performed between 4 June 2001 and 8 November 2002.  The 

in-situ measurements were made at a location in the Chesapeake Bay that is sufficiently 

wide to have several satellite (MODIS) pixels sampling the water (highest satellite spatial 

resolution of 1 km x 1 km at nadir). This area extends from 76.34W to 76.54W longitude 

and from 38.71N to 38.89N latitude (fig. 2.2-1).  

 
  
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Upwelling and downwelling radiance and irradiance profiles, and profiles of 

absorption, attenuation, scattering, backscattering, temperature, salinity and chlorophyll-a 

concentration, [Chl-a], in the water have been measured at four sites, PI (Poplar Island), 

 

Figure 2.2-1: Location of in-situ measurements (HB, PI, TI and JT stations). 
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HB (Herring Bay), TI (Tilghman Island) and JT (Jetta), to study the spatial variation of 

the water optical properties (fig. 2.2-1). The “starting point” of each cruise was the SERC 

dock, located at latitude 38.39oN and longitude 76.54oW, in the Rhode River sub-estuary, 

along the western shore of Chesapeake Bay. 

 
Specific cases of phytoplankton blooms events, relatively clear waters, storm events 

and riverine discharges have been examined in order to study the penetration of light into 

the water column under various conditions (table 2.2-1). Simultaneous observations of 

atmospheric characteristics have been obtained during each cruise to complement the 

measurements of in-water radiation fields. These measurements were used to study how 

various atmospheric conditions affect the comparison between in-situ measurements of 

water-leaving radiances and those estimated from model calculations and satellite 

observations. 

 
 
 

Table 2.2-1: Dates of cruises in Chesapeake Bay 

no Date of cruise Comments 

1 2001, June 4  
2 2001, June 11 Bloom event 
3 2001, June 25 Bloom event 
4 2001, July 9  
5 2001, September 21  
6 2001, September 26 Relatively clear waters 
7 2001, September 28 Relatively clear waters 
8 2001, October 4 Relatively clear waters 
9 2001, October 30 Relatively clear waters 

10 2001, November 13 Relatively clear waters 
11 2002, May 6  
12 2002, May 15  
13 2002, May 22  
14 2002, June 6 Rain event previous day 
15 2002, June 18 Bloom event 
16 2002, June 28 Rain event 
17 2002, November 8 Relatively clear waters 

 



 57

2.2.2 Theory on instrumentation used 
 
 

In-water measurements were taken by using the SERC's facilities and instrumentation 

(table 2.2-2). A WETLabs Spectral AC-9 instrument was used to measure attenuation and 

absorption in the water, over nine wavelengths from 412 to 715 nm. The Satlantic OCI-

200 7-channel irradiance sensors were used to simultaneously measure the underwater 

upwelling (Eu) and downwelling (Ed) spectral irradiance profiles, as well as the above 

water surface downwelling irradiance (Es) in the visible and UV (downwelling only). 

During some of the cruises, the in-water upwelling radiance (Lu) and downwelling 

irradiance (Ed) and the surface incident irradiance (Es) were measured using a Satlantic 

MicroPro free-falling radiometer. An ECO-VSF3 instrument was used to measure the 

total in-water backscattering coefficient. Temperature and salinity profiles were measured 

using a Hydrolab instrument (fig. 2.2-2). Water samples, collected from discrete depths at 

the four sites PI, HB, TI and JT, were filtered and analyzed, using a Cary 

spectrophotometer at the laboratory, to estimate chlorophyll concentrations and the 

contribution of phytoplankton, non-pigmented particulate matter and dissolved material 

to the total light absorption.  

 

Measurements of atmospheric characteristics were performed using the GSFC's 

instrumentation. A CIMEL-sunphotometer (a multi-channel, automatic sun- and sky-

scanning radiometer) was used to measure atmospheric aerosol optical thickness, water 

vapor and solar irradiance at the Earth's surface in eight visible and near-infrared 

wavelengths. A Micropulse-Lidar (MPL), a ground-based optical remote sensing system 

designed to profile cloud and aerosol structures of the atmosphere, was also used during 
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some of the cruises. Measurements of direct solar radiation, total ozone, aerosol optical 

thickness and total water vapor were performed onboard the vessel using a 5-channel, 

hand-held MICROTOPS sunphotometer. Shipboard measurements of total incident UV 

irradiance in 18 channels between 290 and 330 nm were made with the SERC SR-18 UV 

spectroradiometer. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2-2: The AC9 instrument (far right in 
the picture), the Hydrolab (white instrument in 
the middle) and the ECO-VSF instrument (far 
left) that were used during one of the cruises in 
the Chesapeake Bay.  

 
 



 59

Table 2.2-2: In- water and above-water measurements performed in the Chesapeake Bay. 
Instrumentation 

In Situ measurements Wavelength-range (in nm) Instrument Used 

Total absorption (minus absorption 
by pure water), at-w 

412, 440, 488, 510, 532, 555, 650, 
676, 715  

AC-9 

Total attenuation (minus 
attenuation by pure water), ct-w 

412, 440, 488, 510, 532, 555, 650, 
676, 715  

AC-9 

Total backscattering, bb 450, 530, 650  ECO-VSF 
Temperature, Tw  Hydrolab 
Salinity, Sw  Hydrolab 
In-water Upwelling radiance 
profiles, Lu 

400, 412, 443, 455, 490, 510, 532, 
554, 564, 590, 625, 670, 684, 700  

MicroPro, free-falling 
radiometer 

In-water Downwelling irradiance 
profiles, Ed 

400, 412, 443, 455, 490, 510, 532, 
554, 564, 590, 625, 670, 684, 700  

MicroPro, free-falling 
radiometer 

In-water Upwelling irradiance 
profiles, Eu 

412, 443, 490, 510, 554, 665, 684  Satlantic, OCI-200 

In-water Downwelling irradiance 
profiles, Ed 

325, 340, 380, 412, 443, 490, 510, 
532, 554, 620, 665, 684, 706  

Satlantic, OCI-200 

Laboratory measurements Wavelength-range (in nm) Instrument Used 

Chlorophyll-a concentration,  
[Chl-a] 

 Spectrophotometric 
measurements 

Phytoplankton absorption, a phyt 290 – 750  CARY spectrophotometer 
Non-pigmented particulate 
absorption, a npp 

 
290 – 750  

CARY spectrophotometer 

CDOM absorption, a CDOM 290 – 750  CARY spectrophotometer 

Atmospheric observations Wavelength-range (in nm) Instrument Used 

Downward Surface Irradiance, Es 400, 412, 443, 455, 490, 510, 
532, 554, 564, 590, 625, 670, 
684, 700  

Satlantic OCR-507 Irradiance 
Sensors                                                 

Aerosol Optical Thickness, AOT 340, 380, 440, 500, 870 Microtops 

Aerosol Optical Thickness, AOT 340, 380, 440, 500, 670, 870, 
1020 

CIMEL 

Water Vapor  CIMEL, Microtops 

Total Incident UV Spectral 
irradiance 

290-330 nm, 18 channels, 2 nm 
resolution 

SERC SR-18 UV 
spectroradiometer 
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2.2.2.1 Measurements of absorption and attenuation using the AC9 instrument 
 
 

The AC9, an instrument widely used today in measurements of the spectral 

transmittance of water, was used to measure the water's attenuation, c(λ), and absorption, 

a(λ), characteristics (referenced to absorption and attenuation by pure water) at nine 

visible wavelengths  (412, 440, 488, 510, 532, 555, 650, 676 and 715 nm) (fig. 2.2-3). 

The scattering coefficient, b(λ), is estimated as the difference between the attenuation and 

the absorption measured. The precision of the instrument according to the manufacturers 

is ± 0.003 m-1 at 6Hz scan rate and ± 0.001 m-1at 1Hz scan rate, while the accuracy is 

reported to be  ± 0.01 m-1 (WETLabs, AC9 User’s Guide, Revision L, January 2003). 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2-3: A diagram of the AC9. The 
absorption and attenuation beam paths and 
flow tubes are shown between the receiver 
and transmitter housings (from WETLabs 
AC9 User’s Guide, 2003)  

              
 
 

The AC9 performs simultaneous measurements of the water’s absorption and 

attenuation characteristics, by incorporating a dual path optical configuration in a single 

instrument (AC9 User’s Guide, WETLabs, 2003). Each path contains its own source of 

light, optics, and detectors appropriate to the given measurement (absorption or 



 61

attenuation), while the two paths share a common filter wheel and control and acquisition 

electronics. For measurements of absorption and attenuation at the nine AC9 

wavelengths, light from a DC incandescent source passes through bandpass filters 

mounted upon a rotating filter wheel, creating a narrow band spectral output. The filter 

wheel holds nine, 10 nm full-width-half-maximum (FWHM) filters. For the measurement 

of the water’s attenuation, c(λ), the light is directed to a sample water volume enclosed 

by a non-reflective flow tube (“c” flow tube in fig. 2.2-3). Scattered light that hits the 

blackened surface of the flow tube is absorbed. Therefore, the scattered light is not 

included in the transmitted intensity measured by the detector, and the light radiated 

through the flow path is subject to both scattering and absorptive losses by the water 

mass. For the measurement of the absorption coefficient, a(λ), light is directed to a 

sample water volume enclosed by a reflective flow tube (“a” flow tube in fig. 2.2-3). 

Light passing through the tube is absorbed by the water volume. However, in this case, 

forward scattered light is not lost but is reflected back into the water volume by the 

reflective tube. A clear quartz tube is employed for this purpose. The outer perimeter of 

the tube is enclosed by a thin annular volume of air. With an index of refraction of 1.33 in 

water and index of refraction of 1 in air, the total internal reflection is achieved to 41.7 

degrees with respect to the optical axis. The light is then collected by a detector at the far 

end of the flow tube. 

 
Temperature and salinity correction: According to Pegau and Zaneveld (1993), 

absorption by water is weakly dependant on temperature and also slightly dependent on 

salinity. While throughout the visible portion of the spectrum the temperature and salinity 

effects can be neglected (since Ta ∂∂ / =0.0015m-1K-1 at λ=600nm), these effects must be 
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taken into account at infrared wavelengths, ( Ta ∂∂ / =0.01m-1K-1 at λ=750nm). The 

absorption, a(λ), and attenuation, c(λ), measured by the AC9 instrument at 715 nm were 

corrected for temperature and salinity effects according to :  

 
amts = am - [ Ψt * (T - Tr) + Ψsa * (S - Sr)]   (2.2-1)  

and 
cmts = cm - [ Ψt * (T - Tr) + Ψsc * (S - Sr)]   (2.2-2) 
 

where amts  and cmts  are the water temperature and  salinity corrected absorption and 

attenuation respectively, am and cm are the measured absorption and attenuation, Ψt and 

Ψs are the water-specific absorption corrections due to temperature and salinity 

respectively, T, S are the water temperature and salinity at the time of measurement and 

Tr, Sr are the water temperature and salinity relative to which the correction is applied (Tr 

= 24.4 C and Sr = 0) (values of Ψt and Ψs are given in the WETLAbs AC9 User’s Guide, 

2003)  

 
 

Scattering Correction: Reflecting tube absorption meters (“a” flow tube in AC9 

instrument) and spectrophotometers do not collect all of the light scattered from the 

beam.  The uncollected scattered light causes the instrumentation to overestimate the 

absorption coefficient.  There are several methods to correct absorption measurements for 

scattering errors. One method is to subtract the absorption measurement at a reference 

wavelength (for example at λ= 715 nm). This method is based on the assumption that at 

the reference wavelength the absorption by particulate and dissolved materials is 

negligible, so it is assumed to be zero. That is, it is assumed that the measured absorption 

coefficient at this reference wavelength is caused strictly by scattering. Monte Carlo 

(Kirk, 1992) modeling of radiative transport within the reflective tube absorption meter 
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demonstrated that the scattering error is proportional to the total scattering coefficient, b 

(= cm(λ) – am(λ)), and the coefficient of proportionality depends on the shape of the 

volume scattering function and optical characteristics of the instrument (e.g. acceptance 

angle of detector, path length, reflectivity of the tube). Therefore, another method to 

correct for scattering errors is to subtract a fixed fraction of the scattering coefficient, 

b(λ), a’(λ)  = am(λ) – e [cm(λ)-am(λ)], where e is the proportion of the scattering 

coefficient not detected by the sensor. Recent studies have shown that this parameter has 

a value of ~0.14 for waters where biological particles dominate scattering and increases 

to ~0.18 when sediments dominate the scattering. A third method, widely used, is the 

“Zaneveld correction”, which is a combination of the first two methods and is based on 

the assumption that there exists a reference wavelength at which the absorption 

coefficient of particulate and dissolved materials is zero (λ =715 nm).  This reference 

wavelength is used to determine the proportion of the scattering coefficient to be 

subtracted from the initial signal. The correction technique (which is applied after 

applying the temperature and salinity correction) is written as: 

 
a’ = amts(λ) – [ amts(λref) / b (λref)]  * [ b(λ)]      (2.2-3) 

or: 

a’ = amts(λ) - 
a

c a
mts ref

mts ref mts ref

( )

[ ( ) ( )]

λ
λ λ−

*[cmts(λ)-amts(λ)]    (2.2-4) 

 
This method allows for changes in the scattering correction magnitude with wavelength 

and changes in types of materials present. In the framework of this project, the widely 

used Zaneveld correction was used and evaluated for the Chesapeake Bay waters, where 

total (minus pure water) absorption at 715 nm was typically low, but not zero. 
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2.2.2.2 Spectrophotometric measurements of absorption characteristics by particulate and 
dissolved material  

 
 

Water samples, collected from discrete depths at the four stations  HB, JT, PI and TI, 

were filtered and analyzed, using a Cary-IV dual beam spectrophotometer at the 

laboratory, to estimate the contribution of phytoplankton, non-pigmented particles and 

dissolved material to the total light attenuation. The absorbance scans, with 1-nm 

bandwidth and interval, covered the wavelength range from 290 to 750 nm.  

 

Particulate Material (Phytoplankton and non-pigmented particles): The absorption 

properties of the particulate matter, phytoplankton (pigmented material) and non-

pigmented material, were measured using the quantitative filter technique (QFT) which 

consists of concentrating the marine particles on glass fiber filters and then measuring the 

optical density (OD) of the material with the dual-beam spectrophotometer (Yentsch 

1962, Mitchell 1990). The optical density is estimated as the ratio of the transmittance 

through a reference, Tr(λ), and a sample,  Ts(λ), filter according to: 

                                                       
)(
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log)( 10 λ
λ

λ
r

s

T
T

OD −=        (2.2-5) 

The attenuation of the incident beam can be described by the natural logarithm of the 

change in the emergent beam through the sample: 

                                               K = - lg
 –1 loge  [ Ts (λ) / Tr (λ) ]     (2.2-6) 

 
where K is the diffuse attenuation coefficient and lg is the geometric pathlength of the 

sample. Therefore, the diffuse attenuation coefficient is related to the optical density:  

     K =  log10(e) OD (λ) / lg       (2.2-7) 
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If scattering losses are minimized and the configuration of the detector is such that the 

collection of forward scattering is maximized, the absorption coefficient can be 

approximated by the measured attenuation, as: 

gl
OD

a
)(303.2 λ⋅

=      (2.2-8) 

where the factor 2.303 converts log10 to loge. However, multiple scattering inside the 

glass-fiber filters results in amplification of the optical pathlength and, consequently, in 

amplified measured optical density (ODf) values. Therefore, when using the filter 

technique, the correct particulate absorption should be estimated from optical density 

measurements according to: 
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where lg • β is the amplified optical pathlength (due to scattering) and β is the pathlength 

amplification factor defined, following Butler (1962), as β = la / lg (discussion also in 

paragraph 2.2.2.3). 

 

During the cruises in the Chesapeake Bay, samples of particulate matter (pigmented 

and non-pigmented) were concentrated onto 25 mm glass fiber filters (Whatman GF/F) 

and frozen at –20o C. The diameter of the GF/F filters used, is 2.54 cm, but the inside 

diameter of the filtration tower, which governs the filtered area is 1.65 cm. Therefore the 

clearance area, Ac, of the filter is 2.138 cm2. For the measurements, filters were wetted 

with 200 µl of filtered distilled water and scanned against a wetted blank GF/F filter in a 

Cary-IV spectrophotometer, to estimate total particulate absorption coefficients in the 

spectral range 290 to 750 nm. A separate scan, ODblank(λ) with reference samples 

(distilled water) in both the reference and the sample filter-holders, was always 

subtracted from each scan (ODf = ODf’-ODblank). Filters were then extracted into 100% 
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methanol (for a minimum period of 4 hours), to remove phytoplankton pigments. The 

filters were rinsed and rescanned to determine absorbance by non-pigmented particulate 

material from 290 to 750 nm. Absorbance by phytoplankton pigments was, thus, 

estimated as the difference between absorbance by total particulate matter and 

absorbance by non-pigmented particulate matter. Measured absorbances were converted 

into in-situ particulate absorption coefficients by multiplying by 2.303, dividing by the 

geometric pathlength and correcting for the pathlength amplification (the methodology 

used to estimate the pathlength amplification factor is described in paragraph 2.2.2.3). 

The geometric pathlength for the filters is given by the ratio V/Ac, where V is the volume 

filtered. Therefore, the particulate absorption was estimated as:  

                         )(138.2303.2
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Dissolved Material: To determine the absorbance of dissolved material in the water, 

water samples were collected and filtered through 0.22 µm pore-diameter polycarbonate 

membrane filters. Each filtered seawater sample was then put into a 5-cm pathlength 

quartz cell and was scanned against a cell containing only filtered nanopure water 

(blank), in the Cary-IV dual beam spectrophotometer. A separate scan, ODblank(λ) with 

reference samples in both the reference and the sample cuvettes, was subtracted from 

each scan (ODc= ODc’-ODblank). Measurements of CDOM absorbance covered the 

spectral range from 290 to 750 nm. Measured optical densities (ODc) were converted into 

absorption coefficients by multiplying by 2.303 and dividing by the pathlength (0.05 m  

for a 5 cm cuvette). Therefore, CDOM absorption was estimated as:  
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2.2.2.3 Amplification factor β, and particulate absorption at NIR wavelengths 

 
The absorption properties of aquatic particulate material (phytoplankton and non-

pigmented particulate matter) are usually measured using the quantitative filter technique 

(QFT) which consists of concentrating the marine particles on glass fiber filters and then 

measuring the optical density (OD) of the material with a dual-beam spectrophotometer 

(Yentsch 1962, Mitchell 1990). This methodology and its application to measurements 

performed during our cruises in the Chesapeake Bay waters, was discussed in more 

details in the previous paragraph. As was mentioned in paragraph 2.2.2.2, when using the 

filter technique, the correct particulate absorption should be estimated from optical 

density measurements according to eq. 2.2.2-9: 
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where lg • β is the amplified (due to scattering) optical pathlength and β is the pathlength 

amplification factor defined, following Butler (1962), as β = la / lg. 

 

The pathlength amplification factor can be estimated empirically by comparing 

particulate optical density measured on filters and in particle suspension (Mitchell et al, 

2000). In the measurements of the optical density of particle suspension, the sample is 

usually placed as close as possible to the detector or at the entrance port outside of an 

integrating sphere (Kirk, 1994), to partially collect photons scattered from the sample. 

However, in these configurations, although most of the light scattered by the material in 

forward directions is captured by the detector, backward scattered light (scattering angles 

larger than 90o) is not detected, which can result in overestimates of the absorption by the 
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particulate matter. To minimize the scattering error and detect most of the light scattered 

in forward and backward directions, the particle suspension sample can be placed inside 

an integrating sphere. The problem when placing the sample inside the integrating sphere 

is that scattered or transmitted photons may re-enter the sample after reflection at the 

sphere surface, which would result in amplified absorption (Nelson and Prezelin, 1993). 

Therefore, when using the integrating sphere with the sample mounted inside, the sphere 

should be empirically calibrated in order to account for this increase in the optical 

pathlength.  

 

In this study we compare the optical density measurements of particles retained on 

glass-fiber filters to the optical density of particles suspension in a small cuvette of 1 cm 

pathlength placed outside and inside of an integrating sphere. The water sample was 

collected from the Rhode-River sub-estuary on 18 June 2003. 

 

To estimate the absorption by particulate matter using the filter technique, the water  

sample was concentrated onto 25 mm glass-fiber Whatman GF/F filters under vacuum. 

Four replicate filters were made. The sample volume filtered for each case was 50ml. The 

same volume of distilled water was filtered to obtain reference filters. Samples of 

dissolved material were obtained by filtering the water sample through 0.22 µm pore-

diameter polycarbonate membrane filters. The particle-retaining filters were then scanned 

against a reference filter, in a CARY-IV spectrophotometer and the optical density of the 

particle-retaining filter, ODf’(λ), was measured in the wavelength range 290-750nm (fig. 

2.2-4), assuming zero absorption at the reference wavelength 750 nm. A separate scan, 
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ODblank(λ) with reference in both the reference and the sample filter-holders, was always 

subtracted from each scan (ODf = ODf’-ODblank). The particulate absorption, before 

correcting for the pathlength amplification was estimated from:  
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Figure 2.2-4: Optical density of the particle-retaining filters (four replicates) and the 
estimated average ODf 

 
 
 
Measurements of the optical density of the particle suspension were also made using 

the Cary Internal Diffuse Reflectance Accessory, which has a 110 mm integrating sphere 

coated with polytetrafluoroethylene. The optical density of the dissolved material that 

was obtained by filtering the water sample through the 0.22 µm pore-diameter 

polycarbonate membrane filters, was first measured. Measurements were performed by 

placing the 1-cm quartz cuvette filled with the dissolved material, first outside and then 

inside of the integrating sphere. Several scans were made of each filling, and several 

replicate fillings were made of the cuvette. 
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Dissolved material from the Rhode River is characterized by high absorption and no 

scattering. Therefore, differences in the optical density of the dissolved material 

measured with the cuvette placed outside and inside the sphere would be mainly due to 

amplified absorption when the sample is inside the sphere, caused by photons re-entering 

the cuvette after reflection inside the sphere. The measured optical densities are shown in 

figures 2.2-5 and 2.2-6, with OD values measured inside the integrating sphere being 

indeed a little higher than those measured with the cuvette placed at the sphere’s entrance 

port. The relation between the optical densities of the dissolved non-scattering material, 

measured with the cuvette inside and outside the integrating sphere can be used to 

empirically calibrate the integrating sphere (Nelson and Prezelin, 1993). In order to 

account for the amplification of the signal by the integrating sphere, a quadratic function 

was fit to the data (fig. 2.2-6):  

 

                            ODd = 0.8967 ODsp 2 + 0.7679 ODsp ,   R2 = 0.9945                   (2.2-13) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2-5: Optical density of CDOM (obtained by filtering the water sample through 
the 0.22 µm filters) placing the 1cm cuvette (a) at the entrance port of the integrating 
sphere and (b) inside the integrating sphere (measurements performed on 18 June 2003). 
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Figure 2.2-6: Relation between the optical densities of the non-scattering dissolved 
material measured outside and inside the integrating sphere (measurements performed on 
18 June 2003). 
 

 
The optical density of the whole water sample (consisting of both dissolved material 

and particle suspension) was measured by placing again the 1-cm cuvette outside and 

inside the integrating sphere. The optical density of the particle suspension was then 

estimated as the difference ODPA=ODsample -ODdissolved for both cases with the sample 

inside and outside of the sphere. To account for the amplification of the signal inside the 

sphere, the measurements of the particle suspension optical density with the sample 

inside the sphere were corrected according to eq. (2.2-13). The particulate absorption,  
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where lg = 0.01 m for the 1cm cuvette. According to the measurements (fig. 2.2-7), and 

after applying a non-linear least-squares fit to the data in the wavelength region 700-750 

nm, aP(715)=0.09 ± 0.042 m-1 ( ap(715) significantly different than zero within 2 standard 

deviations). 
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Use of the integrating sphere in the estimation of absorption by particulate material 

showed that absorption in the wavelength region 700-730 nm is non-zero in these highly 

absorbing estuarine waters. Therefore scattering correction methods that are used in 

absorption measurements based on the assumption that absorption at a NIR reference 

wavelength (for example 715 nm) is zero, should be used with caution in these waters. 

 

The pathlength amplification factor was estimated for this specific set of  

measurements, by comparing the optical density values in particle suspension and on 

filters (figure 2.2-8).  

 

(a) 
(b) 

Figure 2.2-7: Measurements of the particulate absorption, ap, performed with the 1cm 
cuvette inside and outside of the integrating sphere. A closer look at the 700-750 nm 
wavelength region (fig. 2.2-7(b)) shows positive absorption values measured at 
wavelengths shorter than 730 nm both inside and outside of the sphere.  
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Figure 2.2-8: Values of the β amplification factor, estimated (for the specific set of 
measurements performed on 18 June 2003) by comparing the optical density values in 
particle suspension and on filters 
 
 
 

Additional measurements of absorption by particle suspension (in 1 cm cuvette placed 
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pathlength amplification factor was then estimated by comparing the absorption values in 

particles suspension and on filters (fig. 2.2-9). The estimated β had an average value of 

βavg = 1.5 (βavg = 1.46, stdev=0.13 for 1A station, βavg = 1.56, stdev=0.14 for 4B station), 

and a small wavelength dependence with slightly smaller values within the 550-600 nm 

wavelength region (where most of the attenuation is due to scattering) and larger values 

close to the 650-680 nm (near the chlorophyll absorption peak). Dilution of water 

samples collected from the 4B station by 50% increased slightly the overall beta (average 

β =1.64) and, as expected, enhanced the noise in the estimated absorption values. 

Significant noise was also observed at wavelengths above 700 nm, since overall 

absorption in this region is low, although non-zero as mentioned in previous paragraphs. 

When interpreting these results, one should keep in mind that increase of the optical 

pathlength due to scattering on the particles inside the cuvette (more pronounced at larger 

particle concentrations) might result in slightly overestimated absorption by the particle 

solution.  

 

 

 
 
     

 
 
 
 
 
 
 
 
 
 
 

Figure 2.2-9: Values of the β amplification factor estimated (for measurements 
performed on 15 July 2003) by comparing particulate absorption values measured in 
particle suspensions and on glass-fiber filters. 
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Figure 2.2-10: Relation between particulate absorption measured on filters and in particle 
suspensions. The lines β=1.5 (solid thin line), β=2 (dashed thick line) and the linear least-
squares fit (solid thick line) are also shown. 
 
 
 

Figure 2.2-10 shows the relation between particulate absorption measured on filters and 

in particle suspensions, along with the lines β=1.5 (solid line) and β=2 (dashed line). A 

beta factor β=2 was proposed by Roesler (1998), based on the assumption that the glass-

fiber filter method estimates the diffuse absorption of a sample, which is two times the 

volume absorption coefficient. As shown in figure 2.2-10  (and also in fig. 2.2-9 and    

fig. 2.2-8), the estimated β−factor values are in almost all of the cases between the two 

lines β=1.5 and β=2. The results of a linear least-squares regression between absorption 

by particles retained on filters and particulate absorption in particle suspensions 

(measured on waters samples from both 1A and 4B stations, including the 50% diluted 

sample from station 4B), gave a slope of 1.52, a small intercept (0.05) and R2=0.98.  

Therefore, a constant value of β=1.5 provides a good overall fit to the data.  
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2.2.2.4 Measurements of backscattering using the ECO-VSF instrument 
 
 
The amount of light that is scattered in the backward direction, and the angular 

distribution of the backscattered radiation, are extremely important in the interpretation of 

remote sensing measurements, estimations of irradiance reflectance, investigations of 

particle shape and simulations of radiative transfer in seawater. The ECO-VSF3 

instrument was used in this project to measure the backscattering of light in the water 

(fig. 2.2-11). 

 
 
 
 
 
 
 
Figure 2.2-11: Optical configuration of 
the ECO-VSF 3 instrument (from ECO-
VSF 3 User’s Guide, 14 April 2003) 

 
 
The optics of the ECO-VSF3 include three sets of three LED-based transmitters (three 

wavelengths) that couple to three receivers (three scattering angles). The transmitters and 

receiver are located in such a way as to establish centroid light scattering angles of 

approximately 100, 125, and 150 degrees respectively. Therefore, scattering 

measurements are performed at the three distinct angles, and at three wavelengths, 450, 

530 and 650 nm. This way, information on the shape of the volume scattering function 

(VSF) throughout its angular domain can be obtained. The three-angle measurements 

allow determination of specific angles of backscattering through interpolation, as well as 

estimation of the total backscattering coefficient, bb, by integration and extrapolation 

from 90 to 180 degrees. The sensitivity of the instrument is reported to be 0.005 m-1. 
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Attenuation Correction in ECO-VSF:  

High attenuation of the incident beam from the light source to the sample volume and the 

light that is scattered in the sample volume towards the detector, can result in significant 

underestimations of the scattering measurements. Therefore, many scattering sensors 

require a subsequent attenuation correction. This is typically a function of the 

propagation distances of the light as well as the magnitude of the water attenuation. 

Because the ECO-VSF 3 incorporates very short pathlengths and scattering volumes in its 

measurements, the attenuation correction is considered to be significant only for large 

values of attenuation (c larger than 5 m-1). As discussed in Twardowski et al (2001) each 

elementary scattering volume of the total sample volume, has a specific pathlength from 

the light source to the detector. This pathlength and the beam attenuation coefficient 

determine the effect of attenuation on the light received from that elementary volume. 

Integrating over all elementary volumes gives the total dependence on the beam 

attenuation coefficient. Since the calibration of the ECOVSF uses microspherical 

scatterers, the component of c that can be attributed to scattering is incorporated into the 

scaling factor, i.e., the calibration itself. Therefore, only absorption, a, of the incident 

beam needs to be included in the correction. The attenuation correction applied to the 

measurements taken using the ECO-VSF is given in equations 2.2-15(a)-(c), where the 

measured scattering function at a given value of a, βµ(θ, a), is corrected to the value for   

a = 0 m-1: 

 
βµ(100°, a) e 0.0314a = βµ(100°, a = 0);              (2.2-15 a) 
βµ(125°, a) e 0.0441a

 = βµ(125°, a = 0);              (2.2-15 b) 
βµ(150°, a) e 0.0804a

 = βµ(150°, a = 0);              (2.2-15 c) 
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Estimation of the Total Backscattering Coefficient:  

The backscattering coefficient, bb, is estimated from the volume scattering function, β(θi) 

measured at the three angles, 100o, 120o, 150o, first by multiplying the β(θi) 

measurements at the three angles by 2π sin(θi) to convert to a polar steradian area, Α(θi). 

Since, for θ = 180o we have:  2π sin(π) = 0, four values of Α(θi) are actually known in the 

backward hemisphere, for i: 100o, 125 o, 150 o, and 180 o, where A(180o) = 0. Then, a 

third order polynomial is fit to Α(θi), and integration is performed from π /2 to π.  

According to Twardoski et al (2001), testing this approach with all of the Petzold (1972) 

volume scattering functions (excluding filtered freshwater and filtered seawater) results 

in a maximum error of about 1.1%. 

 
 
 
 

2.2.2.5 Measurements of underwater radiation fields 
 
 
 

Measurements of underwater profiles of downwelling irradiance, Ed(λ), and upwelling 

radiance, Lu(λ), or upwelling irradiance, Eu(λ), were made, during the cruises in the Bay, 

using the Satlantic optical sensors with a free-fall or a frame-mounted deployment.  

 

During seven of the cruises in the Bay the Satlantic MicroPro free-falling radiometer 

was used for measurements of Ed(λ) and Lu(λ) profiles (fig. 2.2-12). The MicroPro 

instrument, operated by L. Harding’s research group (Horn Point laboratory, University 

of Maryland), has a smaller diameter (6.4 cm) compared to other radiometric instruments 

and as a result is less subject to instrument self-shading (Harding and Magnuson, 2001). 
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The MicroPro instrument uses the high resolution Satlantic OCR-507 irradiance and 

radiance optical sensors for measurements of underwater Ed and Lu at 14 bands (400, 

412, 443, 455, 490, 510, 532, 554, 564, 590, 625, 670, 684 and 700 nm). The accuracy of 

the irradiance and radiance sensors is reported to be ± 3% and ± 4%, respectively 

(personal communication Scott McLean, Satlantic). The instrument contains a pressure 

sensor that provides high accuracy depth data, and also a miniature biaxial clinometer (tilt 

sensor), for tilt measurements (accuracy of 0.2o) in two axes (X and Y, or pitch and roll). 

The instrument also contains a thermal probe that is used to determine the water 

temperature Tw (0.15% full-scale accuracy over an operating range of –2.5oC to 40oC) 

(Satlantic MicroPro operation manual, June 2002). 

 

 

 
Figure 2.2-12: MicroPro instrument, free fall profiling deployment. The four optical 
sensors (two radiance and two irradiance OCR-507 sensors) are located at the top of the 
instrument’s body. 

Upwelling Radiance  
OCR-507 sensors 

Downwelling Irradiance  
OCR-507 sensors 
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Measurements of Lu(z) and Ed(z) were corrected for the depth offset between the 

radiance and irradiance sensors (fig. 2.2-12), as well as for self-shading effects 

(discussion and methodology in paragraph 2.2.2.6). A correction was also applied to the 

measurements, though the instrument’s calibration, for the immersion effect (correction 

due to the difference in indices of refraction between air, where the instrument is built, 

and water, where the instrument is used).  

 

The MicroPro surface reference system (OCR-507 irradiance sensors) was also used 

during the cruises (mounted on the boat) for simultaneous measurements of downwelling 

irradiance, Es, just above the water’s surface. Measurements of Es were also performed at 

the 14 wavelength bands mentioned above.   

 

For those cruises when the MicroPro instrument was not available, the Satlantic OCI-

200 sensors (diameter 8.9 cm), mounted on a frame, were used for measurements of 

downwelling surface irradiance, Es, and underwater downwelling irradiance, Ed, at 14 

wavelengths (325, 340, 380, 412, 443, 490, 510, 532, 554, 555, 619, 665, 683 and 705 

nm), as well as for measurements of underwater upwelling irradiance, Eu, at 7 

wavelengths (412, 443, 490, 510, 554, 665 and 684 nm). 
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2.2.2.6 Self Shading Correction 
 
 
 

Underwater measurements of upwelling radiance fields are subject to errors introduced 

by the instrument’s own shadow. Recent studies (Gordon and Ding, 1992, Zibordi and 

Ferrari 1995) have shown that the magnitude of an instrument’s self-shading error 

depends mainly on the size of the radiometer, the type of the incident sunlight (direct or 

diffuse irradiance) and the total absorption of the medium. In coastal and estuarine waters 

large concentrations of absorbing material can result in self-shading errors that 

significantly affect the upward radiance and irradiance measurements, both in the infrared 

region of the spectrum where there is strong absorption by the water, as well as in the 

blue region of the spectrum where absorption by CDOM and non-pigmented particulate 

matter can be significantly large. 

 

The self-shading error, εss, is defined as the percentage difference between the actual 

(Lutrue) and the measured (Lumeas) upwelling radiance (and similarly for the upwelling 

irradiance, Eu): 
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Gordon and Ding (1992) evaluated εss through Monte-Carlo simulations and they 

showed that it can be modeled according to : 

         )1/(])()([)( rrskysssunssss +⋅+= λελελε             (2.2-18) 

 

where r is the ratio of the diffuse to the direct sun irradiance, r = Ediff  / Edir  and εss sun(λ) ,  
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εss sky(λ) are the errors due to the direct and diffuse solar radiance contribution 

respectively. Following Gordon and Ding (1992), εss sun(λ) and εss sky(λ) are expressed as: 

εss sun(λ) = 1 – exp(-ksuna(λ)R)              (2.2-19) 

εss sky(λ) = 1 – exp(-kskya(λ)R)              (2.2-20) 

where R is the radius of the radiometer, a(λ) is the total absorption of the medium and 

ksun, ksky are functions of the solar zenith angle, θo, estimated from Gordon and Ding for 

30<θo<70. 

 

For the case of upwelling radiance, Lu, and for a point sensor: 

ksun,o tanθow=2.07+5.6 10-3 θo              (2.2-21) 

while for a finite sensor with diameter equal to the diameter of the instrument  

ksun,l tanθow=1.59+6.3 10-3 θo              (2.2-22) 

where θo and θow are the solar zenith angles in air and water (θow = sin-1(sinθo / nw) ). 

 

According to Zibordi and Ferrari (1995) use of the ksun,o coefficient estimated for a 

point sensor always results in overestimations of εss, while use of the ksun,l coefficient 

estimated for a finite sensor occupying the full diameter of the instrument always 

underestimates εss. Following the Ocean Optics Protocols for Satellite Ocean Color 

Sensor Validation, Rev 3 (Mueller, 2002) a better estimation of ksun is given as: 

 
    ksun = (1-f) ksun,o + f ksun,l               (2.2-23) 

where f is the ratio sensor-to-instrument diameter.  
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For the self-shading error on Lu due to the diffuse solar radiance, the coefficient ksky is  

expressed as:  

      ksky = 4.61 – 0.87 f                (2.2-24) 

Similarly, for the case of upwelling irradiance, Eu, and for a point sensor: 

   ksun,o =3.41-1.55 10-2 θo                   (2.2-25) 

while for a finite sensor with diameter equal to the diameter of the instrument  

    ksun,l =2.76-1.21 10-2 θo                   (2.2-26) 

    ksun = (1-f) ksun,o + f ksun,l                   (2.2-27) 

For the self-shading error on Eu due to the diffuse solar radiance, the coefficient ksky is  

expressed as:  
       ksky = 2.70 – 0.48 f              (2.2-28) 

 

  Estimates of the self-shading correction factors for upwelling radiance, 
ssmeas

true

Lu
Lu

ε−
=

1
1

,   

are shown in figures 2.2-13(a) –2.2-13(d), for absorption spectra characteristic of the 

Chesapeake Bay waters (the absorption spectra used in the specific cases for the 

estimation of self-shading correction factors, are shown in figure 2.2-13(b)). The self-

shading correction factors have been estimated for the Satlantic MicroPro radiometer 

(instrument diameter = 6.4 cm, sensor diameter  = 10 mm) for four solar zenith angles 

θo=30 o, 40 o, 50 o, 60o
 and three different ratios of diffuse to direct sun irradiance. The 

ratios of the diffuse to direct sun irradiance are minimum, average and maximum values 

of the ratio, measured at the Venice tower site (provided by J.O. Reilly , 1999). 
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  However, the Gordon and Ding model is based on the assumption that scattering is 

small relative to absorption. According to Zibordi and Ferrari (1995) the presence of 

highly scattering material (such as in the case of the highly turbid Chesapeake Bay 

waters) could reduce the instrument self-shading error below that theoretically predicted 

by the Gordon and Ding model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2-13: The self-shading correction factor, 
ssmeas

true

Lu
Lu

ε−
=

1
1

, was estimated for the 

MicroPro instrument, as a function of wavelength: (a) for θo=40o, the mean ratio Ediff/Edir 
(J.O. Reilly , 1999) and for the four total absorption spectra shown in fig. 2.2-13b, (c) for 
the total absorption measured at PI station on 28 September 2001 (at(676)=0.64m-1), the 
mean ratio Ediff/Edir (J.O. Reilly , 1999), and for θo = 30o, 40 o, 50 o, 60 o, (d) for the total 
absorption measured at PI station on 28 September 2001 (at(676) = 0.64m-1), for θo = 40o

  
and for the three different measurements of the ratio Ediff / Edir (provided by J.O. Reilly, 
1999).     
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2.3 Results  

 

2.3.1.Temperature and Salinity  

 

Measurements of water temperature and salinity have been performed during the 2001-

2002 cruises in the northern part of Chesapeake Bay, using a Hydrolab instrument. The 

water temperature varied seasonally from low values of 12-14 oC in late fall (cruise on 13 

November 2001) to high values of 26-28 oC in summer (cruise on 9 July 2001). Salinity 

varied seasonally from 6 ppt in late spring (cruise on 22 May, 2002) to 16-17.5 ppt in late 

fall (cruise on 13 November 2001).  

 

Figures 2.3-1(A) and 2.3-2(A) show the seasonal variation in temperature (in oC) and 

salinity (in ppt) observed during the measurements in 2001-2002. The temperature 

increased monotonically from early summer (4 June) to mid summer (9 July) in 2001 and 

then decreased monotonically to the lowest values measured during the last cruise (13 

November) in fall of 2001. A monotonic increase in temperature was observed again 

from spring (5 May) to summer (28 June) during the 2002 cruises. Salinity showed 

minimum values during the late spring-early summer months, while it increased during 

the fall months, reaching the highest values in late fall. Figure 2.3-3 shows the seasonal 

variation observed in rainfall amounts in the northern part of the Chesapeake Bay. The 

rainfall measurements were performed at the SERC station during the years 2001 and 

2002. According to these measurements, higher rainfall amounts, associated with larger 

quantities of freshwater input to the Bay, were measured during the spring-summer 
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months, while drier conditions were observed during the fall season, especially during 

2001. 

 

Figures 2.3-1(B) and 2.3-2(B) show vertical profiles of temperature and salinity 

measured at each one of the four stations, during the fall 2001 and summer 2002 cruises. 

Strong vertical mixing during the fall months (26 September to 13 November 2001) 

resulted in vertically homogeneous waters and measured temperature and salinity profiles 

that were almost constant with depth. Stronger vertical structure in temperature and 

salinity was observed during some of the spring and summer 2002 cruises, with higher 

temperature and lower salinity values measured within the upper water layers. No 

measurements of temperature and salinity profiles were performed during the summer 

cruises of 2001. Vertical structure in temperature and salinity was observed during the 

cruises on 6 and 15 May 2002, and 6 and 18 June 2002. Very low salinity values, of ~ 6 

ppt, were measured at HB station, located close to the western Chesapeake Bay shore, 

during measurements performed on 22 May 2002. On June 5, 2002, there was a large 

storm event in the Chesapeake Bay region. Measurements of temperature and salinity 

performed at HB, PI, TI and JT during the next day (6 June 2002), showed some 

stratification in the water with higher temperature (~24 oC) and lower salinity (10-10.5 

ppt) values close to the surface (0-2m depth) and a decrease in temperature (21-22 oC) 

and increase in salinity (11-12 ppt) with depth. However, during some of the spring and 

summer 2002 cruises, vertically homogeneous waters were observed. Windy conditions 

observed on 15 May 2002 resulted in rough water surface and well-mixed (due to wave 

action), homogeneous waters with almost constant temperature and salinity vertical 
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profiles. An increase in salinity was observed only close to the bottom at the HB station. 

On the 28 June windy conditions were, again, observed during the cruise. The water was 

well mixed and temperature and salinity were almost constant with depth at the PI and TI 

stations. Small variation in temperature with depth was observed at HB station, deeper 

than 5 meters in the water column. 

 

During almost all of the cruises the highest salinity values were observed at the TI 

station (figure 2.3-2(B), green solid line), that is located towards the middle of the 

mainstream of the Chesapeake Bay (fig. 2.2-1). The lowest salinity values were observed, 

during almost all of the cruises, at the JT station (figure 2.3-2(B), red solid line), that is 

located close to the land and closest to the mouth of the Rhode River sub-estuary  (fig. 

2.2-1). However, the salinity gradient among the four stations was, during all of the 

cruises, very small and the differences in salinity values measured at the four stations 

were at the most 2-3 ppt.            
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Figure 2.3-1: (A) Seasonal variation of temperature (in oC) as measured during the 
cruises performed in the northern part of the mainstream of Chesapeake Bay (blue pixels 
correspond to measurements performed in summer and fall 2001, red pixels correspond 
to measurements performed in 2002). (B) Profiles of temperature (in oC) measured at the 
four stations HB (blue), JT (red), PI (yellow), TI (green) during the fall 2001 cruises: a) 
26 Sept.  b) 28 Sept. c) 4 Oct. d) 30 Oct. e) 13 Nov., and during the spring and summer 
cruises in 2002: f) 6 May g) 15 May h) 22 May i) 6 June j) 18 June   k) 28 June 
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Figure 2.3-2: (A) Seasonal variation of salinity (in ppt) as measured during the cruises 
performed in the northern part of the mainstream of Chesapeake Bay ( blue pixels 
correspond to measurements performed in summer and fall 2001, red pixels correspond 
to measurements performed in 2002). (B) Profiles of salinity (in ppt) measured at the four 
stations HB (blue), JT (red), PI (yellow), TI (green) during the fall 2001 cruises: a) 26 
Sept.  b) 28 Sept. c) 4 Oct. d) 30 Oct. e) 13 Nov., and during the spring and summer 
cruises in 2002: f) 6 May g) 15 May h) 22 May i) 6 June j) 18 June k) 28 June
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Figure 2.3-3: Daily total rainfall amount (in inches) recorded at the SERC site, during the 
years 2001 and 2002. The dates of the seventeen cruises performed in the northern part of 
the Chesapeake Bay, are also shown as red lines
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2.3.2 Total absorption and attenuation 
 
 
 

Measurements of total-minus-water absorption, at-w, and attenuation, ct-w, at nine 

wavelengths (412, 443, 490, 510, 532, 555, 650, 676 and 715 nm) were performed using 

the AC9 instrument, a spectral absorption-attenuation meter. Figures 2.3-4(a)-(d) show 

the vertical profiles of absorption and attenuation at 412 and 676 nm, measured at each 

station during four ‘seasons’, one in spring-early summer (cruises: 4 June 2001, 6,15 and 

22 May 2002, 6 June 2002), one in mid summer (cruises: 11 and 25 June 2001, 9 July 

2001, 18 and 28 June 2002), one time-period in early fall (cruises: 21, 26 and 28 

September and 4 October 2001) and one in late fall (cruises: 30 October and 13 

November 2001). Measurements are shown at 412 and 676 nm. Absorption at 676 nm is 

mostly controlled by chl-a pigments, since 676 nm is a maximum in the chl-a absorption 

spectrum and absorption by dissolved material and non-pigmented particulate matter is 

usually much lower at this wavelength. At 412 nm, absorption by non-pigmented 

particles and CDOM is the largest compared to other AC9 wavelengths, due to the 

exponential increase of absorption by CDOM and non-pigmented particles with 

decreasing wavelength.  

 

Average values of at-w(412), at-w(676), ct-w(412) and ct-w(676), along with the standard 

deviations have been estimated for each ‘season’ and each station (fig. 2.3-5). The 

average, minimum, and maximum at-w(412), at-w(676), ct-w(412) and ct-w(676) values 

observed at HB, PI, TI and JT stations are given in tables 2.3-1 – 2.3-4, for several depths 

in the water column, from 0.5 to 6 m. 
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Total water absorption at both 412 and 676 nm was lowest during the beginning of the 

spring 2002 (6 and 15 May 2002), and during the cruises performed in late fall 2001. The 

total attenuation in the water was lowest at both 676 nm and 412 nm during the late fall 

season, at all four stations. Maximum values of absorption at both 412 and 676 nm where 

observed during the early summer cruises (fig. 2.3-4). Specific phytoplankton bloom 

events were observed, associated with high light exposure, abundance of nutrients and the 

presence of more well-stratified waters during this time of the year. A phytoplankton 

bloom, observed at HB station on 11 June 2001, resulted in absorption values at 412 nm 

as high as 4 m-1 within the first meter below the water surface, while absorption at 676 

nm reached 1.8 m-1
. 

 These were among the largest at-w(412) and at-w(676) values 

measured in the Chesapeake Bay waters during our cruises. The water during this day 

was also characterized by high total attenuation, ct-w. Attenuation at 412 and 676 nm 

reached values of ct-w(412) =13 m-1
, ct-w(676) =11 m-1

, which were among the largest       

attenuation values ( ct-w ) measured in the Bay. Another phytoplankton bloom was 

observed at HB station during the following cruise, on 25 June 2001. Maximum 

absorption was observed within the first 1.5 meters with at-w(412) = 4.1 m-1
 and at-w(676) 

= 2 m-1. Total attenuation was high within the first 1.5 meters, with ct-w(412) = 14 m-1 and 

ct-w(676) = 12.5 m-1, and high again close to the bottom, with  ct-w(412) = 13 m-1 and          

ct-w(676) = 9 m-1. High absorption values were observed at the JT station on 18 June 

2002, when at-w(412) reached 4.4 m-1 and at-w(676) reached 2 m-1 within the first meter 

below the water’s surface.  High surface attenuation values were again observed, with      

ct-w(412) = 14 m-1
, ct-w(676) = 12.7 m-1

.  
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The largest variation with depth was observed in absorption and attenuation values 

measured during the spring and summer seasons. This is in agreement with 

measurements of temperature and salinity that showed a general pattern of larger 

stratification in the water column during the spring and summer months. Absorption and 

attenuation at all wavelengths (figure 2.3-4 showing selectively 412 and 676 nm) showed 

only small change with depth during the early fall cruises, and they were almost constant 

with depth during the late fall cruises (30 October and 13 November 2001) when vertical 

profiles of temperature and salinity were also constant with depth. 

 

Absorption values at 412 nm were, on average, higher (during almost all of the cruises 

and during all seasons) at HB and JT stations, the two stations located closer to the 

western shore of the Chesapeake Bay (fig. 2.3-5). Total attenuation in the water, at both 

412 and 676 nm, was consistently higher at the JT station. Total attenuation was usually 

lower at the PI and TI stations. The PI and TI stations showed, also, the lowest variability 

in total absorption and attenuation characteristics during the spring, summer and early fall 

seasons (average values of absorption and attenuation estimated during these seasons at 

PI and TI showed the lowest standard deviations; figure 2.3-5, and tables 2.3-1 – 2.3-4).  
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Figure 2.3-4(a): Profiles of at-w(412) (in m-1) measured at the HB, JT, PI and TI stations, 
during the spring, summer, early and late fall cruises of 2001 and 2002. 
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Figure 2.3-4(b): Profiles of at-w(676) (in m-1) measured at the HB, JT, PI and TI stations, 
during the spring, summer, early and late fall cruises of 2001 and 2002. 
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Figure 2.3-4(c): Profiles of ct-w(412) (in m-1) measured at the HB, JT, PI and TI stations, 
during the spring, summer, early and late fall cruises of 2001 and 2002. 
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Figure 2.3-4(d): Profiles of ct-w(676) (in m-1) measured at the HB, JT, PI and TI stations, 
during the spring, summer, early and late fall cruises of 2001 and 2002. 

JT station: 

PI station: 

TI station: 

de
pt

h 
(m

) 
de

pt
h 

(m
) 

de
pt

h 
(m

) 
de

pt
h 

(m
) 

spring season: 
 
 
 
 
summer season: 
 
 
 
 

early fall:  
 
 
 

 
late fall:  
 

0

1

2

3

4

5

6

7

0 2 4 6 8 10

0

1

2

3

4

5

6

7

0 3 6 9 12 15

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5

0

1

2

3

4

5

6

7

0 2 4 6 8 10

0

1

2

3

4

5

6

7

0 3 6 9 12 15

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

0 1 2 3 4 5

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

0 3 6 9 12 15

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10

0 3 6 9 12 15

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5

  spring                summer             early fall                 late fall  
HB station: 

6-M ay-02
15-M ay-02
22-M ay-02
4-Jun-01
6-Jun-02

11-Jun-01
18-Jun-02
25-Jun-01
28-Jun-02
9-Jul-01

21-Sep-01

26-Sep-01

28-Sep-01
4-Oct-01

30-Oct-01

13-Nov-01



 98

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                        a t-w (676) in (m-1)                          at-w (412) in (m-1)  

 
de

pt
h 

(m
) 

de
pt

h 
(m

) 

                        c t-w (412) in (m-1)  

 

                        c t-w (676) in (m-1)  

de
pt

h 
(m

) 
de

pt
h 

(m
) 

Figure 2.3-5: Average values of at-w(412), at-w(676), ct-w(412) and ct-w(676), along with 
the standard deviations (x-axis error-bars), for each ‘season’(spring, summer, early, late 
fall), at HB (blue pixels), JT (red pixels), PI (yellow pixels), TI (green pixels) stations 
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2.3.3 Total backscattering  
 
 
 

Measurements of total backscattering, bb, at 3 wavelengths (450, 530 and 650 nm) were 

performed using an ECOVSF instrument. The vertical profiles of backscattering at 530 

nm, bb(530), measured at the four stations HB, PI, TI and JT during the 2001 and 2002 

cruises (spring, summer, early and late fall seasons) are shown in figure 2.3-6. Similar 

vertical structure was also obtained for backscattering at 450 and 650 nm. 

 

High backscattering measured close to the surface at HB station on 11 June 2001, was 

associated with high amounts of particulate matter and high absorption by both 

pigmented and non-pigmented particulate matter (high at-w(676) and at-w(412) values 

measured during the specific cruise, fig. 2.3-4). High backscattering was also measured 

close to the surface (along with high absorption and total attenuation values) at JT station 

on 18 June 2002. Relatively high backscattering was observed during some of the cruises 

close to the bottom of the water column (5-8 m depth), which was most probably due to 

the presence of re-suspended inorganic sediments that are characterized by high 

backscattering properties.  

 

Backscattering was generally lower at each station, during the fall months (cruises 21 

September - 13 November), when the water was also characterized by lower total 

absorption and attenuation. The measured backscattering profiles showed small vertical 

variation with depth during the cruises performed in late and early fall seasons, which is 

in agreement with the higher vertical homogeneity of the water (well mixed water, almost  
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backscattering (in m-1 ) at 530 nm  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3-6: Profiles of bb(530) (in m-1) measured at the HB, JT, PI and TI stations, 
during the spring, summer, early and late fall cruises of 2001 and 2002. 
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constant temperature and salinity profiles and low vertical variation in measured total 

absorption and attenuation) observed during the fall months. The temporal variation in 

surface bb(530) vales (0-1m), at HB, JT, PI and TI stations, is shown in figure 2.3-7. 

During almost all of the cruises significantly higher backscattering values at all three 

wavelengths (450, 530 and 650 nm) were measured at the HB station and especially at 

the JT station. Both of these stations are located closer to western shore of the Bay. As is 

shown in figure 2.3-7, the less turbid PI and TI stations were both characterized by much 

lower values of backscattering coefficients. 

 
 
 
 
 
 
 
 
 
 

 
 
Figure 2.3-7: Temporal variation in surface (0-1m) total backscattering values at 530 nm, 
bb(530), measured at HB, JT, PI and TI stations. 
 
 
 

Values of the backscattering fraction bb/b were estimated using the AC9 measurements 

of bt-w (bt-w=ct-w-at-w) and the ECOVSF measurements of bb. Measurements of bt-w (at the 

nine AC9 wavelengths 412-715 nm) were interpolated to obtain scattering coefficients at 

the three ECOVSF wavelengths 450, 530 and 650 nm. Since bb is the total backscattering 

in the water, backscattering due to pure water (bbw =0.5· bw, with bw the Smith and Baker 

coefficients) had to be subtracted from bb to obtain the particulate backscattering 

coefficient  bbp. The bb and b profiles measurements had to be corrected for depth offsets 

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18

120 150 180 210 240 270 300 330
day of year

HB
JT
PI
TI

Temporal Variation of bb(530) at HB, JT, PI, TI stations

b b
 to

ta
l (

in
 m

-1
) 



 106  

between the AC9 and ECOVSF instruments during the measurements. Inaccuracies 

associated with these corrections would affect the accuracy of the estimated bb/b values.    

 

The backscattering fraction measured in the Chesapeake Bay waters during our cruises 

had an average value of 0.0128 with a standard deviation of ± 0.0033, at 530 nm. The 

average value of bbp/bp at 450 nm was 0.0133 with a standard deviation of ± 0.0032, 

while average bbp/bp at 650 nm was 0.0106 with a standard deviation of ± 0.0029. The 

minimum, maximum and average values of bbp/bp at 450, 530 and 650 nm, along with the 

estimated standard deviations are shown in table 2.3-5.  

 
Table 2.3-5: Minimum, maximum and average bb/b values (for particulate matter) 
measured at 450, 530 and 650 nm during the 2001-2002 cruises in the northern 
Chesapeake Bay. 

Wavelength bb/b(450) bb/b(530) bb/b(650) 

minimum 0.00641 0.00577 0.00447 

maximum 0.03387 0.03692 0.03296 

average 0.01323 0.01288 0.01062 

stdev 0.00327 0.00327 0.00294 

 

 
 
The bbp/bp values measured at various depths and at each station during the cruises, are 

shown in figure 2.3-8(a) (HB station: blue diamonds, JT station: red squares, PI station: 

yellow triangles, JT station: white circles). The largest values of bbp/bp, with bbp/bp=0.026 

and bbp/bp=0.036, were measured at JT station on 9 July 2001 at depths 4.9 and 5.4 m 

respectively (close to the bottom of the water column at JT station during that cruise). 

Resuspended, high index of refraction sediments close to the bottom, could be 

responsible for the jump in bbp/bp values. Figure 2.3-8(b) shows the bbp/bp values measured 
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at the four stations only within the first three meters below the water surface. According 

to the measurements shown in fig. 2.3-8(b) lower values of bb/b were measured in the 

spring cruises (May 2002), while cases with high bb/b were observed during the summer 

cruises on 11 June , 25 June and 9 July 2001. Similarly to the spatial pattern observed in 

the bb measurements, higher bb/b values (at all three wavelengths 450, 530 and 650 nm, 

only 530 nm shown in figure 2.3-8(b)) were measured at the JT station during most of the 

cruises, while lower bb/b values were observed at the less turbid TI station. 
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Figure 2.3-8: Backscattering fraction, bb/b, measured (a) at various depths in the water 
column (0-9m) and (b) only within the 3 meters below the water surface, at the stations 
HB, JT, PI and TI, during the 2001-2002 cruises in the Chesapeake Bay. (HB station: 
blue diamonds, JT station: red squares, PI station: yellow triangles, JT station: white 
circles). The two largest bb/b values, bb/b = 0.026 and bb/b = 0.036 (shown in (a)) were 
measured at JT station on 9 July 2001, at depths 4.9 and 5.4 m respectively, close to the 
bottom of the water column at JT station during that cruise. 
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2.3.4 Absorption spectra by non-pigmented particulates, phytoplankton, CDOM  
 
 
2.3.4.1 Particulate non-pigmented absorption 
 
 

Laboratory measurements of absorption by particulate, non-pigmented matter were 

performed, using the CARY spectrophotometer, on water samples collected from the 

stations HB, PI, TI and JT (methodology described in paragraph 2.2.2.2). The term “anpp” 

will be used in the following and for the rest of this document, to describe absorption by 

all non-pigmented particles (including detrital material, inorganic minerals and all 

particulate substances remained on the filters after methanol extraction of pigments).  

 

Particulate non-pigmented absorption spectra, normalized to particulate non-pigmented 

absorption at 440 nm, are shown in figure 2.3-9(A)(a, b, c, d) for the four stations: HB 

(39 spectra), JT (37 spectra), PI (40 spectra) and TI (41 spectra). Measurements are 

shown at wavelengths 412-715 nm (wavelengths of at-w and ct-w AC9 measurements, and 

also wavelength region used in ocean color satellite measurements). Measurements of 

anpp in the spectral region 300-750 nm are shown in figure 2.3-9(B). The “average” 

normalized spectra, anpp(λ)/anpp(440), along with the estimated standard deviations (stdev) 

at each wavelength, are also shown in figures 2.3-9 (e, f, g, h), (and in table 2.3-6).     

 

The normalized spectra measured in the visible wavelength region, 412-715 nm, at each 

of the four stations, show very similar wavelength dependence, especially for the stations 

HB and JT. The estimated standard deviations from the average normalized spectra are 

small especially at HB (maximum stdev of 0.027 at 555 nm) and JT (maximum stdev of 
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0.019 at 510 nm). For TI and PI stations slightly larger variation among the normalized 

spectra was observed (maximum stdev of 0.043 at 510 nm at TI and 0.052 at 555 nm at PI 

station). Some of the variation observed close to 676 nm was due to imperfect extraction 

of the pigmented material (fig.2.3-9).  

Table 2.3-6: Average normalized spectra, anpp(λ)/anpp(440), measured at HB, JT, PI and 
TI stations, (412-715 nm) along with the standard deviations (stdev) 
station  715 676 650 555 532 510 488 440 412 

HB average 0.029 0.097 0.128 0.290 0.382 0.474 0.587 1.000 1.269 
 stdev 0.007 0.016 0.014 0.027 0.026 0.026 0.023 0.000 0.031 

JT average 0.029 0.098 0.125 0.287 0.380 0.476 0.592 1.000 1.271 
 stdev 0.005 0.015 0.011 0.018 0.018 0.019 0.017 0.000 0.027 

PI average 0.026 0.089 0.116 0.264 0.357 0.449 0.565 1.000 1.287 
 stdev 0.009 0.026 0.024 0.052 0.052 0.051 0.045 0.000 0.030 

TI average 0.027 0.095 0.127 0.283 0.375 0.464 0.573 1.000 1.284 
 stdev 0.008 0.023 0.020 0.036 0.037 0.043 0.043 0.000 0.039 

 

 

Non-linear exponential fits were applied to the average normalized absorption spectra, 

(wavelength region 412-715 nm) according to:  

                               anpp(λ) / anpp(440)= A * exp [-Snpp (λ-440)]     (2.3-1) 

that is often used to model absorption by non-pigmented particulate matter. In eq. 2.3-1,  

anpp(λ) and anpp(440) are non-pigmented particulate absorption at wavelength λ and at 440 

nm respectively, A accounts for measurements’ uncertainty in anpp(440), and Snpp is the 

exponential slope. The estimated exponential slopes were very similar for the four 

stations and equal to Snpp=0.0102 nm-1 at HB, Snpp=0.0102 nm-1 at JT, Snpp= 0.0109 nm-1 

at PI and Snpp=0.0104 nm-1 at TI station. The values of the intercept A were very close to 

1 at all stations. R2 values were larger than 0.99. The estimated values of Snpp, A and R2 

are shown in table 2.3-7 for each one of the stations.  
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Figure 2.3-9(A): Normalized spectra, anpp(λ)/anpp(440), measured at (a) HB (b) JT (c) PI 
and (d) TI stations (400-715nm). The average normalized spectra along with the standard 
deviations and the non-linear exponential fit, are shown in figures (e), (f) (g) (h). 
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Figure 2.3-9(B): Normalized spectra, anpp(λ)/anpp(440), measured at (a) HB (b) JT (c) PI 
and (d) TI stations (300-750nm). The average normalized spectra along with the standard 
deviations, are shown in figures (e), (f) (g) (h) for each station.  
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Table 2.3-7: Values of Snpp, A and R2 corresponding to eq.(2.3-1) for absorption by non-
pigmented particulate matter at HB, JT, PI and TI stations (exponential fits shown in fig. 
2.3-9(A)).  

station HB JT PI TI 
Snpp   (nm-1) 0.0102 0.0102 0.0109 0.0104 

A   0.968 0.97 0.964 0.97 
R2 0.998 0.998 0.998 0.998 

 

 
Figure 2.3-10 shows the temporal variation in anpp(440) measured at various depths (0-5 

m) and at the four stations HB, JT, PI, TI, during the 2001 and 2002 cruises. 

Measurements of absorption were corrected for pathlength amplification using β=1.5 

(methodology described in paragraph 2.2.2.3). Higher absorption by non-pigmented 

particulate matter was measured at 440 nm during the summer months, in agreement with 

the temporal patterns of total absorption at 412 nm in these waters. Absorption by non-

pigmented particles decreased during the fall months when more clear water conditions 

were observed in the Bay. Higher values of anpp(440) were observed, during almost all of 

the cruises, at the most turbid station, JT, and also at HB station, compared to 

measurements at TI and PI. 

 
 
 
 
 
 
 
 
 

 

 

Figure 2.3-10: Temporal variation in anpp(440) measured at the four stations HB (blue 
circles), JT (red squares), PI (yellow triangles), TI (white circles), during the 2001 and 
2002 cruises in the Bay. 
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2.3.4.2 Particulate pigmented (phytoplankton) absorption 
  
 

Water samples collected from various depths (0-5m) at the four stations HB, JT, PI and 

TI, during the cruises in the Bay, were analyzed for absorption by phytoplankton 

pigments. The phytoplankton absorption spectra were normalized to phytoplankton 

absorption at 676 nm, which is one of the chl-a absorption maxima. The normalized 

spectra (visible wavelength region) are shown in figure 2.3-11(A) (a, b, c, d) for the four 

stations HB (39 spectra), JT (37 spectra), PI (41 spectra) and TI (41 spectra). The 

“average” normalized spectra, aphyt(λ)/aphyt(676), along with the estimated standard 

deviations (stdev) at each wavelength, are also shown in figure 2.3-11(A)(e, f, g, h) (also 

in table 2.3-8). Large variation was observed among the normalized spectra measured at 

the four stations, which resulted in the large standard deviations shown in figure 2.3-

11(A). Strong absorption in the UV wavelength region (~325-330 nm) was observed in 

certain cases during the spring and summer cruises (fig 2.3-11(B)) most probably due to 

the presence of mycosporine-like amino acids (MAAs). 

 

Table 2.3-8: Average normalized spectra, aphyt(λ)/aphyt(676), measured at HB, JT, PI and 
TI stations, (412-715 nm) along with the standard deviations (stdev) 
station  715 676 650 555 532 510 488 440 412 

HB average 0.050 1.000 0.384 0.380 0.526 0.750 1.004 1.572 1.354 
 stdev 0.025 0.000 0.040 0.106 0.132 0.171 0.245 0.321 0.389 

JT average 0.051 1.000 0.388 0.379 0.522 0.725 0.976 1.533 1.327 
 stdev 0.024 0.000 0.039 0.083 0.094 0.095 0.119 0.116 0.144 

PI average 0.056 1.000 0.382 0.405 0.540 0.760 1.004 1.591 1.381 
 stdev 0.015 0.000 0.032 0.107 0.112 0.122 0.152 0.199 0.235 

TI average 0.048 1.000 0.380 0.378 0.518 0.742 0.997 1.574 1.344 
 stdev 0.016 0.000 0.025 0.073 0.086 0.126 0.184 0.180 0.184 
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Figure 2.3-11(A): Normalized spectra, aphyt(λ)/aphyt(676), measured at (a) HB (b) JT (c) 
PI and (d) TI stations (300-750 nm). The average normalized spectra along with the 
standard deviations are shown in figures (e), (f) (g) (h) for each station 
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Figure 2.3-11(B): Normalized spectra, aphyt(λ)/aphyt(676), measured at HB, JT, PI and TI 
stations during the fall 2001 (a,b,c,d) and also during the spring and summer 2001-2002 
(e,f,g,h) cruises when strong absorption by MAAs was evident in the UV wavelengths.  
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 The temporal variation in aphyt(676) values measured at the four stations HB, JT, PI, 

TI, during the 2001 and 2002 cruises, is shown in figure 2.3-12. Measurements of 

absorption were corrected for pathlength amplification using β=1.5. Higher absorption by 

phytoplankton at 676 nm was measured during the summer months, in agreement with 

the temporal patterns of total absorption at 676 nm, at-w(676), measured in-situ using the 

AC9 instrument (paragraph 2.3.2). Particularly high phytoplankton absorption values 

were measured at HB (blue circles in fig. 2.3-12) and JT stations (red squares in fig. 2.3-

12) during the phytoplankton bloom events observed on 11 June 2001, 25 June 2001 and 

18 June 2002.  Absorption by phytoplankton decreased during the fall months. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3-12: Temporal variation in aphyt(676) measured at the four stations HB (blue 
circles), JT (red squares), PI (yellow triangles), TI (white circles), during the 2001 and 
2002 cruises in the Bay. 
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2.3.4.3 Chromophoric Dissolved Organic Matter absorption spectra 
 
 
 

Measurements of absorption by CDOM have been performed on the water samples 

collected from the northern part of the mainstream of the Chesapeake Bay (methodology 

described in paragraph 2.2.2.2). The measured CDOM absorption spectra, normalized to 

CDOM absorption at 440 nm, are shown in figure 2.3-13(A) (a, b, c, d) (measurements in 

the visible wavelength region 412-715nm), for the four stations: HB (38 spectra), JT (32 

spectra), PI (41 spectra) and TI (41 spectra). The “average” normalized spectra, 

aCDOM(λ)/aCDOM(440), along with the estimated standard deviations (stdev) at each 

wavelength, are also shown in figure 2.3-13(A) (e, f, g, h). The spectrophotometric scans 

showed the typical exponential decrease of CDOM absorption with increasing 

wavelength (Bricaud et al, 1981). However, large variation was observed among the 

exponential slopes of the normalized spectra measured at the four stations during the 

cruises, which resulted in the large standard deviations shown in figure 2.3-13(A)(e, f, g, 

h). The CDOM absorption spectra in the wavelength region 300-750 nm are shown in 

figure 2.3-13(B). Due to the large variation in the exponential slope, standard deviations 

from the average normalized spectra were even more pronounced at the shorter 

wavelengths. 
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Figure 2.3-13(A): Normalized spectra, aCDOM(λ)/aCDOM(440), measured at (a) HB (b) JT 
(c) PI and (d) TI stations (400-715 nm). The average normalized spectra along with the 
standard deviations are shown in figures (e), (f) (g) (h) for each station 

a C
D

O
M

(λ
)/

a C
D

O
M

(4
40

) 
a C

D
O

M
(λ

)/
a C

D
O

M
(4

40
) 

a C
D

O
M

(λ
)/

a C
D

O
M

(4
40

) 
a C

D
O

M
(λ

)/
a C

D
O

M
(4

40
) 

HB station, Cruises 2001-2002 (38 spectra)

0.0

0.5

1.0

1.5

2.0

2.5

400 450 500 550 600 650 700 750
w avelength (nm)

HB station, average normalized spectrum

0.0

0.5

1.0

1.5

2.0

2.5

400 450 500 550 600 650 700 750
w avelength (nm)

JT station, Cruises 2001-2002 (32 spectra)

0.0

0.5

1.0

1.5

2.0

2.5

400 450 500 550 600 650 700 750
w avelength (nm)

JT station, average normalized spectrum

0.0

0.5

1.0

1.5

2.0

2.5

400 450 500 550 600 650 700 750
w avelength (nm)

PI station, Cruises 2001-2002 (41 spectra)

0.0

0.5

1.0

1.5

2.0

2.5

400 450 500 550 600 650 700 750
w avelength (nm)

PI station, average normalized spectrum

0.0

0.5

1.0

1.5

2.0

2.5

400 450 500 550 600 650 700 750
w avelength (nm)

TI station, Cruises 2001-2002 (41 spectra)

0.0

0.5

1.0

1.5

2.0

2.5

400 450 500 550 600 650 700 750
w avelength (nm)

TI station, average normalized spectrum

0.0

0.5

1.0

1.5

2.0

2.5

400 450 500 550 600 650 700 750
w avelength (nm)

a C
D

O
M

(λ
)/

a C
D

O
M

(4
40

) 
a C

D
O

M
(λ

)/
a C

D
O

M
(4

40
) 

a C
D

O
M

(λ
)/

a C
D

O
M

(4
40

) 
a C

D
O

M
(λ

)/
a C

D
O

M
(4

40
) 

(a)      (e) 

(b)      (f) 

(c)      (g) 

(d)      (h) 



 119  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3-13(B): Normalized spectra, aCDOM(λ)/aCDOM(440), measured at (a) HB (b) JT 
(c) PI and (d) TI stations (300-750 nm). The average normalized spectra along with the 
standard deviations are shown in figures (e), (f) (g) (h) for each station 
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The values of aCDOM(440) measured at the four stations, during the specific cruises in 

2001 and 2002, are shown in figure 2.3-14. Measured aCDOM(440) ranged from 0.09 to 

0.55m-1. Relatively higher values of aCDOM(440) were observed at all stations during the 

early spring cruise on 15 May 2001, and especially at HB and JT stations on 22 May 

2002. With the exception of HB station (located very close to the western shore of 

Chesapeake Bay), where absorption by CDOM at 440 nm was relatively large, 

aCDOM(440) values showed some decrease during the fall cruises. However, no clear 

spatial or seasonal pattern was observed at aCDOM(440). The minimum, maximum and 

average aCDOM(440) values observed at each station, are shown in table 2.3-9.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3-14: Measurements of aCDOM(440) performed at the four stations, HB (blue 

pixels), JT (red squares), PI (yellow triangles) and TI (white circles). 
 
 
 

Table 2.3-9: Minimum, maximum and average aCDOM(440) values measured at the four 
stations HB, JT, PI and TI during the 2001-2002 cruises in the northern Chesapeake Bay. 

 
 
 
 
 
 
 

 Meas. aCDOM (440)  

station min max avg stdev 
HB 0.1123 0.4956 0.2713 0.1023 

JT 0.1268 0.4293 0.2825 0.0768 

PI 0.0970 0.5339 0.2751 0.0848 

TI 0.0937 0.4042 0.2472 0.0839 
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Since absorption by CDOM decreases with increasing wavelength in an exponential 

fashion, non-linear exponential fits were applied to the CDOM absorption spectra, 

according to expression:  

                              aCDOM(λ)= aCDOM(440)  * exp [-SCDOM (λ-440)]    (2.3-2) 

that is typically used to model absorption by CDOM (discussion in paragraph 1.5.6). In 

eq. 2.3-2, aCDOM(λ) are the measured CDOM absorption coefficients at wavelengths λ, 

aCDOM(440) is the CDOM absorption at 440 nm, and SCDOM is the exponential slope that 

defines how rapidly the absorption decreases with wavelength. The non-linear 

exponential fits were performed in the visible wavelength region 400-700 nm (since the 

main focus of this study was on the water’s optical properties in the visible) and also in 

the complete spectral range of the measurements 290-700 nm (for comparison with other 

studies on CDOM optical characteristics, e.g Blough and DelVecchio, 2002). The R2 

values of the non-linear exponential fits were in almost all of the cases larger than 0.99. 

 

Figure 2.3-15 shows the comparison between SCDOM values estimated after applying a 

non-linear exponential fit to the aCDOM(λ) measurements in the wavelength regions          

i) 290-700 and ii) 400-700 nm. The comparison between the measured and fitted aCDOM 

values at the visible wavelengths 443, 488 and 555 nm are shown in figure 2.3-16. The 

average values of the residuals aCDOM(λ)measured - aCDOM(λ)fitted , at several wavelengths in 

the visible wavelength region, along with the estimated standard deviations are shown in 

figure 2.3-17. The aCDOM(λ) values estimated when fitting the data in the wavelength 

region 290-700 nm were underestimated compared to the measured aCDOM(λ) values, 

while the aCDOM(λ) measurements were in better agreement with the aCDOM(λ) values 
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estimated when fitting the data in the visible wavelength region. The minimum, 

maximum and average SCDOM and aCDOM(440) values estimated using the two methods 

described above to fit the measurements performed at HB, JT, PI and TI stations, are 

shown in tables 2.3-10(a) and (b). 

 

 

 

 
 

 

 

 
 
Figure 2.3-15: Comparison between SCDOM values obtained when applying a non-linear 
exponential fit to measured aCDOM(λ) values in the wavelength regions 290-700 and   
400-700 nm. 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

Figure 2.3-16: Comparison between the measured and fitted aCDOM values at the visible 
wavelengths 443, 488 and 555 nm, for the two cases when the non-linear exponential fit 
was applied to aCDOM measurements i) in the 290-700 nm wavelength region (blue pixels) 
and ii) in the visible wavelengths 400-700nm (white pixels). 
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Figure 2.3-17: Average values of the residuals aCDOM(λ)measured - aCDOM(λ)fitted , at several 
visible wavelengths, along with the estimated standard deviations, for the two cases when 
the non-linear exponential fit was applied to measurements (a) in the 290-700 nm 
wavelength region and (b) in the visible wavelengths 400-700nm. 
 
 

 
 
 
Table 2.3-10(a): Minimum, maximum and average aCDOM(440) and SCDOM values 
(estimated after applying an exponential fit to aCDOM measurements in the wavelength 
region 400-700 nm), at the four stations HB, JT, PI and TI 

 

 
 

 
 
 
 

 
 

Table 2.3-10(b): Minimum, maximum and average aCDOM(440) and SCDOM values 
(estimated after applying an exponential fit to aCDOM measurements in the wavelength 
region 290-700 nm), at the four stations HB, JT, PI and TI 

 
 
 
 
 
 
 
 

 
 

  aCDOM (440)   SCDOM   

station min max avg stdev min max avg stdev 

HB 0.1129 0.5247 0.2766 0.1079 0.0120 0.0263 0.0185 0.0040 

JT 0.1285 0.4360 0.2871 0.0779 0.0125 0.0211 0.0171 0.0021 

PI 0.0904 0.5426 0.2773 0.0893 0.0085 0.0301 0.0186 0.0041 

TI 0.1055 0.4165 0.2518 0.0869 0.0114 0.0243 0.0176 0.0033 

  aCDOM (440)   SCDOM   

station min max avg stdev min max avg stdev 

HB 0.1082  0.4248 0.2444 0.0904 0.0173 0.0226 0.0200 0.0016 

JT 0.1122 0.3882 0.2476 0.0675 0.0170 0.0216 0.0197 0.0011 

PI 0.1041 0.4132 0.2379 0.0661 0.0165 0.0234 0.0204 0.0015 

TI 0.0813 0.3475 0.2156 0.0740 0.0177 0.0225 0.0202 0.0013 
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A general decrease in the estimated absolute SCDOM values, with increase in the 

absorption by CDOM at 440 was observed during the measurements in the Bay. The 

relationship between aCDOM(440) and SCDOM is shown in figures 2.3-18(a),(b).Figure 2.3-19 

shows the relationship between aCDOM and salinity and between SCDOM and salinity 

measured at HB, JT, PI and TI stations. No strong correlation was found overall between 

salinity and aCDOM or salinity and SCDOM during the cruises in the Bay.  

      
 
 
 
 
 
 
 
 
 
 

(a)              (b) 
Figure 2.3-18: Relationship between (a) aCDOM(440) (m-1) and SCDOM(400-700nm) (nm-1),  
(b) aCDOM(440) (in m-1) and SCDOM(290-700nm) (in nm-1), for measurements performed at HB, 
JT, PI and TI stations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3-19: Relationship (a) between aCDOM(440) (m-1) and salinity (in ppt) (blue 
circles) and SCDOM(400-700nm) (nm-1) and salinity (white circles), (b) between aCDOM(340) 
(m-1) and salinity (in ppt) (blue circles) and SCDOM(290-700nm) (nm-1) and salinity (white 
circles), for measurements performed at HB, JT, PI and TI stations   

S C
D

O
M

 (4
00

-7
00

) (
in

 n
m

-1
) 

S C
D

O
M

 (2
90

-7
00

) (
in

 n
m

-1
) 

aCDOM(440) (in m-1) aCDOM(440) (in m-1) 

a C
D

O
M

(4
40

) (
in

 m
-1

) 

salinity (in ppt) salinity (in ppt) 

a C
D

O
M

(3
40

) (
in

 m
-1

) 

S C
D

O
M

 (4
00

-7
00

) (
in

 n
m

-1
) 

S C
D

O
M

 (2
90

-7
00

) (
in

 n
m

-1
) 

(a)      (b) 

y = 0.0002x + 0.018
R2 = 0.0685

y = -0.0411x + 2.1769
R2 = 0.09580

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

0.026

0.028

0.030
 y = 0.0003x + 0.0141 

R2 = 0.0429

y = -0.0127x + 0.4142 
R2 = 0.1916

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

y = 0.033x - 0.0273
R2 = 0.5291

-0.040

-0.035

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

0 0.1 0.2 0.3 0.4 0.5 0.6

y = 0.0129x - 0.0236
R2 = 0.6087

-0.030

-0.025

-0.020

-0.015

-0.010

0 0.1 0.2 0.3 0.4 0.5 0.6



 125  

2.3.4.4 Contribution to total at-w absorption 

 
The contribution of CDOM, phytoplankton and non-pigmented particulate matter to the 

total absorption in the water was estimated based on the spectrophotometric 

measurements of absorption by dissolved and particulate matter discussed in paragraphs 

2.3.4.1-2.3.4.3. The comparisons were performed at nine wavelengths in the visible 

wavelength region 412-715 nm (412, 443, 488, 510, 532, 555, 650, 676 and 715 nm, 

similarly to the AC9 wavelength bands). Measurements from all depths were included. 

The total absorption was estimated as:  

at-w (λ)= aCDOM(λ) + aphyt(λ) + anpp(λ)    (2.3-3) 

where absorption by particulate matter (phytoplankton and non-pigmented matter) was 

corrected for optical pathlength amplification using β=1.5. The average percent 

contribution (n=136) of each one of the three components, CDOM, phytoplankton and 

non-pigmented particles to at-w, at each wavelength, is shown in figure 2.3-20, along with 

the ± 1 standard deviations.  

 

The results on the percent contribution by phytoplankton, non-pigmented particles and 

CDOM to at-w, were very similar to those shown in figure 2.3-20 when water samples 

collected from the surface waters (0-1 m) and water samples collected from ~ 5m depth 

were examined separately. The results are shown in tables 2.3-11(a)-(b). No water 

samples were collected during the measurements from larger depths closer to the bottom 

of the water column. 
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Figure 2.3-20: Average percent contribution of phytoplankton (graph at the top), non-
pigmented particulate matter (at the middle) and CDOM (at the bottom) to total (minus 
pure water) absorption, at-w, along with the ± 1 standard deviation (n=136). Results are 
shown at the nine wavelengths 412, 443, 488, 510, 532, 555, 650, 676 and 715 nm. 
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Table 2.3-11(a): Average percent contribution of aphyt, anpp, aCDOM to at-w, along with the 
(stdev) standard deviation values. Only water samples from 0-1m depths were examined. 
% contribution  715 676 650 555 532 510 488 440 412 

aphyt average 48.86 86.64 64.86 38.61 38.82 41.10 41.79 38.13 27.27 
 stdev 12.72 4.25 8.88 12.24 11.04 10.21 9.81 8.44 7.28 

anpp average 40.47 11.56 30.28 47.40 46.15 42.78 40.44 39.03 41.68 
 stdev 10.78 3.28 7.53 11.56 10.64 9.74 9.36 8.37 8.68 

aCDOM average 10.67 1.80 4.86 13.98 15.03 16.12 17.77 22.84 31.04 
 stdev 10.23 2.23 4.49 6.85 6.63 6.51 6.53 6.98 8.35 

 

 

Table 2.3-11(b): Average percent contribution of aphyt, anpp, aCDOM to at-w, along with the 
(stdev) standard deviation values. Only water samples from 5m depth were examined. 
% contribution  715 676 650 555 532 510 488 440 412 

aphyt average 48.38 85.77 64.07 40.02 39.99 41.58 41.83 38.05 27.73 
 stdev 13.68 4.52 9.19 11.87 11.15 10.28 9.87 8.67 7.91 

anpp average 40.55 12.22 30.65 46.14 45.18 42.46 40.55 39.36 41.78 
 stdev 11.97 3.62 8.20 12.32 11.54 10.55 9.93 8.55 8.93 

aCDOM average 11.07 2.00 5.28 13.84 14.83 15.96 17.62 22.59 30.49 
 stdev 11.73 2.70 5.99 9.38 9.17 8.96 8.82 8.48 9.22 

 
 

The average percent contribution by phytoplankton, non-pigmented particulates and 

dissolved organic matter to the total absorption, at-w, was also examined separately for the 

four stations HB, JT, PI and TI. The results are shown in figure 2.3-21. The estimated 

standard deviations are not shown in the figure, since they were of the same order as 

those shown in figure 2.3-20. Percent contribution by anpp to at-w was larger (at all 

wavelengths) at JT station, compared to HB, PI and TI stations. 

 

The relationships between absorption by phytoplankton, non-pigmented particulate 

matter, and CDOM, were examined for the measurements performed at the four stations. 

Positive correlation was observed between aphyt(676) and anpp(440), but the relationships 

were not very precise and would not be useful for predictive purposes (fig. 2.3-22). No 
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strong covariation was found between aphyt(676) and aCDOM(440) for the measurements 

performed in the northern Chesapeake Bay waters (fig. 2.3-23). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3-21: Average percent contribution of phytoplankton (graph at the top), non-
pigmented particulate matter (graph at the middle) and CDOM (graph at the bottom) to 
total (minus pure water) absorption, at-w, at the four stations HB (blue pixels), JT (blue 
squares), PI (white triangles) and TI (white squares). Results are shown at the nine 
wavelengths 412, 443, 488, 510, 532, 555, 650, 676 and 715 nm. Standard deviations are 
not shown (in order to be easier to separate the various symbols), but are similar to those 
shown in figure 2.3-20. 
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Figure 2.3-22: Relationship between anpp(440) and aphyt(676) measured at (a) HB (b) JT 
(c) PI and (d) TI station.  
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Figure 2.3-23: Relationship between aCDOM(440) and aphyt(676) measured at (a) HB (b) JT 
(c) PI and (d) TI station. 
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2.4 Discussion 
 
 

The northern part of the mainstream of the Chesapeake Bay estuary is an area of 

considerable seasonal variability, where semidiurnal tidal patterns, saltwater influx from 

the ocean, and river and sub-estuarine outflows during rainfall and storm events, drive the 

estuarine circulation. Seasonal and spatial variability in the water characteristics, caused 

by physical processes in this estuarine environment, affect the chemical and biological 

processes such as growth, mortality and behavior of the aquatic organisms, and result to 

changes in the biological, chemical and optical properties of the organic and inorganic, 

dissolved and particulate material present in these waters. 

 
 
Spatial and temporal variation in water’s inherent optical properties, temperature and 
salinity patterns 

 

According to measurements of total absorption and attenuation performed at the 

northern part of the Chesapeake Bay during our cruises, relatively clear waters were 

observed during the late fall months, with absorption at 412 nm, at-w(412), between 0.75 

and 1.35 m-1, attenuation at 412 nm, ct-w(412), between 1.72 and 5.39 m-1 and total 

backscattering at 530 nm, bb(530), between 0.012 and 0.054 m-1. Optically thicker waters, 

with much higher total attenuation and absorption were observed during the summer 

months, with at-w(412) between 1.19 and 4.4 m-1,  ct-w(412) between 3.85 and 19.41 m-1
  

and bb(530) between 0.033 and 0.25 m-1 (tables 2.3-1 - 2.3-4, and figures 2.3-4, 2.3-6). 

Changes in the water’s inherent optical properties were associated with vertical 

stratification patterns, mixing processes and phytoplankton bloom events, observed in the 

Chesapeake Bay waters, during the specific cruises.  
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  Density stratification, brought about by vertical variation in temperature and salinity, 

affects significantly mixing processes, and hence also, vertical variations in optical 

properties, within the water column. According to measurements of water temperature 

performed in the Bay from June through November 2001 and from beginning of May 

through end of June 2002, Tw ranged between 12oC and 27.5oC, and showed a seasonal 

variation with low values measured during the late fall and spring months, and higher 

values measured during the warmer summer months (fig. 2.3-1(A)). Salinity values 

ranged between 6 ppt and 17.5 ppt, during the measurements performed in the Bay (fig. 

2.3-2(A)). Less saline waters were observed during the late-spring and early-summer 

months, while salinity increased during the late fall months (fig. 2.3-2(B)). 

Evapotranspiration and freshwater input to the Bay during rainfall events, are among the 

main drivers of annual salinity patterns in the Chesapeake Bay. According to rainfall 

measurements performed at SERC since 1967, relatively higher amounts of rainfall are 

typically observed during the spring and early summer months, while fall and winter are 

usually the driest seasons of the year. During the wet, spring months, rainfall and melting 

snow result in large quantities of freshwater input to the estuary and salinity may 

decrease significantly. In the beginning of June 2001, after the relatively higher amounts 

of rainfall in the spring (fig. 2.3-3), salinity values close to the water surface at HB, PI, TI 

and JT stations, were around 11 ppt. By September, after the lower rainfall during the end 

of summer, salinity increased to 15 - 16 ppt at all four stations, and reached 16-17.5 ppt 

during the last fall cruise, on 13 November 2001. After the high rainfall again during the 

wet spring months of 2002, salinity values dropped to 10 ppt in the beginning of June 

2002 (fig. 2.3-2(A)).  
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The Bay waters were characterized by greater vertical homogeneity during the cruises 

performed in the fall season. Stronger winds and stronger vertical mixing during the fall 

months, September through November, resulted in almost homogeneous waters with 

depth. Measured temperature and salinity profiles were almost constant with depth (fig. 

2.3-1(B) and fig. 2.3-2(B)). The water’s inherent optical properties, total absorption, 

attenuation, and backscattering, were also almost constant with depth during the early and 

late fall months (fig. 2.3-4, 2.3-5, 2.3-6). During the fall months, relatively higher values 

of attenuation were observed at a few stations only close to the bottom of the water 

column, most probably associated with the presence of resuspended sediments. High 

values of bb were also measured in these cases, due to high backscattering from the small 

size, high index of refraction particles of re-suspended minerals (Stramski and Kiefer, 

1991) (fig. 2.3-6).  

 

During the cruises in the spring and summer months of 2002 higher thermal 

stratification, due to increased heating of the water close to the surface, was observed. 

During the cruises performed on 6 and 22 May and 6 and 18 June 2002, Tw showed some 

variation with depth, with higher Tw values measured in the upper 2-3 meters and lower 

Tw values closer to the bottom of the water column. Salinity also showed some vertical 

variation during the same cruises, with lower values measured in the upper water layers 

and higher values (by 2-3 ppt during the June 2002 cruises) at depths larger than 4-5 

meters. However, windy conditions, rough water surface and mixing of the water during 

some of the spring-summer cruises (e.g. 15 May 2002), disturbed the stratification 

patterns and resulted in some cases with well-mixed, homogeneous waters, with constant 
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temperature and salinity profiles. Almost constant values of absorption, attenuation and 

backscattering were measured during that cruise in the upper 4-5 meters, while higher 

values of at-w(412), ct-w(412) and bb(530) were measured deeper in the water column, due 

to the presence of re-suspended minerals close to the bottom of the water column. 

 

Stronger stratification during the late spring - early summer months results in a 

decrease of the mixed layer depth through which the phytoplankton circulates. This, in 

combination with higher levels of incident radiation and increased availability of 

nutrients during this time of the year, typically results in intense biological activity and 

favorable conditions for phytoplankton growth and bloom events. Three intense and 

localized phytoplankton bloom events were observed during the summer 2001 and 2002 

cruises, along the western shore of the Bay. A phytoplankton bloom event was observed 

at HB and JT stations on 11 June 2001, and also at HB station during the following cruise 

on 25 June 2001. Another bloom was observed at JT station during the cruise on 18 June 

2002. Total absorption values at 676 nm, during these bloom events, ranged between    

1.2 - 2 m-1, while the average at-w(676) estimated from all the measurements performed 

during the cruises in the Bay was 0.29 m-1. The water at the location of the bloom events 

was also characterized by high total attenuation, with ct-w(676)=11 m-1 at HB on 11 June, 

and ct-w(676)=9 m-1 at HB on 25 June 2001 (mean ct-w(676) from all cruises was 3.4m-1). 

Water samples collected from the location of the blooms and analyzed at the laboratory, 

showed large absorption by both phytoplankton and non-pigmented particulate matter 

during the specific cruises (fig. 2.3-10, 2.3-12). The phytoplankton absorption spectra 

measured on water samples collected from the four stations during the late spring – 
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summer months, showed also high absorption in the UV wavelengths (~ 325-330 nm), 

characteristic of the presence of MAAs (fig. 2.3-11). The MAAs occur in diverse 

phytoplankton taxonomic groups (e.g. diatoms, dinoflagellates, red algae) and may offer 

a photoprotective mechanism against UV exposure by serving as a sunscreen (Lesser et 

al, 1996, Neale et al, 1998), especially during the spring and summer months when both 

PAR and UV radiation are significantly increased (Moisan and Mitchell, 2001). 

 
 

Spectral shapes of absorption by phytoplankton, non-pigmented particles and CDOM 

 
Several inversion algorithms (e.g. semianalytic MODIS chl-algorithm) and methods of 

partitioning total absorption coefficients into absorption by various components are based 

on previous knowledge, models, parameterizations and assumptions about the spectral 

shape of absorption by different materials. Laboratory spectrophotometric absorption 

measurements were used in this project, to study the absorption characteristics of 

phytoplankton pigments, aphyt(λ), non-pigmented particulate matter, anpp(λ) and CDOM, 

aCDOM(λ), and the variations observed on the absorption spectral shapes of these 

substances, during our cruises in the Bay. The contribution of phytoplankton, non-

pigmented particles and CDOM to the total absorption of light at various wavelengths in 

the visible was also examined, in these optically complex estuarine waters.  

 
 
Non-pigmented particles absorption spectra: 

The particulate non-pigmented absorption spectra showed the typical negative 

exponential decline within the visible wavelength region (Kishino et al, 1985, Roesler et 

al, 1989), anpp(λ) = anpp(440) exp[-Snpp·(λ-440)] (eq. 2.3-1). The normalized 
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anpp(λ)/anpp(440) absorption spectra, didn’t show large temporal or spatial variability    

(fig. 2.3-9(a)-(d)). Mean normalized absorption spectra were estimated at each station 

(fig. 2.3-9(e)-(h)) and the standard deviations were small in the visible wavelength region 

(table 2.3-6) (estimated percent standard deviations less than 10% for 400<λ<650 nm at 

HB, TI and JT stations). The exponential slope, Snpp, estimated after applying non-linear 

exponential regression to the measurements, was 0.0102 nm-1 at HB, 0.0102 nm-1 at JT, 

0.0109 nm-1 at PI and 0.0104 nm-1 at TI station. These values are very close to the mean 

spectral slope of 0.0104 nm-1 estimated by Gallegos et al (1990), for measurements 

performed in the Rhode River and the Chesapeake Bay waters, and also in good 

agreement with other studies, such as those by Roesler et al (1989), Iturriaga and Siegel 

(1988), Morrow at el (1989), where measurements were performed at various sites and 

types of water. From the measurements in the Bay, it seems that an exponential model 

with an exponential slope of Snpp = 0.0105 nm-1, provides a very good fit to the non-

pigmented particulate matter absorption spectra measured in the visible wavelengths 

(400-750 nm). Larger variation and a change in the exponential slope were observed for 

anpp(λ) values measured in the UV region. It should be noted, that errors in the 

measurements, such as imperfect extraction of pigments using the methanol extraction 

method, are expected to affect the accuracy of measurements of absorption by non-

pigmented particles, as well as the accuracy of measurements of absorption by 

phytoplankton pigments.     

 
Phytoplankton absorption spectra: 

Large variability was observed in the phytoplankton normalized absorption spectra, 

aphyt(λ)/aphyt(676) measured in the Bay during our cruises (fig. 2.3-11). Although the 
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average normalized spectra estimated from measurements performed at each station were 

similar at the four stations, the estimated standard deviations of the average spectra were 

large (estimated percent standard deviations between 10-30% for 400<λ<650 nm). 

Variations in the shape of the aphyt(λ) spectrum are associated with seasonal variations in 

light and nutrient availability in the Bay waters, changes in phytoplankton species and 

size distributions and changes in the concentration and composition of photosynthetic 

pigments (such as chl-b and chl-c, carotenoids that absorb strongly in 450-500 nm or 

phycoerythrins that absorb in ~630 nm). Pigment packaging is another source of spectral 

variance in aphyt(λ), due to self shading effects and flattening of the absorption peaks 

(Morel and Bricaud, 1981). Even larger variability was observed in the normalized 

phytoplankton absorption spectra in the UV wavelength region. Strong absorption in the 

UV, most probably due to the presence of MAA compounds, was observed during most 

of the spring and summer cruises, affecting significantly the shape of the measured 

phytoplankton absorption spectra. The ratio aphyt(330)/aphyt(676) ranged between 0.7 to 3, 

during the spring and summer cruises (fig. 2.3-11(B)).  

 

The large variations observed in the normalized phytoplankton absorption spectra 

measured in the Chesapeake Bay waters and the uncertainties associated with modeling 

the phytoplankton absorption wavelength dependence in the visible and UV region, 

would affect significantly the accuracy of inversion algorithms and absorption-

partitioning methods. In the MODIS semianalytic algorithm (Carder et al, 2002, MODIS 

ATBD 19) variations in aphyt(λi)/aphyt(676) (for λi = 412, 443, 488, 551 nm) are expressed 

as a function of aphyt(676). However, no relation was found between normalized 
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phytoplankton absorption coefficients and aphyt(676) for the measurements from the 

Chesapeake Bay waters. More studies are needed for better parameterizations of 

phytoplankton absorption spectra in estuarine waters. 

 
CDOM absorption spectra: 

Absorption by CDOM showed the typical exponential increase with decreasing 

wavelength (Bricaud et al, 1981) through the visible region of the spectrum and also in 

the UV wavelengths (fig. 2.3-13). The exponential slope, SCDOM, was estimated after 

applying non-linear exponential regression to aCDOM(λ) values measured i) in the visible 

wavelength region, 400-700 nm, since the main focus of this study was on the water’s 

optical properties in the visible and their effect on the amount of water-leaving radiance 

that can be measured remotely by satellites (visible wavelengths) (chapters 4, 5) and ii) in 

the complete spectral range of the measurements 290-700 nm, for comparison with other 

studies on CDOM optical characteristics, (e.g. Blough and DelVecchio, 2002). The non-

linear exponential regression method was used, instead of calculating SCDOM through 

least-squares regression of the log-transformed data, since with the non-linear regression 

larger weighting is given to the higher and better measured absorption values at the 

shorter wavelengths. The R2 values of the non-linear exponential fits were in almost all of 

the cases larger than 0.99.  

 

Fitted aCDOM(λ) values were compared to measured aCDOM(λ) values at various visible 

wavelengths (443, 488 and 555 nm shown in figure 2.3-16). The aCDOM(λ) values 

estimated when fitting the data in the wavelength region 290-700 nm were 

underestimated compared to the measured aCDOM(λ) values, while better agreement was 
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found between the measured aCDOM(λ) and the aCDOM(λ) values estimated when fitting the 

data in the visible wavelength region. The residuals aCDOM(λ)measured - aCDOM(λ)fitted , were 

estimated at several wavelengths in the visible wavelength region (fig. 2.3-17). The 

average values of the residuals aCDOM(λ)measured - aCDOM(λ)fitted(290-700) were larger than the 

photometric accuracy of the CARY instrument (photometric accuracy of 10-4 OD units as 

reported by manufacturer, corresponding to 0.005 m-1 for a 5 cm cuvette) or the standard 

error of the aCDOM measurements. The standard error of the aCDOM measurements 

(aCDOM=aCDOM’-a blank), as estimated based on replicate measurements of the blank 

(distilled water at both reference and sample cuvette) and the sample absorption, was in 

the order of ~ 0.022 m-1. The residuals aCDOM(λ)measured - aCDOM(λ)fitted(400-700) were smaller 

and close to the standard error of the CDOM absorption measurements. Therefore, the 

non-linear exponential fit in the 400-700 nm wavelength region seemed to provide a 

better fit to the measured aCDOM(λ) values in the visible wavelengths. However, it should 

be noted that CDOM absorption in the visible is much lower and less well measured than 

in the shorter UV wavelengths. For studies that include the UV wavelengths non-linear 

fits applied to the full spectrum 290-700 nm should be used, or a combination of two 

exponentials in the UV and visible wavelengths (Blough and DelVecchio, 2002). 

 

The mean SCDOM values estimated from measurements performed at each one of the 

four stations (non-linear fits in the visible wavelength region), were not largely different 

among the four stations (tables 2.3-10, 2.3-11), with SCDOM(400-700)=0.0185 at HB, 

SCDOM(400-700)=0.0171 at JT, SCDOM(400-700)=0.0186 at PI and SCDOM(400-700)=0.0176 at TI 

station. These values are in agreement with values of SCDOM reported in previous studies 
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(e.g. Bricaud et al, 1981, Roesler et al, 1989). However, the estimated SCDOM values 

showed large variation around the average SCDOM estimated at each station. The standard 

deviation of the exponential slope, SCDOM, as estimated based on replicate measurements 

of CDOM absorption (e.g. surface sample, TI station, 15 May 2002) was in the order of 

4103.3 −⋅ nm-1 for SCDOM(290-700) and 4106 −⋅ nm-1 for SCDOM(400-700). According to studies on 

CDOM optical characteristics (e.g. Carder et al, 1989; Green and Blough, 1994; Blough 

and DelVecchio, 2002), values of SCDOM for CDOM from a wide variety of sources, 

range from as low as 0.01 to as high as 0.030 nm-1. SCDOM and aCDOM vary with the source 

and composition of the dissolved material, with terrestrial humic substances showing 

lower SCDOM and higher absorption at 440 nm, than CDOM in oligotrophic seawaters 

(Carder et al, 1989). Previous studies in coastal regions (Blough et al., 1993; Green and 

Blough, 1994; Nelson and Guarda, 1995; Vodacek et al., 1997) have shown that SCDOM 

usually increases with decreasing absorption and increasing salinity during transit of the 

terrestrial CDOM to offshore waters. The increase in S from coastal to offshore waters is 

thought to arise from the transformation of terrestrially derived CDOM and (or) its 

replacement by CDOM generated in-situ (Blough et al, 1993; Blough and Green, 1995; 

Vodacek et al, 1997). Mixing processes, photochemical or biological processes, or most 

probably a combination of the above, can result in changes in the CDOM optical 

characteristics.  

 

Although a negative relationship was observed between aCDOM and SCDOM during the 

measurements in the Bay, with SCDOM decreasing with increasing aCDOM(440) (fig. 2.3- 

18), no strong correlation was found overall between salinity and aCDOM or salinity and  
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SCDOM during the cruises in the Bay (fig. 2.3-19). During almost all of the cruises the 

highest salinity values were observed at the TI station (figure 2.3-2(B), green solid line). 

This station is located towards the middle of the mainstream of the Chesapeake Bay (fig. 

2.2-1) and, among the four stations, is the one located at the largest distance from the 

Bay’s shores. The lowest salinity values were observed, during almost all of the cruises, 

at the most turbid JT station (figure 2.3-2(B), red solid line), which is located along the 

western Bay shore and closest to the mouth of the Rhode-River sub-estuary (fig. 2.2-1). 

However, the four stations HB, PI, TI and JT encompass only a small portion of the 

entire mouth-to-head salinity gradient of the Bay, and salinity differences among the four 

stations were less than 2-3 ppt during individual cruises. An exception to this was the 

cruise performed on 22 May 2002, when low salinity values of 6 ppt, along with 

relatively high aCDOM values were measured at HB (aCDOM(440)=0.44 m-1, SCDOM=0.016 

nm-1) and JT stations (aCDOM(440)=0.43 m-1, SCDOM=0.0156 nm-1), close to the western 

shore of the Bay. This was most probably associated with a spike in flow from the 

Susquehanna River about 2 weeks earlier (fig. 2.4-1) (Gallegos, personal 

communication).  Salinity values at PI station (eastern shore of Chesapeake Bay) during 

that day were ~ 10 ppt, while measurements of CDOM absorption were relatively lower 

(aCDOM=0.3 m-1, SCDOM=0.0178 nm-1). Measurements of the CDOM absorption properties 

performed in the Rhode River sub-estuary (data not shown in this study) showed a 

stronger relationship between salinity and SCDOM. The salinity gradient among the 

stations sampled in the Rhode River was relatively large, with salinity values, during 

individual cruises, ranging from 0 ppt (at the tidal creek) to 18 ppt (at the mouth of the 

sub-estuary). According to the measurements, a strong increase in SCDOM and decrease in 
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aCDOM(440) was observed with increase in salinity, during individual transects from the 

tidal creek towards the mouth of the sub-estuary. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4-1: Decrease in salinity (in psu) measured at the SERC dock (black line) and at 
the mouth of the Rhode River sub-estuary (red line), probably associated with a spike in 
flow from the Susquehanna River about 2 weeks earlier (Gallegos, personal 
communication). 
 

 

Due to the large variability in SCDOM values observed during the measurements in the 

Bay, an exponential model of the form aCDOM(λ)=aCDOM(440) exp[-0.018· (λ-440)], 

should be used with caution in inversion algorithms (e.g. MODIS semianalytic algorithm 

for estimation of [Chl-a], discussion in Chapter 5), since SCDOM values estimated for 

individual CDOM absorption spectra could diverge substantially from the average SCDOM 

value of 0.018 nm-1. More work, related to studies on temporal and seasonal variations in 

CDOM optical characteristics and their relation to physical, chemical and biological 

processes in the Bay, is definitely needed.    
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Absorption by particulate matter, backscattering, bb, and backscattering fraction, bb/b 

 
Absolute values of absorption by phytoplankton (aphyt(676) shown in fig. 2.3-12) 

showed some seasonal variation in the Bay waters, with lower values during the early 

spring and late fall months and larger values during the phytoplankton bloom events 

observed in the Bay during the summer cruises. The bloom events that were observed 

during the cruises on 11 June 2001, 25 June 2001, 18 June 2002, were localized events 

observed at HB and JT stations, along the western shore of the Bay. According to 

Harding et al (2002), phytoplankton blooms observed in the bay during the late spring 

and summer months, are typically dominated by dinoflagellates populations. These “red 

tide” events can be very patchy and are often more prevalent on the western side of the 

mainstream of the Bay and in the mouths of certain tributaries (Harding et al, 2001). 

Since no studies on the characterization of the phytoplankton species were performed in 

the framework of this project, there is not sufficient information to identify the 

phytoplankton species during the bloom events observed in the Bay. With the exception 

of the large spatial variation in phytoplankton absorption observed during the specific, 

localized phytoplankton bloom events mentioned above, no particular spatial pattern was 

observed in aphyt(676) or at-w(676) measured at the four stations HB, PI, TI and JT during 

our cruises (fig 2.3-12).  

 

Measurements of absorption by non-pigmented particulate matter at 440 nm, anpp(440), 

showed large seasonal variation with higher values observed during the late spring and 

summer months, and relatively lower values measured during the fall (fig. 2.3-10). 

Riverine discharges during the spring and summer months, when rainfall amounts in the 
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Bay are typically higher, are expected to result in optically thick waters and higher 

concentrations of inorganic particles of terrestrial origin. At the same time, higher 

biological activity during the summer months and large phytoplankton bloom events, 

could be associated with higher amounts of detrital, non-living organic particulate 

material. According to Gallegos and Jordan (2002), high absorption by non-pigmented 

particulate matter was measured after a large phytoplankton bloom event observed in the 

Rhode River sub-estuary in April-May 2000, extending the period of high attenuation 

coefficients into the first week of May. According to Gallegos and Jordan, dying cells 

from the bloom were, initially, the source of elevated detrital absorption. Such labile 

organic matter could have stimulated microbial decomposition and associated 

heterotrophic protists, resulting in high anpp(440) values, after the peak of the bloom. 

High values of anpp(440), bb(530) and bb/b(530) were measured at the HB and JT stations 

during the bloom event on 11 June 2001 (fig. 2.3-7, 2.3-8, 2.3-10). Higher values of 

anpp(440), as well as bb(530), were observed during almost all of the cruises at the HB and 

JT stations, compared to measurements at PI and TI stations. At the turbid JT station, 

during some of the cruises, measured anpp(440) and bb(530) values were larger by more 

than a factor of 2 compared to measurements at PI and TI stations. The higher abundance 

of non-pigmented particulate matter at the JT station, is mainly due to the proximity of 

the station to land, the stronger influence of inflow of terrigenous organic and inorganic 

particulate matter, and also the shallower depths measured at this region of the Bay. 

 

Estimated values of the backscattering fraction, bb/b, ranged, during our cruises, 

between 0.006 and 0.036 at 530 nm, with an average value of 0.013 (± 0.0033 standard 
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deviation) (fig. 2.3-8, table 2.3-5). The largest bb/b values (bb/b=0.026 and bb/b = 0.036) 

were measured at depths 4.9 m and 5.4 m respectively (close to the bottom of the water 

column) at the JT station, on 9 July 2001. Resuspended, small size and high index of 

refraction sediments close to the bottom, could be responsible for the jump in bb/b values 

at such depths in the water column. Similarly to the spatial patterns observed at anpp(440), 

higher bb(530) and bb/b(530) were measured during most of the cruises at the JT station, 

and lower bb/b values were measured at the less turbid TI station. The measured bb/b 

values suggest that the backscattering fraction can show considerable variation, 

depending on water type, mixing processes, biological activity. According to the 

measurements, the backscattering fraction in the Bay waters can be much different than 

the Petzold “average particle” backscattering fraction, bb/b=0.018, that has been widely 

used as a default value for modeling backscattering in moderately turbid waters. 

Measured bb/b(530) values, by Mobley et al (2002), for the case 2 waters at the LDEO15 

site off the coast of New Jersey were also lower than the Petzold value and ranged 

between 0.005 (surface waters) and 0.0015 (closer to the bottom of the water column). As 

discussed in chapter 3, using scattering phase functions with the correct backscatter 

fraction and overall shape is very important for accurate model simulations and 

prediction of the underwater light fields. Therefore, accurate measurements of 

backscattering and backscattering fraction are crucial to achieving model-data closure 

(chapter 3). 
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Percent contribution by various substances to total water absorption  

 
From the measurements of absorption by phytoplankton, CDOM and non-pigmented 

particulate matter performed during the cruises, it is evident that pigmented and non-

pigmented, particulate and dissolved substances affect significantly the bulk optical 

characteristics in the Bay waters throughout the year. The percent contribution of 

phytoplankton, CDOM and non-pigmented particles to the total (minus water) absorption, 

at-w=aphyt + aCDOM + anpp, measured in the Bay waters, was shown in fig 2.3-20, 2.3-21, for 

certain wavelengths in the visible. According to the results, 80-90% of the total (minus 

water) absorption at 676 nm was due to phytoplankton, with only a small 10-20 % 

contribution by non-pigmented particulate matter and CDOM. This is due to the fact that 

676 nm is a maximum in the chl-a absorption spectrum, and also due to the exponential 

decrease of both absorption by CDOM and non-pigmented particulate matter, with 

increasing wavelength. However, in the blue and green wavelengths, contribution by 

CDOM and non-pigmented particles becomes significantly larger. At 555 nm 

contribution by phytoplankton to at-w was only 40% (average percent value), while 

anpp(555) accounted, in average, for 45% and aCDOM(555) for 15% of the total at-w. 

Contribution by CDOM to total in-water absorption increased at shorter wavelengths due 

to the large exponential increase of aCDOM with decreasing wavelength (average 

SCDOM=0.018). At 412 nm contribution by CDOM to at-w was in average 31% 

(stdev=8.35), contribution by non-pigmented particles was almost 40% (stdev=8.68), 

while contribution by phytoplankton was less than 30% (stdev=7.28). Although high 

absorption by both phytoplankton and non-pigmented particles was observed during the 

bloom events in the summer months, no strong covariation was observed overall between 
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aphyt(676) and anpp(440), or between aphyt(676) and aCDOM(440) during the cruises         

(fig. 2.3-22, 2.3-23). Therefore, in the Chesapeake Bay estuarine waters, CDOM and 

non-pigmented particles, substances that do not necessarily covary with phytoplankton 

absorption or chl-a concentration, significantly affect the underwater light fields and the 

amount of radiance leaving the water surface in the blue and green regions of the 

wavelength spectrum. This has significant implications on the accuracy of MODIS 

chlorophyll algorithms that are based on measurements of remote sensing reflectances in 

the blue-green wavelength region (discussion in chapter 5). 

 

2.5 Summary and Conclusions 
 
 

In-situ measurements of water optical characteristics were performed in the northern 

part of the Chesapeake Bay as part of this project. Specific cases of stratified and 

vertically homogeneous waters, relatively clear or optically thicker waters, phytoplankton 

bloom events, rainfall events, and riverine outflows were examined in order to study the 

total absorption and attenuation of light under various conditions. Water samples were 

analyzed at the laboratory, to estimate the optical properties of individual components 

(phytoplankton, non-pigmented particles and CDOM) and study the temporal and 

seasonal variation in their optical characteristics, in this specific region of the Bay. The 

contribution of phytoplankton, non-pigmented particles and CDOM to the total 

absorption of light at various wavelengths in the visible was also examined. The most 

significant points and conclusions from the in-situ measurements performed in the 

northern Chesapeake Bay region (2001-2002) are summarized in table 2.5-1. 
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Table 2.5-1: Chapter 2 - Significant points 

 - Measurements using the integrating sphere method showed small, but not-zero particulate 
absorption in the wavelength region 700-730 nm. Several methods that are used to correct 
spectrophotometric absorption measurements for scattering errors, are based on the assumption that 
total (minus pure water) absorption in the NIR wavelengths (e.g. 715 nm) is zero. Accounting for the 
small NIR absorption, at-w, can be important in model simulations of underwater light fields, 
especially in the green wavelengths, where at-w is relatively small.  

 - Instrument self shading correction (Gordon and Ding, 1992), applied to radiometric measurements 
of Lu(z) performed in the Bay, was found to be important, especially in the blue (large absorption by 
CDOM and non-pigmented particles) and red (large absorption by water) regions of the visible 
spectrum (~10% increase on the estimated Lu). However, the presence of highly scattering material in 
the turbid Chesapeake Bay waters could reduce the instrument self-shading error below that 
theoretically predicted by the Gordon-Ding model. More work is needed for more accurate application 
of the self-shading correction in turbid waters, where scattering is large relative to absorption. 
- Water temperature, Tw, and salinity, Sw, showed the typical patterns expected for Chesapeake Bay 
waters, with high temperature (and low salinity) values during the summer cruises and a decrease in 
temperature (and increase in salinity) during the colder (and drier) fall months. Thermal and density 
stratification patterns observed during some of the summer cruises affected the vertical structure in 
water’s optical properties. 

- Larger vertical stratification (as shown by vertical profiles of Tw and Sw) and higher nutrient and 
light availability during the late spring- early summer months, resulted in more intense biological 
activity and favorable conditions for phytoplankton growth. Surface phytoplankton bloom events were 
observed during some of the spring and summer cruises in the Bay. With the exception of the 
localized phytoplankton bloom events, when high spatial variability was observed in phytoplankton 
absorption, aphyt(676) did not show large spatial variation among the four stations.  

 - Large spatial variation was observed in absorption by non-pigmented particulate matter, anpp(λ), 
with higher values observed, consistently, at the turbid JT station. The higher abundance of non-
pigmented particulate matter at the JT station, could be due to the proximity of the station to land, the 
stronger influence of inflow of terrigenous particulate matter, and also the shallower depths measured 
at this region of the Bay.   

 - The backscattering fraction bb/b(530) had an average value of 0.013 (smaller than the widely used 
bb/b value for the Petzold “average particle”, bb/b=0.018). Considerable variation was observed in the 
measured bb/b in the Bay, with values as low as 0.006 and higher than 0.036 (larger values close to the 
bottom, probably due to re-suspension of inorganic sediments with high index of refraction). Seasonal 
and temporal variation in backscattering, bb, was related more strongly to anpp(λ) seasonal and 
temporal patterns, than to seasonal and temporal variation of aphyt(λ). 

- Absorption by non-pigmented particles, anpp(λ), showed an exponential decrease with wavelength. 
Small variability was observed in the spectral shape of anpp(λ), with average exponential spectral slope 
Snpp=0.010-0.011 nm-1 and small standard deviation. Therefore, an exponential model (eq. 2.3-1) with 
Snpp=0.0105 nm-1, provides a very good fit to the non-pigmented particulate matter normalized 
absorption spectra, measured in the Chesapeake Bay waters.  

- Large variation was observed in the normalized, aphyt(λi)/aphyt(676), phytoplankton absorption 
spectra, mainly due to natural variations in light and nutrient conditions, variations in phytoplankton 
species and composition of photosynthetic pigments. Higher variability was observed in the UV 
region, during the summer cruises, when optical characteristics of MAAs (or/and presence of other 
photoprotective pigments) affect the spectral shape of phytoplankton absorption curves. 
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Table 2.5-1: Chapter 2 - Significant points (continued) 

- Absorption by CDOM showed the typical exponential decrease with wavelength. However, large 
variability was observed in the CDOM exponential slope. An inverse relationship was observed 
between SCDOM and aCDOM(440). However, no strong relationship was observed between salinity and 
SCDOM or salinity and aCDOM(440). It should be noted that the salinity gradient sampled during most of 
the cruises was small, with salinity differences among the four stations less than 2-3 ppt. Several 
factors such as biological and chemical processes, as well as mixing processes of dissolved material of 
different origins, or most probably a combination of the above, influence the CDOM optical 
characteristics in the main stem of the Bay. The high variability observed in the CDOM exponential 
slope and the uncertainties associated with modeling the phytoplankton absorption wavelength 
dependence, would affect the accuracy of inversion algorithms and absorption partitioning methods, 
such as those used currently in satellite algorithms. 
- Contribution by phytoplankton to total (minus water) absorption was found to be large (more than 
80%) in the 676 nm wavelength region (chl-a absorption maximum). However, contribution by 
CDOM and non-pigmented particles was found to be large in the blue-green wavelength region 
(average 60% combined contribution to at-w(488) by CDOM and non-pigmented particles, and even 
larger at the shorter wavelengths 443 and 412 nm). No strong covariation was found between 
absorption by phytoplankton and absorption by non-pigmented particulate matter or CDOM during 
our cruises. Therefore, total absorption and attenuation of light at wavelengths 412, 443 and 488 nm in 
the Chesapeake Bay waters, is largely affected by substances other than phytoplankton, that do not 
necessarily covary with [Chl-a]. This has significant implications on the accuracy of satellite 
algorithms that estimate [Chl-a] based on measurements of remote sensing reflectances in the blue-
green wavelength region (chapter 5). 
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CHAPTER 3 
 
 

Model estimations of underwater radiation fields and water-leaving radiances in 

the Chesapeake Bay – Closure Experiment  

 
 
3.1 Introduction – Background 

 

Two basic methods for studying water’s physical, chemical, biological properties 

through hydrologic optics, are, first, laboratory or in-situ analysis of inherent optical 

properties, and, second, inference of marine optical properties based on measured 

properties of light within and leaving the water. Because of the marine environment’s 

complex composition, interpretation of emerging and underwater radiation fields requires 

the use of an accurate and detailed radiative transfer model.  The model must account for 

absorption and scattering of light penetrating into the water for various different 

wavelengths, under varying conditions of water optical properties, and atmospheric 

composition. When detailed in-situ radiance/irradiance measurements are not available 

(for example in remote environments where such measurements are difficult to make), 

theoretical estimations can provide the needed information on underwater radiation 

fields. By changing the water-model assumptions (e.g., inclusion or not of processes such 

as bioluminescence, fluorescence by chlorophyll and CDOM), and matching calculated 

and measured radiances, it is possible to study the significance of particular natural 

processes (such as chlorophyll fluorescence) on the underwater light field. By varying the 

water’s inherent optical properties (e.g concentration of chlorophyll or inorganic 

particulate matter or amount of dissolved organic compounds of terrigenous origin) the 



 151 
 

model simulations can be used to predict how changes in water quality, caused by human 

activities, could affect the underwater light field and the related growth of phytoplankton 

or submerged grasses in the aquatic environment. 

 

Radiances detected by a downward-looking imaging spectrometer onboard a satellite 

contain both the water-leaving radiance (the signal, which carries the information about 

the water body itself), the sky radiance reflected by the sea surface, and the solar radiance 

backscattered towards the satellite by atmospheric gases and aerosols. Numerical models 

separately compute each of these contributions and provide the information necessary to 

convert the signal detected by remote sensors into ocean optical properties. When 

detailed in-situ or remotely sensed measurements are available for both the atmosphere 

and water, the combination of measurements and model estimations forms a “closure 

experiment”, in the sense that measured inherent optical properties can be used as input 

information to the model, while the radiance and irradiance profile measurements can be 

compared with the models’ output. Such closure experiments can reveal errors related to 

the methodology of the measurements and the accuracy of the instruments, as well as 

errors in radiative transfer methods and uncertainties in assumptions of underwater 

optical properties or parameterizations used in satellite algorithms.  

 

Various numerical models are in use today for computing underwater light fields that 

use different numerical techniques (both analytical or probabilistic) for solving the 

radiative transfer equation, and are based on different assumptions. The main distinction 

is the varying degree of sophistication regarding the mathematical representation of 
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physical processes, with increased sophistication usually coming at the price of increased 

computational expense. One of the more sophisticated methods is the extensively 

validated Hydrolight underwater radiative transfer program (Mobley, 1988). Hydrolight 

was used in the framework of this project to perform model estimations of water-leaving 

radiance and underwater radiation fields within the Chesapeake Bay estuarine waters. 

The results demonstrate the conditions under which theoretical calculations of radiation 

fields can produce close agreement with experimental results, and help reveal the causes 

of any disagreement between measured and modeled quantities.  

 

3.2 Hydrolight Model 

 

3.2.1 Description of the model – Input data needed and assumptions 

 
“Hydrolight” is a commercially available one-dimensional radiative transfer model that 

uses the invariant imbedding method to generate an approximate solution to the time-

independent, monochromatic radiative transfer equation: 
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where L(τ, µ, φ) is the unpolarized spectral radiance (at wavelength λ) at optical depth τ, 

and in direction (µ, φ), µ = cosθ (θ is the polar angle), φ is the azimuth angle, ωo is the 

single scattering albedo (ωo = total scattering / total attenuation) , β
~

(τ,µ,φ) is the 

scattering phase function and S represents any internal source of radiance (Mobley et al, 
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1993). The depth τ is measured as positive downward from the mean sea surface and the 

polar angle θ is measured from the nadir direction. The model solves eq. 3.2-1 by 

partitioning the set of all directions Ξ into regions bounded by constant µ and φ, plus two 

polar caps. These quadrilateral regions and polar caps are collectively called quads. The 

individual quads Quv are labeled by discrete indexes u,v. The fundamental quantities 

computed by Hydrolight are the quad-averaged radiances 

                                  ∫∫
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where L(τ,u,v) is the average radiance over the set of directions contained in the uv quad, 

Quv, which subtends a solid angle of size Ωuv. According to Mobley (1989) and Mobley 

et al (1993), by standard techniques of Fourier analysis and invariant imbedding theory, 

the equations for L(τ,u,v) are transformed into a set of Riccati differential equations 

governing the depth dependence of certain reflectance and transmittance functions within 

the water body. The L(τ,u,v) at all depths are estimated after depth integration of the 

Riccati equations and incorporation of the air-water surface and bottom boundary 

conditions (Mobley and Preisendorfer, 1988). Water absorption and scattering properties, 

sky conditions, and bottom boundary conditions are needed as input information to run 

the numerical model. The model solves the radiative transfer equation and computes the 

in-water light field and other quantities of interest, such as the water-leaving radiance and 

remote-sensing reflectance, in the wavelength region 350-800 nm (Mobley, 1989). A 

modified version of Hydrolight, that can be used from 400 nm down to 290 nm, has been 

developed recently by Vassilkov et al (2003), for studies of UV penetration in the water.   
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The basic assumptions and characteristics of Hydrolight are summarized in table 3.2-1 

(Mobley and Sundman, 2000). The model solves eq (3.2-1) for a plane-parallel water 

body that is horizontally homogeneous, but may be inhomogeneous with depth 

(depending on the inherent optical properties used as input information). The upper 

boundary of the water body is the air-water interface. The model uses a Monte Carlo 

simulation of the wind-blown surface and the Cox-Munk (1995) wave slope statistics to 

compute the reflectance and transmittance functions that describe the optical effects of 

the sea surface. The lower boundary can be either a reflecting bottom (such as clean sea-

grass, coral sand, brown algae) at a finite depth, or an infinitely thick layer of water 

below the greatest depth of interest. The model neglects polarization. It includes all 

orders of multiple scattering. It also includes inelastic scattering, such as Raman 

scattering by water and fluorescence by chlorophyll and CDOM, as well as internal 

sources such as bioluminescence.   

 

 

Table 3.2-1: Hydrolight Model characteristics and assumptions 

- time-independent 
- horizontally homogeneous IOPs and boundary conditions 
- arbitrary depth dependence of IOPs 
 - wavelength region:  350 - 800 nm  
        (in the UV extended version: 290 - 800 nm)  
 - Cox-Munk (1995) wave slope statistics 

- infinitely deep (non-Lambertian) or finite bottom 
- includes all orders of multiple scattering 
- includes Raman scattering by water 
- includes fluorescence by chlorophyll and CDOM 
- includes internal sources such as bioluminescence 
- does not include polarization 
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• Input Information:  

  
Information needed as input to the model consists of: 

i) Inherent optical properties (IOPs) of the water body (i.e. absorption and scattering 

coefficients and scattering phase function).  

   These properties must be specified as functions of depth and wavelength and can be 

obtained from measurements or from analytical models. To compare model 

calculations with in-situ data, it is very important to have detailed information about 

absorption, attenuation and scattering (forward and backward directions) in the water. 

ii) Roughness of the ocean surface.  

   Hydrolight uses the Cox and Munk (1995) wave slope statistics, which include both 

capillary and gravity wave slope effects (Mobley, 2002) to model the rough ocean 

surface. In the Cox-Munk distribution, the variance of the slopes of the waves on the 

ocean surface is linearly related to the wind speed over the ocean surface. Therefore, 

only the wind speed needs to be specified before running the code. 

iii) The nature of the bottom of the water column (finite or infinitely deep water).  

   The bottom boundary is described in terms of a bi-directional reflectance distribution 

function. Hydrolight provides data files containing irradiance reflectances for several 

different bottom types. These values include measured reflectance values for coral 

sand, brown, red and green algae (Maritorena et al 1994) and for clean sea grass leaves 

(provided by Zimmerman). The user’s own data files can be added to the list of 

available bottom reflectance spectra. 
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iv) The sun and sky radiance incident on the sea surface.  

   The sky spectral radiance distribution can be obtained from semi-empirical models that 

are built into the model (RADTRAN model, Gregg and Carder, 1990, to estimate 

irradiance for a given atmosphere and sky conditions and the Harrison and Coombes 

(1988) normalized sky radiance model to specify the distribution of sky irradiance), 

from observations, or from a separate user-supplied atmospheric radiative transfer 

model. The UV region requires a more sophisticated atmospheric model that better 

accounts for aerosol scattering and for polarization effects from Rayleigh scattering 

than the above models (Vasilkov et al., 2002). 

 

The user can run Hydrolight selecting models for case 1 waters, which are based on 

user supplied chlorophyll distributions. One of the case 1 models available in Hydrolight 

is based on a recent reformulation (Morel and Maritorena, 2000) of the historical 

“Gordon-Morel” case 1 water, empirical model (Mobley 1994). The absorption 

coefficient is modeled as the sum of three components: 

                                 a total(z, λ) = a w (z, λ) + a p( z, λ) + a CDOM (z, λ)  (3.2-3)                      

where aw is absorption by pure water, ap is absorption by chlorophyll-bearing particles, 

and aCDOM  is absorption by co-varying CDOM. The particle absorption is given by 

                                        a p(z, λ) = 0.06 a*
Chl(λ) [ Chl(z)] 0.65    (3.2-4)          

where [Chl(z)] is the user-supplied chlorophyll profile in (mg Chl)m-3, and a*
Chl(λ) is the 

non-dimensional chlorophyll-specific absorption coefficient given in Prieur and 

Sathyentranath (1981). Absorption by “yellow” matter co-varies with particle absorption 

according to: 
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                            a CDOM(z, λ) = 0.2 a p(z, 440 nm) exp [-0.014(λ-440)]               (3.2-5)          

The scattering coefficient for the particles is given by (Gordon and Morel, 1983): 

                                           b(z, λ) = 0.3 [Chl (z, λ)] 0.62 ( 550 / λ)       (3.2-6)                      

which assumes explicit co-variance with chlorophyll, while CDOM is assumed to be non-

scattering.  

 

The pure-water absorption in Hydrolight calculations, can be Pope and Fry’s (1997) 

‘pure water’, or Smith and Baker’s (1981) ‘clearest natural water’ absorption values, or 

can be supplied by the user. The pure water scattering is from Smith and Baker (1981). In 

the Hydrolight runs performed in the framework of this project, the ‘Pope and Fry’ 

(1997) water absorption values and the ‘Smith and Baker’ (1981) water scattering 

coefficients were used.  

 

There is a second chlorophyll-based IOP model, recently published by Haltrin (1999). 

This model is a four-component model for case 1 waters that partitions the total 

absorption and scattering into pure water, large chlorophyll-bearing particles, CDOM 

(with contributions by fulvic and humic acids), and small terrigenous particles. The 

humic and fulvic acids are assumed to be purely absorbing while the small terrigenous 

particles are assumed to be non-absorbing. Kopelevich’s “large particle” and “small 

particle” scattering models are used to model large chlorophyll-bearing particles and 

small terrigenous matter, respectively. Each of these components (other than pure water) 

is parameterized by the chlorophyll concentration. For this “simple” case, the chlorophyll 

profile is the only input that needs to be specified by the user.  
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For case 2 waters, the user can specify concentration profiles and IOP models for each 

of four components: water, CDOM, pigmented and non-pigmented particulate matter. For 

case 2 waters, information on water’s optical properties can also be provided by using 

actual measurements of total absorption and scattering, a, b and bb/b (for example using 

an AC9 instrument to determine the absorption, a, and scattering, b, and an ECO-VSF 

instrument to determine bb, the backscattering coefficient). This last approach was 

followed in this study, since the necessary detailed measurements were available from 

our field-observations in Chesapeake Bay.  

 

• Output of the model: 

 
Output from Hydrolight includes information on various irradiances (upward, 

downward, scalar and plane irradiances), radiances in various directions, reflectances and 

diffuse attenuation coefficients and other quantities of interest in remote sensing, such as 

incident and reflected sky radiance and water-leaving radiance.  
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3.2.2 Hydrolight Sensitivity Studies  

 

Model simulations of underwater light fields have been performed in this study using as 

input information measurements of water’s inherent optical properties (e.g. total in-water 

absorption, scattering, backscattering) and boundary conditions (e.g downwelling surface 

irradiance) performed during our cruises in the Bay. Therefore, specific Hydrolight runs 

were performed to study the sensitivity of the model to input information and 

assumptions needed to perform the model simulations and to test the importance of some 

natural processes (such as chlorophyll or CDOM fluorescence) for estimations of 

underwater and water-leaving radiances. These Hydrolight runs are discussed in the 

following paragraphs (paragraphs 3.2.2.1-3.2.2-8). 

 

3.2.2.1 Changes in downwelling irradiance Es 

 

As discussed in the next section (paragraph 3.3, “Closure experiment in the Chesapeake 

Bay waters”), measurements of total downwelling surface irradiance, Es(λ), were used as 

input information to perform the model estimations of underwater light fields in the 

Chesapeake Bay waters. What is the accuracy of the Es(λ) measurements performed, and 

what would be the effect of inaccuracies in the Es(λ) measurements to the model 

estimations of underwater light fields and remote sensing reflectances? To address the 

above, the Hydrolight model was run using measurements performed at PI station on 28 

September 2001 as input information. During the model simulations, all parameters (a, c, 

bb, sza, cloudiness, wind speed, etc.) were kept constant, except for the downwelling 
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surface irradiance, Es(λ), which was varied by ± 3 % (the MicroPro irradiance sensors’ 

accuracy, personal communication Scott McLean, Satlantic). The standard deviation 

estimated from 3 independent measurement casts for Es performed at PI during the 

specific cruise (28 September 2001, when no change in cloudiness conditions was 

observed during the measurements) was less than ± 1 %. Since all other parameters, such 

as solar zenith angle, cloud fraction and atmospheric conditions, were kept constant, the 

ratio of direct to diffuse irradiance components and the angular pattern of the sky 

radiance distribution remained constant during the Hydrolight runs.   

 

Figure 3.2.2.1 shows the spectrum of mean Es(λ) measured at PI station on 28 

September 2001 (estimated as the average of the 3 casts), bracketed by the lines of  ± 3%. 

This variation in downwelling irradiance just above the water surface is carried over to 

the underwater Lu(z) and Ed(z) profiles, and results in a ± 3 % change in the estimated 

Lu(z) and Ed(z) values at all depths (fig. 3.2.2.2), as well as in the estimated Lw (fig. 

3.2.2.3(a)), since Lw is just the upwelling radiance below the water surface (Lu(z =0-)) 

transmitted through the water interface. Therefore, errors in measured Es(λ) would affect 

the comparisons between model estimated and measured underwater Ed(z) and Lu(z) 

profiles, as well as the comparison between model estimated and measured water-leaving 

radiances. As expected, the model estimated remote sensing reflectance, Rrs=Lw/Es, 

remains almost unaffected by any changes in (or uncertainties based on measurements of) 

the surface downwelling irradiance Es (fig. 3.2.2.3(b)).  
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Figure 3.2.2.1: Average downwelling surface irradiance, Esavg(λ), measured at PI station 
on 28 September 2001, bracketed by the lines of  ± 3%, MicroPro irradiance sensors’ 
accuracy.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2.2.2: Percent change in (a) Ed(z) and (b) Lu(z), estimated at depths            

z = 0,1, 2, 3, 4, 5, 6m, according to: 
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Figure 3.2.2.3: Percent change in (a) Lw and (b) Rrs estimated according to: 
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3.2.2.2 Absorption at 715 nm 
 
 

This section discusses how various assumptions for total-minus-water absorption, at-w, 

at near-infrared and infrared wavelengths affect the model estimations of normalized 

water leaving radiances, remote sensing reflectances, and underwater radiation fields 

(upwelling radiance and downwelling irradiance profiles). For example, setting at-w at 

longer wavelengths (e.g. λ =715 nm) to zero is one of the key assumptions usually used 

to correct spectrophotometric absorption measurements for scattering errors (Zaneveld et 

al., 1994) (chapter 2, Methodology AC9 instrument). As shown in later sections, the use 

of small but non-zero absorption at-w at λ =715 nm improves the agreement between 

measured and modeled values.  

 

To perform the model estimations, Hydrolight was run using input information from 

measurements performed at PI station on 28 September 2001 for three cases:  

i) AC9 absorption values corrected assuming that total-minus-water at λ = 715 nm is 

zero, according to the Zaneveld correction for scattering in AC9 (Zaneveld et al., 1994):  

at-w(λ)= at-w,m(λ)–[bt-w,m(λ)/bt-w,m(715)]•at-w,m(715), where at-w(λ) is the corrected 

absorption (minus absorption by pure water) at a wavelength λ, at-w,m is the measured 

absorption and bt-w,m is the measured scattering.  

ii) AC9 absorption values corrected assuming that total-minus-water absorption at    

715 nm equals the total absorption (aCARY  = adetr + aphyt + a CDOM) measured 

spectrophotometrically using the CARY spectrophotometer. To correct the CARY 

measurements of particulate absorption (aPA =  adetr + aphyt) for scattering, the absorption 

value measured at 750 nm was subtracted from all wavelengths. The particulate 
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absorption measurements were also corrected for the effect of multiple scattering inside 

the glass-fiber filters that results in pathlength amplification. To estimate the value of the 

amplification factor, measurements of absorption by particulate matter retained on filter 

pads were compared to absorption values measured in particle suspension. According to 

these comparisons, β values were only slightly wavelength dependent and were within 

the range 1.5 – 2 (paragraph 2.2.2.3). During the second Hydrolight run an amplification 

factor β=2 (Roesler, 1998), was used to correct for amplification of the optical pathlength 

in the filter pad. The AC9 absorption measurements were then corrected according to:  

at-w(λ)=at-w,m(λ)-[bt-w,m(λ)/bt-w,m(715)]•[at-w,m(715)-aCARY(715)], where aCARY (715)= 

[aPA(715) / 2 ] +   a CDOM(715) 

iii) In the third case, the AC9 absorption values were corrected assuming that 

absorption at 715 nm equals the total absorption measured using the CARY 

spectrophotometer. Particulate absorption spectra were corrected for Mie scattering by 

subtracting the absorption at 750 nm from the entire spectrum. In this case, no correction 

for the amplification factor was applied (or β=1), and thus the estimate of absorption at 

715 nm using the spectrophotometric technique was the maximum value of what would 

be expected.  

 

 Figure 3.2.2.4 (a) shows the percent difference of the total-minus-water absorption,     

a t-w, (which is also the absorption measured by the AC9 instrument), between case 1 

(assumption that at-w(715) = 0) and case 2 (assumption that at-w(715) equals the 

absorption measured at 715nm using the CARY spectrophotometer, according to:             

at-w(715) = [(aPA(715) / β) + aCDOM(715) = 0.0146 m-1, for β=2 ). The maximum percent 
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difference in at-w is, as expected, at 715 nm (100%) while percent differences larger than 

5% were observed at the green to red wavelengths (532-676 nm). Figure 3.2.2.4(b) shows 

the percent difference of the total absorption, at =aw+aPA+aCDOM, between the two cases.  

 
 

                                      
 
 
 
 
 
 
 
 
(a)      (b) 

Figure 3.2.2.4:  Percent differences of (a) the total minus the water absorption, at-w and 
(b) the total absorption, at = aw + aPA + aCDOM, between case-1 (assumption that at-w (715) 
= 0) and case-2 (at-w (715) = [(aPA (715) / β) + aCDOM (715)] for β=2), and between case-1 
and case-3 (at-w (715) = [(aPA (715) / β) + aCDOM (715)] for β=1). 

 

When the water absorption is also taken into account, the effect of the residual absorption 

at 715 nm is larger in the green wavelengths, with maximum percent difference occurring 

at 550 nm. In the blue region of the spectrum, absorption by CDOM and non-pigmented 

particulate matter is large (at=1.12m-1 at 412 nm) and the effect of the residual absorption 

at 715 nm (aCARY(715)= 0.0146 m-1, for β=2) is too small to significantly change the total 

absorption (less than 2% change in at). In the red region of the spectrum, strong absorption 

by water itself results in relatively high total absorption (at = 0.7 m-1) and, again, the 

effect of the residual absorption at 715 nm is too small to change the total absorption 

significantly (∆a/a = 0.0146 / 0.7 = 2% change in at ). However, in the green region of the 

spectrum (λ=550 nm) total absorption is relatively smaller (at = 0.25 m-1), and a change in 

the absorption by 0.0145 m-1 translates to a 6% change in total absorption (fig. 3.2.2.4 (b)).  
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The percent differences in total-minus-water absorption and in total absorption, between 

case 1 (assumption that at-w (715) = 0) and case 3 (assumption that at-w (715) equals the 

absorption measured at 715 nm using the CARY instrument, according to: at-w (715) =     

[aPA (715)/ β + aCDOM (715)] = 0.028 m-1, for β=1 ), are also shown in figures 3.2.2.4 

(a),(b) (dotted lines). In this case, a change in the absorption by 0.028 m-1 translates to a 

12% change in total absorption at 550 nm (fig. 3.2.2.4 (b)).    

 

The effect of the above changes on the model estimations of Ed(z) and Lu(z) 

underwater profiles (model calculations at 0-, 1, 2, 3, 4, 5 and 6 m depths) are shown in 

figures 3.2.2.5-3.2.2.6. As was expected, the larger percent differences were observed at 

the green wavelengths where the percent changes of the total absorption values were 

relatively larger. Even in the case where the spectrophotometric values of particulate 

absorption have been corrected for β=2 (aCARY(715)=0.0146m-1), the percent differences 

in Lu(550) (estimated as 
)0715(

)0715()715(

=

== −

a

aaCARYa

Lu

LuLu
) are larger than 5% just below the water 

surface and reach more than 15% at a depth of 6 meters. Ed values in the first couple of 

meters below the water surface were only slightly affected by the change in the 

absorption values. However, Ed(z) values at a depth of 5-6 m below the water surface 

were affected by almost 10%. The effect of the change in the absorption values on the 

Ed(z) and Lu(z) is almost double for case 3, where a value of β=1 (instead of β=2) was 

assumed. Ed(z) changed by almost 20% at a depth of 6 meters, while Lu(550)) changed 

by 10% just below the water surface and by more than 25% deeper than 5 m in the water 

column.  
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Figure 3.2.2.5:  Percent differences in Ed(λ), between (a) case-1 and case-2 and (b) case-

1 and case-3, estimated as 
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, for various depths (0-6m). 

 
 
 
 
 
 
 
 
 
 
 

Figure 3.2.2.6:  Percent differences in Lu(λ), between (a) case-1 and case-2 and (b) case-

1 and case-3, estimated as 
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, for various depths (0-6m). 
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same as the percent change on the total absorption. Therefore, Rrs and Lw are mostly 

affected within the green region of the spectrum and especially at 550 nm. The estimated 

Rrs(550) and Lw(550) values for non-zero at-w(715), with β=2, are 6% lower than those 

estimated for at-w(715)=0, while Rrs and Lw at the blue (412-443nm) and red (670-

700nm) wavelengths change only by ~2%. The estimated Rrs(550) and Lw(550) values 

for non-zero at-w(715), with β=1, are 12% lower than those estimated for at-w(715)=0.  

 

 
  
 
 
 
 
 
 
 

Figure 3.2.2.7:  Percent differences in (a) Lw and (b) Rrs estimated according to: 
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Figure 3.2.2.8: (a) Lw and (b) Rrs spectra estimated for cases 1, 2, 3. Low Ed and Lu 
values in the blue and red wavelengths are due to the high absorption by CDOM and non-
pigmented particulate matter (blue wavelength region) and by pure sea-water (red 
region). The maximum in Lu at ~ 685 nm is due to the chlorophyll fluorescence.  
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3.2.2.3 Scattering phase function  
 
 

The backscattering coefficient, bb, is one of the most significant inherent optical 

properties of a water body, and one of the most critical parameters in estimations of the 

amount of radiance leaving the water surface and eventually measured by a remote 

sensing instrument. The backscattering properties of a natural water body can be 

specified in Hydrolight runs by: 1) using measured values of the backscattering 

coefficient by an instrument such as ECOVSF (WETLabs) or Hydroscat (HOBILabs ).  

2) By selecting one of the discretized phase functions supplied with Hydrolight (such as 

the Petzold “average particle” phase function, the ‘pure water’ phase function, the 

Kopelevich’s “small particle” or the Kopelevich’s “large particle” phase function). The 

Petzold ‘average particle’ scattering phase function has been widely used as 

representative of most natural, moderately turbid waters, especially in cases when 

measured values of bb/b are not available. 3) By defining a wavelength- and depth- 

dependent value for the backscattering to scattering ratio, bb/b, and using a Fournier-

Forand scattering phase function with the same bb/b ratio (Mobley and Sundman, 2000). 

 

In our case, the total backscattering coefficient, bb, was measured at PI station, on 28 

September 2001, using an ECOVSF instrument, while measurements of particulate 

scattering, bt-w, were performed using an AC9 instrument (bt-w was estimated as the 

difference between measured attenuation and absorption values, b=c-a). Therefore, 

measurements of bb/b for particulate matter at 450-650 nm were available to use in the 

model estimations (fig. 3.2.2.9). To study the effect of the choice of scattering phase 

function on the model estimated Ed(z), Lu(z), Rrs, Lw, Hydrolight was run for three cases: 
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i) using as input information the measured bb/b and a Fournier Forand phase function 

ii) selecting the ‘average particle’ Petzold phase function (bb/b=0.0183) for estimation 

of the backscattering component and  

iii) selecting a Fournier-Forand phase function with bb/b=0.015 for particulate matter 

(constant with depth and wavelength), since the average measured bb/b at 500-550 nm 

was close to 1.5%. The percent differences in the estimated Lu(z), Ed(z), Rrs and Lw are 

shown in figures 3.2.2-10 - 3.2.2-13. 

 

                              
 
 
 
 
 
 
 
 
 
Figure 3.2.2.9: Measurements of bb/b, performed at depths 0-6 m, at PI station, on 28 
September 2001, using an ECOVSF instrument (to measure backscattering, bb, at 450, 
530 and 650 nm) and an AC9 instrument (to measure scattering, bt-w, at seven 
wavelengths in the region 412-715 nm) 
 
 
 
  

 
 
 
 
 

 
 
 
 
(a)            (b) 
Figure 3.2.2.10: Estimated bb/b using (a) the ‘average particle’ Petzold phase function 
(bb/b=1.83%) and (b) a Fournier-Forand phase function with bb/b=1.5%  
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Figure 3.2.2.11: (a) Ed(z=5m) and (b) Lu(z=0-) spectra estimated using the three different 
bb/b ratios 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2.2.12: Percent differences in Ed(z) (depths 0-5m) estimated between (a) case 3 
(bb/b=0.015) and case 1 (bb/b measured using ECOVSF) and (b) case 2 (bb/b Petzold 
“average particle”) and case 1 (bb/b measured using ECOVSF) . The percent differences 

were estimated according to: 
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Figure 3.2.2.13: Percent differences in Lu(z) (depths 0-5m) estimated between (a) case 3 
(bb/b=0.015) and case 1 (bb/b measured using ECOVSF) and (b) case 2 (bb/b Petzold 
“average particle”) and case 1 (bb/b measured using ECOVSF) . The percent differences 

were estimated according to: 
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Figure 3.2.2.14: (a) Rrs spectra estimated using the three different bb/b ratios and (b) 
percent differences in Rrs between cases 2 and case 1 (solid line) and case 3 and case 1 
(dotted line) 
 

According to the model simulations, the assumptions made about the backscattering 

properties of the water body significantly affect the model-estimated downwelling 

irradiance and, especially, the upwelling radiance just below the water surface and the 

water-leaving radiance. Use of the ‘average particle” Petzold phase function in the model 

estimations, for the specific case (PI station, 28 September 2001), results in an 

underestimation of Ed by 10-20% at 3-5m depths compared to model results using the 

measured bb/b values for particulate scattering (combination of AC9 and ECOVSF 

measurements). Lu at z=0- (as well as Lw and Rrs) is overestimated by 20% in the blue 

wavelengths, and by as much as 35-50% within the 550-650 nm wavelength region, 

compared to Lu values estimated using the measured bb/b values. Use of a constant bb/b 

ratio for all wavelengths, bb/b=1.5% (a value close to the average bb/b measured at 500-

550nm at all depths during the specific cruise), results in an overestimation of Rrs by less 

than 10% in the blue-green wavelengths and by 20-30% within the red wavelength 

region. Therefore, accurate knowledge of the actual backscattering properties of the water 

is very important in model simulations of radiation fields, especially in estuarine waters 

where bb, as well as bb/b, can show large temporal and spatial variation.   
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3.2.2.4 Variations in measured backscattering coefficient, bb 
 
 

Measurements of total backscattering coefficient, bb, were performed during the cruises 

in Chesapeake Bay, using an ECOVSF instrument. Several factors, such as instrument 

noise and natural variability in the water properties during the duration of the 

measurements, can cause some variation in the total backscattering value measured at a 

specific depth. To study how these variations in measured bb at a specific depth would 

affect model estimations of underwater and water-leaving radiances, the Hydrolight code 

was run using as input information (a, b, sza, clouds, surface-wind, [Chl-a], Es) 

measurements performed at PI station on 28 September 2001, 

i) with backscattering coefficient, bb, equal to the average bb measured at each depth, at 

PI station on 28 September  and 

ii) with bb(z) =  bb avg(z) ± standard-error, where the standard-error was in the order of 

1.5-2.5% (depending on wavelength and depth). The standard error was estimated as the  

ratio 
n

stdev
, where stdev is the standard deviation of the n measurements of backward  

scattering performed at each depth used to estimate the average bb(z) at that depth.  

 
Figures 3.2.2-15 - 3.2.2-16 show the percent difference in the model estimated Ed(z), 

Lu(z), Lw and Rrs. Increasing bb by the standard error, results (for the specific case 

studied) in less than 1% decrease in Ed at all depths (due to larger backward redirection 

of the light), and less than 2% increase in Lu. Similarly, decreasing bb by the standard 

error, results in less than 1% increase in Ed at all depths (due to lower backward 

scattering), and less than 2% decrease in Lu. The water-leaving radiance, and as a result 

the remote sensing reflectance, are affected by almost 2%.    
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(a)       (b) 
 
Figure 3.2.2-15: Percent differences in (a) Ed(z) (depths 0-5m) and (b) Lu(z) (depths 0-
5m), estimated between running Hydrolight with bb = bb avg and bb= bb avg+ standard-error 
(dotted lines) and between running Hydrolight with bb= bbavg and bb= bb avg-standard-error 
(solid lines). The percent differences were estimated for Ed (and similarly for Lu) 

according to: 
)(

)()(

bbavg

bbavgsterrorbbavg

Ed

EdEd −± .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
(a)       (b) 
 
Figure 3.2.2-16: (a) Rrs spectra and (b) percent differences in Rrs, estimated between 
running Hydrolight with bb = bb avg and bb = bb avg + standard-error (dotted lines) and 
between running Hydrolight with bb = bb avg and bb = bb avg - standard-error (solid lines). 

The percent differences were estimated according to: 
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)()(

bbavg

bbavgsterrorbbavg
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3.2.2.5 Variation in measured underwater absorption and attenuation  
 
 

Measurements of total absorption (minus pure water absorption), at-w(λ), and 

attenuation, ct-w(λ), in the Chesapeake Bay waters were performed using an AC9 

instrument. The scattering coefficient, bt-w(λ), was estimated as the difference between 

the measured values of at-w(λ) and ct-w(λ). To study how variations in measured 

absorption and attenuation (due to instrument noise and natural variability in the water 

properties during the measurements at a specific depth) affect the model estimations of 

water-leaving radiance, Lw, and underwater Ed(z) and Lu(z), several Hydrolight runs 

were performed keeping all parameters constant, but varying input information on 

absorption or attenuation. Input information was obtained from measurements of bb, sza, 

Es, and observations of cloudiness and wind-speed made at PI station on 28 September 

2001. The absorption, at-w(z), at each depth (and similarly for the attenuation, ct-w(z)) was 

estimated as the mean value of n (n~15) AC9 absorption measurements performed at the 

specific depth. Absorption was corrected for scattering using the Zaneveld correction and 

varied by ± percent standard error. The standard error of the mean absorption was 

estimated as the ratio stdev/ n , where stdev is the standard deviation of the n 

measurements of absorption performed at each depth, that were used to estimate the mean 

at-w(z) at that depth. The estimated standard errors in the AC9 absorption and attenuation 

measurements were less than 2.5 %, with largest values close to the surface (for the 

specific case studied here). 

 

Changes in the measured absorption, at-w, by ± percent standard error, affected the 

model estimated Ed and Lu by less than 4% at all wavelengths and all depths from 0 to 
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5m, with larger percent differences estimated deeper in the water column and at short 

wavelengths (fig. 3.2.2-17). The water leaving radiance (fig. 3.2.2-19(a)) is affected only 

by less than 2% at all wavelengths.   

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2.2-17: Percent change in (a) Ed(z) and (b) Lu(z), estimated at depths z = 0,1, 2, 

3, 4, 5m, according to: 
)(

)().(

mean

meanmean

aa

aaerrorstaa

Ed

EdEd

=

=±= −
 and similarly for Lu. As was 

expected increased absorption by the water medium results in lower Ed and Lu values in 
the water column.  

 
 
 
The effect of changes in the attenuation values by ± standard error, on the model 

estimated downwelling irradiance, Ed, and upwelling radiance, Lu, is less than 1% at all 

wavelengths and all depths from 0 to 5m below the water surface (fig. 3.2.2-18). The 

water leaving radiance (fig. 3.2.2-19(b)) is also affected by less than 1% at all 

wavelengths.  

 

According to the model simulations, the small variability of the AC9 measurements, 

estimated for the specific case (water surface relatively calm and IOPs not highly variable 

with depth) has only a small influence in the model estimations of underwater radiation 
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fields. Under conditions of rougher water-surface (larger uncertainties in instrument’s 

depth) or less homogeneous waters (larger variation in at-w with depth), larger errors in  

at-w (or ct-w) measurements could occur, that would have a larger effect in Rrs, Ed(z) and 

Lu(z) (see results in 3.2.2.2). 

 

 

 

 
 
 
 
 
 
 
 
 

(a)      (b) 
Figure 3.2.2-18: Percent change in (a) Ed(z) and (b) Lu(z), estimated at depths z = 0,1, 2, 

3, 4 and 5m, according to: 
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 (similarly for Lu). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
(a)      (b) 
Figure 3.2.2-19: Percent changes in water leaving radiance, Lw, estimated for (a) changes 
in mean measured absorption, a, by ± standard error and (b) changes in mean measured 
attenuation, c, by ± standard error.  
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3.2.2.6 Inelastic Scattering processes 
 
 

Inelastic scattering processes, such as Raman scattering by water molecules and 

fluorescence by phytoplankton pigments and dissolved organic material, can be of 

considerable significance in natural waters. To study the effect of including the 

contribution of inelastic scattering processes to the model estimations of water-leaving 

radiances and underwater light fields, several Hydrolight runs were performed using as 

input information measurements performed on 28 September 2001, at PI station. The 

model estimations were performed for clear sky conditions (cloud fraction 0%) and 5m/s 

average wind speed.  

 
 
Chlorophyll fluorescence 
 
 

To estimate the amount of light fluoresced by chlorophyll, Hydrolight uses information 

on chlorophyll absorption (or chlorophyll concentration, from which chlorophyll 

absorption can be estimated) and assumptions about chlorophyll fluorescence efficiency 

and the wavelength redistribution function (the default chlorophyll fluorescence 

efficiency value of 0.02 was used in the following simulations) (Mobley, 1994; Mobley 

Technical Documentation, 2000). 

 

To study the contribution of chlorophyll fluorescence to the model estimations of 

underwater light field, the following cases were considered: 

 i) including the process of chlorophyll fluorescence, for a chlorophyll concentration of 

[Chl-a]=7.25 mg m-3, which was the average chlorophyll concentration within the water 
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column (1-5m depth) measured at PI station, on 28 September 2001. This amount is also 

consistent with the average chlorophyll concentration, [Chl-a]avg=7.3 ±1.5 mg m-3,  

measured at PI station (1-5m) during the 5 fall cruises in September-October 2001.  

ii) without including the effect of chlorophyll fluorescence  

iii) including the effect of chlorophyll fluorescence, but for the extreme case of double 

the measured chlorophyll concentration: 2[Chl-a]=14.5mg m-3 (which corresponds to 

100% error in the [Chl-a] measurement). Raman scattering by water molecules and 

CDOM fluorescence (for aCDOM(440)=0.3 m-1) were included in all runs. The contribution 

of the chlorophyll fluorescence to the estimation of Lu(z), Ed(z), Lw and Rrs, in the 

wavelength region 400 – 700 nm, is shown in figures 3.2.2-20 – 3.2.2-22. 

 

According to the model simulations, the inelastic process of chlorophyll fluorescence 

can significantly affect the estimated upwelling and downwelling radiance profiles within 

the wavelength range 650-700 nm, and especially at 685 nm, since this is the wavelength 

region where chl-a fluoresces regardless of whether it is excited by light in the UV or 

visible wavelengths. When chlorophyll fluorescence is not included in the model 

estimations (case 2), Ed(z) can be underestimated by 7% at a depth of 5 meters, while the 

percent difference is less than 3% in the first 3 meters for the specific case of 

measurements performed at the PI station (fig. 3.2.2-20(a)). However, the effect is more 

pronounced for the upwelling radiance, Lu(z), which may be underestimated by as much 

as 40% just below the water surface. This change in Lu, translates to a 40% change in the 

estimated water-leaving radiance and remote sensing reflectance (fig. 3.2.2-21-3.2.2-22), 

that can significantly affect comparisons with remotely sensed water-leaving radiances.   
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(a)      (b) 
Figure 3.2.2-20: Percent differences in the estimated by the model (a) Ed(z) and (b) Lu(z) 
values, between case 1 (chl-fluorescence included, for the measured chl-a concentration, 
[Chl-a] = 7.25mg m-3) and case 2 (chl-fluorescence not included), and between case 1 and 
case 3 (chl- fluorescence included, for [Chl-a] = 14.5 mg m-3). The % differences were 

estimated as: 
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(a)      (b) 
Figure 3.2.2-21: Model estimations of (a) Rrs and (b)Lw, for case 1 (chl-fluorescence 
included, [Chl-a]=7.25mg m-3) (solid line), for case 2 (chlorophyll fluorescence not 
included) (squares, dotted line), and case 3 (chlorophyll fluorescence included,          
[Chl-a]=14.5mgm-3) (squares, solid line).  
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Figure 3.2.2-22: Percent differences in the model estimated (a) Rrs and (b) Lw values, 
between case 1 (chl-fluorescence included, for the measured [Chl-a], [Chl-a]=7.25mgm-3) 
and case 2 (chl-fluorescence not included), and between case 1 and case 3 (chlorophyll 
fluorescence included, for [Chl-a] = 14.5 mg m-3). Percent differences were estimated as: 
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Fluorescence by chromophoric dissolved organic matter 
 
 

In Hydrolight simulations the default CDOM fluorescence quantum efficiency function 

is taken from Hawes (1992) and is based on measurements of spectral fluorescence 

quantum efficiency functions performed on water samples collected from a variety of 

waters. Hawes found values of CDOM fluorescence quantum efficiency between 0.005 

and 0.015. According to Blough and Del Vecchio (2002) the CDOM excitation and 

emission fluorescence spectra are very broad and unstructured, with the maxima in the 

excitation and emission spectra usually falling between 300-400 nm and 400-500 nm, 

respectively.    

   

When inelastic scattering effects are included in Hydrolight runs, some consideration 

arises in the choice of the wavelength domain over which the model should be run. This 

is because, if one is interested on including the contributions of fluorescence or Raman 
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scattering to the light field in the visible wavelengths, then Hydrolight must be run also 

for all shorter wavelengths that might contribute to inelastic scattering within the 

wavelength region of interest. To include the effects of Raman scattering the model 

should be run starting at 390-400 nm, since excitation at wavelengths around 400 nm 

results in Raman scattering near 450 nm. To include the effect of CDOM fluorescence, 

the model should be run starting at 350 nm, since CDOM shows strong fluorescence 

throughout the visible wavelengths, when excited by ultraviolet light (Mobley, 2000). 

 

One of the measured parameters used as an input in Hydrolight, is the downwelling 

irradiance just above the water surface, Es(λ). This quantity was measured on 28 

September 2001, using a MicroPro instrument, over the wavelength region 400-700nm. 

Therefore, when running Hydrolight starting at 350 nm (to include the effect of CDOM 

fluorescence) care should be taken on the extrapolation from the measured Es value at the 

shortest wavelength (400 nm) to 350 nm. Figures 3.2.2-23 – 3.2.2-24 show how the 

choice of the wavelength region over which the model is run affects the model 

estimations of Ed(z), Lu(z), Rrs, Lw when the inelastic process of CDOM fluorescence is 

included (for aCDOM(440)=0.3 m-1, and SCDOM=0.019 according to spectrophotometric 

measurements performed using water samples collected from PI station on 28 September 

2001). The model was run: 

 i) starting at 350 nm and using the measured Es spectrum (400-700nm) with no 

 extrapolation to 350 nm (in which case Es(λ < 400 nm) = Es(400 nm), which results in an  

overestimation of Es(λ < 400 nm), and thus, in an overestimation of the contribution of 

CDOM fluorescence in the visible),  
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ii) starting at 400 nm and using the measured Es spectrum (400-700 nm), in which case 

excitation by wavelengths shorter than 400 nm is not included in the model estimations, 

iii) starting at 350 nm and using the measured Es spectrum (400-700 nm) extrapolated 

to 350 nm based on the wavelength dependence estimated using RADTRAN model 

(Gregg and Carder, 1990).     

 

The percent change in the estimated Lu, Ed, Rrs and Lw values between case 1 and 

case 3 and between case 2 and case 3, are shown in figures 3.2.2-23 – 3.2.2-24. The 

choice of the wavelength region over which the model is run when CDOM fluorescence 

is included in model estimations, affects the model output at the shorter wavelengths 400 

- 532 nm, while longer wavelengths remain unaffected. The changes in Ed(z) between 

case 1 (running Hydrolight starting at 350 nm with Es(λ < 400 nm) = Es(400 nm ) and case 3 

(running Hydrolight starting at 350 nm and extrapolating Es(400 nm)  to 350 nm using 

RADTRAN model), and between case 2 (running Hydrolight starting at 400 nm, thus not 

including CDOM excitation by wavelengths shorter than 400 nm) and case 3, are shown 

in figure 3.2.2-23(a) and are not large, less than 0.5 % at all depths (0-5m). The change in 

Lu(z) is less than 2% between case 1 and case 3, with higher Lu values estimated in case 

1, since the effect of CDOM fluorescence is somewhat overestimated due to the larger 

(than estimated by the atmospheric model) assumed Es values below 400nm. The percent 

change in Lu(z) between cases 2 and 3 reaches 3.4% at 443 nm (fig. 3.2.2-23(b)) with 

smaller Lu values at the blue wavelengths when CDOM excitation by ultraviolet 

wavelengths is not taken into account (case 2). These changes result in less than 2% 

changes in Rrs and Lw when running the model starting at 350 nm but not extrapolating 
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the Es values measured using MicroPro to shorter wavelengths, and in 2-4% changes in 

Rrs and Lw when running the model starting at 400 nm instead of starting at 350 nm.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2.2-23: Percent differences in the estimated by the model (a) Ed(z) and (b) Lu(z) 
values, between case 1 and case 3  (positive % changes) and between case 2 and case 3 
(negative % changes). The percent differences were estimated according to: 
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Figure 3.2.2-24: Percent differences in the model estimated Rrs and Lw values, between 
case 1 and case 3 (solid line) and between case 2 and case 3 (dotted line). The percent 

differences were estimated as: 
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To study the effect of including CDOM fluorescence in the model estimations of water-

leaving radiance and underwater radiance and irradiance profiles, the model was run: 

 i) including CDOM fluorescence for aCDOM(440)=0.3 m-1, SCDOM = 0.019nm-1, which are 

the CDOM absorption at 440 nm and exponential slope measured spectrophotometrically 

using water samples collected from PI station on 28 September 2001,  

ii) without including the effect of CDOM fluorescence  

iii) including the effect of CDOM fluorescence but for 100% higher absorption by 

dissolved material at 440 nm than the one actually measured,  a’CDOM(440)=0.6 m-1. 

CDOM fluorescence was the only inelastic scattering process included in the runs. In all 

cases, Hydrolight was run starting at 350 nm, and using as input information Es values 

measured by the MicroPro instrument (400 –700 nm) and extrapolated to 350 nm using 

RADTRAN code. The contribution of CDOM fluorescence to the estimation of Lu(z), 

Ed(z), Lw and Rrs is shown in figures 3.2.2-25 - 3.2.2-26. 

 

From the comparisons it is evident that CDOM fluorescence affects the underwater 

light field at wavelengths smaller than 530 nm. The effect in the model estimations of 

Ed(z) is less than 0.5%, for all depths (0-5m). The effect of excluding CDOM 

fluorescence in the model estimations of Lu(z)  (percent changes between case 1 and case 

2) is less than 4-5% , with maximum values at 443-490 nm. The effect of including 

CDOM fluorescence, with aCDOM(440)=0.6 m-1, instead of aCDOM(440)= 0.3 m-1 (which 

was the CDOM absorption actually measured at PI on 28 September 2001), results in 4-5 

% irradiance increases (since CDOM fluorescence gets larger as CDOM absorption 

increases), with maximum percent changes at 443-490 nm, close to the surface. The 
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effect of including CDOM fluorescence in the model estimations of remote sensing 

reflectance, Rrs, and water leaving radiance, Lw, is also in the order of 4-5 % maximum 

within the blue wavelength region 443-490 nm.    

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2.2-25: Percent differences in the model estimated (a) Ed(z) and (b) Lu(z), 
between case 1 (CDOM fluorescence included, for the measured CDOM absorption 
spectrum, aCDOM(440)=0.3m-1 and SCDOM = 0.019nm-1) and case 2 (CDOM fluorescence 
not included), and between case 1 and case 3 (CDOM fluorescence included, for 
aCDOM(440)=0.6m-1). The percent differences were estimated according to: 

)3.0(

)3.0()(

=

=−− −

aCDOM

aCDOMfluorCDOMno

Ed

EdEd
and 

)3.0(

)3.0()6.0(

=

== −

aCDOM

aCDOMaCDOM

Ed

EdEd
(similarly for Lu).  

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2.2-26: Percent differences in the estimated by the model Rrs and Lw values, 
between case 1 (CDOM fluorescence included, for the measured CDOM absorption 
spectrum, aCDOM(440)=0.3m-1 and SCDOM = 0.019nm-1) and case 2 (CDOM fluorescence 
not included), and between case 1 and case 3 (CDOM fluorescence included, for 
aCDOM(440)=0.6m-1).The percent differences were estimated as: 
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Raman Scattering 
 
 
To study how the process of Raman scattering affects the results of model estimations 

of underwater radiation fields, Hydrolight was run for two cases, including and excluding 

Raman scattering. CDOM and chlorophyll fluorescence were not included in these runs. 

In both cases, Hydrolight was run starting at 350 nm, and Es values, measured using the 

MicroPro instrument (400 –700 nm) and extrapolated to 350 nm using RADTRAN, were 

used as input information. The contribution of Raman scattering to the estimation of 

Lu(z), Ed(z), Lw and Rrs is shown in figures 3.2.2-27 – 3.2.2-28. The Raman scattering 

process operates at all wavelengths and depths, but the inelastically scattered light is 

usually negligible compared to the ambient solar light at shallow depths and blue-green 

wavelengths (fig. 3.3.3-27) (Mobley, 1994). Ku is also more sensitive than Kd to the 

effects of Raman-scattered light, since elastic backscattering is much weaker than elastic 

forward scattering and therefore, the Raman contribution will be relatively greater to 

upwelling than to downwelling directions (scattering phase function for Raman is 

symmetric about ψ). 
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Figure 3.2.2-27:  Percent differences in the estimated by the model (a) Ed(z) and (b) 
Lu(z) values, between case 1 (Raman scattering included) and case 2 (Raman scattering 

not included), estimated as: 
)(

)()_(

Raman

RamanRamanno

Ed

EdEd −
 (similarly for Lu) at depths 0-5m. 

 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 3.2.2-28: Percent differences in the model calculated (a) Rrs and (b) Lw values, 

estimated according to: 
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 (similarly for Lw). 
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3.2.2.7 Changes in percent cloud cover 
 
 

One of the parameters that can be specified in Hydrolight to perform the model 

simulations is information on the sky conditions and the percent cloud fraction. When 

measurements of the total incident sky irradiance, Es(λ), are provided as input 

information for the model estimations, then information on the percent cloud cover is 

used in the estimation of the diffuse and direct components of the sky downwelling 

irradiance (RADTRAN Gregg and Carder (1990) model) and the estimation of the 

angular distribution of radiances (Harrison and Coombes, 1988, model). Cloud conditions 

also affect the reflectance and transmittance of light through the water interface. 

Information on the cloudiness is based on sky observations performed during the 

measurements at each site, and frequently is associated with some uncertainty. Therefore, 

several Hydrolight runs were performed using as input information IOPs measured at PI 

station on 28 September 2001, to study what is the effect of varying the cloud fraction 

between 0-100% on the model estimations.  

 

During the measurements performed at PI station on 28 September 2001, the sky was 

clear, with 0-5% cloud cover. Hydrolight was run assuming cloud cover of 0%, 10%, 

30%, 50%, 80% and 100% to study the effect of cloudiness on the model estimations of 

Lu(z), Ed(z), Rrs and Lw. All other parameters were kept constant during the runs (wind 

speed=5m/s, sza=20o, absorption, scattering and backscattering). Measurements of Es(λ), 

performed using the MicroPro instrument were provided as input information and kept 

constant during the runs. Inelastic scattering processes (Raman scattering and CDOM and 

chlorophyll fluorescence) were included in all runs. The results are shown in figures 



 189

3.2.2-29 – 3.2.2-31. Similar Hydrolight runs were also performed for sza=50o (fig. 3.2.2-

31 (a)-(d)).  

 
 

 
 
 
 
 
 
 
 
 
 
Figure 3.2.2-29: Percent differences in estimated Ed values (a) just below the water 
surface and (b) at 5 meters below the water surface, for clear skies (0% cloudiness) and 
cloud cover of 10, 30, 50, 80 and 100%. The percent differences were estimated 

according to: 
)(
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clear

clearclouds

Ed

EdEd −
 (sza=20o). 

 
 
 
 
 
 
 
 
 
 
 
 
(a)           (b) 
Figure 3.2.2-30: Percent differences in estimated Lu values (a) just below the water 
surface and (b) at 5 meters below the water surface, for clear skies (0% cloudiness) and 
cloud cover of 10, 30, 50, 80 and 100%. The percent differences were estimated 

according to: 
)(

)()(

clear

clearclouds

Lu

LuLu −
 (sza=20o). 
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Figure 3.2.2-31: Percent differences in estimated (a) Rrs (sza=52o), (b) Lw (sza=52o),   
(c) Rrs (sza=20o), and (d) Lw (sza=20o) for clear skies (0% cloudiness) and cloud cover 
of 10, 30, 50, 80 and 100%. The percent differences were estimated according to: 

)(
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clear

clearclouds
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RrsRrs −
 (similarly for Lw). 

 
 
When measured Es values are used as input information to run the model, uncertainties 

in the observed cloud coverage do not have a large effect on the model estimated Lw and 

Rrs values. For the specific case studied, changes in the cloud coverage between 0% 

(clear skies) and 100% (overcast) resulted in changes of less than 2% in Lw, for both sets 

of Hydrolight runs (sza=52o, sza=20o). The percent change in the estimated Ed(z)  and 

Lu(z) between running the model for 0% and 100% cloud fraction (in cases when 

information on cloud cover is not available) can be significant deeper in the water column 

(10-30 % depending on the wavelength). However, changing the cloud cover from 0% to 

10 % or 30 %, results in less than 5% change in the estimated Lu(z) and Ed(z) at all depths.  
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3.2.2.8 Changes in surface wind speed, u (m/s) 
 
 

To study the effect of surface wind speed on the model estimations of Ed(z), Lu(z), Rrs 

and Lw, several Hydrolight runs were performed using as input information 

measurements of incident irradiance, Es, and water optical properties performed at PI 

station on 28 September 2001 (for sza=52o), and varying the surface wind speed from 0 

to 10 m/s. Figure 3.2.2-32 shows the percent changes in Ed(z) just below the water 

surface and at 5m depth, estimated as: 
)(

)()(

0

0

uEd
uEduEd i −

, where uo=0 m/s and ui = 1, 3, 5, 

7, 10 m/s. The percent changes in Ed(z) are in the order of 2%. The percent changes in 

estimated Lu(z) just below the water surface and at 5m depth, are shown in fig. 3.2.2-33. 

As in the case of downward irradiances, the percent changes in the upwelling radiances 

were found to be in the order of 2%. The effect of varying the surface wind speed on the 

estimated remote sensing reflectances, Rrs, and the water leaving radiances, Lw, is shown 

in fig. 3.2.2-34. The percent change in Lw and Rrs is less than 2%.  

 

The model simulations suggest that changing the surface wind-speed in the range         

0 – 10 m/s affects the underwater upwelling radiances and downwelling irradiances by 

less than 2% for the specific set of measured boundary conditions and water inherent 

optical properties. However, changes in the wind speed may significantly affect 

estimations of total Lu(0+) just above the water surface, since the total upwelling 

irradiance just above the water surface is the sum of the underwater upwelling radiance 

transmitted through the water interface, Lw, plus the downwelling sun and sky irradiance 

just above the water surface that is reflected upward by the sea surface itself.  
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Figure 3.2.2-32: Percent difference in estimated Ed values (a) just below the water 
surface and (b) at 5 meters below the water surface, for wind speed, ui, 1, 3, 5, 7, 10 m/s 

(compared to 0m/s). The % differences were estimated according to: 
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Figure 3.2.2-33: Percent difference in estimated Lu (a) just below the water surface and 
(b) 5 meters below the water surface, for wind speed, ui, 1, 3, 5, 7, 10 m/s (compared to   

u=0 m/s). The percent differences were estimated according to: 
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Figure 3.2.2-34:(a) Estimated Rrs for various wind speeds (0, 1, 3, 5, 7, 10m/s)             
(b) percent differences in estimated Rrs values for 1, 3,5, 7, 10 m/s (compared to 0 m/s). 

Percent differences were estimated according to: 
)0(
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RrsRrs
(sza=52o).  
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Similar Hydrolight runs were also performed for sza = 20o to study the effect of 

changing the surface wind speed on Lw and Rrs, at a lower solar zenith angle (fig. 3.2.2-

35). A solar zenith angle of 20o is closer to the average solar zenith angle for the 

measurements performed during the Chesapeake Bay late-spring. In this case too, 

changing the surface wind-speed, within the range 0 – 10 m/s, affects by less than 2% the 

estimated upwelling radiance, Lu, just below the water surface, the water leaving 

radiance, Lw, and the remote sensing reflectance, Rrs.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2.2-35: Percent difference in estimated (a) Lu values just below the water 
surface and  (b) Rrs, for sza=20o, and for wind speed of 1, 3, 5, 7, 10 m/s (compared to    

0 m/s). The percent differences were estimated according to: 
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3.3 “Closure” Experiment in the Chesapeake Bay waters - Methodology 
 
 
 

One of the main objectives of this project has been to study the underwater radiation 

fields, water-leaving radiances, Lw(λ), and remote sensing reflectances, Rrs(λ) within the 

estuarine Chesapeake Bay environment, estimated, under various atmospheric conditions 

and in-water properties, using both measurements and theoretical radiative-transfer model 

calculations. One of the issues was to study the degree of agreement or disagreement 

between the model simulations and in-situ observations of underwater radiation fields, 

and to obtain a better understanding of the sources and magnitude of errors associated 

with these two different methods of estimating Lw(λ) and Rrs(λ). Measured boundary 

conditions and in-water inherent optical properties can be used as input information to 

perform the model estimations of underwater and water-leaving radiances. To what 

extent can we obtain “closure” between the measured and the theoretically estimated 

radiation fields, in the optically complex estuarine waters of Chesapeake Bay?  

 
 

3.3.1 Radiative Transfer Model Calculations using Hydrolight  
 
 
 

The Hydrolight radiative transfer code was used to estimate underwater, upwelling and 

downwelling radiance and irradiance profiles, and water-leaving radiances during some 

of the cruises performed in the framework of our detailed measurements program in the 

Chesapeake Bay. Model simulations were performed for those days when upwelling 

radiance (Lu) and downwelling irradiance (Ed) profile measurements of high vertical 

resolution were performed, using a MicroPro multi-spectral profiler.  
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The quantities that were used as input information to perform the model estimations,  

included: i) Total downwelling surface irradiance, Es(λ), measured using the OCI-507 

Satlantic surface sensors (the Greg and Carder GCIRRAD model is used in Hydrolight to 

estimate the diffuse to direct irradiance ratio). ii) Total absorption, a(λ), and attenuation, 

c(λ), coefficients (by all substances within the water body, other than pure water), 

measured using an AC9 instrument (scattering b(λ), can be estimated as the difference 

b=c-a). The absorption measurements were corrected for scattering assuming that 

absorption at 715 nm equals the absorption at-w measured using the CARY 

spectrophotometer (particulate absorption was corrected for pathlength amplification 

using β=1.5, according to the discussion in paragraph 2.2.2.3). iii) Total backscattering 

coefficients, bb(λ), measured using an ECO-VSF instrument  iv) observations of surface 

wind-speed and cloudiness, performed during the in-situ measurements v) solar zenith 

angle (sza) estimations, performed using information on the exact time of the 

measurements and the site location (latitude and longitude). The model was run using the 

Pope and Fry (1997) absorption values for pure water and the Smith and Baker (1981) 

scattering coefficients for pure sea-water, with the Rayleigh-like pure-water scattering 

phase function. The water column was assumed to be infinitely deep below the greatest 

depth of interest. Inelastic processes, such as Raman scattering, CDOM fluorescence and 

chlorophyll fluorescence were included in all model runs. Measurements of chlorophyll-a 

concentration were used as input information to estimate the chlorophyll fluorescence. 

Measurements of CDOM absorption, aCDOM(440), and exponential slope, SCDOM, obtained 

by using the CARY spectrophotometer, were used as input information in the model 
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estimations of CDOM fluorescence. The model runs were performed within the 350-700 

nm wavelength range, to include the relevant excitation and emission wavelengths.  

 
 
3.3.2 In-situ measurements of underwater and water-leaving radiances  
 
 

A Satlantic MicroPro free-falling radiometer was used in 7 of our cruises (table 3.3-1) 

in Chesapeake Bay to measure profiles of upwelling radiance, Lu, and downwelling 

irradiance, Ed, in the  water column. The MicroPro measures in-water profiles of Lu and 

Ed at 14 bands (400, 412, 443, 455, 490, 510, 532, 554, 564, 590, 625, 670, 684, 700 

nm). It has a smaller diameter (6.4 cm) compared to other radiometric instruments and as 

a result is less subject to instrument self-shading (Harding and Magnuson, 2001).  

 
Table  3.3-1: Dates of cruises in the Bay, 

and instrumentation for measurements of radiation fields 
Date of cruise  Instrument used for radiation fields 
2001, June 4 Satlantic OCI-200 
2001, June 11 Satlantic OCI-200 
2001, June 25 Satlantic OCI-200 
2001, July 9 Satlantic OCI-200 
2001, September 21 Satlantic SMSR 
2001, September 26 Satlantic MicroPro 
2001, September 28 Satlantic MicroPro 
2001, October 4 Satlantic OCI-200 
2001, October 30 Satlantic MicroPro 
2001, November 13 Satlantic OCI-200 
2002, May 6 Satlantic MicroPro 
2002, May 15 Satlantic MicroPro 
2002, May 22 Satlantic MicroPro 
2002, June 6 Satlantic OCI-200 
2002, June 18 Satlantic OCI-200 
2002, June 28 - 
2002, November 8 Satlantic MicroPro 

 

 
 Three MicroPro casts were made at each one of the stations, during each cruise, and all 

casts were completed within 5-8 minutes. Figure 3.3-1 shows an example of upwelling 
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radiance, Lu(z), and downwelling irradiance, Ed(z), profile measurements (3 casts) 

performed at PI station on 28 September 2001 (similarly for all stations during the rest of 

the cruises). Simultaneous measurements of surface irradiance (Es) were obtained using 

the Surface Reference Satlantic OCR-507 Irradiance sensors. Figure 3.3-2 shows the 

measurements of downwelling surface irradiance, Es, (3 casts) performed at PI station on 

28 September 2001 (similarly for all stations during the rest of the cruises). 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3-1: Measurements of Lu(z) (in µWnm-1cm-2sr-1) and Ed(z) (in µWnm-1cm-2) 
(logarithmic scale) at (a) 443, (b) 555 and (c) 670 nm, performed at PI station on 28 
September 2001, using the MicroPro Satlantic multi-spectral profiler.    
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Figure 3.3-2: Measurements of downwelling surface irradiance, Es, (in µWnm-1cm-2)  
performed at PI station on 28 September 2001 

 
 

Casts characterized by large tilt-angles and changing cloudiness conditions were not 

included in the following comparisons. Therefore, in some cases only one cast was used 

to estimate Lw, while in cases when all casts were of good quality Lw was estimated as 

the average of all 3 casts. Measurements of Lu(z) were corrected for the self-shading 

effect according to Gordon and Ding (1992), Zibordi and Ferrari (1995) (the correction 

methodology is discussed in paragraph 2.2.2.6).The radiance measurements were also 

corrected for the depth offset between the Ed and Lu sensors.   

 

To estimate the water-leaving radiance, Lw, the in-water measurements of upwelling 

radiance, Lu(z), must be extrapolated to z = 0- and, then, transmitted through the water-

air interface. According to the measurements performed during the specific days when 

the MicroPro was used, the upwelling radiances decreased approximately exponentially 

with depth, at least down to a depth of 3-4 m (figure 3.3-1 for PI station, 28 Sept 2001, 

and similarly for other cases). Therefore, Lu(z) can be expressed as :  

                                 )exp(),0(),( zKLuzLu ⋅−⋅= λλ     (3.3-1) 
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where Lu(0, λ) is the upwelling radiance just beneath the water’s surface and K is the  

diffuse attenuation coefficient for the radiance. For the measurements performed during 

the specific days in Chesapeake Bay, K can be considered to be, to a good approximation, 

constant down to a depth of 3-4 m. Simultaneous measurements performed using the  

AC-9 instrument show that the total absorption in these waters was also constant down to 

a depth of 3-4 m (fig. 2.3-4, chapter 2).  The upwelling radiance just below the water’s 

surface, Lu(0-, λ) was estimated through non-linear least squares fits of the measured 

upwelling radiances, Lu(z, λ), according to )exp( xbay ⋅⋅= , where y = Lu(z, λ),            

α = Lu(0-, λ), b = K (constant) and x = depth. Nonlinear regression was performed using 

the Marquardt-Levenberg algorithm (SigmaStat software) to find the coefficients 

(parameters) of the independent variables giving the ‘best fit’ between the equation and 

the data. To compare with the nonlinear fits, linear least squares regression fits of the 

natural logarithm of the measured upwelling radiances, ln[Lu(z, λ)], were also estimated, 

according to xbay ⋅+= , where y = ln[Lu(z, λ)], α = ln[Lu(0-, λ)], b = K (constant) and 

x = depth. The advantage of using nonlinear exponential fits, is that relatively greater 

weighting is given to the larger and more accurate values of upwelling radiances,      

Lu(z, λ), measured closer to the water’s surface. As a result, estimations of Lu(0-, λ), 

from non-linear fits are more accurate. The R2 (square of correlation coefficient) values 

of the non-linear exponential fits were in most of the cases larger than 0.99. 

 

To estimate the water-leaving radiance, Lw, the upwelling radiance just-beneath the 

water surface, Lu(0-,λ), was propagated through the interface according to the 

relationship:  
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r

LuLw
θθ

ϕθλϕθλ
−

= −      (3.3-2) 

where θ’ is the direction of the upward traveling photons incident from the water body 

onto the water surface, θ is the direction of the transmitted photons, r(θ’,θ) is the Fresnel 

reflectance for the associated directions θ’ and θ, and nw is the index of refraction of 

water (nw~1.34). According to Austin and Halikas (1976) the index of refraction of 

seawater changes with temperature and wavelength. At a given temperature T, nw(λ,T) 

decreases by about 1% throughout the visible spectrum, while at a given wavelength, 

nw(λ,T) decreases by about 0.1% for an increase in temperature from 0 to 30oC. 

However, these changes are very small and the index of refraction of seawater can be 

considered constant to a good approximation. The behavior of the Fresnel reflectance, 

r(θ’,θ), as a function of the incident angle θ’, and for the minimum and maximum values 

of the real index of refraction nw encountered in natural waters (Mobley, 1994) is shown 

in figure 3.3-3. According to Mobley (1994), for rays with incident angles of less than 

30o the reflectance is practically constant (2 to 3%) and the transmittance is                   

(1-r(θ’,θ)) = 0.98. For angles greater than 30o the reflectance increases rapidly with total 

internal reflection, r (θ’,θ)) = 1, occuring when θ’ for ‘water-incident’ rays (upward 

traveling photons incident from the water body to the water surface) exceeds the critical 

angle (θ’c= 48o for nw= 1.34). 
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Figure 3.3-3: Fresnel reflectance, r, as a function of incident angle θ’, for index of 
refraction of seawater nw=1.367 and nw=1.329. After Mobley (1994) 
 
 
 

For our in-water Lu(z) measurements, the zenith angle of water leaving radiance and 

the nadir angle of in-water upward radiance, are zero (θ’= θ = 0) and the transmittance is 

(1- ρ(θ’,θ))≈ 0.98.  Therefore, the water leaving radiance Lw(λ) can be estimated from 

the upwelling radiance just beneath the water, Lu(0-, λ), as :  

 

                                 2

)),'(1(
),',,0(),,(

wn

r
LuLw

θθ
ϕθλϕθλ

−
= −     (3.3-3) 

2)34.1(
98.0

),0()( λλ −= LuLw     (3.3-4) 

or:  

                                                Lw (λ)= 0.544 Lu(0-, λ)    (3.3-5) 
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3.4 “Closure” Experiment in the Chesapeake Bay waters - Results 
 
 

Figures 3.4-1 – 3.4-6 show the measured and the model estimated downwelling 

irradiances (Ed) and upwelling radiances (Lu), at wavelengths 412, 555 and 670 nm, for 

measurements performed during the three 2001 fall cruises (26 and 28 September, 30 

October) and the three 2002 spring cruises (6, 15 and 22 May). During those cruises Lu 

and Ed profile measurements of high vertical resolution were performed using a 

MicroPro multi-spectral profiler. Comparisons were not made for certain sites during 

those cruises (changing cloudiness conditions resulted in highly variable Es 

measurements during all casts at JT on 28 September 2001, no backscattering 

measurements were available for TI and JT stations on 30 October 2001. 

 

The model estimated Ed and Lu values were in good agreement with the measurements, 

especially within the first three meters in the water column. The percent differences at 1m 

below the water surface are shown in table 3.4-1 for Lu and table 3.4-2 for the 

downwelling irradiance, Ed. Percent differences for Ed(z) were estimated from: 

                            Percent difference 100
)Ed(Ed2

1
EdEd

(model)(InSitu)

(model)(InSitu) ⋅
+

−
=    (3.4-1) 

and similarly for Lu(z).At 15 out of 17 cases, the percent differences between measured 

and model-estimated Ed values were less than 9% at 443 nm (absolute average of 6.5%), 

less than 10% at 555 nm (absolute average of 5.2%) and less than 11% at 670 nm 

(absolute average of 5.9%). For the upwelling radiance, Lu, the percent differences 

between model-estimated and the measured values at 1m depth below the water surface, 

were, in almost all of the cases, less than 15.5% at 443 nm (with an absolute average of 
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7.8%), less than 19% at 555 nm (absolute average of 12.8%), and less than 22% at 670 

nm (absolute average of 8.7%). 

 

Figures 3.4-7 – 3.4-12 show the comparison between water-leaving radiances estimated 

using the in-situ measurements of upwelling radiances, Lw (InSitu), (methodology described 

previously) and those estimated by Hydrolight, Lw (model), (using as input information 

measured boundary conditions and IOPs). The percent differences, shown in table 3.4-3, 

were estimated according to:   

                         Percent difference 100
)Lw(Lw2

1
LwLw

(model)(InSitu)

(model)(InSitu) ⋅
+

−
=   (3.4-2) 

 
The model estimated water-leaving radiances were in very good agreement with those 

based on measurements of upwelling radiances, in most of the cases studied. In almost all 

of the cases, the percent differences between ‘measured’ and ‘model-estimated’ water-

leaving radiances, were less than ±11.6% at 443 nm (with an absolute average of 6.25%), 

less than ±15.2% at 555nm (with an absolute average of 8.3%) and less than ±11.5% at 

670nm (with an absolute average of 6.85%). 
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Table 3.4-1: Percent differences in estimated upwelling radiances, Lu, at depth = 1 m, 
and various wavelengths (412-685 nm) using in-situ measurements and model 
simulations (negative values correspond to Lu(InSitu) estimates smaller than the Hydrolight 
estimated Lu(model) ).  
 
Station/Date 412 443 490 510 532 554 670 685 
PI, 26 Sept ‘01 -9.40 -6.14 -13.72 -8.42 -7.18 -11.39 6.69 -12.29 
HB, 26 Sept ‘01 -7.20 -0.81 -14.62 -13.23 -17.72 -14.83 0.59 -11.64 
TI, 26 Sept ‘01 -14.33 -7.02 -11.82 -11.51 -14.32 -10.74 8.24 -7.90 
PI, 28 Sept ‘01 -3.95 -3.37 -9.05 -1.94 -0.81 -5.76 8.84 -3.94 
HB, 28 Sept ‘01 -21.14 -17.21 -26.40 -19.53 -19.45 -18.84 -3.45 -17.97 
TI, 28 Sept ‘01 -14.27 -12.99 -25.79 -21.39 -19.32 -19.24 -22.02 -38.17 
PI, 30 Oct ‘01 7.93 -10.06 -16.49 -7.18 -2.87 -10.96 -7.28 -23.06 
HB, 30 Oct ‘01 -1.20 -1.06 -13.06 -6.70 -6.05 -16.05 -3.20 -16.83 
HB, 6 May ‘02 1.63 -3.69 -20.50 -13.63 -17.42 -14.00 -24.65 -36.96 
TI, 6 May ‘02 16.16 6.29 -17.80 -14.93 -13.61 -12.17 -4.72 -13.98 
PI, 15 May ‘02 2.81 -1.18 -23.25 -19.08 -17.92 -21.17 -14.95 -30.95 
TI, 15 May ‘02 -7.52 -5.83 -21.20 -11.70 -8.09 7.31 21.62 5.80 
JT, 15 May ‘02 14.82 11.81 0.39 -1.30 -6.28 -8.15 -0.36 -10.68 
PI, 22 May ‘02 -10.09 -17.42 -28.95 -25.13 -20.31 -7.41 -0.56 -17.22 
HB, 22 May ‘01 5.55 4.07 -14.33 -21.13 -21.90 -11.63 -5.60 -17.09 
JT, 22 May ‘02 16.97 15.51 -19.50 -16.92 -16.47 -16.36 -6.76 -16.13 
 
 
Table 3.4-2: Percent differences in estimated downwelling irradiances, Ed, at depth =1 m, 
and various wavelengths (412-685 nm) using in-situ measurements and model 
simulations (negative values correspond to Ed(InSitu) estimates smaller than the Hydrolight 
estimated Ed(model) ). 
 
Station/Date 412 443 490 510 532 554 670 685 
PI, 26 Sept ‘01 20.77 14.84 9.45 6.76 6.19 -0.36 11.98 7.87 
HB, 26 Sept ‘01 11.13 4.48 -2.62 -7.65 -9.13 -10.71 -3.14 -5.12 
TI, 26 Sept ‘01 8.83 5.03 1.68 -1.69 -0.69 -4.20 6.54 3.58 
PI, 28 Sept ‘01 24.93 18.30 9.56 8.95 12.12 0.94 9.58 6.43 
HB, 28 Sept ‘01 3.69 1.60 -0.26 0.46 1.06 -7.93 -4.26 -5.63 
TI, 28 Sept ‘01 -5.11 -7.06 -7.97 -9.01 -8.62 -12.43 -5.08 -7.58 
PI, 30 Oct ‘01 26.36 5.84 -0.92 -1.25 0.91 -1.28 12.21 5.97 
HB, 30 Oct ‘01 10.74 4.01 1.47 2.91 4.03 -2.20 2.73 -0.17 
HB, 6 May ‘02 8.71 -5.67 -5.40 -2.62 3.85 -7.18 -1.67 -1.42 
TI, 6 May ‘02 22.02 7.51 1.79 3.44 10.01 -0.76 9.00 6.59 
PI, 15 May ‘02 4.02 -4.43 -1.86 2.95 13.67 -2.13 -1.71 -5.75 
TI, 15 May ‘02 16.85 8.43 -0.56 1.06 11.05 -6.56 -2.97 -3.04 
JT, 15 May ‘02 16.52 2.11 -0.20 -1.90 4.12 -10.06 -11.01 -11.28 
PI, 22 May ‘02 7.73 -3.49 -1.96 0.87 8.92 -6.48 -5.52 -5.07 
HB, 22 May ‘01 2.07 -8.90 -6.39 -3.62 3.82 -0.38 -0.83 1.24 
JT, 22 May ‘02 16.11 2.97 -8.46 -8.26 0.56 -9.01 -5.84 -6.78 
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Table 3.4-3: Percent differences in estimated water leaving radiances, Lw, at various 
wavelengths (412-685 nm) using in-situ measurements and model simulations (negative 
values correspond to Lw(InSitu) estimates smaller than the Hydrolight estimated Lw(model) ).  
 
Station/Date 412 443 490 510 532 554 670 685 
PI, 26 Sept ‘01 21.67 19.44 22.27 16.59 13.08 14.34 0.29 15.79 
HB, 26 Sept ‘01 2.59 5.52 0.11 0.58 -2.10 2.75 7.41 -4.96 
TI, 26 Sept ‘01 -12.96 -8.53 -6.62 -4.67 -5.11 -5.10 0.64 -14.98 
JT, 26 Sept ‘01 -1.81 0.57 -7.27 -8.89 -12.00 -15.18 -2.07 -11.26 
PI, 28 Sept ‘01 -0.84 -1.89 -6.37 0.23 2.04 -0.56 7.67 -4.34 
HB, 28 Sept ‘01 -0.64 -2.94 -10.35 -5.03 -5.53 -6.96 2.95 -11.65 
TI, 28 Sept ‘01 4.75 -1.07 -16.58 -14.83 -14.04 -12.75 -8.01 -20.30 
PI, 30 Oct ‘01 19.72 2.15 -7.20 1.07 4.63 -1.24 3.85 -14.35 
HB, 30 Oct ‘01 -0.55 -1.52 -10.21 -3.88 -2.83 -9.54 -1.40 -17.02 
HB, 6 May ‘02 10.02 1.69 -14.14 -10.30 -15.32 -9.99 -18.22 -21.56 
TI, 6 May ‘02 14.00 7.49 -9.52 -5.70 -4.76 -2.26 -3.07 -16.26 
PI, 15 May ‘02 1.44 -4.29 -18.80 -13.87 -12.10 -17.41 -6.93 -22.84 
TI, 15 May ‘02 1.97 -15.87 -22.69 -10.53 -3.78 18.63 22.42 4.20 
JT, 15 May ‘02 2.83 -1.92 0.05 4.89 5.09 6.13 7.02 -5.94 
PI, 22 May ‘02 2.30 -11.63 -18.75 -13.46 -10.09 2.73 6.54 -15.52 
HB, 22 May ‘01 11.52 11.04 -3.67 -5.10 -12.09 1.77 6.55 -9.07 
JT, 22 May ‘02 13.57 8.52 -12.09 -11.50 -11.78 -13.73 -11.48 -19.94 
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Figure 3.4-1: In-situ measurements (blue lines) and model estimations (red lines) of 
upwelling radiances (Lu) and downwelling irradiances (Ed), at 443, 555 and 670 nm, 
for 26 September 2001.  
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Figure 3.4-2: Same as figure 3.4-1, for 28 September 2001.  



 208

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-8

-6

-4

-2

0

0.0001 0.001 0.01 0.1 1
Lu, H B , 30 Oct 2001,  443

de
pt

h,
 m

-8

-6

-4

-2

0
0.0001 0.01 1

555

-8

-6

-4

-2

0

0.0001 0.001 0.01 0.1 1
670

-8

-6

-4

-2

0

0.1 1 10 100 1000
Ed, HB 30  Oct  2001, 443

de
pt

h,
 m

-8

-6

-4

-2

0

0.1 1 10 100 1000
555

-8

-6

-4

-2

0

0.1 1 10 100 1000
670

-8

-6

-4

-2

0

0.0001 0.001 0.01 0.1 1

Lu , P I  30 Oct 2001, 443

de
pt

h,
 m

-8

-6

-4

-2

0

0.001 0.01 0.1 1
555

-8

-6

-4

-2

0

0.0001 0.001 0.01 0.1 1

670

-8

-6

-4

-2

0

0.001 0.1 10 1000

Ed, P I  30 Oct 2001,  443

de
pt

h,
 m

-8

-6

-4

-2

0

0.001 0.1 10 1000
555

-8

-6

-4

-2

0

0.001 0.1 10 1000
670

Figure 3.4-3: Same as figure 3.4-1, for 30 October 2001.  
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Figure 3.4-4: Same as figure 3.4-1, for 6 May 2002.  
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Figure 3.4-5: Same as figure 3.4-1, for 15 May 2002.  
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Figure 3.4-6: Same as figure 3.4-1, for 22 May 2002.  
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Figure 3.4-7: Water-leaving radiances, Lw, measured in-situ (red pixels) and estimated 
by the model (blue line), for measurements performed on 26 September 2001  
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Figure 3.4-8: Same as figure 3.4-7 for measurements performed on 28 September 2001  
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Figure 3.4-9: Same as figure 3.4-7 for measurements performed on 30 October 2001  
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Figure 3.4-10: Same as figure 3.4-7 for measurements performed on 6 May 2002  
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Figure 3.4-11: Same as figure 3.4-7 for measurements performed on 15 May 2002  
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Figure 3.4-12: Same as figure 3.4-7 for measurements performed on 22 May 2002  
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3.5 Discussion 
 
 

The underwater radiation fields and water-leaving radiances within the estuarine 

Chesapeake Bay environment were measured under various atmospheric conditions and 

in-water optical characteristics in the northern part of the Bay (cruises during 2001- 

2002). Measured boundary conditions and in-water inherent optical properties were used 

as input information to perform radiative transfer model estimations of underwater 

radiation fields using the Hydrolight code. The main objectives were: i) to obtain a better 

understanding of the sources and magnitude of errors associated with these two different 

methods of estimating Lw(λ) and Rrs(λ) and ii) to study to what extent we can 

demonstrate ‘closure’ with measured data and comparisons with theoretically estimated 

radiation fields in this optically complex estuarine environment. 

 

Good agreement was obtained between measured and model estimated Ed and Lu 

values (figures 3.4-1 - 3.4-6, tables 3.4-1 - 3.4-2), especially within the first three meters 

below the water surface. For average values of attenuation c(412)=5.5 m-1 and  

c(532)=4.2 m-1 measured in the Bay during our cruises, these depths correspond to 

optical depths (ζ =c z) of 16.5m and 12.5m, respectively. According to the results shown 

in figures 3.4-1 - 3.4-6, good agreement of 3 orders of magnitude dynamic range was 

obtained between model results and measurements. In 15 out of 17 cases, the percent 

differences between measured and model-estimated Ed values, at 1 m below the water 

surface, were less than 9% at 443 nm (average of absolute percent differences was 6.5%), 

less than 10% at 555 nm (average of absolute percent differences was 5.2%) and less than 

11% at 670 nm (average of absolute percent differences was 5.9%). For the upwelling 
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radiance, Lu, the percent differences between model-estimated and measured values, at 

1m depth below the water surface, were in almost all of the cases, less than 15.5% at 443 

nm (average of absolute percent differences was 7.8%), less than 19% at 555 nm (average 

of absolute percent differences was 12.8%), and less than 22% at 670 nm (average of 

absolute percent differences was 8.7%). As light penetrates deeper into the water column, 

small errors associated with measurements of the absorption and scattering, used as input 

information to run the model, propagate in the radiative transfer model calculations and 

result in larger differences between measured and estimated radiances at larger depths. At 

the same time, other factors such as very low light levels down to 5-6 m depths in the 

blue wavelengths (low values were measured especially for the upwelling radiances, Lu), 

as well as bottom reflectance, affect both the accuracy of the measurements close to the 

bottom and the accuracy of the assumptions used to perform the model estimations. 

Information on bottom reflectance was not available from the measurements performed 

in the Bay. The assumption of an infinitely deep water-column used in the model 

simulations might be a source of error in the model estimations. 

 

The model-estimated water-leaving radiances were in very good agreement with the 

water-leaving radiances estimated based on the measurements of upwelling radiances. 

For almost all of the cases, the percent differences between measured and model-

estimated water-leaving radiances were less than ±11.6% at 443nm (average of absolute 

percent differences was 6.25%), less than ±15.2% at 555nm (average of absolute percent 

differences was 8.3%) and less than ±11.5% at 670nm (average of absolute percent 

differences was 6.85%). Studies by Chang at el (2003), at the relatively turbid, New 
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Jersey near-shore waters, showed that the average absolute percent differences between 

measured (using an Ocean Profiler OCI-100 free falling radiometer) and theoretical 

estimated (using the Hydrolight code) Lw(λ) values were in the order of 20% at 443 nm, 

22% at 555 nm and 17 % at 682 nm, larger than those estimated in this study. In their 

study, Chang et al assumed that the shape of the volume scattering phase functions, 

VSFs, (measured at one wavelength, 532 nm, and single depths) were independent of 

wavelength and depth. 

 

The agreement between measured and model-estimated water-leaving radiances in the 

Chesapeake Bay waters is very good, especially when one takes into account the errors 

associated with measured quantities used as input information to run the model, the 

assumptions made in the model simulations, and the errors associated with the 

radiometric measurements. Two main assumptions made in the model simulations of the 

underwater light fields, improved the agreement with the measurements in the Bay:         

i) The use of a Fournier Forand scattering phase function, as determined by measured 

wavelength- and depth-dependent backscattering fractions, in place of the widely used 

“Petzold” average particle scattering phase function (that has a backscattering to 

scattering ratio of 0.018) (paragraph 3.2.2.3). ii) The assumption of small, but not-zero, 

total-minus-water absorption at near-infrared (e.g. 715 nm) wavelengths, supported by 

spectrophotometric measurements of absorption spectra in the 290-750 nm wavelength 

region (paragraphs 2.2.2.3 and 3.2.2.2). The assumptions made in the model simulations, 

as well as the inaccuracies and errors associated with the in-situ measurements performed 

in the Bay, are discussed in the following paragraphs. 
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According to Mobley et al (2002), use of a scattering phase function with the correct 

backscattering ratio, bb/b, and correct overall shape at intermediate and backward- 

scattering angles, is necessary for accurate prediction of underwater light fields and 

crucial to achieving model-data agreement. The backscattering properties of a natural 

water body can be specified in Hydrolight runs in several ways. i) By using a measured 

volume scattering phase function. ii) By selecting one of the discretized phase functions 

supplied with Hydrolight (such as the widely used Petzold “average particle” phase 

function, the ‘pure water’ phase function, the Kopelevich’s “small particle” or the 

Kopelevich’s “large particle” phase function). 3) By defining a wavelength- and depth- 

dependent value for the backscattering to scattering ratio, bb/b, and using a Fournier-

Forand scattering phase function with the same bb/b ratio (Mobley and Sundman, 2000). 

According to Mobley at el (2002), in an example analysis of case-2 waters (LDEO-15 

site, off the coast of New Jersey), the use of a depth- and wavelength- dependent Fournier 

Forand scattering phase function for the particle component, gave much better agreement 

with measured downwelling irradiances and upwelling radiances than did the commonly 

used Petzold phase function, which had too large a backscatter fraction.  

 

The effect of the choice of scattering phase function on the Hydrolight estimations of 

Ed(z), Lu(z), Rrs and Lw, was discussed in paragraph 3.2.2.3. For measurements 

performed at PI station on 28 September 2001, use of a Petzold phase function 

(bb/bPetzold=0.018), instead of a Fournier Forand phase function as determined by the 

measured (fig. 3.2.2-9) wavelength- and depth-dependent bb/b values (with 

bb/bmeas=0.015 at 530 nm), resulted, due to the larger Petzold backscatter fraction, in an 
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underestimation of Ed by 10-20% at 3-5 m depths, and an overestimation of Lu(z=0-), Lw 

and Rrs by 20% in the blue wavelengths and by 30-50% in the 550-650 nm wavelength 

region (fig. 3.2.2-13(b)). Use of Fournier Forand scattering phase function and a constant 

bb/b ratio, bb/b=0.015 (close to the measured bb/b, but no wavelength or depth 

dependence), resulted in an overestimation of Rrs by less than 10% in the blue green 

wavelengths (since bb/bmeas=0.015 at 530 nm), and by 20-30% within the red wavelength 

region (since bb/bmeas< 0.015 at 650 nm). These model simulations suggest that accurate 

information on the backscattering fraction, as well as its spectral shape and vertical 

structure is very important for accurate model estimations. 

 

The volume scattering phase function is rarely measured in the ocean because of 

instrumental difficulties. Since the phase function was not measured during our cruises in 

the Bay, a depth- and wavelength-dependent Fournier Forand phase function, as 

determined by measured bb/b profiles, was used in order to obtain the most accurate 

model estimations of underwater radiation fields (Mobley et al, 2002). The ECOVSF 

instrument was used to measure total backscattering, bb, (at 3 wavelengths 450-650 nm 

and at various depths in the water column), while the AC9 instrument was used to 

determine scattering bt-w as the difference between measured attenuation and absorption 

(at 9 wavelengths 412-715 nm, and at various depths in the water column). The 

backscattering fraction was then estimated by Hydrolight using the AC9 profile 

measurements of bt-w(z) and the ECOVSF measured profiles of bb(z). This approach 

improved the agreement of radiative transfer calculations with the measurements 

(paragraph 3.2.2.3).  
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Another change in the model input parameters that improved the agreement between 

modeled and measured radiances, was the assumption of non-zero absorption, at-w, at the 

near-infrared wavelengths (e.g. 715 nm), based on spectrophotometric measurements of 

absorption spectra in the 290-750 nm wavelength region. Laboratory measurements of 

particulate absorption were performed using a CARY spectrophotometer and by placing a 

sample of the particle suspension inside an integrating sphere, to minimize scattering 

errors (methodology and discussion in chapter 2, paragraph 2.2.2.3). According to the 

measurements, particulate absorption was small, but non-zero, in the wavelength region 

700-730 nm (fig. 2.2-7, chapter 2). These results are in agreement with recent studies by 

Tassan and Ferrari (2003). Therefore, the AC9 absorption measurements used as input 

information to perform the model simulations, were corrected for scattering similarly to 

the Zaneveld correction (chapter 2, paragraph 2.2.2.1), but assuming that total-minus-

water absorption at 715 nm (the longest AC9 wavelength band), is non-zero and equal to 

the absorption measured using the CARY spectrophotomer, according to:  

at-w(λ)=at-w, m(λ)-[bt-w, m(λ)/bt-w, m(715)]•[at-w, m(715)-aCARY(715)], where aCARY  is the sum 

of the absorption by particulate (pigmented and non-pigmented) and dissolved material. 

The particulate absorption values measured using CARY were corrected for an 

amplification factor β= 1.5 (discussion in chapter 2).  

 

Figures 3.5-1(a)-(b) show the comparison between measured and model-estimated Lu 

and Ed profiles for measurements performed at TI station on 26 September 2001             

i) assuming that at-w(715)=0 (fig. 3.5-1(a)) and ii) assuming that at-w(715)= aCARY(715) 

(fig. 3.5-1(b)).  
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Figure 3.5-1: Comparison between measured (blue lines) and model-estimated (thick red 
lines) Lu(z) and Ed(z) profiles at 443, 555 and 670 nm, for measurements performed at 
TI station, on 26 September 2001, (a) assuming that at-w(715)=0 and (b) assuming that    
at-w(715)= aCARY(715). When the assumption at-w(715)=0 was used, the model 
overestimated both Ed(z) and Lu(z) at 555 nm (and similarly for other wavelengths close 
to 555nm, such as 510 and 532 nm, not shown here). Similar results were obtained when 
comparing Hydrolight simulations to in-situ measurements performed during the rest of 
the cruises at PI, HB, TI and JT stations. 
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When model simulations were performed assuming zero at-w(715), larger differences 

between measured and model-estimated quantities were observed at the green 

wavelengths. Percent differences (calculated according to eq. 3.4-1) between model-

estimated and measured Lu values at 1m depth were -21.3% at 490 nm and -24.3% at 555 

nm. The model overestimated both Ed(z) and Lu(z), and the disagreement between 

measurements and model estimations increased with increasing depth (fig 3.5-1). When 

the model was run assuming non-zero total-minus-water absorption at 715 nm,               

at-w(715)=aCARY(715), the agreement between measurements and model results was 

improved. Percent differences between model-estimated and measured Lu values at 1m 

depth were -11.8% at 490 nm and -10.7% at 555 nm. Similar results were obtained when 

comparing Hydrolight simulations to in-situ measurements performed during most of the 

cruises at PI, HB, TI and JT stations. 

 

As was discussed in the Hydrolight sensitivity studies section (paragraph 3.2.2.2), 

correction of the AC9 measurements using non-zero at-w(715), would be expected to have 

a larger effect on the model estimations in the green wavelengths. In the blue region of 

the spectrum, absorption by CDOM and non-pigmented particulate matter is typically 

large and the effect of a residual absorption at 715 nm is too small to significantly change 

the total absorption and affect the model estimations of Lu(z), Ed(z), Lw or Rrs. In the 

red region of the spectrum, strong absorption by pure sea-water itself results in relatively 

high total absorption and, again, the effect of the residual absorption at 715 nm is too 

small to change the total absorption significantly. However, in the green region of the 

spectrum (λ=550 nm) total absorption is relatively smaller, and a small change in the 
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absorption (equal to the residual absorption at 715 nm) can affect the model estimations 

of remote sensing reflectances (fig.3.3.2-7(b)). 

 

Inelastic processes such as CDOM and chlorophyll fluorescence affect the amount of 

water-leaving radiance in natural waters. According to the sensitivity studies discussed in 

paragraph 3.2.2.6, Lu(0-) values at 677-685 nm, estimated by the model using as input 

information measurements performed at PI station on 28 September 2001, were 

underestimated by as much as 30-40% when chlorophyll fluorescence was not included 

in the model simulations, compared to model results when chl-a fluorescence was 

included in the simulations. This underestimation of Lu(0-) at wavelengths close to 685 

nm (which is the chl-a fluorescence emission maximum) would result in an 

underestimation of Lw and Rrs at these wavelengths, significantly affecting comparisons 

with in-situ and remote sensing measurements of water-leaving radiance. Hydrolight 

estimations of the amount of light fluoresced by chlorophyll are affected by the model 

assumptions about the chlorophyll-specific phytoplankton absorption spectrum, a*phyt(λ), 

chlorophyll fluorescence efficiency and wavelength redistribution function. Measured 

chlorophyll concentrations can be used as input information for the model estimations of 

phytoplankton absorption. Therefore, errors in measurements of [Chl-a] can also affect 

the accuracy of the model calculations. The default chlorophyll fluorescence efficiency 

value of 0.02 was used in the framework of this study, to perform the model simulations. 

According to Mobley (1994) chl-a fluorescence efficiency in oceanic phytoplankton is, to 

a good approximation, wavelength-independent. However, it depends on phytoplankton 

species and physiological state, and is influenced by the availability of light and nutrients 
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and the presence of toxic pollutants in the water. With these uncertainties, chlorophyll 

fluorescence efficiency may actually range from 0.01 to 0.1, with 0.01-0.05 being typical 

values (Mobley, 1994).  

 

Hydrolight models CDOM fluorescence using a spectral fluorescence quantum 

efficiency function proposed by Hawes (1992). This function is based on measurements 

of CDOM spectral fluorescence quantum efficiency functions performed on water 

samples collected from a variety of waters (e.g. Gulf of Mexico). According to Hawes, 

values of CDOM fluorescence quantum efficiency fall in the range 0.005-0.015, for the 

water samples he studied. According to the model simulations discussed in paragraph 

3.2.2.6, the model-estimated CDOM fluorescence signal affected the underwater light 

fields only at wavelengths smaller than 550 nm (figure 3.2.2-26). For the specific case 

studied, the effect of CDOM fluorescence was a 2-5% change in the model estimated Rrs 

and Lw values at the blue wavelengths. The effect was negligible at wavelengths longer 

than 530 nm. Measurements of chlorophyll or CDOM fluorescence quantum efficiencies 

were not performed in the framework of this study. Therefore, the Hydrolight 

assumptions about the CDOM and chlorophyll fluorescence quantum efficiency and 

spectral quantum efficiency functions might be another source of error in the model 

estimations of underwater radiance fields. 

 

Uncertainties and errors in the measurements of surface irradiance, Es (Satlantic 

instrument), absorption and scattering coefficients (AC9 instrument), backscattering 

(ECOVSF instrument) and [Chl-a] (measured spectrophotometrically), are additional 
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possible sources of error in the model estimations of underwater and water-leaving 

radiances, since these parameters are used as input information to perform the model 

simulations. According to Hydrolight sensitivity studies (section 3.2.2) variation in Es by 

± 3% (MicroPro irradiance sensors’ accuracy, personal communication Scott McLean, 

Satlantic) affects the Lu, Ed, Lw values by ±3%, without affecting the model-estimated 

Rrs, since Rrs is defined as the ratio Rrs =Lw/Ed. Variations in the measured 

backscattering, bb, absorption, at-w, and attenuation, ct-w, by ± standard error resulted in 

less than 2-3% changes in the model-estimated Lw and Rrs values for the specific 

measurements in the Chesapeake Bay waters. However, measurements of bb were 

available only at wavelengths 450, 530 and 650 nm. Since there is not enough in the 

literature on the wavelength dependence of bb expected for the Chesapeake Bay waters, 

no extrapolation of the bb measurements was performed for wavelengths shorter than 450 

nm (e.g., 412 nm) or longer than 650 nm (e.g., 685 nm). These uncertainties in the 

accuracy of the bb values at λ < 450 nm and λ > 650 nm could be additional possible 

sources of error for the model estimations of water-leaving radiances at the blue and 

infrared wavelengths.   

 

Imperfect instrument calibration, errors and uncertainties associated with the in-situ 

measurements of underwater Ed and Lu profiles as well as with the estimation of Lw 

based on the underwater measurements of Lu, may also contribute to discrepancies when 

comparing the measurements to the model estimations. The MicroPro irradiance and 

radiance sensors’ accuracy is reported to be ± 3% and ± 4% respectively (personal 

communication Scott McLean, Satlantic). However, additional uncertainties occur when 
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further processing the data and correcting for self-shading effects (methodology and 

discussion in chapter 2). According to Gordon and Ding (1992) and Zibordi and Ferrari 

(1995), the magnitude of an instrument’s self-shading error depends mainly on the size of 

the radiometer, the solar zenith angle and the total in-water absorption, and can be very 

significant in highly absorbing, coastal waters. Correction for the instrument’s self-

shading (Gordon and Ding, 1992; Zibordi and Ferrari, 1995) was applied to the 

radiometric measurements obtained using the MicroPro instrument during our cruises. 

However, the Gordon and Ding model is based on the assumption that scattering in the 

water is smaller than total absorption. Field observations by Zibordi and Ferrari (1995) 

suggest that the presence of highly scattering material, as in the case of the highly turbid 

Chesapeake Bay waters, could reduce the self-shading error below that theoretically 

predicted. Further studies are needed for improvement of the theoretical estimations of 

self-shading errors in highly scattering waters. Other sources of error, associated with the 

in-situ radiance measurements include instrument tilt and noise in the measurements, as 

well as uncertainties in the extrapolation of underwater Lu(z) measurements to Lu(0-) just 

below the water surface and the estimation of the water-leaving radiances, Lw 

(methodology described in 3.3.2, equations 3.3-1 and 3.3-2).   

 

Very good agreement was obtained between measurements and model-estimated Ed(z), 

Lu(z) and Lw values in the optically complex, estuarine environment of Chesapeake Bay, 

especially when one takes into account all of the assumptions made in the model 

simulations, the errors associated with the measured quantities used as input information 
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to run the model, and the errors associated with the radiometric measurements, mentioned 

in the previous paragraphs. 

 

Table 3.5-1 shows the range of values of IOPs (absorption, at-w, attenuation, ct-w, 

backscattering fraction, bb/b, and chlorophyll-a concentration, [Chl-a]) measured in the 

Bay waters during cruises where theoretical estimations of underwater light fields were 

compared to in-situ radiance measurements (using the MicroPro instrument). Almost 80-

85% of the IOP values measured in the Chesapeake Bay waters during our 17 cruises 

(table 3.3-1) were within the range of values shown in table 3.5-1. The range of 

atmospheric and air-water surface boundary conditions observed during the cruises for 

which Hydrolight runs were performed are shown in table 3.5-2.  

 

Table 3.5-1:Range of values (min-max) of IOPs for which Hydrolight simulations were 
performed in the Chesapeake Bay waters. 
 

 at-w(440) 
(m-1) 

at-w(676) 
(m-1) 

ct-w(440) 
(m-1) 

ct-w(676) 
(m-1) 

bb/b(530) [Chl-a] 
(mg m-3) 

minimum 0.6 0.12 2.5 1.6 0.006 4.8 

maximum 1.44 0.44 8.5 6.3 0.020 23 

 
 
 
 
Table 3.5-2:Range of atmospheric and air-water surface boundary conditions for which 
Hydrolight simulations were performed in the Chesapeake Bay waters. 
 

 sza 
(o) 

Wind speed 
(m/s) 

Cloud fraction 
(%) 

Minimum 19 2 0 (clear) 

Maximum 54 5 100 (overcast) 
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Obtaining such good agreement between measurements and theoretical estimations, 

over a wide range of inherent optical properties values and air-water surface boundary 

conditions, increases confidence in the accuracy of the in-situ measurements performed 

in the Bay, and demonstrates “closure” between the independently measured water’s 

inherent and apparent optical properties (optical closure).  

 

The good agreement between measured and theoretically estimated water-leaving 

radiances suggests that, when in-situ radiance measurements are not available, the 

radiative transfer model can be used to estimate the radiation fields in the Chesapeake 

Bay waters or other coastal waters, provided that accurate and detailed measurements of 

the inherent optical properties of the water body, needed as input to perform the model 

simulations, are available.  
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3.6 Summary - Conclusions 
 
 
In-situ measurements of in-water optical properties, together with theoretical models 

and laboratory experiments, are essential to our efforts to understand the penetration and 

distribution of solar radiation in the marine environment. Measurements of underwater 

radiation fields and water’s inherent optical properties, have been performed under 

various atmospheric conditions and in-water optical characteristics in the northern part of 

the Chesapeake Bay (cruises 2001- 2002). The combination of measurements forms a 

“closure experiment”, since measured inherent optical properties and boundary 

conditions can be used as input information to perform theoretical estimations of the 

underwater light field using a radiative transfer model, while measured radiometric 

quantities can be compared to the model’s output. The Hydrolight underwater radiative 

transfer code (Mobley, 1988) was used in this project to perform the model simulations. 

The main objectives were: i) to obtain a better understanding of the sources and 

magnitude of errors associated with measurements and theoretical estimations of 

underwater light fields and water-leaving radiances and ii) to study to what extent we can 

obtain ‘closure’ between water’s apparent and inherent optical properties, in this optically 

complex, estuarine environment. The most significant points and conclusions related to 

the “closure experiment” and the theoretical estimations of underwater light fields and 

water-leaving radiances in the Chesapeake Bay waters, are shown in table 3.6-1. 
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Table 3.6-1: Chapter 3 – Conclusion and Significant Points 

 - Good agreement was obtained between measured and model estimated underwater Ed and Lu 
values, especially within the first 3 meters below the water surface. At larger depths, factors such as 
very low light levels (low Lu values at 5-6 m depths in the blue wavelengths), as well as bottom 
reflectance, affect both the accuracy of the measurements and the accuracy of the assumptions used in 
the model simulations. 

 - The model-estimated Lw values were in very good agreement with those based on measurements of 
upwelling radiances. For almost all of the cases, the percent differences between measured and model-
estimated Lw, were less than ±11.6% at 443 nm (absolute average of 6.25%), less than ±15.2% at 
555nm (absolute average of 8.3%) and less than ±11.5% at 670nm (absolute average of 6.85%).  

 - Two main assumptions made in the model simulations of the underwater light fields, improved the 
agreement with the measurements:  
   i) Use of a Fournier Forand scattering phase function, as determined by measured wavelength- and 
depth-dependent backscattering fractions, in place of the widely used “Petzold” average particle 
scattering phase function.  
  ii) The assumption of non-zero particulate absorption at the near-infrared wavelengths (e.g. 715 nm), 
based on laboratory spectrophotometric measurements of absorption spectra in the 290-750 nm 
wavelength region.  

 - Hydrolight simulations showed that underwater radiances and irradiances, as well as water-
leaving radiances and reflectances, are sensitive to the value of bb/b ratio, and the bb/b vertical 
structure and wavelength dependence. Mobley et al (2002), have shown that underwater light fields 
are also sensitive to the shape of the scattering phase function at intermediate and large scattering 
angles, and they concluded that when the particle phase function is not measured, a Fournier Forand 
phase function with the correct backscatter fraction could provide a satisfactory substitute to perform 
the model simulations. As discussed in Chapter 2, considerable variation was observed in the 
measured bb/b values in the Chesapeake Bay during our cruises, with values as low as 0.006 and 
higher than 0.025. The backscattering fraction bb/b(530) had an average value of 0.013, much smaller 
than the widely used bb/b value for the Petzold “average particle”, bb/b=0.018. Performing the model 
simulations using the Petzold phase function would result in significantly overestimated water-leaving 
radiances for most of the cases studied in the Chesapeake Bay waters. Therefore, accurate 
measurements of bb/b are crucial for accurate predictions of underwater light fields and for achieving 
good agreement between data and model. 

  - Use of non-zero absorption, at-w, at the near-infrared wavelengths (e.g. 715 nm), supported by 
spectrophotometric measurements of absorption spectra in the 290-750 nm wavelength region, 
improved the agreement between modeled and measured radiances and irradiances. The assumption of 
non-zero absorption at 715 nm is in agreement with recent studies by Tassan and Ferrari (2003). 
Correction of the AC9 absorption measurements (used as input information to run the model) 
assuming non-zero absorption at 715 nm, at-w(715)=aCARY(715), had a larger effect on the model 
estimations of water-leaving radiances in the green wavelengths, than blue or red wavelengths, since 
total absorption in the green region of the spectrum (λ=550 nm) is relatively small. 

 - Hydrolight simulations showed that inclusion of the inelastic process of chlorophyll fluorescence, 
can significantly affect (e.g., by 30-40%) the model estimated water-leaving radiances around 685 nm 
(chl-a fluorescence emission maximum). According to the model simulations, the model-estimated 
CDOM fluorescence signal affected the underwater light fields only at wavelengths smaller than 550 
nm, and by less than 5% for the specific case studied. The Hydrolight assumptions about the CDOM 
and chlorophyll fluorescence quantum efficiency and spectral quantum efficiency functions might be a 
significant source of error in the model estimations of underwater radiation fields. 
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Table 3.6-1: (continued) 

- Uncertainties and errors in the measurements of surface irradiance, absorption and scattering 
coefficients, backscattering and chlorophyll concentrations are additional possible sources of error in 
the model estimations of underwater and water-leaving radiances, since these parameters are used as 
input information to perform the model simulations. However, the standard errors estimated for 
measurements of total absorption, attenuation and backscattering were smaller than 2-3 % for the 
specific case studied (calm water surface and IOPs not highly variable with depth) and varying these 
quantities by ± standard error did not have a large effect on the model estimated Lw or Rrs values. 

 - A larger source of error could be associated with the uncertainties concerning the wavelength 
dependence of bb and the extrapolation of the bb values measured at 450, 530 and 650 nm to 
wavelengths shorter than 450 nm or longer than 650 nm.  

 - Imperfect calibration and errors associated with the in-situ measurements of underwater Ed and Lu 
profiles, instrument tilt and noise in the radiometric measurements close to the surface, as well as 
uncertainties in the estimation of Lw based on the underwater measurements of Lu(z), may also 
contribute to discrepancies when comparing the measurements to the model estimations. 

 - Given all the assumptions made in the model simulations and the errors associated with the 
measured quantities, the agreement obtained between measurements in the Bay and model-estimations 
is very good. Obtaining such a good agreement between measurements and theoretical estimations:  

i) suggests that, when in-situ radiance measurements are not available, the radiative transfer model 
can be used to accurately estimate the radiation fields in the Chesapeake Bay or other coastal waters, 
provided that accurate and detailed measurements of the inherent optical properties of the water body 
are available.  

ii) increases confidence in the accuracy of the in-situ measurements performed in the Chesapeake 
Bay and demonstrates “closure” between the independently measured inherent and apparent water 
optical properties. This is extremely important when in-situ measurements and radiative transfer 
modeling are used in the interpretation and validation of satellite, remote sensing observations. 
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CHAPTER 4 

Observations of Remote Sensing Reflectance in the Chesapeake Bay, using the 

MODIS/Terra satellite instrument and in-situ measurements   

 
 
4.1 Remote Sensing in Ocean studies 
 
 
 

Studies on the effects of natural and human induced processes on aquatic environments 

at a global scale, require repeated monitoring of the oceans and synoptic observations 

over large areas that can be monitored only remotely, by instruments mounted on 

aircrafts or on board satellites. These locations are normally inaccessible to ground 

instruments. Within the last decades great progress has been made on remote sensing 

applied to oceanographic research. Spatially detailed measurements of sea-surface 

temperature, ocean color, surface roughness or slope, can be made today over wide areas, 

providing a global view and a novel perspective of the ocean.  

 

Satellite observations of the ocean rely on detecting the light signal that leaves the 

water surface and reaches sensors onboard a satellite. The water itself and its constituents 

(phytoplankton, non-algal particulate matter, chromophoric dissolved organic material) 

absorb and scatter light at near-IR, visible, and UV wavelengths of the spectrum. 

Changes in the concentration and composition of the water constituents, due to 

biological, chemical or physical processes, affect light penetration in the water and the 

spectral signature of light that leaves the water surface. Therefore, a satellite sensor that 

makes measurements in the visible wavelengths can be used to measure changes in the 
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“color” of the ocean that provides information on the “optically active” components of 

the water.   

 

In open-ocean, case-1 waters, phytoplankton and their by-products are the major 

constituents affecting changes in the spectral signature of light leaving the water’s 

surface. Satellite observations of ocean color have contributed significantly in gaining a 

better understanding of the temporal and spatial variations of phytoplankton biomass and 

biological activity in the world’s oceans (McClain et al, 1993; Yoder et al, 1993). 

Obtaining a better understanding of the oceanic primary production on a global scale is 

important for studies on the ocean’s role in the global carbon cycle and climate change. 

Moreover, satellite observations have contributed to the development and improvement 

of global, coupled biophysical models, able to describe and predict earth system change 

accurately enough to contribute to the environmental decision-making process.   

 

There have been many efforts recently, to develop techniques for measuring water-

leaving radiances and algal biomass by using satellite observations. The Coastal Zone 

Color Scanner (CZCS) flown onboard NASA's Nimbus-7 satellite was the first 

instrument designed to provide frequent global measurements of water-leaving radiances 

(Nov. 1978 – June 1986). The Ocean Color and Temperature Sensor (OCTS) was 

launched by NASDA (National Space Development Agency of Japan) in August 1996, 

and was operational till June 1997. Since September 1997, the NASA SeaWiFS (Sea-

viewing Wide Field-of-view Sensor) instrument, a follow-on sensor to CZCS, has been 

providing very high quality ocean color data. On December of 1999 MODIS (Moderate 
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Resolution Imaging Spectroradiometer) was launched by NASA. MODIS is not just 

designed for ocean-color measurements, but also for measurements on atmospheric 

characteristics and terrestrial vegetation. Other ocean color sensors include MERIS 

(MEdium Resolution Imaging Spectrometer) GLI (Global Imager), MOS (Modular 

Optoelectronic Scanner), OCI (Ocean Color Imager), OCM (Ocean Color Monitor), 

OSMI (Ocean Scanning Multispectral Imager), POLDER (Polarization and Directionality 

of the Earth's Reflectances). 

 

One major obstacle for remote monitoring is the fact that remote sensing observations 

are restricted to the upper layers of the ocean. Especially in optically thick coastal waters, 

light does not penetrate very far into the water column, so that only information on the 

surface water optical properties can be obtained remotely. Therefore, complementary, in-

situ observations from ships or moored systems, that provide detailed information on the 

vertical distribution of phytoplankton, are necessary for further studies such as 

quantitative analysis of biomass productivity (Piazena and Häder, 1997).  

 

While having broad spatial coverage, remote sensing measurements are of much lower 

spatial resolution compared to field observations (e.g. 1.1 km spatial resolution at nadir 

for SeaWiFS instrument) and are restricted by orbit orientation and altitude. Another 

limitation in remote sensing measurements is that they are significantly affected by 

atmospheric conditions (e.g., clouds and aerosols). Almost 90% of the signal detected by 

a satellite sensor at the top of the atmosphere originates from the atmosphere itself 

(molecular and aerosol scattering), and only the remaining few percent originate from the 
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ocean, even under clear atmospheric conditions (under overcast cloudy conditions no 

satellite measurements of ocean color can be performed). Careful correction for the 

effects of the intervening atmosphere is critical for obtaining accurate satellite 

measurements of water-leaving radiances and ocean color.  

 

In order to be able to use ocean-color measurements to extract information on the 

concentration and composition of optically active substances in the water, it is necessary 

to develop bio-optical algorithms that relate the water-leaving radiance to the optical 

properties of the substances present in the water. The determination of geophysical 

parameters, such as chlorophyll concentration, based on water-leaving radiances, is 

relatively less complex for case 1 (mostly open ocean) waters where the spectral 

signature of the emerging light is mostly affected by phytoplankton and their by-

products. The situation is very different in case 2 coastal and estuarine waters that are 

characterized by higher optical and biological complexity, since other substances such as 

detritus, mineral particles, dissolved organic and inorganic material, also affect the light 

signal measured by the satellite sensor.  

 

4.1.1 Brief description of the MODIS instrument  

 

The MODIS (Moderate Resolution Imaging Spectroradiometer) instrument is a satellite 

sensor designed to provide remote-sensing observations of processes occurring on the 

land, in the oceans and in the lower atmosphere. According to the MODIS Ocean User’s 

Guide, the primary objective of MODIS is to provide satellite data that will be used to 
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study the interactions between ocean, atmosphere, land, and biosphere and that will allow 

scientists to interrelate the processes driving global climate. 

 

 Two MODIS instruments are currently in orbit, one aboard the TERRA (EOS AM) 

satellite that passes from north to south across the equator in the morning (~ 10:30 AM 

local daytime equator crossing, descending mode) and one aboard the Aqua (EOS PM) 

satellite that passes from south to north across the equator in the afternoon (~ 1:30 PM 

local daytime equator crossing, ascending mode). The two instruments are viewing the 

entire Earth's surface every 1 to 2 days, acquiring data in 36 spectral bands (400 nm to 

14.4 µm) (table 4.1-2) with spatial resolutions of 250m (bands 1-2), 500m (bands 3-7) 

and 1000m (bands 8-36) at nadir (MODIS website: http://modis.gsfc.nasa.gov). However, 

at 55o satellite scan angle, spatial resolution decreases to approximately 4.8 km (along 

satellite scan) by 2 km (along satellite track). 

 

The three basic categories of MODIS ocean products are ocean color, sea-surface 

temperature (SST), and ocean primary production (MODIS Ocean User’s Guide). The 

primary MODIS products are the normalized water-leaving radiances, estimated from the 

light signal detected by the sensor at the top of the atmosphere. From these primary 

products and by using the appropriate algorithms, other geophysical parameters, such as 

chlorophyll or calcite concentration and water’s absorption coefficients, are derived. 

Ocean color and SST measurements are available as Level 2 and Level 3 gridded and 

binned data (table 4.1-1). Ocean primary production data are available only as gridded or 
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binned Level 4 data. A description of the MODIS Level 2, 3, and 4 data is given in table 

4.1-1.   

 
 
 

Table 4.1-1: MODIS Data Levels 

Level Description 

Level 2 All Level 2 pixels have 1 km spatial resolution at nadir. Each Level 2 MODIS "granule" 
represents 5 minutes of MODIS viewing. Level 2 MODIS products include ocean color 
products (only collected during the day) and SST products (collected both day and night).  

Level 3 Temporal and spatial aggregates of Level 2 SST (4 parameters) and Ocean Color data (36 
parameters). The Level-3 products are global binned data (at 4.63 km spatial resolution) or 
global gridded maps (4.89 km, 39 km, or 1 degree grids). Temporal resolution is one day, 
8 days, a month, or a year.   

Level 4 Weekly or yearly averaged global products. Level 4 data are organized spatially as either 
4.63 km bins or as gridded maps (4.89 km, 39 km, or 1 degree grids). The MODIS Level 4 
binned products are global ocean primary productivity products. 

 
 
 
 

The MODIS Level 2 ocean products (daily, 1-km spatial resolution at nadir) include 36 

ocean color parameters (MODOCL2, MODOCL2A and MODOCL2B data products) and 

4 SST parameters (MODO28L2 data product) (table 4.1-3). Along with these ocean 

products, there are 16 ocean-color and 20 SST quality control (QC) parameters (table 4.1-

4). The QC parameters are used as inputs to the ocean and atmospheric correction 

algorithms. The MODIS Level-2 products do not include information on the latitude and 

longitude for each pixel. This information is given separately in the MODIS 

“Geolocation” data product (MOD03 files for MODIS/Terra). The MODIS Level 4 ocean 

primary productivity products are given in table 4.1-5. 
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Table 4.1-2: MODIS 36 spectral bands and their primary use  
(information from MODIS website, MODIS Technical specifications) 

Primary Use Band Bandwidth (nm) 
Land/Cloud/Aerosols Boundaries 1 620 - 670 
 2 841 - 876 
Land/Cloud/Aerosols Properties 3 459 - 479 
 4 545 - 565 
 5 1230 - 1250 
 6 1628 - 1652 
 7 2105 - 2155 
Ocean Color/Phytoplankton/ 8 405 - 420 
Biogeochemistry 9 438 - 448 
 10 483 - 493 
 11 526 - 536 
 12 546 - 556 
 13 662 - 672 
 14 673 - 683 
 15 743 - 753 
 16 862 - 877 
Atmospheric Water Vapor 17 890 - 920 
 18 931 - 941 
 19 915 - 965 
Surface/Cloud Temperature 20 3.660 - 3.840 
 21 3.929 - 3.989 
 22 3.929 - 3.989 
 23 4.020 - 4.080 
Atmospheric Temperature 24 4.433 - 4.498 
 25 4.482 - 4.549 
Cirrus Clouds Water Vapor 26 1.360 - 1.390 
 27 6.535 - 6.895 
 28 7.175 - 7.475 
Cloud Properties 29 8.400 - 8.700 
Ozone 30 9.580 - 9.880 
Surface/Cloud Temperature 31 10.780 - 11.280 
 32 11.770 - 12.270 
Cloud Top Altitude 33 13.185 - 13.485 
 34 13.485 - 13.785 
 35 13.785 - 14.085 
 36 14.085 - 14.385 
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Table 4.1-3:  MODIS Ocean product parameters (numbers 1-40)  
(MODIS Ocean User’s Guide) 

Parameter No  Parameter Description Units 

MODIS/Terra Ocean Color Radiance Products (1 km) , MODOCL2 files 

1 - 7 Normalized water-leaving radiances :  
at 412, 443, 488, 531, 551, 667 and 678 nm W/m2/µm/sr  

8 Aerosol optical thickness at 865 nm non-dimensional  

9 Epsilon of aerosol correction at 765, 865nm non-dimensional  

10, 11 Aerosol model identification numbers 1 and 2 non-dimensional  

12 Epsilon of clear water aerosol correction   
at 531 and 667 nm non-dimensional  

MODIS/Terra Ocean Color Derived Products Group 1 (1 km), MODOCL2A files 

13 Chl-a + pheopigment (fluorometric, empirical) mg/m3  

14 Chl-a concentration, “chlor_MODIS” (HPLC, empirical) mg/m3  

15 Total pigment concentration (HPLC, empirical) mg/m3  

16 Chlorophyll fluorescence line height W/m2/µm/sr  

17 Chlorophyll fluorescence baseline W/m2/µm/sr  

18 Chlorophyll fluorescence efficiency  non-dimensional 

19 Total suspended matter concentration in ocean g/m3 

20 Pigment concentration in coccolithophore blooms mg/m3 

21 Detached coccolithophore concentration 1/m3 

22 Calcite concentration mgC/m3 

23 Diffuse attenuation coefficient at 490 nm 1/m 

24 Phycoerythrobilin concentration 1/m 

25 Phycourobilin concentration 1/m 

MODIS/Terra Ocean Color Derived Products Group 2 (1 km), MODOCL2B files 

26 Chl-a concentration, “chlor_a_2”  (SeaWiFS analog) mg/m3 

27 Chl-a concentration, “chlor_a_3” (semianalytic) mg/m3 

28 Instantaneous photosynthetically available radiation Ein/m2/sec 

29 Instantaneous absorbed radiation by phytoplankton  
for fluorescence Ein/m2/sec 

30 Gelbstoff absorption coefficient at 400 nm 1/m 

31 Phytoplankton absorption coefficient at 675 nm 1/m 

32 Total absorption coefficient at 412 nm  1/m 

33 Total absorption coefficient at 443 nm 1/m 

34 Total absorption coefficient at 488 nm 1/m 

35 Total absorption coefficient at 531 nm 1/m 

36 Total absorption coefficient at 551 nm 1/m 

MODIS/Terra Sea Surface Temperature Products (1km), MODO28L2 files 

37 (D1)-38 (D2) Sea surface temperature (daytime), 11 µm and 4 µm  o C 

39 (N1)-40 (N2) Sea surface temperature (nighttime), 11 µm and 4 µm o C 



 240

Table 4.1-4: MODIS Ocean Quality Control (QC) parameters (1 km)  
(parameter numbers 41-78) (information obtained from MODIS Ocean User’s Guide) 

Parameter No  Parameter Description Units 

MODIS/Terra Sea Surface Temperature QC Products (1km), MODO28QC files 

41-45 Channel 20, 22, 23, 31, 32 brightness temperature (daytime) o C 

46-50 Channel 20, 22, 23, 31, 32 radiance (daytime) W/m2/µm/sr 

69-73 Channel 20, 22, 23, 31, 32 brightness temperature (nighttime) o C 

74-78 Channel 20, 22, 23, 31, 32 radiance (nighttime) W/m2/µm/sr 

MODIS/Terra Ocean Color QC Products (1km), MODOCQC files 

51 U_Wind m/s  

52 V_Wind m/s  

53 Pressure mBar  

54 Humidity kg/m2 

55 Ozone DU 

56 Latitude degree  

57 Longitude degree  

58 Solar Zenith Angle angle  

59 Solar Azimuth Angle angle  

60 Satellite Zenith Angle angle  

61 Satellite Azimuth Angle angle  

62 ( Product unavailable ) -  

63 Aerosol radiance 765 W/m2/µm/sr 

64 Rayleigh radiance 443 W/m2/µm/sr 

65 Glint radiance W/m2/µm/sr 

66 Whitecap radiance W/m2/µm/sr 

 
 

Table 4.1-5: MODIS Level 4 Ocean Primary Productivity products 
(information obtained from MODIS Ocean User’s Guide) 

Parameter 
Number Parameter Description 

1 Behrenfeld-Falkowski primary production index (semi-analytical model) 
2 Howard-Yoder-Ryan primary production index (semi-analytical model) 
P Ocean carbon primary production (statistical model) 
N New nitrogen production (statistical model) 
X Export carbon production (statistical model) 
C Annual chlorophyll-a concentration (semianalytic, chlor_a_3) 
E Photosynthetically available radiation 
D Mixed-layer depth 
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4.1.2 MODIS measurements of water-leaving radiance and atmospheric correction 

algorithm 

 

Accurately accounting for the optical properties of the atmosphere (primarily Rayleigh 

scattering plus aerosol scattering and absorption) presents a major difficulty in obtaining 

accurate water-leaving radiance data from satellites. Due to the presence of the 

atmosphere, the radiance detected by a satellite sensor is composed of water leaving 

radiance, atmospherically backscattered radiance, direct reflected solar radiance from the 

sea surface, and downward scattered radiance reflected from the sea surface. The water 

leaving radiance, Lw, which carries information about the water composition, represents 

less than 10% (Mobley, 1994) of the total radiance reaching a satellite instrument (figure 

4.1-1).  The maximal return from water leaving radiance occurs in the blue wavelengths 

at clear waters, while for large chlorophyll concentrations or high absorption by CDOM 

and non-pigmented particles, the water leaving radiance can be much lower in the blue 

wavelength region. A small error in estimating the atmosphere’s optical properties can 

result in a large error in water leaving radiance and in the derived underwater 

composition. 

 

An accurate radiative transfer calculation must be performed to remove the atmospheric 

effect from satellite imagery over the ocean and recover the water leaving radiance. This 

calculation depends on the relative position of the sun and the sensor, as well as on the 

nature and vertical distribution of atmospheric gases and aerosols. 
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Figure 4.1-1: Water leaving radiances (blue and green lines) and radiances measured by a 
satellite at the top of the atmosphere (purple and yellow lines) in high ([Chl-a]=10mgm-3) 
and low ([Chl-a]=1 mgm-3 ) chlorophyll waters. The MODIS wavelength bands are also 
shown (Esaias et al, 1997). 
 
 
 

Atmospheric correction algorithms were developed for the CZCS in the past, by 

Gordon (1978), Gordon and Clark (1980, 1981), Gordon et al (1983). The radiometric 

sensitivity of the CZCS was sufficiently low that it was not necessary to deal with the full 

complexities of multiple scattering. However, with the increased sensitivity of SeaWiFS 

and MODIS, multiple scattering in the atmosphere is an important issue in atmospheric 

correction algorithms. A comprehensive review of the present state of atmospheric 

correction is provided by Gordon and Voss (1999) (MODIS ATBD 18). 

 

The normalized water leaving radiance, nLw, was defined by Gordon and Clark (1981): 

               Lw (λ) = nLw (λ) cos θo exp [ - ( τr (λ) /2 + τOz (λ) ) ( 1/cos θo )  ]          (4.1.1) 

where Lw (λ) is the water-leaving radiance at wavelength λ,  τr (λ) and τOz (λ) are the 

optical thickness of the atmosphere associated with molecular (Rayleigh) scattering  and 

ozone absorption respectively and θo is the solar zenith angle. Ignoring bidirectional 
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effects (Morel and Gentili, 1991) the normalized water leaving radiance is approximately 

the radiance that would exit the ocean in the absence of the atmosphere, with the sun at 

the zenith. The normalized water leaving radiance is the ‘first order” satellite product that 

is used in satellite algorithms to derive geophysical parameters in the oceans, such as 

chlorophyll concentration. 

 

The total radiance received by a sensor at the top of the atmosphere, in a spectral band 

centered at wavelength λi, Lt(λi), is the sum of: i) the water leaving radiance, ii) the 

radiance generated along the optical path by scattering (Rayleigh and aerosols) in the 

atmosphere and by specular reflection of atmospherically scattered light from the sea 

surface, Lpath(λi), iii) the radiance arising from specular reflection of direct sunlight from 

the sea surface (sun glint), Lg(λi), and iv)  the contribution arising from reflection of 

skylight and direct sunlight from individual whitecaps on the sea surface, Lwc(λi). 

Therefore:  

          Lt(λi) = t(λi)·Lw(λi) + Lpath(λi) + T(λi)·Lg(λi)+ t(λi)·Lwc(λi)                  (4.1.2) 

or in terms of reflectance, ρ(λi), (ρ=πL/Focosθo, where Fo is the solar irradiance at the top 

of the atmosphere): 

         ρt(λi) = t (λi)· ρw(λi) + ρpath(λi) + T(λi)· ρg(λi)+ t(λi)· ρwc(λi)                 (4.1.3) 

where t(λi) is the diffuse transmittance of the atmosphere and T(λi) is the direct 

transmittance (expressions for t(λi) and T(λi) are given in MODIS ATBD18, 1999). The 

term ρpath(λi) can be decomposed to ρpath(λi)= ρr(λi)+ ρa(λi)+ ρra(λi), where ρr is the 

reflectance resulting from multiple scattering by air molecules (Rayleigh scattering) in 

the absence of aerosols,  ρa is the reflectance resulting from multiple scattering by 
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aerosols in the absence of the air,  ρra is the interaction term between molecular and 

aerosol scattering. According to Gordon and Voss (1999), in equations (4.1.2) and (4.1.3) 

the diffuse transmittance is appropriate for the water-leaving radiance and the whitecap 

radiance, since they have near-uniform angular distribution, while the direct 

transmittance is used for the highly directional (except at very high wind speeds) sun 

glint. The contribution of the sunglint can be very large near the specular image of the 

sun, but rapidly decreases away from this point. Since the water-leaving signal near the 

sun’s specular image cannot be retrieved accurately, the contribution of sunglint is 

generally ignored, by disregarding the imagery where ρg is significant. The small 

whitecap contribution can be calculated from an estimate of the wind speed from 

numerical weather models (Frouin et al, 1996; Gordon and Wang, 1994). The Rayleigh 

scattering contribution can be precisely computed, even accounting for polarization 

effects, given estimates of the wind speed (numerical weather models) and the surface 

atmospheric pressure (Gordon et al, 1988). In order to estimate the water leaving 

reflectance ρw from the reflectance ρt measured by the sensor at the top of the 

atmosphere, the aerosol contribution, ρA=ρa+ρra, needs to be estimated. This is the most 

difficult part of the atmospheric correction problem because of the high spatial and 

temporal variability of the physical, chemical and optical properties of aerosols. At the 

level of accuracy required for modern sensors, multiple scattering effects cannot be 

neglected (Esaias et al., 1997).  

 

The original MODIS atmospheric algorithm was based on the assumption that the water 

leaving radiance at NIR wavelengths (bands 749 and 869 nm) is negligible, so that for the 
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NIR bands the only unknown in eq (4.1.3) is the contribution from the atmosphere. 

However, this assumption can be applied only to case 1 waters, while in the most turbid, 

case 2 waters high backscattering may result in non-zero water leaving radiances. As 

mentioned in the MODIS Data Quality Summary for Terra nLw Collection-4 (last 

updated: August 6, 2002), in collection 4, v4.2 (MODIS data used in this project) 

improvements were made in the NIR atmospheric correction to allow some water leaving 

radiance to be present at 749 and 869 nm (Siegel at al, 2000). Therefore, for the two NIR 

MODIS bands it is possible to have an estimate of ρA at each satellite pixel. The spectral 

variation of ρA between the two MODIS wavelengths can be used to select two aerosol 

models from a list of candidates (aerosol models developed by Shettle and Fenn, 1979) 

and then use the two aerosol models to extrapolate ρA into the shorter visible 

wavelengths. For the extrapolation, a set of look-up tables is used that provides ρA as a 

function of the aerosol concentration for various sun-viewing geometries. The look-up 

tables were computed assuming hypothetical atmospheres with a two-layer structure, 

with the aerosols occupying the lower layer and all of the Rayleigh scattering confined to 

the upper layer. This extrapolation method could result in errors in the atmospheric 

correction at the shorter visible wavelengths.   

 

According to Gordon and Voss (1999), the MODIS multiple scattering algorithm can 

provide very good results as long as the aerosol is weakly absorbing and follows the 

relationship between size distribution and refractive index that is implicit in the choice of 

the candidate aerosol models. The algorithm fails when the aerosol is strongly absorbing, 

unless the candidate aerosol models are restricted to those with values of single scattering 
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albedo similar to the true aerosol. Therefore, for regions where there are significant 

amounts of strongly absorbing aerosols (e.g. urban aerosols or desert dust transported 

over large distance over the ocean by winds), the atmospheric correction algorithm may 

not work accurately. Furthermore, according to Gordon and Voss (1999), for strongly 

absorbing aerosols, even if the appropriate candidate aerosol models are used, knowledge 

of the vertical distribution of the aerosols (accuracy of ±1km) is required for an adequate 

correction, since the vertical distribution of strongly absorbing aerosols influences the 

top-of-the-atmosphere reflectance in the visible (especially in the blue) but not in the 

NIR. New algorithms have been developed, that are based on simultaneous determination 

of oceanic and atmospheric properties and show promise in dealing with strongly 

absorbing aerosols (Chomko and Gordon, 1998; Gordon et al, 1997). Use of these 

algorithms should enhance the MODIS atmospheric correction.  

 

Another improvement of the MODIS algorithm is associated with removing bi-

directional effects (dependence of satellite measured water-leaving radiance on solar and 

satellite zenith and azimuth angles) and incorporating a ρw BRDF (bi-directional 

reflectance distribution function) model into the processing stream, to determine the 

satellite nadir-viewing normalized water-leaving radiance. The same BRDF model is 

planned to be used for better estimations of the diffuse transmittance t(λi) in equations 

4.1.2, 4.1.3. 
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4.2  In-situ measurements and Satellite (MODIS) estimates of Remote Sensing 

Reflectance - Methodology 

 
 
4.2.1 In-situ measurements and theoretical estimations of Remote Sensing Reflectance 
 
 
 

Measurements of underwater upwelling radiance, Lu, and downwelling irradiance, Ed, 

profiles at 14 visible wavelengths (400-700nm) were obtained using the multi-spectral 

MicroPro free-falling radiometer, during seven of our cruises in the Chesapeake Bay 

waters (table 4.2-1). For these specific cruises, the in-water measurements of upwelling 

radiance, Lu(z), were used to estimate the water leaving radiance, Lw, just above the 

water surface, according to the methodology described in chapter 3, (section 3.3). Using 

simultaneous measurements of the incident surface irradiance, Es, performed with the 

surface-reference Satlantic OCR-507 irradiance sensors, the remote sensing reflectance, 

defined as the ratio of the water-leaving radiance to the total incident  

irradiance, was estimated according to:  
 

                                                      Rrs(λ) =  
)(
)(

λ
λ

Es
Lw

     (4.2-1) 

 

The normalized water leaving radiance, nLw (λ), was estimated from the remote 

sensing reflectance, Rrs(λ), by multiplying with the solar irradiance at the top of the 

atmosphere, Fo(λ), (Neckel and Labs, 1984)  according to:  

 
      )()()( λλλ oFRrsnLw ⋅=     (4.2-2) 
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Table 4.2-1:Cruise Summary and Instrumentation 

No Date of cruise  Instrument used for radiation fields 
  1 2001, June 4 Satlantic OCI-200 
  2 2001, June 11 Satlantic OCI-200 
  3 2001, June 25 Satlantic OCI-200 
  4 2001, July 9 Satlantic OCI-200 
  5 2001, September 21 Satlantic SMSR 
  6 2001, September 26 Satlantic MicroPro 
  7 2001, September 28 Satlantic MicroPro 
  8 2001, October 4 Satlantic OCI-200 
  9 2001, October 30 Satlantic MicroPro 
10 2001, November 13 Satlantic OCI-200 
11 2002, May 6 Satlantic MicroPro 
12 2002, May 15 Satlantic MicroPro 
13 2002, May 22 Satlantic MicroPro 
14 2002, June 6 Satlantic OCI-200 
15 2002, June 18 Satlantic OCI-200 
16 2002, June 28 No Lu or Ed measurements 
17 2002, November 8 Satlantic MicroPro 

 
 

 

As was already mentioned in chapter 3, theoretical estimations of water-leaving 

radiances have been performed using the Hydrolight radiative transfer code for those 

cases when MicroPro measurements of underwater radiation fields and simultaneous 

detailed measurements of the water’s inherent optical properties were available. As  

discussed in chapter 3, the estimated by the model water-leaving radiances, Lw(model), and 

the estimated water-leaving radiances based on the in-situ measurements of Lu, Lw(InSitu)  ̧

were in very good agreement in almost all of the cases studied, which gives us confidence 

in the accuracy of the in-situ measurements (both inherent and apparent optical 

properties). At the same time, the good agreement between ‘measured’ and theoretically 

estimated water-leaving radiances suggests that when in-situ measurements of 

underwater radiances are not available, the radiative transfer model can be used to 

estimate the radiation fields, provided that accurate information on the inherent optical 

properties of the water is available. 
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Therefore, the Hydrolight code was used to estimate the remote sensing reflectance, 

Rrs(λ), for those cruises when the MicroPro instrument was not used, but measurements 

of total incident irradiance, Es, and water inherent optical properties were performed. 

During those cruises the downwelling surface irradiance was measured using the 

Satlantic, OCI-200 irradiance sensors (table 2.2-2, chapter 2). The normalized water 

leaving, nLw, was estimated in this case from the theoretically estimated remote sensing 

reflectance, by multiplying again with the solar irradiance at the top of the atmosphere, 

Fo(λ), according to:  

 
)()()( model λλλ oFRrsnLw ⋅=     (4.2-3) 

 
 

 
4.2.2 Satellite pixels around the location of each station 

 
The in-situ measurements in Chesapeake Bay were usually performed within a time 

window of ± 2-3 hours around the time of MODIS/Terra overpass. Due to the presence of 

currents in the Bay, the water mass sampled at each station during the cruises does not 

always correspond to the satellite pixel that was “geographically closest” to the station, at 

the time of the satellite overpass. Because of this, a number of satellite pixels around the 

location of each site were examined when comparing the satellite observations to the in-

situ measurements.    

 

Measurements of current speed (in cm/s) and current direction (in degrees from polar 

north) have been performed, over the last two years, at the Chesapeake Bay Mid-Bay 

station (station located closest to the location of HB, JT, PI and TI stations), by the 
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Chesapeake Bay Observing System - CBOS (W. Boicourt, C. Derry, T. Wazniak, R. 

Cone, W. Boynton). According to the measurements (data and plots available at the 

CBOS website: http://www.cbos.org/ ), maximum current speeds of 50 cm/s or 1.8 km/h 

have been observed at the Mid Bay station during specific dates coincident with the dates 

of some of our in-situ measurements (e.g. 21 and 26 September 2001, 4 October 2001). 

Therefore, when comparing the in-situ measurements to the satellite estimations of 

remote sensing reflectances (1 km resolution at nadir), all 5x5 pixels around the location 

of each station have been studied, since the time-difference between in-situ 

measurements and satellite overpass, during our cruises, was ± 2-3 h.   

    

 
4.2.3 Satellite observations of Remote Sensing Reflectance 
 
 

Satellite measurements of remote sensing reflectances, Rrs, in the Chesapeake Bay 

waters, were studied using data from the MODIS instrument aboard the EOS Terra 

satellite. Among the derived MODIS / Terra ocean Level-2 products are values of 

normalized water leaving radiance, nLw, (measured in W/m2/µm/sr) estimated at seven of 

the MODIS wavelength bands, centered at 412, 443, 488, 531, 551, 667 and 678 nm 

(products 1-7 in table 4.1-3). In-situ measurements of radiation fields were used to 

interpret the water-leaving radiance spectra measured by the satellite during the days of 

the cruises in the northern Chesapeake Bay (table 4.2-2). 
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                   Table 4.2-2:  MODIS overpasses during the dates of the cruises 
Date of cruise MODIS 

overpass 
Time (GMT) 
of  MODIS 

overpass 

Satellite 
zenith 

angle ( o) 

Atmospheric 
conditions 

2001, June 4 ü 16:30 35o ~ clear sky 
2001, June 11 ü 16:35 42o clouds/haze 
2001, June 25 - - -  
2001, July 9 ü 15:20 -61o  
2001, September 21 ü 15:55 -18o clouds 
2001, September 26 ü 16:15 15o ~ clear sky 
2001, September 28 ü 16:00 -7o clouds 
2001, October 4 ü 15:25 -57o ~ clear sky 
2001, October 30 ü 16:00 -8o ~ clear sky 
2001, November 13  ü 16:10 16o ~ clear sky 
2002, May 6 ü 16:20 35o clouds/haze 
2002, May 15 ü 16:15 26o  
2002, May 22 ü 16:20 36o ~ clear sky 
2002, June 6 ü 15:40 -38o  
2002, June 18 ü 16:05 5o  
2002, June 28 ü 16:40 55o clouds 
2002, November 8 ü 15:25 -57 ~ clear sky 

 

 

All MODIS ocean Level 2 products are available in the Hierarchical Data Format 

(HDF) (MODIS Ocean Data Guide, MODIS website). The MODIS HDF files can be 

read in SeaDAS (SeaWiFS Data Analysis System, a widely used software package 

developed and supported by NASA, that is intended to be used with ocean color satellite 

data), IDL and Matlab, and available subroutines in FORTRAN, C, and other languages. 

However, when the SeaDAS program was used to read the MODIS data, small changes 

on the latitude and longitude information occurred, compared to the actual information 

stored in the MODIS geolocation file (e.g. differences in the order of 0.01o or ~ 1km for 

the Chesapeake Bay latitude). The reason for this is that SeaDAS uses interpolation to 

reshape the MODIS geolocation field in order to allow the user to easily choose 

Pixel/Line Sample Rate in SeaDAS image display (personal communication L.Wang). 

Such an interpolation also smoothes the “bow-tie” effect (satellite-pixels’ size growth and 
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overlap towards the edge of the satellite’s scan) in MODIS measurements (MODIS Level 

1A Earth Location, ATBD, 1997). To obtain higher accuracy on the pixels’ location, the 

MODIS measurements of nLw(λ) used in this study have been read directly from the 

MODIS/Terra “MODOCL2” HDF files (version 4, “.004”), using the IDL function 

"HDF_SD_GETDATA". Information on the location (latitude and longitude) of each 

pixel was obtained (again using IDL commands) from the corresponding “MODO3” 

geolocation files (version 4 “.004” for all files except days 6 June 2002 and 28 June 2002 

for which only version “.003” geolocation files were available). The accuracy of the 

geolocation data is better than (less than) 50 m Root Mean Square Error (RMSE) in the 

scan and track directions in nadir equivalent units (personal communication R. Wolfe).  

This is 0.00045o in latitude and longitude at the equator, and ~0.00057o at the latitude at 

HB, PI, TI and JT stations. 

 

The MODIS normalized water-leaving radiances are characterized by a certain “quality 

level”, depending on which ones of the “common” flags and the “product specific” flags 

are clear. The “quality levels” range from 0 to 3, with 0: good, 1: questionable, 2: 

cloud/sunglint contaminated and 3: bad. Information on the quality level of the 

MODOCL2 parameters (MODIS parameters 1-12 in table 4.1-1) is stored in the MODIS 

MODOCL2 files as an array of type Byte (8 bits). Information on the quality level of the 

nLw values is stored in the first two bits of the Byte array. The MODIS “common” and 

“nLw-product specific” flags are shown in table 4.2-3, while a description of the MODIS 

quality levels for all nLw parameters is given in table 4.2-4. A certain pixel is of the best 

quality (quality = 0), concerning the nLw products, if common flags 1-3, 6, 8 are clear 
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and product specific L2 flags 1 and 9-16 are clear (“L2QLflags.V4.html” document, K. 

Kilpatrick, 2003). In the case of large satellite or solar zenith angle, the pixel is of 

questionable quality (quality=1). The solar zenith angle threshold is 70o. The satellite 

zenith angle threshold for ocean color products is 65o (personal communication K. 

Kilpatrick and “productflags.V4.html” document, K. Kilpatrick, 2003) (documents 

“L2QLflags.V4.html”and “productflags.V4. html” are given in the APPENDIX). In 

previous versions of MODIS data (Terra Collection 1, “L2QLflags.V1.html” document, 

K. Kilpatrick) pixels flagged as “shallow” waters (definition in table 4.2-4) would also be 

characterized as of quality 1. Almost the whole Chesapeake Bay is flagged as a shallow 

waters region. The nLw products are of quality 2 when the pixel is cloud or sun-glint 

contaminated. The quality level is 3 (bad, other than cloud) if any input radiances are 

negative or saturated, or the atmospheric correction has failed, or aerosol model=16, or 

land (table 4.2-4).  

 

Among the pixels examined in this study (5x5 pixels around each site) there were few 

cases (e.g. MODIS overpass, date: 9 July 2001) where pixels with flagged nLw values 

(nLw negative or zero) at all wavelengths were characterized as of quality 0. For the 

measurements performed on 9 July 2001, those pixels were close to the edge of the 

satellite scan (satellite zenith angle over Chesapeake Bay was –61o on 9 July 2001, very 

close to the satellite zenith angle threshold of 65o). After examining (September 2003) the 

accuracy and performance of the IDL code (“mocean_l2_map.pro”, K. Kilpatrick, 1999) 

that was used, in the framework of this project, to extract the nLw and quality values 

from the MODIS MODOCL2 HDF files, it turned out that the MODIS “Bit function” that 
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is used in the IDL code to decode the quality Byte (and return a value of 0, 1, 2 or 3 as a 

quality level for nLw) is correct and so, the problem mentioned above (pixels with nLw < 0 

at all wavelengths, characterized as pixels of ‘best quality level’) is related to the actual 

information stored in the quality Bytes in the MODIS HDF files. Pixels of quality level 2 

were found only during two of the cruises in the Chesapeake Bay (on 15 May 2002 and 

18 June 2002).  The majority of the pixels were of quality level 3.  

 

Pixels of all quality levels have been examined in this study. This was mainly because: 

i) The number of pixels with quality level 0 was too small and the number of pixels with 

quality-level=1 was zero (since there were no cases with satellite and solar zenith angle 

larger than the threshold values). ii) In some cases (e.g. 9 July 2001, 4 October 2001, 22 

May 2002, 8 November 2002 in figures 4.3-3(c), 4.3-6 (c), 4.3-10(c) and 4.3-13(c)) 

pixels of quality-level=0 gave flagged radiances at most or all of the MODIS 

wavelengths iii) in some cases pixels of quality-level=3 had water-leaving radiances that 

were in good agreement (at least at some of the wavelengths) with the in-situ 

measurements. However, pixels with flagged normalized water-leaving radiances      

(nLw =  0 or –1) at all seven wavelengths have been discarded (independent of the value 

of quality level). Pixels with nLw(λ) = -5 have also been discarded, since -5 is the fill 

value that is given to the MODIS nLw product when a pixel is not processed or when the 

pixel is on land (K. Kilpatrick , personal communication).  
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Table 4.2-3:MODIS ‘common’ and “product specific’ flags 
(from “productflags.V4.html”, K. Kilpatrick, 2003, MODIS website) 

Common flags Product-specific L2 MODIS flags 
1. Pixel not processed 1.Atm Correction; Invalid Rayleigh scattering data 
2. Atmospheric Correction Failed 2. Calculated nLw551 too low 
3. Satellite Zenith Angle > 65o 3. Coccolithophorid Radiance exceeds threshold 
4. Solar Zenith Angle > 70o 4. Turbid case 2 
5. Shallow water (i.e. < 5km from coast   
    or < 50 m deep, or inland lake) 

5. High_La865 

6. Sun Glint greater than threshold 6. Input Lw’s for clear water epsilon bad 
7. Ancillary data missing or invalid 7. Epsilon < 0.67 
8. Land 8. - 
 9. Cloudy, Albedo at 865 threshold 
 10. Missing Lw 
 11. Lw(xxx) <=0  
 12. Any Lw counts < 0 
 13. Questionable polarization 
 14. Gordon Aerosol Failure 
 15. Epsilon out of range 
 16. Any La(xxx) <=0 

 
 
 

Table 4.2-4:Level 2 Quality-Level Flags (Terra Collection 4) for nLw parameters 
(from “L2QLflags.V4.html” K. Kilpatrick, 2003, MODIS website) 

Bits in the 
quality array 
of type BYTE 

Descritpion 

 
 

0 = good 
 (if common flags 1-3, 6, 8 are clear and product specific L2 flags 1 and 9-16 are 
clear) 

          1-2 1 = questionable  
(if large satellite or solar zenith angles)  

 2 = cloud or sun-glint contaminated 
(if there are clouds or sun-glint contamination) 

 3 = bad 
(if any input radiances are negative or saturated or if the atmospheric correction has 
failed, or if aerosol model = 16, or if land) 
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4.3 MODIS and in-situ measurements of Remote Sensing Reflectance - Results  
 

 
The four sites, HB, PI, TI and JT, where in-situ measurements were performed in the 

framework of this project, are located in the northern Chesapeake Bay, within an area 

sufficiently wide to have several satellite pixels sampling the water (Level 2 MODIS data 

with 1 km resolution at nadir). This area extends from 76.34o W to 76.54 o W longitude 

and from 38.71 o N to 38.89 o N latitude (fig. 2.2-1, chapter 2). The MODIS view of this 

region is shown in figures 4.3-1(a)-4.3-13 (a), for the days of the cruises in the bay.  

 

The exact location of the four sites, their proximity to land (red color represents land 

area in the figures) and the route followed by the boat (yellow line) from PI station (at the 

northeast) to HB station (at the southwest), to TI station (at the southeast), to JT station 

(at the northwest), are shown in figures 4.3.1(b)-4.3.13(b) for each cruise. The MODIS 

551 nm normalized water-leaving radiances, nLw(551), measured at each satellite pixel, 

are also shown in these figures. Satellite pixels not processed or with negative nLw(551) 

are shown as black pixels. During the cruise performed on 25 June 2001 no MODIS data 

(no MODIS granules) were available. During three of the cruises (28 September 2001, 6 

May 2002 and 28 June 2002), all of the MODIS pixels within the region of interest were 

characterized by flagged water-leaving radiances at all wavelengths and, thus, no 

comparisons between in-situ and satellite measurements were performed during these 

days (for this reason only 13 out of the 17 days of the cruises are shown in figures 4.3-1 - 

4.3-13). A summary of all the days and sites when both in-situ and satellite data were 

available, is given in table 4.3-1, along with some comments on the atmospheric 

conditions observed over the region of interest at around the time of the MODIS 
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overpass. Measurements of aerosol optical thickness (AOT) were performed during the 

field observations both onboard the vessel (using a handheld Microtops sunphotometer) 

and on shore, at the SERC campus (measurements performed by a CIMEL 

sunphotometer located on top of a 120 ft tower, at 38.89o N, 76.56o W).   

 

Figures 4.3-1(c) - 4.3-13(c) show the MODIS/Terra nLw(λ) measured within the       

5x5-pixels-region around each one of the four sites (PI, HB, TI, JT), during each cruise 

when MicroPro measurements or Hydrolight estimates of nLw were available. 

Measurements at pixels of quality level 0 (concerning the nLw products) are shown as 

red lines, while pixels of quality level 2 or 3 are shown as blue lines. The in-situ nLw(λ) 

values measured (or theoretically estimated based on measured IOPs and boundary 

conditions) at each site, are also shown for comparison (thick yellow line).  

 

According to the measurements shown in figures 4.3-1(c) - 4.3-13(c), there are many 

cases where the MODIS nLw at 412 and 443 nm is flagged as –1 or 0. A summary of the 

number of pixels with negative nLw(λ) values at the MODIS ocean wavelengths, is 

shown in table 4.3-2. Almost 70 % of the MODIS pixels (that did not have flagged nLw 

values at all seven wavelengths) had flagged nLw values at the two shortest wavelength 

bands centered at 412 nm and 443 nm (423 out of 623 pixels had nLw(412) = 0 and 414 

out of 623 pixels had nLw(443)= 0). Figure 4.3-14 shows the location of the MODIS 

pixels with negative normalized water-leaving radiances at some of the MODIS 

wavelengths. The location of the pixel with the best agreement with the in-situ 

measurements at 488, 551, 667 nm wavelength bands, is also shown in the same figure.
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(a)          (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c) 
 
 
 
 
 
Figure 4.3-1: Satellite and in-situ (or model estimated) nLw spectra, 4 June 2001. 
Satellite zenith angle over the Chesapeake Bay region was 35o. (a) MODIS view of 
Chesapeake Bay (b) MODIS nLw(551) values (color bar in Wm-2µm-1sr -1 units). The 
location of the four stations and the route of the boat are also shown. (c) In-situ and 
MODIS nLw spectra (in µWcm-2nm-1sr -1 units) at the stations where measurements were 
performed during this cruise. In-situ nLw spectra are shown as a thick yellow line. 
MODIS measurements (5x5 pixels around each station) are shown as red lines for pixels 
of quality level 0, and blue lines for pixels of quality level 2 or 3. 
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(a)         (b)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
(c)   
Figure 4.3-2: Same a figure 4.3-1, for measurements on 11 June 2001. Satellite zenith 
angle over the Chesapeake Bay region was 42o.  
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JT station, 11 June 2001

-0.2

0.2

0.6

1.0

1.4

1.8

2.2

2.6

3.0

400 500 600 700
wavelength (nm)

n
L

w
 



 260

                  
(a)                 (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c)   
 
 
 
 
 
 
 
 
 
 
Figure 4.3-3: Same a figure 4.3-1, for measurements on 9 July 2001. Satellite zenith 
angle over the Chesapeake Bay region was -61o.  
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JT station, 9 July  2001
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(a)     (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c) 
 
 
 
 
 
 
 
 
 
 
Figure 4.3-4: Same a figure 4.3-1, for measurements on 21 September 2001. Satellite 
zenith angle over the Chesapeake Bay region was -18o. No satellite pixels of quality level 
0 (concerning nLw products) were found at TI and JT stations during this day. 
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JT station, 21 September 2001
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(a)     (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c) 
Figure 4.3-5: Same a figure 4.3-1, for measurements on 26 September 2001. Satellite 
zenith angle over the Chesapeake Bay region was 15o. 
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HB station, 26 September 2001
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TI station, 26 September 2001
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JT station, 26 September 2001
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(a)     (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c) 
 
Figure 4.3-6: Same a figure 4.3-1, for measurements on 4 October 2001. Satellite zenith 
angle over the Chesapeake Bay region was -57o.
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HB station, 4 October 2001
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(a)     (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c) 
 
 
 
 
Figure 4.3-7: Same a figure 4.3-1, for measurements on 30 October 2001. Satellite zenith 
angle over the Chesapeake Bay region was - 8o. 
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(a)       (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c) 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3-8: Same a figure 4.3-1, for measurements on 13 November 2001. Satellite 
zenith angle over the Chesapeake Bay region was 16o.

satza= 16o 

PI station, 13 November 2001

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

400 500 600 700
wavelength (nm)

n
L

w
 

HB station, 13 November 2001

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

400 500 600 700
wavelength (nm)

n
L

w
 



 266

    
(a)      (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c) 
 
Figure 4.3-9: Same a figure 4.3-1, for measurements on 15 May 2002. Satellite zenith 
angle over the Chesapeake Bay region was 26o.
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(a)     (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3-10: Same a figure 4.3-1, for measurements on 22 May 2002. Satellite zenith 
angle over the Chesapeake Bay region was 36o.
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(a)                                                                   (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c) 
 
 
Figure 4.3-11: Same a figure 4.3-1, for measurements on 6 June 2002. Satellite zenith 
angle over the Chesapeake Bay region was -38o. 
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(a)           (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c) 
 
Figure 4.3-12: Same a figure 4.3-1, for measurements on 18 June 2002. Satellite zenith 
angle over the Chesapeake Bay region was 5o.
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(a)      (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c) 
 
 
Figure 4.3-13: Same a figure 4.3-1, for measurements on 8 November 2002. Satellite 
zenith angle over the Chesapeake Bay region was -57o. 
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Table 4.3-1: Quality of in-situ measurements and satellite pixels 
Measurements performed in the Chesapeake Bay during June-November 2001 

(yellow background for those days when MicroPro instrument was used) 
Date Site Quality of 

InSitu/MODIS 
observations 

Pixels’ Quality-level 
(Q=0-3) 

Best 
Pixel 
Qual 

Comments 
Atmospheric Conditions 

01/06/04 PI No InSitu IOPs   ~ clear day : 
 HB  25/25:Q=3 Q=3 AOT(550) = 0.15 (MTOPS) 
 TI  6/25:Q=0, 19/25:Q=3 Q=3 AOT(550)=0.1 (CIMEL) 
 JT No InSitu IOPs    

01/06/11 PI  2/25:Q=0, 23/25:Q=3 Q=3 Haze/clouds:   
 HB MODIS all nLw <0    AOT(550)=0.8 (CIMEL) 
 TI  5/25:Q=0, 20/25:Q=3 Q=3  AOT(550) = 1.2 (MTOPS) 
 JT  1/25:Q=0, 24/25:Q=3 Q=3 “Gordon Aer. Failure” 

01/06/25 All No MODIS    
01/07/09 PI MODIS all nLw <0   Satellite zenith angle=- 61  

 HB MODIS all nLw <0   AOT(550) = 0.25 (MTOPS) 
 TI  7/25:Q=0, 18/25:Q=3 Q=3  
 JT  4/25:Q=0, 21/25:Q=3 Q=3  

01/09/21 PI MODIS all nLw <0   AOT(550) = 2.3 (MTOPS) 
 HB MODIS all nLw <0   “Atm Corr. Failed” or  
 TI  25/25:Q=3 Q=3 “Gordon Aerosol Failure”  
 JT  25/25:Q=3 Q=3 for most of the pixels 

01/09/26 PI  25/25:Q=3 Q=3 clear day:  
 HB  25/25:Q=3 Q=3 AOT(550) = 0.1 (CIMEL) 
 TI  6/25:Q=0, 19/25:Q=3 Q=3 AOT(550) = 0.11 (MTOPS) 
 JT  25/25:Q=3 Q=3    

01/09/28 All MODIS all nLw < 0    
01/10/04 PI  2/25:Q=0, 23/25:Q=3 Q=3 AOT(550) = 0.2 (CIMEL)  

 HB  3/25:Q=0, 22/25:Q=3 Q=3 AOT(550) = 0.2 (MTOPS) 
 TI  12/25:Q=0, 13/25:Q=3 Q=3  
 JT  1/25:Q=0, 24/25:Q=3 Q=3 Satellite zenith angle=-57  

01/10/30 PI  10/25:Q=0, 15/25:Q=3 Q=0 AOT(550) = 0.2 (MTOPS) 
 HB  16/25:Q=0, 9/25:Q=3 Q=0  
 TI  25/25:Q=0 Q=0  
 JT  11/25:Q=0, 14/25:Q=3 Q=0  

01/11/13 PI  10/25:Q=0, 15/25:Q=3 Q=0 AOT(550) =0.07  (MTOPS) 
 HB  17/25:Q=0, 8/25:Q=3 Q=0 Very few pixels flagged as   
 TI No InSitu bb    “Atm Corr  Failed”  
 JT No InSitu bb   “Gordon Aer. Failure” 
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Table 4.3-1 (continued): 
Measurements performed in the Chesapeake Bay during May-November 2002 

Date Site Quality of 
InSitu/MODIS 
observations 

Pixels’ Quality  Best 
Pixel 
Qual 

Comments 
Atmospheric Conditions 

02/05/06 All MODIS all nLw <0   AOT(550) =1.0  (MTOPS) 
02/05/15 PI  25/25:Q=3 Q=3 AOT(550) =0.25  (MTOPS) 

 HB No InSitu Es   All pixels flagged as: 
 TI  25/25:Q=3 Q=3    “Atm Corr. Failed” 
 JT  25/25:Q=3 Q=3    or “Gordon Aer. Failure” 

02/05/22 PI  6/25:Q=0, 19/25:Q=3 Q=0 ~ clear:  
 HB  1/25:Q=0, 24/25:Q=3 Q=3 AOT(550) =0.08  (CIMEL) 
 TI No InSitu Lu   AOT(550) =0.1  (MTOPS) 
 JT  4/25:Q=0, 21/25:Q=3 Q=0  

02/06/06 PI  25/25:Q=3 Q=3 AOT(550) =0.7  (MTOPS) 
 HB  25/25:Q=3 Q=3 Pixels flagged as : 
 TI  1/25:Q=0, 24/25:Q=3 Q=3   “Atm Corr. Failed” 
 JT No InSitu IOPs     or  “Gordon Aer. Failure” 

02/06/18 PI  25/25:Q=3 Q=3 AOT(550) =0.25  (CIMEL) 
 HB  5/25:Q=0, 20/25:Q=3 Q=3  AOT(550) =0.26  (MTOPS) 
 TI  9/25:Q=0, 14/25:Q=3 Q=3  
 JT  25/25:Q=3 Q=3  

02/06/28 All MODIS all nLw <0    
02/11/08 B4  7/25:Q=0, 18/25:Q=3 Q=3 ~ clear:  

 B3  5/25:Q=0, 20/25:Q=3 Q=3 AOT(550) =0.07  (CIMEL) 
 B2  2/25:Q=0, 23/25:Q=3 Q=3 Satellite zenith angle=-57 
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Table 4.3-2: Number of MODIS pixels with nLw = 0 at some of the wavelength bands 
(“total pixels” in the third column is the total number of pixels with positive nLw values 
at more than one wavelength bands. Only the pixels with positive nLw values at more 
than one wavelength have been examined) 
 
   number of pixels with nLw <0 or nLw =0 at each wavelength band  
day station total pixels nLw412 nLw443 nLw488 nLw531 nLw551 nLw667 nLw678 

155 PI 11 5 5 1 0 0 0 0 
  HB 13 9 9 5 0 0 3 3 
  TI 25 13 8 0 0 0 0 0 
  JT 14 12 12 6 0 0 1 1 

162 PI 7 0 0 0 0 2 7 7 
  HB 1 0 0 0 0 1 1 1 
  TI 20 0 0 0 0 11 20 20 
  JT 9 1 1 0 0 5 9 9 

190 PI 5 5 5 5 3 0 5 5 
  HB 1 1 1 1 1 0 1 1 
  TI 18 18 18 18 11 0 17 17 
  JT 5 4 4 4 1 0 3 3 

264 PI 0 0 0 0 0 0 0 0 
  HB 0 0 0 0 0 0 0 0 
  TI 12 0 0 0 0 0 1 1 
  JT 6 0 0 0 0 0 1 1 

269 PI 7 4 4 2 0 0 2 0 
  HB 7 3 3 2 0 0 2 0 
  TI 24 5 5 2 2 0 2 3 
  JT 6 3 3 2 0 0 0 0 

277 PI 8 7 7 7 2 0 7 6 
  HB 13 13 13 13 8 0 13 13 
  TI 22 21 20 20 0 0 21 20 
  JT 13 13 13 13 11 0 13 13 

303 PI 12 12 12 0 0 0 0 0 
  HB 20 20 20 11 0 0 4 1 
  TI 25 25 25 0 0 0 0 0 
  JT 15 15 15 1 0 0 0 0 

317 PI 10 10 10 0 0 0 0 0 
  HB 22 22 22 0 0 0 0 0 
  TI 25 25 25 0 0 0 0 0 
  JT 16 16 15 0 0 0 0 0 

135 PI 4 2 2 0 0 0 3 4 
  HB 3 0 0 0 0 0 3 3 
  TI 11 3 2 0 0 0 7 7 
  JT 2 0 0 0 0 0 2 2 

142 PI 11 11 10 0 0 0 0 0 
  HB 19 18 18 17 1 0 8 8 
  TI 25 25 25 5 0 0 0 0 
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  JT 16 16 16 10 1 0 2 2 
157 PI 1 0 0 0 0 0 1 1 

  HB 2 0 0 0 0 0 0 0 
  TI 22 0 0 0 0 0 13 14 
  JT 3 0 0 0 0 0 1 1 

169 PI 1 0 0 0 0 0 0 0 
  HB 16 0 0 0 0 0 13 13 
  TI 25 0 0 4 6 5 22 22 
  JT 13 9 9 9 1 0 8 3 

312 B4 23 23 23 23 3 0 19 5 
  B3 18 18 18 18 1 0 12 4 
  B2 16 16 16 16 2 0 7 3 
SUM pixels 623 423 414 215 54 24 254 217 
          
percent negative values: 67.90 66.45 34.51 8.67 3.85 40.77 34.83 
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Figure 4.3-14: Location of the 5x5 MODIS pixels around each station (PI, HB, TI and 
JT) during the cruises in the Chesapeake Bay. i) MODIS pixels with negative (nLw=-1 or 
nLw = -5) or zero normalized water-leaving radiances at all of the MODIS wavelength 
bands are shown as black pixels. ii) MODIS pixels with negative (nLw=-1) or zero 
normalized water-leaving radiances at some of the MODIS wavelengths are shown as 
blue pixels. iii) MODIS pixels with nLw > 0 at all wavelengths are shown as red pixels. 
The MODIS pixel with water leaving radiances that showed the best agreement with the 
in-situ measurements, is shown as white pixel.   
 

(a) 4 June 2001  (satza=35o)                    (b) 11 June 2001 (satza=42o) 

 (e) 26 September 2001 (satza=15o)       (f)  4 October 2001 (satza=-57o) 

 (c)  9 July2001 (satza=-61o)          (d) 21 September 2001 (satza=-18o)
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 (m)  8 November 2002 (satza=-57 o) 

(g) 30 October 2001 (satza=-8o)                   (h) 13 November 2001 (satza=16o) 
  

   (k) 6 June 2002 (satza=-38o)            (l)  18 June 2002 (satza=5o)
   

(i) 15 May 2002 (satza=26o)       (j)  22 May 2002 (satza=36o)  
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Figure 4.3-14: (continued) 
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From the measurements shown in figures 4.3-1(c) - 4.3-13(c) it is evident that the 

comparison between satellite and in-situ measurements is problematic during those days 

(9 July 2001, 4 October 2001, 8 November 2002) when satellite observations were 

performed at a large satellite zenith angle (shown as narrow satellite images of the bay in 

figures 4.3.1-4.3.13), although the satellite zenith angles (-61o, -57o and -57o, 

respectively) were smaller than the threshold value of the satellite zenith angle (± 65o) set 

for the ocean color products. During those days, MODIS nLw values were flagged as 0 or 

–1 at most of the wavelength bands and at most of the satellite pixels, even at pixels 

characterized as of the best quality, quality level=0 (e.g. at both TI and JT stations on 9 

July 2001).  

 

Cloudy and hazy atmospheric conditions also affected the satellite observations, 

resulting in bad quality satellite measurements (e.g. measurements on 11 June 2001, 21 

September 2001 and 6 June 2002), with flagged or very large MODIS nLw values at 412 

and 443 nm (fig. 4.3-2, 4.3-11, 4.3-12). In cases when relatively clear sky conditions 

were observed, the agreement between MODIS and in-situ measurements of nLw was 

better, especially at the less turbid TI station (e.g. 26 September 2001, 30 October 2001) 

which is located at a larger distance from the bay shores. However, in some of the cases 

(4 June 2001), although the in-situ measurements of nLw agree pretty well to the MODIS 

measurements at some of the pixels close to the four stations, large variation was 

observed among the MODIS nLw measurements at the 5x5 pixels around each station.  

 

 



 278

The normalized water leaving radiances, nLw(λ), that were measured in-situ at each 

 station, or were estimated theoretically using Hydrolight and measured water IOPs, were 

compared to the MODIS nLw(λ) values measured at the pixel that was geographically 

“closest” to the location of each station, at the time of the MODIS overpass. However, 

due to the presence of currents in the bay, the geographically closest pixel does not 

necessarily describe the water mass at the location of the station during the in-situ 

measurements. Since detailed information on currents’ speed and direction at the exact 

location of the HB, PI, TI, JT stations was not available, the water mass sampled at each 

station during the in-situ measurements could be anywhere within a distance of ~5 km 

from the station, at the time of the MODIS overpass (discussion in Methodology, 

paragraph 4.2.2). Therefore, the in-situ or modeled nLw values were also compared to the 

MODIS nLw(λ) values measured at the pixel, for which the satellite nLw values showed 

the best agreement (among all the 5x5 pixels around each site) with the in-situ measured 

nLw spectra. This “best” pixel was selected based on: 

 ∑
=

−
3

1
)()( )()(

i
InSituMODIS inLwinLw λλ  = minimum,  for λ1=488, λ2=551, λ3=667 nm. 

For the “best” pixel the nLw values were of quality level 0 (best quality) during the 

measurements performed on 30 October 2001 (at all stations), 13 November 2001 (at all 

stations) and 22 May 2002 (at PI and JT stations) (table 4.3-1). For the HB, JT and PI 

stations, in most of the cases the ‘best’ pixel was located towards the middle of the bay 

(fig. 4.3-14), since most of the pixels close to the bay shores are affected by land 

(proximity to bright source, stray light effects, more shallow and turbid waters) and are 

often flagged as pixels where the atmospheric correction algorithm has failed.  
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The results of the comparisons between in-situ nLw(λ) measurements and MODIS 

nLw(λ) values measured at the “closest” and “best” pixels, are shown in the scatter-plots 

in figure 4.3-15. The comparison between in-situ and MODIS nLw values at the “closest” 

pixel shows a lot of scattering around the 1:1 line, with R2 values of less than 0.4 at all 

wavelengths (fig. 4.3-15(a)). Larger nLw values were measured by MODIS at 412 and 

443 nm compared to the in-situ measurements. The highest nLw(412)  and nLw(443) 

values were measured at the MODIS closest pixels on 21 September 2001 and 6 June 

2002, which were both days when high aerosol optical thickness was measured 

(AOT(550)=2.3 on 21 September 2001, and AOT(550)=0.7 on 6 June 2001).  

 

The normalized water-leaving radiances measured at the MODIS “best” pixels showed 

a better overall agreement with the measured nLw values (figure 4.3-15(b)). The 

comparison was fairly good, especially at the green (551 nm) and red (667 and 678 nm) 

wavelengths, with R2 values of ~0.7, slope close to 0.8-0.85 and small intercept values 

(~ 0.07-0.08). In this case, too, large nLw values were measured at all wavelengths 

(especially at 412 and 443 nm) on 6 June 2002 (day with high aerosol optical thickness, 

AOT(550)=0.7). The comparison between the in-situ data and the MODIS nLw values 

measured at the ‘best’ pixels is shown in figure 4.3-16(a) for only those cases when 

almost clear atmospheric conditions (AOT(550) values of less than 0.2) and not very 

large satellite zenith angles were observed (days: 4 June 2001, 26 September 2001, 30 

October 2001, 13 November 2001, 22 May 2002). During these relatively clear days, 

MODIS data were characterized by the largest number of pixels with quality level=0 

(best quality) (table 4.3-1). The MODIS ‘best’ pixels were of quality level 0 only during 
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these relatively clear days (although MODIS nLw(412) and nLw(443) were flagged as 

negative values in some of these cases). The R2 values at 551, 667 and 678 were between 

0.7-0.8 in this case, the slope between measured and satellite values was again ~0.8 and 

the intercept values were small (~ 0.03 – 0.06). The comparison between the in-situ data 

and the MODIS nLw values measured at the ‘best’ pixels for these days when large AOT 

values were measured (11 June 2001, 21 September 2001, 6 June 2002, 18 June 2002) is 

shown in figure 4.3-16(b). For these days, even at the “best” satellite pixels, MODIS 

estimates of nLw(412) and nLw(443) were largely overestimated (by more than a factor 

of 2 in most of the cases) compared to in-situ nLw measurements. 

 

Figures 4.3-17(a) - 4.3-17(d) show the comparison between the satellite (best pixel) and 

in-situ measurements of nLw, for measurements performed at the four stations PI, HB, 

TI, JT, during all of the cruises in the Bay. Better agreement between MODIS and in-situ 

measurements was observed at the less turbid, and located further away from the land, TI 

station (fig. 4.3-17(a)), especially at the 551 nm wavelength band. With the exception of 

one measurement (nLw(551) measured on 11 June 2001, which was a cloudy/hazy day 

with AOT(550)=0.8 measured by CIMEL and AOT(550)=1.2 measured using 

Microtops) the nLw(551) values measured by MODIS at the ‘best’ satellite pixel were in 

good agreement with the in-situ observations (R2 = 0.94, slope 0.8, and intercept 0.1). 

Larger differences between satellite and in-situ nLw values were found for the 

measurements performed at PI, HB and JT stations which are located close to the bay 

shores. The MODIS measurements of nLw at the two shortest wavelengths 412 nm and 

443 nm were overestimated at all four stations, compared to the in-situ measurements.   
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Figure 4.3-15: In-situ measurements of normalized water-leaving radiances, nLw(λ) and 
MODIS nLw(λ) values measured at the 7 wavelengths  412, 443, 488, 531, 551, 667 and 
678 nm. The In-Situ nLw(λ) are compared to the MODIS nLw(λ) measured (a) at the 
geographically “closest” pixel (b) at the “best” MODIS pixel. The R2, slope and intercept 
between the in-situ and satellite data are shown in tables 4.3-3 (a) and 4.3-3 (b). Pixels of 
all quality levels have been included in the comparisons (pixels of quality 0 shown as 
empty symbols, while pixels of quality 1-3 are shown as full symbols). The 1:1 line is 
also shown for comparison. 

(a) 

(b) 

Table 4.3-3 (b): “best” pixel 

Table 4.3-3(a): “closest” pixel 

 slope intercept Rsqr n 
412 2.72 -0.04 0.23 19 
443 2.12 -0.12 0.33 19 
488 1.39 -0.22 0.41 28 
531 1.05 -0.08 0.63 31 
551 0.88 0.03 0.73 31 
667 1.02 -0.12 0.67 24 
678 0.90 -0.09 0.71 23 

 

 slope intercept Rsqr n 
412 4.90 -0.09 0.17 13 
443 4.26 -0.50 0.25 14 
488 1.81 -0.36 0.19 26 
531 1.32 -0.34 0.34 33 
551 1.05 -0.18 0.41 32 
667 1.37 -0.20 0.34 21 
678 1.27 -0.21 0.37 23 
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Figure 4.3-16: Comparison between in-situ nLw measurements and MODIS nLw values 
measured at the ‘best’ pixels (a) for those cases when almost clear atmospheric 
conditions (AOT values of less than 0.2) and not very large satellite zenith angles were 
observed (days: 4 June 2001, 26 September 2001, 30 October 2001, 13 November 2001, 
22 May 2002) (b) for those cases when large aerosol optical thickness was measured in 
the atmosphere above the location of the four stations (days: 11 June 2001, 21 September 
2001, 6 June 2001, 18 June 2002). Pixels of all quality levels have been included in the 
comparisons. The R2, slope and intercept between the in-situ and satellite data are shown 
in tables 4.3-4(a), (b). 
 
 
 
 

Table 4.3-4 (a): clearest days 
 slope intercept Rsqr n 
412 3.14 -0.27 0.47 7 
443 2.64 -0.42 0.63 7 
488 1.61 -0.45 0.50 15 
531 1.23 -0.26 0.72 15 
551 1.07 -0.14 0.83 15 
667 1.03 -0.11 0.76 15 
678 0.90 -0.08 0.75 15 
 

 slope intercept Rsqr n 
412 3.65 -0.12 0.29 10 
443 2.42 -0.12 0.29 10 
488 1.25 0.01 0.34 10 
531 0.82 0.14 0.44 10 
551 0.68 0.19 0.54 10 
667 1.08 -0.19 0.47 5 
678 0.87 -0.08 0.51 4 
 

Table 4.3-4 (b): days with large AOT 
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Figure 4.3-17: Comparison between the satellite and in-situ measurements of nLw, for 
measurements performed at the four stations (a) TI, (b) PI, (c) HB and (d) JT, during all 
of our cruises in Chesapeake Bay. Pixels of all quality levels have been included in these 
comparisons. The R2, slope and intercept values are shown in tables 4.3-5(a)-(d) 
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 slope Int. R2 n 
412 -1.43 0.80 0.04 7 
443 0.28 0.36 0.01 7 
488 0.78 0.13 0.51 8 
531 0.62 0.23 0.67 8 
551 0.65 0.21 0.93 8 
667 0.46 0.04 0.75 5 
678 0.39 0.06 0.73 5 
 

 slope Int. R2 n 
412 - - - 2 
443 - - - 2 
488 0.32 0.26 0.03 6 
531 0.97 -0.05 0.81 6 
551 0.81 0.09 0.74 6 
667 0.50 0.02 0.96 4 
678 0.58 0.01 0.89 4 
 

 slope Int. R2 n 
412 4.35 -0.34 0.20 5 
443 2.32 0.03 0.18 5 
488 1.68 -0.32 0.32 7 
531 1.33 -0.27 0.65 7 
551 1.21 -0.27 0.82 7 
667 1.15 -0.17 0.77 6 
678 1.05 -0.16 0.80 6 
 

 slope Int. R2 n 
412 2.25 -0.05 0.47 5 
443 1.74 -0.09 0.55 5 
488 1.36 -0.31 0.47 7 
531 0.92 -0.03 0.57 7 
551 0.73 0.15 0.60 7 
667 1.06 -0.15 0.41 5 
678 1.03 -0.15 0.51 5 
 

  Table 4.3-5(a): TI station           Table 4.3-5(b): PI station 

  Table 4.3-5(c): HB station           Table 4.3-5(d): JT station 
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4.4  MODIS and in-situ measurements of Remote Sensing Reflectance – 

Discussion and Conclusions 

 
 

Measurements of remote sensing reflectance in the Chesapeake Bay waters have been 

studied using both in-situ observations and satellite data from the MODIS instrument 

aboard the EOS/Terra satellite. The in-situ measurements during each cruise had been 

performed within a time-period of 2-3 hours around the satellite overpass. Therefore, and 

due to the presence of currents in the Bay, a region encompassing the 5x5 satellite pixels 

around the location of each station was studied when comparing the satellite estimations 

to the in-situ measurements (discussion in “Methodology” section). 

 

Although satellite measurements of the best quality are those characterized by a quality 

level of 0 or at most 1 (table 4.2-5), satellite pixels with nLw values of all quality levels 

have been examined in this study, mainly for two reasons:  

i) The number of pixels with nLw values of quality-level = 0 (best quality level) was 

small for the Chesapeake Bay waters. Only 18% of the total number of pixels studied (25 

pixels around the location of each station) and 22% of the MODIS ‘best’ pixels around 

each site, were of quality-level zero concerning the nLw products (more details on the 

quality levels of the satellite pixels are given in table 4.3-1). No pixels with nLw values 

of quality-level=1 were found for the cases studied. A pixel is of quality-level 1 

(concerning the nLw values) if the solar or satellite zenith angle is large (table 4.2-4), and 

satellite and solar zenith angles, during our cruises, were always smaller than the 

threshold values (65o for satellite zenith angle and 70o for solar zenith angle). 
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ii) In certain cases (e.g. 9 July 2001, 4 October 2001, 22 May 2002, 8 November 2002) 

pixels of quality level 0 (concerning the nLw products) had nLw values negative at most 

or all of the satellite wavelength bands, while pixels of quality level 3 had nLw values in 

closer agreement with the nLw values measured in-situ. As mentioned in the 

Methodology section, the problem of having satellite pixels characterized as of quality-

level=0 (concerning the nLw products) while nLw values were flagged at all MODIS 

wavelength bands, was examined thoroughly and was found to be related to the actual 

information concerning the value of the nLw quality-level that is stored in the quality 

Bytes in the MODIS HDF files. Satellite pixels with negative or zero nLw values at all 

wavelength bands (nLw = 0, nLw = -1 or nLw = -5), have been discarded. A large 

number of pixels with nLw = -5 (negative value that is used to flag MODIS pixels not 

processed or pixels on land) was found at a short distance from the HB, JT and PI 

stations, since these stations are located close to land, with HB and JT stations close to 

the western shore of the Chesapeake Bay and PI close to the Poplar and Tilghman Islands 

along the eastern shore of the bay.    

 

Negative nLw values measured by MODIS: 

Almost 70% of the MODIS pixels (that did not have negative nLw values at all seven 

wavelengths) had negative (flagged) nLw values at the two shortest satellite wavelength 

bands, centered at 412 and 443 nm (table 4.3-2). Due to high absorption by 

phytoplankton, non-pigmented particulate matter and CDOM, within the blue wavelength 

region, the remote sensing reflectances at 412 and 443 nm are typically small in the 

Chesapeake Bay waters (in-situ nLw(λ) measurements are shown in fig. 4.3-1 - 4.3-13). 



 286

Therefore, small errors in the atmospheric correction applied to the satellite 

measurements could result in erroneous satellite nLw values at 412 and 443 nm. These 

errors in the estimation of nLw at the two short wavelength bands, have significant 

implications on the estimation of chlorophyll concentration, using the HPLC empirical 

chlorophyll algorithm (“chlor_MODIS” product, updated version 19 Feb 2002, D. Clark), 

since this algorithm is based on an empirical relationship between [Chl-a] and the nLw 

ratio [(nLw(443)+nLw(488)]/nLw(551), and therefore, uses as input information the 

MODIS nLw(443) measurements (description of the algorithm in chapter 5). The 

accuracy of the case-2, semianalytic MODIS  chl-a algorithm (semianalytic version of 

“chlor_a_3” product, Carder et al, 2002) is also affected by the quality and accuracy of 

the MODIS measurements at the shorter wavelengths, since the algorithm uses the 

remote sensing reflectance ratios Rrs(412):Rrs(551) and Rrs(443):Rrs(551) to estimate 

water’s absorption coefficients and chlorophyll concentrations. According to Carder et al 

(2002) the semianalytic algorithm cannot perform properly for waters with high CDOM 

and chlorophyll concentrations, because nLw(412) and nLw(443) are expected to be 

small. The other two MODIS [Chl-a] products (empirical version of “chlor_a_3” product 

and SeaWiFS analog “chlor_a_2” product) are based (for [Chl-a] larger than 2 mg m-3 ) 

on empirical relationships between [Chl-a] and the ratio Rrs(488)/Rrs(551). The 

percentage of pixels with negative (flagged) nLw values at 488 nm was ~35% for the 

cases studied, similar to the percentage of pixels with negative nLw values at 667 and 

678 nm. Most of the pixels with zero or negative nLw values (excluding pixels flagged as 

“land”), were found around the three stations, HB, JT and PI, that are located closer to the 

bay shores (fig.2.2-1, chapter 2). This is because many parameters, such as proximity to 
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the bright land surface, stray-light effects, presence of shallow and highly turbid waters 

and failure of the atmospheric correction algorithm, affect in a negative way the quality 

of nLw measurements at satellite pixels located at a short distance from the shore. 

 

Large Satellite Zenith Angles:  

According to the results shown in figures 4.3-1 – 4.3-13, the quality of the satellite data 

was reduced for those days (9 July 2001, 4 October 2001, 8 November 2002) when 

satellite observations were performed at a large satellite scan angle. Errors in the 

atmospheric correction of the satellite observations become larger when satellite 

measurements are performed at high solar or scan angles. At the same time, satellite 

spatial resolution decreases closer to the edge of the satellite scan (4.83 km along satellite 

scan and 2 km along satellite track at 55o satellite scan angle). The satellite zenith angle 

over the Chesapeake Bay region was -61o on 9 July 2001, -57o on 4 October 2001 and      

-57o on 8 November 2002. These satellite zenith angles are smaller than, but close to, the 

satellite zenith angle threshold value of  ± 65o set for the MODIS ocean color products. 

During the days mentioned above, the MODIS normalized water-leaving radiances were 

flagged as zero or negative values at most of the wavelengths (e.g. at 412, 443, 488, 667 

and 678 nm) and at almost all of the 5x5 satellite pixels around the location of each site, 

even at pixels characterized as of the best quality level (quality level=0) concerning the 

nLw products. 
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Atmospheric conditions:  

 Atmospheric conditions significantly affected the quality of satellite observations and 

estimations of MODIS normalized water-leaving radiance spectra during our cruises. 

During the measurements performed on 11 June 2001, 21 September 2001 and 6 June 

2002, high aerosol optical thickness (AOT) was measured due to the presence of aerosols 

or thin clouds in the atmosphere. Aerosol optical thickness values at 550 nm, AOT(550), 

measured at the time of the MODIS overpass using either the Microtops instrument or the 

CIMEL sunphotometer, were 0.8-1.2 on 11 June 2001, 2.3 on 21 September 2001 and 0.7 

on 6 June 2002 (table 4.3-1). During those days large disagreement was observed 

between satellite and in-situ nLw spectra or between satellite and model estimated (using 

Hydrolight and measured inherent water optical properties) nLw values. Satellite 

measurements showed large remote sensing reflectances in the blue region of the visible 

spectrum (412, 443, 488 nm) although significant absorption by CDOM, phytoplankton 

and non-pigmented particulate matter was measured at the blue wavelengths during the 

summer cruises in the Chesapeake Bay waters (results in chapter 2). During the cruise on 

11 June 2001, a large phytoplankton bloom was observed with measured chl-a 

concentrations of 50 –75 mg/m3 at HB and JT stations. Such high chl-a concentrations, 

combined with the effect of high absorption in the blue wavelengths by CDOM and 

detrital material, would be expected to result in remote sensing reflectance spectra with 

maximum values in the green region of the spectrum and not in the blue wavelengths. 

The satellite measured nLw values at 412, 443 and 488 nm were overestimated compared 

to the in-situ nLw values measured during the days mentioned above (fig. 4.3-2, 4.3-4, 

4.3-11, 4.3-12). Such overestimations of the nLw values in the blue wavelengths by 
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MODIS, due to errors in the atmospheric correction under conditions of high aerosol 

optical thickness, are expected to result in large underestimations of the chlorophyll 

concentrations in the Chesapeake Bay waters using the MODIS [Chl-a] empirical 

algorithms (discussion in chapter 5).  

 

Better agreement between satellite and in-situ (or modeled) nLw values was observed 

under relatively clear atmospheric conditions, especially at the less turbid TI station, 

which is located in the mid of the Bay, at a larger distance from the Bay shores compared 

to the other three stations. However, in some of the cases, such as the measurements 

performed on 4 June 2001, although there was good agreement between in-situ and 

MODIS nLw measurements (especially at 531 and 551 nm) at some of the pixels close to 

HB and TI stations, large variation was observed among the MODIS nLw measurements 

at the 5x5 pixels around each station. Large spatial variability would be expected during 

the spring-summer months in the Bay, due to patchy and ephemeral phytoplankton 

blooms events (e.g. phytoplankton bloom event observed on 11 June 2001) and more 

intense biological activity (chapter 2). Especially good agreement between satellite and 

in-situ nLw values was observed at TI station on 26 September 2001 (fig. 4.3-5). During 

that day, the satellite zenith angle over the Chesapeake Bay was small ( ~ 15o), and 

atmospheric conditions were relatively clear, with aerosol optical thickness measured at 

the time of the MODIS overpass AOT(550)=0.1. Moreover, during that day the time of 

the MODIS overpass (16:15 GMT) was very close to the time of the in-situ 

measurements at the TI station (16:30 GMT). The satellite nLw values measured at all the 

‘quality-level=0’ pixels around the TI station were in good agreement with each other 
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(fig. 4.3.5 (c)) and were also in good agreement with the in-situ nLw values measured at 

the TI site, especially in the 490-550 wavelength region. Percent differences between 

MODIS (at ‘best’ pixel) and in-situ nLw values at 488, 531 and 551 nm (estimated as: 

(nLwInStu-nLwMODIS)/nLwInStu ) were –6%, -2% and -3% respectively (with MODIS 

slightly overestimating nLw). Good agreement between satellite and in-situ nLw 

measurements were also observed at TI station on 30 October 2001. Measured aerosol 

optical thickness during that day was AOT(550)=0.2 and satellite zenith angle was small, 

~ 8o. All of the pixels around TI station during that day were of quality level=0. Percent 

differences between MODIS (best pixel) and in-situ nLw values at 531 and 551 nm, were 

17% and -1% respectively.  

 

For match-up comparisons, the in-situ measurements of nLw(λ) (or the model 

estimated nLw(λ) values for those days when in-situ measurements were not available) 

were compared to the nLw(λ) values measured by MODIS at the pixel that was 

geographically “closest” to the location of each station at the time of the MODIS 

overpass (fig. 4.3-15(a)). The results of the linear least-squares regression between 

measured and satellite measurements at each wavelength are shown in table 4.3-3(a). 

Large differences between satellite and in-situ measurements were observed in most of 

the cases (large scattering around the 1:1 line in the scatterplot in fig. 4.3-15 (a)), with R2 

values less than 0.4. Larger nLw values, compared to in-situ measurements, were 

measured by MODIS at 412 nm and 443 nm, with the largest differences measured at 

those days when high aerosol optical thickness was measured in the atmosphere above 

the location of the four stations in the Bay. However, as was mentioned in the 
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“Methodology” section, due to the presence of currents and the time difference between 

the MODIS overpass and the in-situ measurements at the Bay, the geographically 

“closest” satellite pixel does not necessarily correspond to the water mass that was at the 

location of the station during the in-situ measurements.    

 

Therefore, the in-situ (or modeled estimated) nLw values were also compared to the 

MODIS nLw(λ) values measured at the “best” satellite pixel, for which the nLw values 

showed the best agreement (among all the 5x5 pixels around the location of each station) 

with the in-situ measured nLw spectra. The nLw values measured at the “best” pixel were 

of quality level 0 during the measurements performed on 30 October 2001, 13 November 

2001 and 22 May 2002 (table 4.3-1). In most of the cases where the in-situ measurements 

at a station were performed close to the time of the MODIS overpass, the satellite “best” 

pixel was located at a distance of less than 1-1.5 km from the station. On 21 and 26 

September 2001 the time of the MODIS overpass (15:55 GMT and 16:15 GMT 

respectively) was closest to the time of the in-situ measurements at the TI station and the 

“best” pixel at TI was at a distance of less than 1.5 km from the station. On 30 October 

and 13 November 2001, the time of the MODIS overpass (16:00 GMT and 16:10 GMT 

respectively) was closest to the time of the in-situ measurements at the PI station and the 

“best” pixel around PI was at a distance of less than 1 km from the PI location. 

 

The satellite and in-situ nLw measurements were in better overall agreement, as was 

expected, when the in-situ measurements were compared to nLw values measured at the 

“best” satellite pixel (scatterplot in fig. 4.3-15 (b)). Fairly good agreement was obtained 
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between in-situ and satellite (“best” pixel) nLw measurements at 551, 667 and 678 nm, 

(R2 values of ~0.7, slope close to 0.9, small intercept values ~ -0.09) with MODIS, 

however, underestimating to some extent the normalized water leaving radiances, 

especially at 678 nm. Significantly larger nLw(412) and nLw(443) values, compared to 

the in-situ measurements, were measured at the satellite “best” pixels on 6 June 2002, 

when with high aerosol optical thickness (AOT(550)=0.7) was measured in the 

atmosphere. During that day, percent differences between MODIS and in-situ nLw 

values at 412 and 443 nm were –555% and –351% respectively at HB station (close to 

the Bay shore), and -218% and -44% at TI station.   

 

When the in-situ nLw measurements were compared to the MODIS measurements at 

the “best” pixel for only those cases with relatively clear atmospheric conditions 

(AOT(550) less than 0.2) and not large satellite zenith angles (days: 4 June 2001, 26 

September 2001, 30 October 2001, 13 November 2001, 22 May 2002), the scattering 

around the 1:1 line was reduced (fig. 4.3-16(a)). Fairly good agreement was observed 

again at the green and red wavelengths, with MODIS still underestimating nLw at 678 

nm. R2 values at 551, 667 and 678 were between 0.75-0.83 in this case, the slope 

between measured and satellite values was between 0.9-1.07 and the intercept values 

were between -0.14 and –0.08. However, the comparison between in-situ and satellite 

measurements was not good at the short wavelengths 412-490 nm, even for the relatively 

clear days (R2, slope and intercept values given in table 4.3-4). In most of the cases, 

satellite nLw measurements were considerably overestimated or flagged as negative 

values. On 30 October 2001 and 13 November 2001 relative clear atmospheric 
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conditions were observed and most of the pixels around the location of each station were 

of best quality level (quality level =0). However, MODIS nLw(412) and nLw(443) 

values were negative at all 25 pixels around each station (fig. 4.3-7, 4.3-8).  

 

As was discussed in chapter 2, the water optical characteristics vary among the four 

stations in the Bay, where the field observations have been performed, with higher 

backscattering of light usually observed at the more turbid HB and JT stations, located 

close to the western shore of the Chesapeake Bay. According to the results shown in 

figure 4.3-17, higher values of normalized water leaving radiances were measured both 

in-situ and by MODIS at HB and JT stations compared to TI and PI. This is in agreement 

with the higher abundance of non-pigmented particles and the higher backscattering 

coefficients measured in-situ at the turbid HB and JT stations, compared to PI and TI 

(discussion in chapter 2). The higher backscattering at HB and JT results in larger 

portion of radiation scattered in the backward direction, and eventually leaving the water 

surface.   

 

The comparison between satellite and in-situ nLw measurements was examined 

separately for the four stations HB, PI, TI and JT (fig. 4.3-17(a) – 4.3-17(d)). Although 

the number of match-ups is small when looking at the four sites separately, MODIS and 

in-situ data showed better overall agreement for measurements performed at the less 

turbid PI and TI stations (fig. 4.3-17 (a)). TI station is also located further away from the 

bay shores and, therefore, satellite pixels around this station are less affected by land 

(bright source, stray light effects, shallow and more turbid waters). The agreement at TI 
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station was good, especially at 551 nm where the remote sensing reflectance signal for 

the Chesapeake Bay waters is usually higher compared to other wavelengths. With the 

exception of the measurements performed on 11 June 2001 (which was a cloudy/hazy 

day with AOT(550)CIMEL=0.8 and AOT(550)MicroTOPS=1.2) the in-situ and satellite 

nLw(551) measurements were in very good agreement (R2 = 0.94, slope 0.8, and 

intercept 0.1). However, nLw measurements at 678 nm were significantly 

underestimated by MODIS compared to the in-situ observations (R2= 0.73, slope 0.4 and 

intercept 0.06). The comparison was worse for measurements performed at HB and JT 

stations (fig. 4.3-17(b) and 4.3-17(d)), which are located close to the western 

Chesapeake Bay shore and are also characterized by more turbid waters. Satellite nLw 

measurements at JT were underestimated at 551, 667 and 678 nm, compared to the in-

situ observations. MODIS measurements of nLw at the shorter wavelengths (412 and 

443 nm) were either flagged (as negative values) or significantly overestimated 

compared to in-situ measurements, for most cases studied, and at all four stations.  

 

Errors in the in-situ measurements and model-estimations of remote sensing 

reflectances may have contributed to discrepancies when comparing these values to 

satellite observations. The good agreement obtained between our in-situ measurements 

in the Bay and theoretical estimations of underwater radiation fields and water-leaving 

radiances (results and discussion in chapter 3) increases confidence in the accuracy of 

the in-situ measurements by demonstrating “closure” between the independently 

measured inherent and apparent water optical properties.  
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The implementation of atmospheric correction in the version of MODIS data used in 

this study, was based on the assumption that ρw (water-leaving reflectance) is totally 

diffuse. BRDF effects could be another source of error in the comparisons between 

satellite and in-situ observations. Future improvement of the MODIS algorithm is 

associated with removing bi-directional effects from satellite observations and 

incorporating a ρw BRDF model into the processing stream, to determine the satellite 

nadir-viewing normalized water-leaving radiance.    

 

Due to high absorption by CDOM, non-pigmented particulate matter and 

phytoplankton, Rrs values at the blue wavelengths are small in the Chesapeake Bay 

waters. High absorption by pure sea-water at the longer, NIR wavelengths, results in low 

Rrs values in the red region of the spectrum. Small errors in atmospheric correction in 

the blue and red portions of the spectrum, associated with the NIR correction applied 

(Siegel et al, 2000), the assumptions on the aerosol models in the atmosphere, and the 

extrapolation of ρA from NIR to the shorter, blue wavelengths, could result in large 

relative errors in the satellite estimations. Spectral optimization atmospheric correction 

algorithms have been recently developed (e.g. Gordon et al, 1997). Application of such 

algorithms in coastal regions, such as Chesapeake Bay, could improve the quality and 

accuracy of MODIS estimations of remote sensing reflectances.  
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Table 4.4-1:Chapter 4 – Significant points and Conclusions 

 - All MODIS ocean Level 2 products are available in the Hierarchical Data Format (HDF) and can be 
read in SeaDAS, IDL, Matlab, and available subroutines in FORTRAN, C, and other languages. To 
obtain higher accuracy on the pixels’ location, the MODIS measurements of nLw(λ) used in this study 
and information on geolocation have been read directly from the HDF files using IDL routines. When 
the SeaDAS program is used to read the MODIS data, small changes on the latitude and longitude 
information may occur, compared to the actual information stored in the MODIS geolocation file (e.g. 
differences in the order of 1 km), since SeaDAS uses interpolation to reshape the MODIS geolocation 
field and allow the user to easily choose Pixel/Line Sample Rate in SeaDAS image display.  
 - Although satellite measurements of the best quality are those characterized by a quality-level 0 or at 
most 1, satellite pixels with nLw values of all quality-levels have been examined in this study, mainly 
for two reasons: i) Only 18% of the total number of pixels studied were of quality-level zero, 
concerning the nLw products, for the Chesapeake Bay waters. ii) In certain cases, pixels of quality 
level 0 (concerning the nLw products) had flagged nLw values at most or all of the satellite 
wavelength bands, while pixels of quality-level 3 had nLw values in closer agreement with the nLw 
values measured in-situ. The problem of having satellite pixels of quality-level=0 while MODIS nLw 
values are flagged at all wavelength bands was found to be related to the actual information 
concerning the value of the nLw quality-level, that is stored in the quality Bytes in the MODIS HDF 
files 

 - Almost 70% of the MODIS pixels in the Chesapeake Bay waters had flagged nLw values at 412 and 
443 nm (table 4.3-2). This has significant implications on the estimation of chlorophyll concentration, 
using the MODIS HPLC empirical chlorophyll algorithm (“chlor_MODIS” product, D. Clark, 2002), 
since this algorithm is based on an empirical relationship between [Chl-a] and nLw values measured at 
the blue-green wavelengths (discussion in chapter 5). 

 - The quality of MODIS nLw values was reduced (nLw flagged at most of the wavelengths and at 
almost all of the 5x5 satellite pixels around the location of each station, even at pixels of quality-level 
0) for satellite measurements performed at satellite zenith angles between 55o and 65o, although these 
satellite zenith angles are smaller than the MODIS threshold of 65o

, set for ocean color products.  
 - The quality of MODIS nLw spectra was reduced under conditions of high aerosol optical thickness 
(e.g. cases with AOT(550)=0.7 or AOT(550)=2.3). Under such conditions, errors in the atmospheric 
correction may result in negative (flagged) or highly overestimated nLw MODIS values in the blue 
wavelength region. Such overestimations of the nLw values at the blue wavelengths are expected to 
result in large underestimations of [Chl-a] by MODIS in the Chesapeake Bay waters (chapter 5). 
 - Higher nLw values were measured both in-situ and by MODIS at the HB and JT stations compared 
to TI and PI. This is in agreement with the higher abundance of non-pigmented particles and the 
higher backscattering coefficients measured in-situ at the turbid HB and JT stations, compared to PI 
and TI (chapter 2).  

 - The quality of nLw values is affected at pixels close to land (more shallow / turbid waters, 
proximity to bright source, atmospheric correction algorithm failure). Better agreement between 
MODIS and in-situ measurements was found at the TI station, which is located at a larger distance  
from the bay shores, especially for days with relatively clear atmospheric conditions (AOT(550)<0.7). 

 - The agreement between MODIS and in-situ measurements was found to be better, for satellite 
zenith angles smaller than 55o and under relatively clear atmospheric conditions, at 551, 667, 678 nm 
(R2 ~ 0.75-0.83, slope 0.9-1.07, intercept values (-0.14) - (-0.08)). However, MODIS nLw values were 
underestimated compared to in-situ measurements, especially at 678 nm. MODIS measurements of 
nLw at 412 nm and 443 nm were in most of the cases either negative (flagged) or significantly 
overestimated compared to in-situ measurements. 

  
                                      



 297

                                               Table 4.4-1 (continued): 

 - Due to high absorption by CDOM, non-pigmented particulate matter and phytoplankton, Rrs values 
at the blue wavelengths are small in the northern Chesapeake Bay waters. High absorption by pure 
sea-water at the longer, NIR wavelengths, results in low Rrs values in the red region of the spectrum. 
Small errors in atmospheric correction in the blue and red portions of the spectrum, could result in 
large relative errors in the satellite estimations. Errors and uncertainties associated with the in-situ 
measurements and model-estimations of Rrs may have contributed to discrepancies when comparing 
these values to satellite observations. BRDF effects could be another source of error in the 
comparisons between satellite and in-situ observations. Future improvements of the MODIS algorithm 
are associated with incorporating a ρw BRDF model into the processing stream, to remove                
bi-directional effects from satellite measurements and determine the satellite nadir-viewing 
normalized water-leaving radiance.   
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CHAPTER 5 

In-situ and Satellite Measurements of Remote Sensing Reflectance and their 

relation to chl-a concentration and in-water optical properties 

 
5.1 Introduction 
 
 

One of the most commonly measured biological properties of the oceans, and one of the 

most widely used products derived remotely from ocean color measurements, is the 

concentration of chlorophyll-a, (chl-a). Chl-a is the major photosynthetic pigment found 

in all phytoplankton species. Although pigment composition (chlorophylls a, b, c, 

carotenoids and phycobilisomes) and concentration depend on phytoplankton species, 

cell’s physiology, light intensity, light spectral quality and nutrient availability, chl-a 

concentration has been widely used as a measure of phytoplankton biomass in aquatic 

environments. One reason for this may be the fact that measurements of chl-a 

concentration are relatively simple and direct. The most widely used laboratory methods 

for measuring chlorophyll-a concentration, [Chl-a], are i) spectrophotometric method,    

ii) fluorometric method and iii) High Pressure Liquid Chromatography (HPLC). The 

above methods are based on the absorption and fluorescence spectral characteristics of 

the chlorophyll-a pigment.  

 

Satellite estimations of surface concentration of chlorophyll-a and associated pigments 

have contributed significantly in gaining a better understanding on the temporal and spatial 

variations of phytoplankton biomass and biological activity in the world’s oceans and the 

role of phytoplankton in the climate system (e.g. McClain et al, 1993, Yoder et al, 1993, 
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Sullivan et al, 1993). As mentioned previously, remote sensing observations of ocean 

color rely on detecting the light signal that leaves the water surface and reaches a sensor 

onboard a satellite, carrying with it information on the optical properties of the water.  

 

The magnitude of the remote sensing reflectance, Rrs, is related to the processes of 

backscattering, bb, which allows downwelling photons to travel backward and eventually 

leave the water surface, and absorption, a, within the water. Morel and Prieur (1977) and 

Gordon et al (1988) showed that irradiance reflectance, R=Eu/Ed, is related to the water 

inherent optical properties, R ~ bb/(a+bb). According to Lee et al (1994), the remote 

sensing reflectance, Rrs(λ) can be related to bb(λ) and a(λ) according to: 
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where, t(w,a) is the transmittance from air to water, t(a,w) is the water-air transmittance, nw is 

the real part of the water refractive index that can be assumed to be almost constant, 

n=1.34,  f is an empirical factor which is a function of the solar zenith angle and is 

influenced by the relative importance of the molecular and particle scattering in the total 

scattering process (Morel and Gentili, 1991), and Q is the ratio of upwelling irradiance to 

upwelling radiance, Q= Eu(λ)/Lu(λ). Typically, for the transmittances through the air-

water and water-air surface, t(w,a) = 0.98 and t(a,w)=0.96 (Mobley, 1994), and the quantity 
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 can be assumed to be relatively independent of wavelength and approximately 

equal to 0.54. Early studies have shown that f has an average value of about 0.32–0.33 

(Gordon et al., 1975; Morel and Prieur, 1977) when the sun is near zenith. However, the 

global range of variation in f is from about 0.3 to 0.6. According to Morel and Mueller 
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(2002), since both the f and Q functions experience concomitant increases when the sun 

zenith angle increases, their ratio is less dependent on solar zenith angle. As is mentioned 

in Carder et al (2002), according to Morel and Gentili (1993) and Gordon et al., (1988) 

the ratio f/Q is relatively independent of solar zenith angle for sun and viewing angles 

expected for the MODIS orbit, with values of f/Q = 0.0936, 0.0944, 0.0929, and 0.0881, 

(standard deviation ± 0.005), for λ= 440, 500, 565, and 665 nm, respectively, according 

to Morel and Gentili (1993) and f/Q = 0.0949, for sza < 20o according to Gordon et al., 

(1988). In the MODIS semianalytic chlorophyll algorithm (described in paragraph 

5.2.2.3), the f/Q ratio is assumed to be independent of wavelength and solar zenith angle. 

According to Morel and Mueller (2002) variations in the ratio f/Q remain within the 

range 0.08< f/Q < 0.15.   

 

Satellite remote sensing measurements of [Chl-a] rely on the absorption and scattering 

characteristics of phytoplankton and the way these optical properties affect the 

underwater light field and the Rrs (or nLw) values measured by the satellite sensor. 

Information on chlorophyll concentration is obtained by using appropriate algorithms that 

relate measurements of remote sensing reflectance spectra either directly to chlorophyll 

concentration (empirical algorithms), or to optical properties of phytoplankton and other 

optically active materials in the water (semi-analytical algorithms, based on radiative 

transfer and theoretical relationships such as eq (5.1-1)).     

 

The MODIS ocean color products include three products of chl-a concentration and two 

pigment concentration products (table 4.1-3, chapter 4). The “CZCS_pigment” 
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(parameter 13), analog to CZCS chlorophyll, provides an estimate of chlorophyll-a and 

pheophytin-a and is based on an empirical algorithm derived from fluorometric 

measurements. The “pigment_c1_total” (parameter 15) product provides an estimate of 

all pigments that absorb in the blue MODIS bands and is based on an empirical algorithm 

derived from HPLC (High Pressure Liquid Chromatography) measurements. The 

“chlor_MODIS” (parameter 14) is a chlorophyll product based on an empirical algorithm 

derived from HPLC measurements of chl-a. The “chlor_a_2” (parameter 26) is a 

chlorophyll product analog to the SeaWiFS case 1 and case 2 waters chlorophyll 

concentration. The “chlor_a_3” product (parameter 27) is based on a semianalytic 

algorithm that relates the remote sensing reflectance measurements to absorption by 

various substances (phytoplankton, CDOM and non-pigmented particulate matter) 

present in the water, whose concentration may or may not covary with chlorophyll 

concentration. Therefore, this algorithm is the most appropriate for use in case 2 waters. 

However, for optically thick waters with chlorophyll concentrations larger than           

1.5-2.0 mg m-3 this algorithm also becomes an empirical algorithm based on the 

relationship between remote sensing reflectance ratios and chlorophyll concentration.  

The three MODIS chlorophyll algorithms are discussed in more details in the 

“Methodology” section (paragraph 5.2.2). 

 

In coastal and estuarine environments, such as Chesapeake Bay, the concentration and 

distribution of phytoplankton is of major water quality and ecologic concern. Human 

activities can increase phytoplankton concentration to significantly high levels in coastal 

regions, by increasing nutrient loadings to the water. According to Harding et al (1992) 
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large production of particulate organic carbon during dense phytoplankton blooms in the 

Bay, is linked to important processes in the estuary, such as nutrient utilization, fisheries 

productivity, light availability in the water column and the seasonal development of 

hypoxic/anoxic conditions (Kemp and Boynton, 1992; Harding et al, 1986; Malone et al, 

1988; Malone, 1992). Therefore, [Chl-a] is one of the biological properties measured 

regularly in the framework of coastal water-quality monitoring programs (such as the 

CISNet program at SERC, 1980-present). Measurements of [Chl-a] were performed as 

part of our detailed measurements program in the northern part of the Chesapeake Bay. 

 

One of the questions addressed in this chapter is how accurate are the MODIS [Chl-a] 

estimations in the case of the optically complex, estuarine waters of the northern 

Chesapeake Bay region. In paragraph 5.3-2 of the ‘Results’ section, in-situ [Chl-a] 

measurements are compared to various MODIS chlorophyll products, to examine the 

performance of the MODIS chlorophyll algorithms. What was the range of [Chl-a] values 

measured in-situ in the Chesapeake Bay waters during our cruises? How do 

overestimations or underestimations of MODIS Rrs values (due to errors, for example, on 

the atmospheric correction) affect the accuracy of satellite estimated chlorophyll 

concentrations? What is the performance of the satellite chlorophyll algorithms when in-

situ measurements of Rrs are used as input information to estimate [Chl-a] in the 

Chesapeake Bay waters? As mentioned in chapter 2, in the Chesapeake Bay waters, 

substances such as CDOM and non-pigmented particulate matter, that do not necessarily 

covary with [Chl-a], significantly affect the spectral signature of radiance leaving the 

water surface. Are the bio-optical models or empirical relationships used currently in 
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satellite chlorophyll algorithms applicable to the Chesapeake Bay region? Based on 

information on the optical properties of Chesapeake Bay waters obtained during our in-

situ measurements in the Bay, what are the relationships between Rrs spectra, that can be 

measured remotely, and surface chlorophyll concentrations, or absorption and 

backscattering by phytoplankton and other optically active substances in these waters? 

These issues are addressed in the following paragraphs. 

 
 
5.2 Methodology 
 
 

5.2.1 In-situ measurements of chl-a concentration 
 
 
Measurements of chl-a concentration were performed regularly during the 2001-2002 

cruises in the northern part of the Chesapeake Bay. The Chl-a pigment concentrations 

were determined spectrophotometrically, filtering whole water samples, collected from 

the four stations, through glass-fiber, Whatman GF/F filters. The water samples were 

collected from discrete depths (0, 1, 3, 5m) during the fall 2001 and spring-summer 2002 

cruises, while only integrated water samples were collected during the summer 2001 

cruises. Filters were extracted in 10 ml of 90% acetone overnight at 4oC, either 

immediately after the cruise or after freezing for less than 2 weeks. Absorbances of 

extracts were, then, measured at selected wavelengths and concentrations of the chl-a 

pigment were determined by using the Jefrey and Humphrey (1975) equation: 

[Chl-a] (in mg m-3) = [11.85·OD(664)-1.54·OD(647)-0.08·OD(630)] v· l-1 ·V-1
        (5.2-1) 

where OD is the absorbance measured spectrophotometrically, v is the volume of acetone 

(in ml), l is the length of the cuvette (in cm) and V is the volume of filtered water (in l).  
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5.2.2. MODIS chl-a algorithms, bio-optical models and empirical relationships 
 
 
The MODIS chlorophyll algorithms used in the estimations of the three available 

MODIS chlorophyll products (“chlor_MODIS”, “chlor_a_2” and “chlor_a_3”), are 

discussed in more details in the following paragraphs.  

 
 
5.2.2.1 Chlorophyll-a concentration, HPLC – Empirical MODIS algorithm  
 
 

The MODIS empirical-HPLC chlorophyll algorithm (parameter 14, “chlor_MODIS”) is 

an empirical algorithm derived for case 1 and 2 waters, which follows the CZCS analog, 

in which the sea-surface spectral radiance ratios are related empirically to in-situ data sets 

of chl-a concentration (sum of compounds: chl-a monovinyl and divinyl, chl-a allomer, 

chl-a epimer and chlorophyllide-a) measured using the HPLC method (MODIS ATBD 

18, D. Clark, 1997). 

 

The initially proposed algorithm for the chlor_MODIS product (D.Clark, 1997), was 

based on the original CZCS experimental database (case 1 waters), and was a linear  

relationship between the log of [Chl-a] and the log of MODIS 
nLw(551)
nLw(443)

, according to:       

                              BA +⋅=− )]
nLw(551)
nLw(443)

([loga][Chllog 1010                              (5.2-2) 

where A and B are least squares regression coefficients, A=-1.4, B=0.07. 

 

The revised algorithm (D. Clark, updated 19 Feb. 2002), used in the Collection 4 

MODIS data, that is used in the framework of this study, was a 3rd - order polynomial, 
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relating [Chl-a] to the sum of the MODIS nLw ratios, 
)551(
)443(

nLw
nLw

 and 
)551(
)488(

nLw
nLw

 (D. 

Clark, personal communication, 2003). The chlor_MODIS parameter was computed 

according to: 

                D)/EC(log(X))B(log(X))A(log(X))(a]-[Chllog 123
10 +++=                  (5.2-3) 

where: 
nLw(551)

nLw(488)nLw(443)
X

+
=  and A, B, C, D, E are least squares regression 

coefficients, with values: A=-2.8237, B=4.7122, C=-3.9110, D=0.8904, E=1.0 for the 

case of high total chl-a pigment, and A=-8.1067, B=12.0707, C=-6.0171, D=0.8791, 

E=1.0 for the case of low total chl-a pigment. The switch between the low and high total 

chl-a pigment cases, was done based on the value of the switching point, sp (defined as 

sp=
)551(
)443(

log10 nLw
nLw

), with sp>0.98 indicating low total chl-a pigment, and sp<0.98 

indicating high total chl-a pigment. 

 

The last revision of the algorithm (D. Clark, updated 19 March 2003), used in the 

MODIS reprocessing that started on 2 October 2003, is a 5th- order polynomial, that is 

expected to perform better in very high and very low chlorophyll environments. 

According to the last updated algorithm: 

log10[Chl-a]=[A(log(X))5+B(log(X))4+C(log(X))3+D(log(X))2+E(log(X))+F]/G     (5.2-4) 

where:   

nLw(551)
nLw(488)nLw(443)

X
+

= , and A, B, C, D, E, F and G are least squares regression 

coefficients: A=-10.399, B=27.937, C=-27.158, D=11.638, E=-3.926, F=0.789, G=1.0. 
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5.2.2.2 MODIS OC3M - SeaWiFS analog chl-a algorithm   

 

The MODIS SeaWiFS compatible (OC3M) chlorophyll-a algorithm (parameter 26, 

“chlor_a_2” product) is an empirical algorithm, proposed by the developers of the 

SeaWiFS chl-a OC4-v4 algorithm and based on the same in-situ data set (case 1 and case 

2 waters) of remote sensing reflectances, Rrs, and [Chl-a], that was used to parameterize 

the SeaWiFS OC4-v4 algorithm (O’Reilly J. et al, 2000). In this sense, the OC3M 

algorithm (“3” for the bands used, and “M” for MODIS) is a “SeaWiFS compatible” 

algorithm and has been used in many cases to compare estimations of [Chl-a] derived by 

SeaWiFS to [Chl-a] values derived by MODIS.  

 

The OC3M is an empirical algorithm that uses the 
)551(
)443(

Rrs
Rrs

 and 
)551(
)488(

Rrs
Rrs

 ratios  

(whichever is greater), and is expressed by the formula:  

         [Chl-a]=10.0
432 3403.13659.03457.13753.22830.0 MRMRMRMR −+⋅+⋅−     (5.2-5) 

where R3M = log10 (max [
)551(
)443(

Rrs
Rrs

, 
)551(
)488(

Rrs
Rrs

] ) 

The 443:551 Rrs ratio is greater in low-chlorophyll (blue) waters, but as the chl-a 

concentration increases, absorption at 443 nm (Soret band) becomes larger, reflectance in 

the 443 band becomes lower, and the 488:551 Rrs ratio becomes larger. According to the 

MODIS “chlor_a_2” Data Quality Summary (July 2001), use of this algorithm in case 2 

waters is likely to produce an overestimate of the chlorophyll concentration (since the 

algorithm does not account for absorption by other substances, such as CDOM and 

detritus, at the blue wavelengths). 
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5.2.2.3 MODIS Semianalytic chl-a algorithm, Case 2 waters 

 

The case 2 MODIS semianalytic chlorophyll-a algorithm (parameter 27, “chlor_a_3”) 

is based on a semi-analytical, bio-optical model that relates the remote sensing 

reflectance measured by the satellite, to the water inherent optical properties absorption 

and backscattering.  

 

The algorithm uses an “analytic” approach in the sense that the relationship between 

water reflectance and water IOPs is based on radiative transfer theory and the 

approximation Rrs(λ)=const·(bb(λ)/a(λ)). Using spectral ratios of remote sensing 

reflectances, the “const” term is eliminated . The spectral reflectance model is inverted to 

solve for chlorophyll-a concentration in the presence of other optically active substances 

(like CDOM and non-pigmented particulate matter) that do not covary with chlorophyll. 

Therefore, the algorithm is suitable for use in complex, case 2 waters. However, the    

bio-optical pieces of the radiative model, such as spectral shape of absorption by 

dissolved and particulate matter, or backscattering wavelength dependence, are expressed 

by empirical relationships and parameterizations (such as those discussed in Chapter 2 for 

the specific case of Chesapeake Bay waters) that should be determined on time and site 

specific basis. In this sense, the algorithm is “semi-analytic”.  

 

In the semianalytical MODIS chl-algorithm, chl-a concentration is determined via a 

direct relationship to the algorithm-estimated phytoplankton absorption at 675nm, 

aphyt(675), according to: [Chl-a] = P0 [aphyt(675) ] P1, where Po and P1 are empirical 
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coefficients (Carder et al, 2002). According to Carder et al (2002), this step of relating 

[Chl-a] to aphyt(675), requires knowledge of the chlorophyll-a specific phytoplankton 

absorption coefficients. The chlorophyll specific phytoplankton absorption coefficients, 

a*
phyt(λ),  can vary widely depending on phytoplankton species, light and nutrient history, 

pigment composition, cell size and pigment packaging. According to Carder et al (2002) 

a*
phyt(440) can vary by more than a factor of 10 between nutrient poor, photon rich 

subtropical gyres (increased photoprotective pigments, low packaging) and nutrient rich, 

photon poor upwelling or high latitude waters (less photoprotective pigments, high 

packaging). In the MODIS “chlor_a_3” algorithm, parameters Po and P1 are adjusted 

dynamically in order to account for pigment packaging effects in nutrient-replete and 

nutrient-deplete conditions. The algorithm has been parameterized for three different bio-

optical domains: (1) high ratios of photoprotective pigments to chlorophyll and low self-

shading, designated as ‘unpackaged’ (2) low ratios and high self-shading, designated as  

‘packaged’ and (3) a transitional or global-average type. According to Kamykowski 

(1987) and Carder et al. (2002), these domains can be identified from space by comparing 

sea-surface temperature (SST), a derived MODIS product, to nitrogen-depletion 

temperatures (NDT) for each domain. According to Carder et al (2002) within a given 

bio-optical domain, there is only a very weak change in a*
phyt(675) with [Chl-a]. 

 

The accuracy of the chl-a concentration estimated using the “semi-analytic” MODIS 

algorithm depends on the accuracy of the remote sensing reflectance measured at 551 nm, 

Rrs(551), and the reflectance ratios 
)443(
)412(

Rrs
Rrs

 and 
)551(
)443(

Rrs
Rrs

. However, for waters with 

high chlorophyll and CDOM concentrations (such as those in Chesapeake Bay), the 
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remote sensing reflectances in the blue wavelengths (412, 443 nm) can be very small 

(due to large absorption by CDOM and chlorophyll) (chapter 4), which could prevent the 

algorithm from performing properly (Carder et al, 2002). For this reason, the 

semianalytic algorithm is designed to return values only when modeled aphyt(675) is less 

than 0.03 m-1
 , or chlorophyll concentration is less than 1.5-2.0 mg m-3. During our 

cruises in the Chesapeake Bay waters, measured chlorophyll concentrations were always 

larger than 2 mg m-3. Therefore, the performance of the semianalytic algorithm could not 

be tested using these measurements of [Chl-a]. More information on the algorithm is 

given in the MODIS ATBD 19 (Carder et al, 2002). 

 

When the semi-analytical algorithm does not return a value for aphyt(675), an empirical, 

two-wavelength algorithm for [Chl-a] is used by default (Aiken et al., 1995) which is 

based on the Lw(488)/Lw(551) ratio: 

         3
103

2
10210110 )]([log)]([log)(log]a[log XcXcXccChl oemp +++=−                (5.2-6) 

where 
)551(
)488(

Rrs
Rrs

X = . The coefficients c0, c1, c2, c3 were derived applying a cubic 

regression of log10[Chl-a] vs log10(X) measurements, performed in both open ocean and 

riverine influenced waters. As in the case of Po and P1 parameters used in the relationship 

between [Chl-a] and aphyt(675) in the semianalytical version of the algorithm, coefficients 

c0, c1, c2, c3 in the empirical version of the algorithm are also adjusted dynamically in 

order to account for pigment packaging effects in nutrient-replete and nutrient-deplete 

conditions (table 5.2-2).  
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In order to have a smooth transition in [Chl-a] values when the algorithm switches from 

the semi-analytical to the empirical method, a weighted average of the [Chl-a] values is 

used when near the transition border (0.015 < aphyt(675) < 0.03) :  

[Chl-a] = w [Chl-a]sa + (1-w) [Chl-a]emp    (5.2-7) 

The weighting factor, w, is defined as w = [0.03-aphyt(675)]/0.015. A weighted algorithm 

is also used to transition between a “highly packaged” and a “low packaged” region, 

according to: 

                                    [Chl-a] = w [Chl-a]UP + (1-w) [Chl-a] FP   (5.2-8) 

where [Chl-a]UP is the unpackaged value, [Chl-a]FP is the fully packaged value and the 

weighting factor is w=[1.0 + (SST-NDT)]/5.0 .  

 

When the semi-analytical algorithm does not return a value for aphyt(675), the values for 

aphyt(675) and ag(400) (“ag” is absorption for “gelbstoff”, combined CDOM and non-

pigmented particulate matter) are estimated through empirical, multi-wavelength 

algorithms based on a phyt (440) and ag(440) (Lee et al., 1998). Using these results, the 

empirical, default algorithms for high aphyt(675) values are determined by adjusting Lee’s 

results to 675 nm for phytoplankton and to 400 nm for gelbstoff,  

]008.010[328.0)675(a 35702.135531.325407.025037.1919.0 22

−⋅= +−−+− ρρρρ
empphyt   (5.2-9) 

        ]10[5.1)400(a 25702.125856.01501.115963.1147.1 22 ρρρρ ++−+−⋅=empg               (5.2-10) 

where ρij are log of the ratio of the remote sensing reflectance of MODIS channel i to 

channel j. A weighted absorption algorithm is used for each of these components to 

transition from the semi-analytical expression to the default expression.  
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Table 5.2-1: MODIS chlorophyll algorithms. Significant points. 

 
- The quality and accuracy of the MODIS chl-a concentration products depend on the 

quality of the MODIS remote sensing reflectances used as input information to the chl-
algorithms. 

 
- The MODIS algorithms used in the estimation of chlorophyll concentration larger than 

~2 mg/m3, are based on empirical relationships between [Chl-a] and Rrs or nLw ratios 
at the blue-green wavelengths:  
 

i) use of 
nLw(551)

nLw(488)nLw(443) +
, for “chlor_MODIS” 

ii) use of 
RRS(551)
RRS(443)

or 
RRS(551)
RRS(488)

 (whichever is greater), , for “chlor_a_2” 

iii) use of  
RRS(551)
RRS(488)

, for “chlor_a_3” 

  A summary of the three MODIS algorithms used in the estimation of [Chl-a] for   
 cases with [Chl-a] larger than 2 mg m-3

 is given in Table 5.2-2. 
 

 
 
 

Table 5.2-2: Summary of MODIS empirical chl-a algorithms 

MODIS empirical chl-a algorithms Parameters 

Product: “chlor_MODIS”: 
 
log10[Chl-a]=[A(log10(X))3+ B(log10(X))2+C(log10(X))1+D]/E 

nLw(551)
nLw(488)nLw(443)

X
+

=  

 
 
 
 
 
 

Product: “chlor_a_2”: 
 
log10[Chl-a] = A+ B·R3M + C·R3M

2 + D·R3M
3 +E·R3M

4 

R3M=log10(max[
)551(
)443(

Rrs
Rrs ,

)551(
)488(

Rrs
Rrs ] )  

A=0.283 
B=-2.753 
C=1.457 
D=0.659 
E=-1.403 

Product: “chlor_a_3”: 
 

3
103

2
102101o10 (X))(logc(X))(logc(X)logcca]-[Chllog +++=  

X=
)551(
)488(

Rrs
Rrs  

 
 
 
  
 

 
 

Unpackaged        
co = 0.2818           
c1= -2.783            
c2= 1.863           
c3= -2.387            

Fully Packaged       
co = 0.51            
c1= -2.34            
c2= 0.4            
c3= 0.0             

High Chl-a pigm        
A=-2.8237 
B=4.7122 
C=-3.9110 
D=0.8904 
E=1.0 

Low Chl-a pigm.        
A=-8.1067 
B=12.0707 
C=-6.0171 
D=0.8791 
E=1.0 
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5.3 Results 
 
 
5.3.1 In-situ measurements of chlorophyll concentration in the Chesapeake Bay waters 
  
 

Large temporal variability in chl-a concentration was observed during our 

measurements at the four stations in the northern part of the Chesapeake Bay, with    

[Chl-a] values ranging from 3.5 mg/m3 (PI station, 13 November 2001) to 74 mg/m3 (HB 

station, 11 June 2001). A frequency histogram of the surface [Chl-a] values (estimated as 

average concentrations from measurements performed within the first meter below the 

water surface) is shown in figure 5.3-1. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.3-1: Frequency histogram of the surface [Chl-a] log-transformed values 
measured at the four stations, in the northern part of the Chesapeake Bay. 
 
 

The temporal and spatial variation of chl-a concentration measured at the sites PI, HB, 

TI and JT during the 17 cruises in the northern part of the bay, are shown in figure 5.3-2 

(measurements performed at the four different stations are shown as different symbols). 

Relatively clear waters, with low biological activity and low [Chl-a] values at all four 

stations were observed during the 2002 early spring season and the late 2001 and 2002 

fall seasons. High biological activity, associated with high light and nutrient availability, 
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occurred during the early summer months of both 2001 and 2002 years. Patchy 

phytoplankton bloom events with large chl-a concentration values, [Chl-a] > 20 mg/m3
, 

were observed in the Chesapeake Bay waters during those months, resulting in high 

spatial and temporal variability in the water’s optical properties. A large phytoplankton 

bloom was observed during the cruise on 11 June 2001, with [Chl-a] values of 60 mg/m3
 

at JT station and 74 mg/m3
 at HB station. Figure 5.3-3(a) shows the phytoplankton 

absorption spectra (300-750 nm) measured spectrophotometrically on water samples 

collected from HB, PI, TI and JT stations during that day (the methodology for the 

spectrophotometric measurements of phytoplankton absorption is described in section 

2.2.2.2, chapter 2). The phytoplankton absorption spectra measured at the same stations 

on 28 September 2001, when waters in the Bay were relatively clear and [Chl-a] was 

much lower (ranging from 7.5 mg/m3 at PI station to 14.5 mg/m3 at HB station), are 

shown in figure 5.3-3(b) for comparison. The absorption spectra measured on 11 June 

2001 were characterized by high absorption values in the UV range (~ 325 nm), probably 

caused by the presence of mycosporine-like amino acids (MAAs).  

 

 
 
 
 
 
 
 
 
 
 

 

Figure 5.3-2: Temporal variation of [Chl-a] measured within the first meter below the 
water surface. Measurements are from cruises performed during 2001and 2002 at HB, JT, 
PI and TI stations. 
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(a)          (b) 
Figure 5.3-3: (a) Phytoplankton absorption spectra (300-750nm), measured at HB, PI, TI 
and JT stations, during the phytoplankton bloom observed on 11 June 2001. High 
absorption in the UV range (~ 325 nm) was probably caused by the presence of MAAs. 
(b) Phytoplankton absorption spectra measured at HB, PI, TI and JT stations, during 28 
September 2001, when waters in the Bay were relatively clear. (Particulate absorption 
values were calculated using β=1.5) 
 
 
 

The [Chl-a] profiles for the cruises 28 September 2001 - 8 November 2002 are shown 

in figure 5.3-4. During those days [Chl-a] measurements were performed on water 

samples collected from discrete depths at 0, 1, 3, 5 m. As discussed in chapter 2, during 

the cruises performed in the fall and early spring seasons the water was fairly well mixed 

and [Chl-a] profiles were almost constant with depth (discussion in chapter 2). Vertical 

thermal and density stratification, observed during some of the summer cruises, resulted 

in some variation of [Chl-a] with depth (e.g. cruises on 22 May 2002, 18 June 2002). The 

vertical distribution of [Chl-a] could not be studied for the 2001 summer cruises, since 

only integrated water samples were available for those cruises. However, vertical profiles 

of at-w(676) measured on 11 and 25 June 2001 at HB station showed much higher values 

within the first 2 meters below the water’s surface (fig. 2.3-4(b)), suggesting that the 
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phytoplankton blooms observed at HB during those days were close to the water’s 

surface.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.3-4: Vertical profiles of chl-a concentration measured at Chesapeake Bay during 
the cruises 28 September 2001(a) - 8 November 2002(j)
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Since satellite measurements are restricted to the upper layers of the water, surface   

chl-a concentration values were estimated from the in-situ measurements performed in 

the Bay. The comparison between the surface [Chl-a] values estimated i) as the average 

within the first meter (measurements performed at 0-m and 1m depths) and ii) as the 

average within the first three meters below the water surface (measurements performed at 

0-m, 1m and 3m depths), is shown in figure 5.3-5, along with the 1:1 line for comparison.  

The values fall close to the 1:1 line, since in most of the cases (especially during the fall 

cruises)  chl-a concentration did not show very large variation with depth. An exception 

to this, with [Chl-a]avg(0-1m) larger than [Chl-a]avg(0-3m),  is measurements performed at HB 

and JT station on 28 June 2002, but these [Chl-a] values were not used for comparisons 

to satellite measurements since MODIS measurements were not available for 28 June 

2002. MODIS measurements were not available, either, on 25 June 2001 (surface 

phytoplankton bloom event observed at HB station). Therefore, in most of the cases, 

estimations of surface [Chl-a] as the average within the first meter below the water 

surface were not largely different than surface [Chl-a] values estimated as the average 

within the first three meters below the water surface. 
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Figure 5.3-5: Comparison between surface [Chl-a] values estimated as the average  
i) within the first meter and ii) within the first three meters below the water surface. The 
comparison is close to 1:1 line for almost all of the cases. 
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The relation between chl-a concentration and phytoplankton absorption at 676 nm, 

aphyt(676), for measurements performed on water samples collected from the four stations 

during the cruises (depths 0, 1, 3, 5m) is shown in figure 5.3-6. The phytoplankton 

absorption values were corrected for optical pathlength amplification using β=1.5. 

Measurements of [Chl-a] and absorption performed during the large phytoplankton 

bloom on 11 June 2001 are shown as white circles in figure 5.3-6.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
                                                  [Chl-a] (mg/m3) (in log scale) 
                                                            
Figure 5.3-6: Relation between [Chl-a] and phytoplankton absorption at 676 nm, 
aphyt(676), measured using the CARY spectrophotometer (methodology in paragraph 
2.2.2.2, chapter 2). Measurements performed on 11 June 2001 (large phytoplankton 
bloom) are shown as white squares. 
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5.3.2 Comparisons between in-situ and MODIS chlorophyll concentration measurements 
  
 
The three MODIS products of chlorophyll concentration were studied for the northern 

region of the Chesapeake Bay and for the dates of the cruises performed during 2001-

2002 in the Bay. The satellite observations were compared to the in-situ surface [Chl-a] 

measurements in order to study the performance of the satellite algorithms in these 

optically complex, case-2 waters (fig. 5.3-7). Since in-situ [Chl-a] measurements were 

always larger than 2 mg/m3 during the measurements in the Chesapeake Bay, the in-situ 

measurements were compared to the MODIS [Chl-a] products estimated based on the 

empirical MODIS algorithms described in the Methodology section (table 5.2-2). The in-

situ [Chl-a] measurements were compared to the MODIS [Chl-a] values measured at the 

‘best’ MODIS pixels, since the ‘best’ pixel was selected as the pixel for which the 

satellite nLw values showed the best agreement with the in-situ nLw measurements at 

488, 551 and 667 nm. 

 

When a MODIS chlorophyll algorithm fails, the MODIS [Chl-a] values are flagged as 

negative values. One reason for the algorithm’s failure is input of incorrect (or flagged) 

nLw values at the specific wavelengths used in each chl-algorithm. All MODIS [Chl-a] 

values were flagged, as expected based on the description of the algorithms, for these 

pixels characterized by negative nLw (or Rrs) values at 443 or 488 nm. These cases 

(almost 38% of the total) are shown as red pixels in figures 5.3-7 (a), (c), (e).  

 

As was discussed in chapter 4, some of the cruise days were characterized by high 

aerosol optical thickness in the atmosphere (e.g. 11 June 2001, 21 September 2001, 6 
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June 2002). During those days, a large disagreement between in-situ and MODIS nLw 

(or Rrs) measurements was observed, especially at the short wavelengths, probably due to 

errors in the satellite atmospheric correction under conditions of high aerosol optical 

thickness. The [Chl-a] values estimated by MODIS during those days were also in large 

disagreement with the in-situ measured chlorophyll concentrations (31% of the cases, 

shown as white pixels in figure 5.3-7). Percent differences between in-situ [Chl-a] and 

MODIS chlorophyll products, estimated as 100·([Chl-a]InSitu-[Chl-a]MODIS)/[Chl-a]InSitu , 

were between 50 and 95%.  

 

The comparison between MODIS and in-situ [Chl-a] values, for cases with almost clear 

atmospheric conditions and no negative MODIS nLw values at 443 or 488 nm (almost 

31% of the cases studied), is also shown in figure 5.3-7 (blue pixels, also shown at log-

log scale at figures 5.3-7 (b), (d), (f)). A lot of scattering around the 1:1 line was observed 

in the comparisons between the in-situ [Chl-a] values and the “chlor_MODIS” product. 

Less scattering around the 1:1 line was observed for the “chlor_a_2” SeaWiFS analog, 

and especially the “chlor_a_3” product. Percent differences between in-situ [Chl-a] and 

MODIS ‘chlor_a_3’ were between -20% and 2%, for [Chl-a]<10mg m-3. However, large 

disagreement was observed at larger chlorophyll concentrations (percent differences        

-500% to 30%, for [Chl-a]>10mg m-3). 
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Figure 5.3-7: Comparison between in-situ [Chl-a] measurements and the MODIS [Chl-a] 
products (a) “chlor_a_2” (c) “chlor_a_3” (e) “chlor_MODIS”. MODIS measurements 
were obtained for the “best” pixel around the location of each site. MODIS [Chl-a] were 
flagged (-1) for those cases when the chl-algorithms failed (e.g due to negative or flagged 
nLw(443), nLw(488) values) (red circles). The satellite [Chl-a] values were 
underestimated for pixels with overestimated nLw(443), nLw(488) (white squares) (days 
with high AOT). The rest of the pixels are shown as blue pixels (also in log-log scale at 
figures (b), (d), (f)).  
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To examine the performance of the satellite chl-algorithms in the Bay waters, the three 

MODIS chl-algorithms (“chlor_MODIS” 3rd and 5th order polynomials, SeaWiFS analog 

“chlor_a_2”, and empirical version of “chlor_a_3” for fully packaged and unpackaged 

pigments) were used to estimate [Chl-a] using as input the Rrs spectra measured in-situ in 

the Chesapeake Bay waters or estimated by Hydrolight (based on detailed measurements 

of boundary conditions and water optical properties). Equations 5.2-3 – 5.2-6 (also shown 

in table 5.2-2) were used to estimate [Chl-a] from the in-situ measured Rrs or nLw ratios. 

The results were compared to the in-situ measurements of surface [Chl-a] (figure 5.3-8). 
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Figure 5.3-8: Comparisons between in-situ log10(Chl-a) and chlorophyll concentrations 
estimated using the MODIS empirical algorithms and measurements of Rrs (or nLw) as 
input information (in logarithmic values). The MODIS chl-algorithms used were:          
(a) “chlor_a_2” (eq. 5.2-5), (b)-(c) “chlor_a_3” (eq. 5.2-6) for the “unpackaged” and the 
“fully packaged” cases, (d)-(e) “chlor_MODIS” (eq. 5.2-3, 3rd order polynomial for the 
case of high Chl-a pigment and eq.5.2-4, 5th order polynomial). 
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5.3.3 Relationships between chlorophyll concentration and Remote Sensing Reflectance  

in the Bay waters 

 

Since most satellite [Chl-a] algorithms for case 1 and case 2 waters are based on 

empirical relationships between [Chl-a] and ratios of remote sensing reflectance 

measured at certain wavelength bands, the relationships between Rrs at various 

wavelengths and [Chl-a] were examined for the Chesapeake Bay waters, using in-situ 

measurements performed during the 2001-2002 cruises in the Bay. Laboratory 

measurements of surface chl-a concentration were compared to in-situ measurements of 

Rrs for those cruises when accurate MicroPro measurements were available, and to 

model-estimated (using Hydrolight code) Rrs values for those cruises when MicroPro 

measurements were not performed but detailed information on the boundary conditions 

and the inherent optical properties of the water was available.  

 

The relationship between [Chl-a] and Rrs(λi)/ Rrs(λj) (in log-log scaling) for λj =554 

nm and λi = 412, 443, 488, 531, 670 and 677 nm, is shown in figure 5.3-9. Significant 

relationships were found between log10[Chl-a] and log10(Rrs(λi)/ Rrs(554)) values for  

λi =  443, 488, 670 and 677 nm (P-value in linear regression was small, P<0.05). 

However, as is shown in figure 5.3-9, small R2 values (coefficient of determination) were 

found in the linear regression log10[Chl-a] vs log10(Rrs(λi)/ Rrs(554)), for 443 and 488 

nm. Stronger relationship (with R2 = 0.54) was observed between log10[Chl-a] and 

log10(Rrs(677)/ Rrs(554)). 
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Figure 5.3-9: Relationship between laboratory measurements of [Chl-a] and in-situ 
measured or Hydrolight estimated Rrs(λi)/ Rrs(554) for λi = 412, 443, 488, 510, 532, 670 
and 677 nm 
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A polynomial fit was applied to the log10[Chl-a] vs log10(Rrs(488)/ Rrs(554)) 

measurements (fig.5.3.10), similarly to the polynomial equations used to estimate [Chl-a] 

in the MODIS empirical algorithms “chlor_a_2” and “chlor_a_3” (table 5.2-2). The 

coefficient of determination was not significantly improved, compared to the results of 

the linear regression (in fig. 5.3-9). The 3rd order polynomial used in the “chlor_a_3” 

MODIS algorithm to estimate [Chl-a] from the MODIS Rrs(488)/ Rrs(554) values, is also 

shown in figure 5.3-9 (red line) for comparison. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.3-10: Cubic regression on the log transformed laboratory measurements of  
[Chl-a] and in-situ measurements of Rrs(488)/ Rrs(554). A 3-rd order polynomial 
between log10[Chl-a] and log10(Rrs(488)/ Rrs(554)) is used in the MODIS empirical 
algorithms “chlor_a_2” and “chlor_a_3” (table 5.2-2). The 3rd order polynomial used in 
the “chlor_a_3” MODIS algorithm to estimate [Chl-a] from the MODIS                      
Rrs(488)/Rrs(554) values, is also shown (red line) for comparison.  
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5.3.4 Relationships between Remote Sensing Reflectance, total absorption and 

backscattering 

 
 

As mentioned in the introduction, the remote sensing reflectance, Rrs, measured by a 

satellite sensor, is related to the processes of backscattering, bb, and absorption, a, within 

the water. According to Lee (1994) the remote sensing reflectance, Rrs(λ) can be related 

to bb(λ) and a(λ) according to: 
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 is expected to be 

within the range of 0.043 – 0.08 (Morel and Mueller, 2002).  

 

The relation between the Rrs(λ) values and the ratio 
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, were examined for the case 2 Chesapeake Bay waters, 

using in-situ measurements of Rrs(λ), and surface measurements of total in-water bb(λ) 

and a(λ), performed at PI, HB, TI and JT stations. The ratio bb/(a+bb) was estimated 

using the ECO-VSF measurements of total backscattering (see also methodology section 

in chapter 2) and the AC9 measurements of total-minus-water absorption (corrected for 

scattering errors assuming non-zero absorption at 715nm). The total absorption was 

estimated adding the Pope and Fry (1997) coefficients to the AC9 values. Therefore, 
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is shown in figures 5.3-11, for the three wavelengths 440, 530 and 

670 nm (yellow pixels). In the same figure, the relationship between measured 
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and model-estimated Rrs(λ) values is also shown (blue pixels) since for some 

of the cruises in-situ MicroPro measurements of Rrs were not available. According to the 

results the measured Rrs values are highly correlated to the ratio 
)()(a
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λλ

λ

b

b

b
b

+
 at all three 

wavelengths. Moreover, the least-square regression fits for Rrs measured versus bb/(a+bb) 

were very similar to the least-square regression fits for Rrs model versus bb/(a+bb).  
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Figure 5.3-11: Relation between measured Rrs(λ) values and measured 
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(yellow pixels) and between model-estimated Rrs(λ) values and measured 
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λ

b

b

b
b

+
 

(blue pixels) at (a) 440 nm, (b)  530 nm and (c) 670 nm. The linear least-squares 
regression fits are also shown, for each case. 
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5.3.5 Relationships between Remote Sensing Reflectance, total backscattering and 

absorption by non-pigmented particulate matter 

 
 

The relationship between Rrs(λ) and bb(λ) was also examined, to study if the measured 

remote sensing reflectances can be directly related to total backscattering in the highly 

turbid Chesapeake Bay waters. Figure 5.3-12 shows the relation between measured bb(λ) 

and measured (yellow pixels), as well as model-estimated (blue pixels) Rrs(λ)  at the 

wavelengths 443 nm (bb measured at 450 nm), 532 nm (bb measured at 530 nm) and 670 

nm (bb measured at 650 nm). Linear least-squares regression fits were performed for all 

measurements and the results are shown in figures 5.3-12 (a)-(c). A strong relationship 

(R2=0.88) was found between the total backscattering at 650 nm and the remote sensing 

reflectance measured at 670 nm.  

 

The relationship between bb(650) and satellite measurements of Rrs(670) was also 

examined, and the results are shown in figure 5.3-13(b). An increase of the MODIS 

Rrs(670) values was observed for increase at the surface bb(650). The coefficient of 

determination was R2=0.5 (only 15 points were used in this case, since in some of the 

cases MODIS Rrs(670) values were negative or bb(650) measurements were not 

available). Comparisons between MODIS and in-situ measurements of Rrs (chapter 4) 

showed that the correlation coefficient between satellite and in-situ Rrs(670) 

measurements was relatively large ( with R2 ≅ 0.7), with MODIS systematically 

underestimating Rrs(670) compared to the in-situ observations (fig. 5.3-13(a)). 
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Figure 5.3-12: Relation between measured bb and measured (yellow pixels), as well as 
model-estimated (blue pixels) Rrs at the wavelengths (a) 443 nm (bb measured at 450 
nm), (b) 532 nm (bb measured at 530 nm) and (c) 670 nm (bb measured at 650 nm).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.3-13: (a) Relation between in-situ and MODIS Rrs(670). For almost all of the 
cases MODIS underestimated Rrs(670) compared to the in-situ and modeled estimated 
Rrs(670) values. (b) Relation between measured bb(650) and MODIS Rrs at 670 nm. 
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Since the backscattering bb(650) was found to be strongly related to the remote sensing 

reflectance at 670 nm (a quantity that can be measured remotely from instruments 

onboard an aircraft or a satellite), it was of interest to examine the relationship between 

bb(650) and chl-a concentration, as well as the relationship between surface total bb and 

absorption by non-pigmented particulate matter, for the measurements performed in the 

Chesapeake Bay. The relationship between surface total bb and surface [Chl-a] (figure 

5.3-14) showed a lot of scattering, especially at large [Chl-a] values. However, the 

surface total bb was found to be strongly related to surface values of absorption by non-

pigmented particulate matter. Figures 5.3-15, 5.3-16 show the relation between measured 

surface bb at 530 and 650 nm, and surface measurements of anpp at 412 and 380 nm. The 

square correlation coefficients, R2, improved when two of the measurements (out of 45 

total) were excluded in the estimation of the linear least-squares regression fits (figures 

5.3-16 (c), (d)).  

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3-14: Relation between surface [Chl-a] and surface bb(650) measurements in the 
Chesapeake Bay waters. 
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Figure 5.3-15: Relation between measured surface bb at 530 nm and surface 
measurements of absorption by non-pigmented material at (a) 412 nm and (b) 380 nm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.3-16: Relation between surface measurements of  bb at 650 nm and surface 
measurements of absorption by non-pigmented material at (a) 412 nm and (b) 380 nm. 
(c), (d): same as (a), (b) but two cases where not included in the linear least-squares fits.  
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The above relationships between bb(650) and anpp(412), anpp(380), could be used to 

relate anpp(λ) to the remote sensing reflectance at 670 nm, since strong correlation was 

found between Rrs(670) and surface bb(650) (R2=0.88). The relationships between in-situ 

Rrs(670), anpp(412) and anpp(380), for the measurements performed in the Bay, are shown 

in figures 5.3-17(a), (b).  

 
 

 
  
 

 
 
 
 
 
 
 
 
 
 
 
(a)      (b) 
 
Figure 5.3-17: Relation between measured or model-estimated (based on measured IOPs) 
Rrs values at 670 nm and surface measurements of absorption by non-pigmented material 
at (a) 412 nm and (b) 380 nm 
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5.4 Discussion and Conclusions 
 
 

5.4.1 In-situ Measurements of [Chl-a] in the Chesapeake Bay waters 
 
 
The distribution of phytoplankton in coastal and estuarine waters, such as those of 

Chesapeake Bay, is characterized by high spatial and temporal variation. According to 

studies in the Chesapeake Bay (e.g. D’Elia et al., 1983, 1986; Harding et al., 1985,1986; 

Malone et al., 1986, 1988, 1991, 1996; Marshall & Lacouture, 1986; Sellner & Kachur, 

1987; Conley & Malone, 1992; Malone 1992; Harding et al., 1992, 1994, 1999; Harding, 

1994; Glibert et al., 1995;Harding & Perry, 1997), the annual cycle of phytoplankton in 

the Bay typically includes a peak in the spring (April to mid May) that is dominated by 

diatom phytoplankton populations. The characteristics of the spring chlorophyll 

maximum (timing, position, magnitude of the peak) are highly variable and depend 

mainly on the amount of river flow, nutrient and light conditions in these waters. By late 

spring, concentrations of chlorophyll generally decline, due to grazing and nutrient 

limitation. A switch to summer flora rapidly ensues and flagellated forms replace the 

diatoms of the spring. Large concentrations of dinoflagellates (50-100 mg m-3) may occur 

during the early summer months. The high concentrations observed during these blooms 

can be very patchy and are often more prevalent on the western side of the Bay and in the 

mouths of certain tributaries. By the late summer and fall months, chlorophyll 

concentrations usually show a significant decrease, throughout the Bay (Harding, 1994). 

 

Large seasonal variation was observed in chlorophyll concentrations measured in the 

northern Chesapeake Bay region during our 2001-2002 cruises (fig. 5.3-2). [Chl-a] values 
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ranged between 3.5 mg/m3 (PI station, 13 November 2001) and 74 mg/m3 (HB station, 11 

June 2001). The frequency distribution of chlorophyll concentrations measured in-situ 

was shown to be lognormal (fig 5.3-1). Relatively clear waters, with low biological 

activity and low [Chl-a] values were observed at all four stations during the 2001 fall 

months and the 2002 spring (early May) cruises. Low rainfall amounts and low nutrient 

loadings, especially during the late fall months, may have contributed to the low chl-a 

concentrations measured. Fairly well mixed waters were observed during most of the 

cruises in the fall season, and [Chl-a] profiles were almost constant with depth (figure 

5.3-4). Temperature and salinity profiles, as well as profiles of total absorption and 

attenuation in the water, also showed little variation with depth during these cruises 

(discussion in chapter 2). Estimations of average surface [Chl-a] within the first meter 

below the water’s surface were not very different compared to surface [Chl-a] values 

estimated as the average within the first three meters. 

 

Larger vertical stratification (as shown by vertical profiles of temperature and salinity) 

and higher nutrient and light availability during the late spring and summer months, 

resulted in more intense biological activity and favorable conditions for phytoplankton 

growth. Surface phytoplankton bloom events were observed during some of our spring 

and summer cruises in the Bay. Chl-a concentrations reached 60 mg/m3 at JT station and 

74 mg/m3
 at HB station, during the cruise on 11 June 2001. Chlorophyll concentrations 

higher than 20 mg m-3 were also observed at HB and JT stations during the following 

cruise on 25 June 2001. The phytoplankton absorption spectra measured on water 

samples collected during those cruises (fig. 5.3-3) showed high absorption in the UV 
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wavelengths (~325 nm) that could be attributed to the presence of MAAs, which provide 

a photoprotective mechanism against UV exposure in marine organisms. Large [Chl-a] 

values, [Chl-a] > 25 mg/m3, associated with surface phytoplankton bloom events, were 

again observed during the summer cruises in 2002 (18 and 28 June 2002). Studies on the 

characterization of phytoplankton species were not performed in the framework of this 

project, so there is not sufficient information to identify the specific species of 

phytoplankton during the observed bloom events in the Chesapeake Bay.  The stronger 

vertical stratification observed during some of the cruises in summer, resulted in some 

variation of [Chl-a] with depth (e.g. cruises on 22 May 2002, 18 and 28 June 2002). One 

of the limitations of satellite observations (especially in optically thick, coastal regions) is 

that they are restricted to the upper layers of the water and cannot provide information on 

vertical distributions of [Chl-a], such as those measured in-situ during some of the 

summer cruises in the Bay. 

 

Chlorophyll-a concentrations measured in the Bay during our cruises, were always 

larger than 3.5 mg m-3. These [Chl-a] values were too large for validation of the 

semianalytical MODIS chlorophyll algorithm (Carder et al, 2002). This algorithm is 

considered to be the most suitable for use in case 2 waters, since it allows for estimation 

of phytoplankton absorption and chlorophyll concentration in the presence of other 

optically active substances in the water that may or may not covary with [Chl-a]. 

However, according to Carder et al (2002), for waters with high concentration of detritus, 

CDOM and chlorophyll, remote sensing reflectance values at 412 and 443 nm are small 

and the semianlytic algorithm cannot perform properly. As a result, the algorithm is 
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designed to return values only when modeled aphyt(675) is less than 0.03 m-1, which is 

equivalent to [Chl-a] of about 1.5-2 mg m-3. Therefore, the chlorophyll values measured 

in the Chesapeake Bay waters were used to study the performance of the empirical 

MODIS chlorophyll algorithms that directly relate Rrs values to chlorophyll 

concentrations, based on empirical relationships.    

 
 

5.4.2 MODIS measurements of [Chl-a] and quality of MODIS nLw, Rrs values 
 
 
As mentioned in the MODIS Data Quality Summary for the SeaWiFS compatible  

“chlor_a_2” chlorophyll product (Data Quality Summary, MOD21, Parameter 26, July 

2001), the quality of all MODIS chlorophyll concentration products depends: i) on the 

quality of the input variables (MODIS measurements of nLw or Rrs) and ii) on the 

accuracy of the bio-optical algorithms used. The dependence of the MODIS [Chl-a] 

products on the quality of the MODIS nLw (or Rrs) values was shown in figure 5.3-7, 

where in-situ [Chl-a] measurements were compared to MODIS [Chl-a] estimations.  

 

For all those cases with nLw(443) or nLw(488) flagged as negative values (almost 38% 

of the total 39 comparisons), no [Chl-a] values were estimated by MODIS. As was 

mentioned in chapter 4, the percentage of pixels with negative nLw values at 443 and  

488 nm was 66% and 35% respectively, when all the 25 pixels around the location of 

each station were studied.  

 

There were several cases, among those studied (almost 31 %), when large disagreement 

was observed between satellite and in-situ [Chl-a] values, with all three MODIS 
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algorithms significantly underestimating [Chl-a] (white squares in figure 5.3-7). As 

mentioned in the ‘Results’, percent differences between in-situ [Chl-a] and MODIS 

chlorophyll products, estimated as 100·([Chl-a]InSitu-[Chl-a]MODIS)/[Chl-a]InSitu , were 

between 50 and 95%. Most of those days (e.g 11 June 2001, 21 September 2001, 6 June 

2002) were characterized by high aerosol optical thickness in the atmosphere (table 4.3-1, 

chapter 4). Comparison between MODIS and in-situ nLw measurements for those days 

(e.g figures 4.3-2, 4.3-4, 4.3-11, 4.3-12), showed large disagreement, especially at the 

short wavelengths, probably due to failure of the satellite atmospheric correction 

algorithm under conditions of high aerosol optical thickness. The Rrs values measured by 

MODIS at the short 412, 443 nm wavelength bands were much larger compared to in-situ 

Rrs measurements or model estimations. The large satellite Rrs values measured at the 

blue wavelengths during those days were not consistent with the high absorption 

measured at the blue wavelengths, especially during the summer cruises in the Bay.  

 

During the cruise on 11 June 2001, a large phytoplankton bloom was observed in the 

northern part of the Bay, with [Chl-a] values reaching 60 mg/m3 at HB station and         

74 mg/m3 at JT (discussion in paragraph 5.4-1). Such high chlorophyll concentrations, 

combined with high absorption by CDOM and non-pigmented particulate matter in the 

blue wavelength region, would be expected to result in Rrs spectra with a maximum in 

the green wavelength region and not in the blue. The MODIS nLw values measured at PI 

station on 11 June 2001 (AOT(550)=1.2) are shown in fig. 5.4-1 along with the in-situ 

nLw measurements. The shape of Rrs spectra measured by MODIS at the satellite pixels 

around PI, with high Rrs values at 412 nm, low Rrs at 530 nm, increase of Rrs at 550 nm 
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and again decrease at 670 nm, is not physically expected for the optical properties 

measured in the Bay waters. The large Rrs(443) and Rrs(488) values measured by 

MODIS, due to errors in atmospheric correction under conditions of high aerosol optical 

thickness (AOT(550)MTOPS=1.2), result in significantly overestimated remote sensing 

reflectance ratios, Rrs(443)/ Rrs(554) and Rrs(488)/Rrs(554) by MODIS. According to 

equations (5.2-3), (5.2-5) and (5.2-6), such an overestimation of the ratios            

Rrs(443)/ Rrs(554) and Rrs(488)/Rrs(554) by MODIS results in significantly 

underestimated satellite chlorophyll concentrations. Although chlorophyll concentration 

measured in-situ at PI station on 11 June 2001 was 27 mg m-3
, MODIS [Chl-a] values 

around PI station were less than 5 mg m-3
. 

 

 
 
 
 
 
 
 
 
 
 

Figure 5.4-1: Satellite and in-situ nLw spectra for 11 June 2001 (AOT(550) = 1.2 at the 
time of the MODIS overpass). The in-situ nLw spectrum is shown as a thick yellow line. 
MODIS nLw spectra (5x5 pixels around each station) are shown as red lines for pixels of 
quality level 0, and blue lines for pixels of quality level 2 or 3. The quality of the MODIS 
nLw values is reduced (nLw <0 at λ>550 nm) even at pixels of the best quality level 
(quality level=0) concerning the nLw values. 

 
 

 
The comparison between MODIS and in-situ [Chl-a] measurements, for cases with 

almost clear atmospheric conditions and no negative MODIS nLw values at 443 and 488 
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shown in log-log scale in figures 5.3-7 (b), (d), (f)). According to the results, 

disagreement was observed between the in-situ [Chl-a] values and the “chlor_MODIS” 

product, with underestimated satellite [Chl-a] at the lower values and overestimated  

[Chl-a] at the larger values. Less scattering around the 1:1 line was observed for the 

“chlor_a_2” SeaWiFS analog, and especially the “chlor_a_3” product. However, there is 

still some disagreement between MODIS and in-situ [Chl-a] values, especially at larger 

chlorophyll concentrations (percent differences between in-situ [Chl-a] and MODIS 

‘chlor_a_3’ were -500% to 30%, for [Chl-a]>10mg m-3). The main reason for this 

disagreement in the case of Chesapeake Bay waters, is that the remote sensing 

reflectances at 443 and 488 nm (wavelength bands used in the MODIS empirical 

chlorophyll algorithms) are affected not only by the phytoplankton optical properties, but 

also by the optical characteristics of other substances (such as CDOM and non-pigmented 

particulate mater), that do not necessarily covary with chlorophyll-a concentration. As 

was discussed in chapter 2, contribution by phytoplankton to total in-water absorption at 

488 nm, ranges from 20 to 70 %, while contribution by non-pigmented particulate matter 

ranges from 15 to 60 % and contribution by CDOM ranges from 2 to 30%. The percent 

contribution by CDOM and non-pigmented particles increases at 412 nm, mainly due to 

the exponential increase of their absorption with decreasing wavelength. 

   
 
5.4.3 Relationships between [Chl-a] and Rrs in the Chesapeake Bay waters 

 
 
When the MODIS chl-a algorithms (HLPC-empirical, SeaWiFS-analog and 

semianalytic) are applied to the Chesapeake Bay waters, chl-a concentration is 

determined through empirical relationships that use the MODIS derived remote sensing 



 341

reflectance ratio Rrs(488)/ Rrs(554), for “chlor_a_3” and “chlor_a_2” products, and both 

ratios Rrs(443)/ Rrs(554) and Rrs(488)/ Rrs(554), for “chlor_MODIS” product. Although 

significant relationships were found between in-situ measured log10[Chl-a] and   

log10(Rrs (λi)/Rrs (554)) for λi = 443, 488, 670 and 677 nm (P-value in linear regression 

was small, P<0.05), the coefficients of determination (R2 values) in the linear regression 

log10(Rrs(λi)/Rrs(554)) versus  log10[Chl-a] were small for λi = 443, 488 nm (R2 = 0.4 

and R2 = 0.31 respectively). When a cubic regression was applied to the log transformed 

[Chl-a] and Rrs values (similarly to the methodology used to derive the MODIS 

empirical algorithms “chlor_a_2” and “chlor_a_3”) a coefficient of determination R2=0.4 

was obtained (fig. 5.3-10). When interpreting the results of the comparisons, one should 

keep in mind the errors associated with the measurements (both laboratory measurements 

of [Chl-a] and in-situ measurements of radiometric quantities) as well as the uncertainties 

in the model estimated Rrs values (due to errors in the measured input parameters and the 

assumptions in the model estimations). However, based on the optical properties 

measured in the Bay, it could be expected that [Chl-a] and Rrs at the blue-green 

wavelengths are not strongly correlated for these specific case-2 waters. This is mainly 

due to the fact that although one of the chl-a absorption maxima is in the 443 nm 

wavelength region (“Soret” band), the optical characteristics of CDOM and non-

pigmented particulate matter strongly interfere with the chl-a optical properties at the 

short wavelengths, significantly affecting the amount of light leaving the water surface.  

 

Concentrations of CDOM and non-algal particulates (detrital material and minerals) do 

not necessarily covary with phytoplankton amount or concentration of chl-a pigment in 

estuarine and coastal waters. Measurements of anpp(440) and aCDOM(440) showed large 
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variation in the Bay waters during our cruises. However, no strong covariation was found 

between absorption by phytoplankton and absorption by non-pigmented material or 

CDOM (discussion in chapter 2). Since absorption by CDOM and non-pigmented 

particles increases exponentially with decreasing wavelength, the role of these substances 

in the attenuation of light becomes increasingly significant at the shorter wavelengths of 

the visible spectrum. According to measurements performed at PI station on 6 June 2002, 

contribution by phytoplankton to at-w(488) was 42%, contribution by non-pigmented 

particles was 46%, while CDOM contribution was 12%. At 443 nm, the contribution by 

phytoplankton to at-w(443) was 36%, contribution by non-pigmented particles was 45%, 

while CDOM contribution was 19%. 

 

A stronger relationship (based on the values of the correlation coefficient, R2) was 

observed between the ratio Rrs(677)/ Rrs(554) and [Chl-a], with R2=0.57 (figure 5.3-9). 

Chl-a absorption spectra are characterized by a second absorption maximum in the 676 

nm wavelength region. At these wavelengths absorption by CDOM is usually very small 

and absorption by non-pigmented particles, although not negligible, is significantly lower 

than absorption by phytoplankton (less than 15% contribution to total-minus-water 

absorption). Therefore, most of the total in-water absorption (minus the absorption by 

pure water) in the 676 nm wavelength region is due to the presence of phytoplankton 

(larger than 80% contribution by phytoplankton in most of the cases). However, 

significant absorption at 676 nm is due to the pure-water itself, with aw(676)=0.45 m-1 

(Pope and Fry, 1997). 



 343

The relationship between Rrs(677)/ Rrs(554) and [Chl-a] is examined in the following 

paragraphs, using some relationships between the backscattering and absorption 

coefficients observed in the Chesapeake Bay waters. An approximate form of the 

relationship (5.1-1) for the remote sensing reflectance ratio at 554 and 677 nm, is:                  
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which is based on the assumptions that i) t(a,w)t(w,a)/n2 is almost equal to 0.54, ii) f/Q is 

independent of wavelength and iii) bb << a. The semianalytic MODIS chl-algorithm is 

based on the above simplified version of relationship (5.1-1). However, eq(5.4-1) should 

be used only as an approximation, since i) total backscattering in Chesapeake Bay waters 

is typically smaller than total absorption, but not negligible compared to absorption 

(especially at 550 nm, where absorption is relatively small at-w(550)avg = 0.29 m-1 

(stdev=0.2 m-1) and bb(550) =0.05m-1 (stdev=0.03 m-1))  and ii) the ratio 2
),a()a,(
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ww

n

tt

Q
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is not constant, but varies with wavelength, solar zenith angle, [Chl-a] (Morel and 

Mueller, 2002). 

 

Figure 5.4-2 shows the relationship between [Chl-a] measurements and total-minus-

water absorption at 676 nm, at-w(676) (measured using the AC9 instrument). 

Measurements of absorption and [Chl-a] were performed on the same water samples 

collected from the four stations in the northern part of Chesapeake Bay. The chlorophyll-

specific phytoplankton absorption, a*phyt(676) =  aphy(676) / [Chl-a], depends on various 

parameters such as phytoplankton species composition, phytoplankton cells’ physiology 

and size (effect of packaging and self-shading on light absorption) and is influenced by 
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light conditions (related to season and cloudiness) as well as nutrient availability 

(influenced by riverine discharges, proximity to land, mixing processes). Therefore, some 

variation in estimations of a*phyt(676) is expected, among the measurements performed 

during the 2001- 2002 cruises. Nevertheless, at-w(676) showed a good correlation with 

[Chl-a] and least squares regression gave:  

at-w(676) = 0.0166 · [Chl-a] + 0.0603, R2 = 0.9147    (5.4-2) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.4-2: Relationship between [Chl-a] and at-w(676). Measurements were performed 
on water samples collected from PI, HB, TI and JT. Measurements performed on 11 June 
2001 (large phytoplankton bloom) are shown as open circles. 
 
 

The constant 0.06 in eq. (5.4-2) could be due to the small, but non-zero absorption by 

CDOM and non-pigmented particulate matter at 676 nm. Measurements performed on 11 

June 2001 (shown as open circles in figure 5.4-2) were not included in the least-square 

regression, since specific absorption coefficients were found to be much lower at HB, PI 

and TI stations during this cruise, when a large phytoplankton bloom was observed  

(measurements of at-w(676) and [Chl-a] performed on 11 June 2001 at HB, PI and TI 

stations fall below the regression line obtained from measurements performed during the 

rest of the cruises in the Bay).  
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The relationship between bb(530) and bb(650) measured during the cruises in 

Chesapeake Bay, using the ECOVSF instrument, is shown in figure 5.4-3(a). Linear least 

square regression gave: 7431.0
)530(
)650(

=
b

b

b
b

, with R2 = 0.9929. Expressing the bb 

wavelength dependence between 650 and 530 nm as bb ~ λ-n, results in n=1.45 for our 

measurements in the Bay. Since measurements of backscattering at 677 nm are not 

available and since there is not enough literature on the wavelength dependence of bb in 

this type of waters, the same wavelength dependence was assumed for bb(677)/ bb(554). 

However, the remote sensing reflectance at 677 nm is additionally affected by the chl-a 

fluorescence signal, which is related to chl-a absorption and, consequently chl-a 

concentration. When chl-a is excited by light in the visible wavelengths, it fluoresces in 

the wavelength region around 685 nm. Therefore, the amount of radiance that leaves the 

water surface, within the wavelength region around 685 nm (and thus at 677 nm), is 

significantly increased due to the chl-a fluorescence.  

 

The relationship between at-w(554) and at-w(677) is shown in figure 5.4-3(b) for 

measurements performed using the AC9 instrument (for the specific days when 

laboratory measurements of [Chl-a] and in-situ or model-estimated Rrs values were 

available). Although contribution by CDOM and non-pigmented particulate matter to the 

total absorption at 550 nm is larger than at 677 nm, an approximate relationship can be 

derived between at-w(554) and at-w(677) based on the AC9 measurements (fig. 5.4-3(b)). 

A similar relationship between at-w(677) and  at-w(554) (with R2
 = 0.85) was also  

observed when looking at the laboratory spectrophotometric absorption measurements                  

(at-w(λ) = aCDOM(λ) + aphyt(λ)+ anpp(λ)).  
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Figure 5.4-3: (a) Relationship between bb(530) and bb(650) from measurements 
performed in Chesapeake Bay, using the ECOVSF instrument (measurements performed 
at all depths and during all cruises are included here) (b) Relationship between at-w (554) 
and at-w (677) from measurements performed using the AC9 instrument.  

 
 
 
Figure 5.4-4 shows the relationship expected between [Chl-a] and the remote sensing 

reflectance ratio Rrs(677)/ Rrs(554), based on the approximate relationship (5.4-3) and 

the relationships found between i) bb(650) and bb(530), ii) at-w(554) and at-w(676), iii)     

at-w(676) and [Chl-a], for the Chesapeake Bay waters, without accounting, however, for 

the effect of chl-a fluorescence (figure 5.4-4, solid line). The measured [Chl-a] and 

Rrs(677)/ Rrs(554) are also shown (blue pixels, with the logarithmic best fit shown as 

thick solid line). According to the Hydrolight sensitivity studies discussed in chapter 2, 

not-including the effect of chl-a fluorescence in the model estimations of the remote 

sensing reflectance at 676 nm, resulted in an underestimation of Rrs(677) by as much as 

40%, for the specific case studied (28 September 2001). Although this percentage is not 

expected to be the same for all the cases studied here, increase of Rrs(677) by 30-50% 

(two dotted lines in figure 5.4-4) results to a relationship between Rrs(677)/Rrs(554) and 
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[Chl-a] that is in much better agreement with the relationship between measured 

Rrs(677)/ Rrs(554) and [Chl-a]. 

 
 
 

 
 

 
 
 
 
 
 
 
 
 

Figure 5.4-4: Approximate relationship between Rrs(677)/ Rrs(554) and [Chl-a], 
estimated based on eq (5.4-4) and in-situ measurements of backscattering and absorption, 
without accounting for the effect of chl-a fluorescence (blue solid line) and assuming an 
increase of Rrs(677) by 30 and 50% (dotted lines) (the effect of chl-a fluorescence for 
measurements performed at PI station on 28 September 2001 was ~40% increase in 
Rrs(677)). The measured [Chl-a] and Rrs(677)/ Rrs(554) are also shown (blue pixels, 
with the logarithmic best fit shown as thick line).  
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remote sensing reflectance ratios Rrs(677)/Rrs(554)MODIS and Rrs(677)/Rrs(554)InSitu. As 
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(correlation coefficients, R, larger than 0.83). The ratio Rrs(677)/Rrs(554)MODIS, however, 

was not in good agreement with the ratio Rrs(677)/Rrs(554)InSitu (fig 5.4-5). This is, 

mainly, because: i) nLw(677)MODIS values were underestimated compared to 

nLw(677)InSitu more than nLw(554) MODIS values were underestimated compared to 

nLw(554)InSitu (fig. 5.4-5 (a), (b)) and ii) percent differences between MODIS and in-situ 

nLw measurements did not show strong covariation at 677 and 554 nm wavelengths. 

Therefore, the percent differences between MODIS and in-situ Rrs ratios, at these 

wavelengths, are large, and they would result in large differences between measured and 

estimated [Chl-a] values. 
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Figure 5.4-5: Comparison between MODIS and in-situ measurements of Rrs (a) at 554 
nm and (b) 677 nm. (c) Comparison between the MODIS and in-situ Rrs ratios at 677 and 
554 nm, Rrs(677)/Rrs(554). 
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5.4.4 Rrs and total absorption and backscattering in the Chesapeake Bay waters 
 
 

Since backscattering for the Chesapeake Bay waters is not negligible compared to 

absorption, the relationship between Rrs(λ) and 
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λ

b

b

b
b
+

 was examined at (a) 443 nm 

(bb measured at 450 nm), (b) 532 nm (bb measured at 530 nm) and (c) 670 nm (bb 

measured at 650 nm) (fig. 5.3-11).  

 

Very good relationship was found between 
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 and both in-situ measurements of 

Rrs and Hydrolight-estimated Rrs values (fig. 5.3-11, yellow pixels for measured Rrs and 

blue pixels for model-estimated Rrs) with R2 values larger than 0.9 for all cases (all 

wavelengths and both in-situ and model estimated Rrs). The intercept coefficients of the 

linear least squares regression fits were small (< 0.0004) and the slope coefficients were 

in all cases within the range 0.043 – 0.057. The slope coefficient in the linear least- 

squares regression lines, corresponds to the ratio 2
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⋅⋅= (eq.5.1-1). Taking into account that f/Q (in eq.  

5.1-1) varies within 0.08-0.15 (Morel and Mueller, 2002) and that t(a,w)t(w,a)/n2 is 

approximately equal to 0.54 (Mobley, 1994), the slope of a linear least-squares fit on               

Rrs vs 
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+

 would be expected to be within the range 0.042 and 0.081. It should be 

noted that in Morel and Mueller (2002) only vertically homogeneous, case 1 waters have 

been considered. According to Morel and Mueller (2002), for nadir-viewing 

measurements of Rrs (as was the case for our in-situ measurements) f/Q varies between 



 350

0.08 and 0.11 (their figure 13.10) and depends on [Chl-a], wavelength and solar zenith 

angle. Therefore, for nadir-viewing geometry, the ratio 2
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f

⋅
λ

 would be 

expected to vary between 0.042 and 0.059. These values are close to the slope 

coefficients in the linear least-squares regression lines shown in figure 5.3-11.  

 

The good agreement between measurements and quantities theoretically estimated 

based on equation (5.1-1) and Hydrolight simulations, demonstrates closure between the 

apparent and inherent optical properties measured in the Bay (chapter 3).  

 
 
5.4.5 Backscattering and Remote Sensing Reflectance in Chesapeake Bay 

 
 
Both measured and Hydrolight estimated Rrs(670) values were found to be strongly 

related to backscattering values at 650 nm, with coefficient of determination of the linear 

least-squares regression, R2=0.88 (fig 5.3-12(c)). This could be explained if one takes 

into account that, in the relation Rrs(670) ~
)670()670(a

)670(

b

b

b
b

+
, total absorption at 670 nm is 

largely due to pure water itself. Absorption by pure water at 670 nm is constant and equal 

to 0.44 m-1 (Pope and Fry pure water absorption coefficients). Therefore, changes in      

at-w(670) by an order of magnitude (0.1-1 m-1)  are masked by the large, constant 

absorption by pure water and correspond to changes in the total absorption at(670) by a 

factor of 3. The surface backscattering values, bb(650), measured in Chesapeake Bay 

during the specific cruises, were between 0.008 and 0.12 m-1 (some bb values are not 

shown in figure 5.3-12, because for some cases Rrs values were not available) and 
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therefore changes in bb by an order of magnitude could result in significant changes in 

Rrs(670). Absorption by pure water, however, is considerably smaller at lower 

wavelengths. Therefore Rrs at 443 and 530 nm will be affected equally by changes in 

both absorption and backscattering. Although MODIS generally underestimated Rrs at 

670 nm (fig. 5.3-13 (a)), a good correlation was found between the MODIS measured 

Rrs(670) and backscattering at 650 nm (fig. 5.3-13 (b)), with MODIS Rrs(670) increasing 

with increasing bb(650). The R2 of the linear least squares regression was 0.5. However, 

fewer measurements where available when comparing bb to the satellite data, mainly 

because of bad quality satellite data during some of the cruises (e.g. 40% of the pixels 

had negative nLw(670) values, for the cases studied).   

 

The strong relationship between Rrs(670), a quantity that can be measured remotely by 

an aircraft or a satellite, and bb(650) in the Chesapeake Bay waters, is important, since bb 

is an optical property characteristic of the particulate matter present in these waters. 

According to previous studies (Stramski and Kiefer, 1991) the major source of particulate 

backscattering in the water is small, non-living particles, which may include decaying 

biogenous products of organic and inorganic nature, extract of organisms, as well as  

terrigenous material such as minerals and organic debris. The relationship between 

surface total bb and absorption by non-pigmented particulate matter was examined for the 

measurements performed in the Chesapeake Bay (fig. 5.3-15, 5.3-16). The surface total 

bb measurements at all three wavelengths (only 530 and 650 nm shown in fig. 5.3-15, 

5.3-16) were found to be strongly correlated to the surface values of absorption by non-

pigmented particulate matter, anpp, especially at the short wavelengths 412 nm or 380 nm, 
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where absorption by non-pigmented particles is stronger. The R2 values were R2 = 0.76 

and R2 = 0.83 (for 412 and 380 nm respectively), when 2 points (out of the total 45) were 

not included in the regression. The relationship between bb and [Chl-a] showed more 

scattering, especially at large chlorophyll concentrations (fig. 5.3-14), and smaller 

correlation coefficient, R2=0.6. These results indicate that re-suspended sediments and 

detrital material of organic and inorganic nature seem to be responsible for most of the 

backscattering in the Chesapeake Bay waters.  

 

The relationships between Rrs(670), bb(650) and anpp(412) could potentially be used in 

remote estimations of the abundance of non-pigmented particulate matter in the water. 

Strong correlation was found between in-situ Rrs(670) and absorption by non-pigmented 

particulate matter for the measurements performed in the Bay during our 2001-2002 

cruises (R2 values of 0.7 and 0.74 for the linear least-squares regression between 

Rrs(670) and anpp(412) and between Rrs(670) and anpp(380) respectively) (figure 5.3-17). 

In the MODIS semianalytic algorithm (Carder et al, 2002) non-pigmented particles and 

CDOM are combined to one term (gelbstoff) owing to the similarity in the absorption 

spectral shapes of these substances and the difficulties associated with separating their 

contribution to total light absorption. Relationships such as those between Rrs(670), 

bb(650) and anpp(412) which are based on the backscattering properties of the non-

pigmented particles could be used to separately estimate contribution by non-pigmented 

particles to total light attenuation. 
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    Table 5.4-1:Chapter 5 – Conclusions and Significant points 
 

 -Chlorophyll-a concentrations measured in the Bay during our cruises, ranged between 3.5-74 mgm-3. 
These [Chl-a] values were too large for validation of the semianalytical MODIS chlorophyll algorithm 
(Carder et al, 2002). This algorithm is considered to be the most suitable for use in case 2 waters. 
However, according to Carder et al (2002), for waters with high concentration of detritus, CDOM and 
chlorophyll (such as the waters in Chesapeake Bay), Rrs values at 412 and 443 nm are small, the 
semianlytic algorithm cannot perform properly and it switches to an empirical algorithm that relates 
Rrs directly to [Chl-a]. For [Chl-a]>2 mg m-3 

 (always the case during our cruises in the Bay) 
estimations of [Chl-a] by MODIS (‘chlor_a_3’, ‘chlor_a_2’ and ‘chlor_MODIS’ products) are based 
on empirical relationships between [Chl-a] and Rrs(443)/ Rrs(551) or/and Rrs(488)/ Rrs(551). 
 - The quality of all MODIS chlorophyll concentration products depends on the accuracy of the 
satellite bio-optical algorithms and on the quality of the input variables (MODIS measurements of 
nLw or Rrs). i) For all cases with nLw(443) or nLw(488) flagged as negative values (38% of the total 
39 comparisons), no [Chl-a] values were estimated by MODIS. ii) Under conditions of high aerosol 
optical thickness all three MODIS chl-algorithms significantly underestimated [Chl-a], due to 
overestimations of the MODIS nLw values in the blue wavelengths. Percent differences were between 
50% and 95%. iii) For cases with almost clear atmospheric conditions and no negative MODIS nLw 
values at 443 and 488 nm, MODIS chlorophyll products (especially chlor_a_3), showed better 
agreement with in-situ [Chl-a] values, especially for low [Chl-a] (percent differences: -20% to 2%, for 
[Chl-a]<10mg m-3). However, large disagreement was observed at larger chlorophyll concentrations. 
The main reason for this disagreement in the Chesapeake Bay waters, is that the remote sensing 
reflectances at 443 and 488 nm (wavelength bands used in the MODIS empirical chlorophyll 
algorithms) are affected not only by the phytoplankton optical properties, but also by the optical 
characteristics of other substances (such as CDOM and non-pigmented particulate mater), that do not 
necessarily covary with chlorophyll-a concentration.    
 - When the relationships between in-situ [Chl-a] and Rrs(λi)/ Rrs(554) values were examined for      
λi = 443, 488, estimated correlation coefficients were small. A stronger relationship was observed 
between the ratio Rrs(677)/ Rrs(554) and [Chl-a] for the Bay waters. In the 676 nm wavelength 
region, absorption by CDOM is usually very small, absorption by non-pigmented particles is 
significantly lower than absorption by phytoplankton and most of the total in-water absorption (minus 
the absorption by pure water) is due to the presence of phytoplankton (contribution by phytoplankton 
to at-w(676) larger than 80%). Therefore, an algorithm that is based on the relationship between 
Rrs(677)/ Rrs(554) and [Chl-a] could be used for [Chl-a] estimations in the Chesapeake Bay waters. 
 - The accuracy of a chl-algorithm that is based on the relationship between Rrs(677)/ Rrs(554) and 
[Chl-a], depends on  the accuracy of the input Rrs ratio values. When MODIS Rrs values were used as 
input information to estimate [Chl-a] in the Bay using the relationship found between in-situ 
measurements of [Chl-a] and Rrs(677)/ Rrs(554), large disagreement between measured and estimated 
[Chl-a] values was observed. This was, mainly, because percent differences between MODIS and in-
situ Rrs measurements did not show strong covariation at 677 and 554 nm wavelengths.  
Therefore, large disagreement was observed, in almost all of the cases, between the ratios      
Rrs(677)/ Rrs (554)MODIS and Rrs (677)/ Rrs (554)InSitu, which, as expected, resulted in large errors in 
the estimated [Chl-a] values. 
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Table 5.4-1 (continued): 
in all cases within the range 0.043 – 0.057. Since t(w,a)t(a,w)/nw

2  is approximately 0.54 (Mobley, 1994), 
these results show that the ratio f/Q during our measurements was within the range 0.08-0.105, which 
is in good agreement with the f/Q values theoretically expected (~ 0.08-0.11) for measurements 
performed at nadir-viewing geometry. In agreement to the discussion in chapter 3, these results 
demonstrate closure between the apparent and inherent optical properties measured in the Bay.  
 - Both measured and Hydrolight estimated Rrs(670) values were found to be strongly related to 
backscattering values at 650 nm (R2=0.88). Although MODIS generally underestimated Rrs at 670 nm 
a good correlation was also found between backscattering at 650 nm and MODIS measurements of 
Rrs(670). 
 - The strong relationship between Rrs(670), a quantity that can be measured remotely by an aircraft or 
a satellite, and bb(650) in the Chesapeake Bay waters, is very important, since bb is an optical property 
characteristic of the particulate matter present in these waters. Surface values of bb were strongly 
related to surface values of anpp especially at 412 and 380 nm, where absorption by non-pigmented 
particles is strong (R2 = 0.76 and R2 = 0.83, for 412 and 380 nm respectively). The relationship 
between bb and [Chl-a] showed more scattering, especially at large chlorophyll concentrations, and 
smaller correlation coefficient (R2=0.6). These results indicate that re-suspended sediments and 
detrital material of organic and inorganic nature seem to be responsible for most of the backscattering 
in the Chesapeake Bay waters. 
 - The relationships between Rrs(670), bb(650) and anpp(412) could potentially be used in remote 
estimations of the abundance of non-pigmented particulate matter in the water. Strong relationships 
were found between Rrs(670) and anpp(412) and between Rrs(670) and anpp(380) measured in the 
northern Chesapeake Bay. In the MODIS semianalytic algorithm (Carder et al, 2002) non-pigmented 
particles and CDOM are combined in one term (gelbstoff) owing to the similarity in the absorption 
spectral shapes of these substances and the difficulties associated with separating their contribution to 
total light absorption. Relationships such as those between Rrs(670), bb(650) and anpp(412), which are 
based on the backscattering properties of the non-pigmented particles, could be used to separately 
estimate contribution by non-pigmented particles to total light attenuation in turbid waters. 
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CHAPTER 6 
 
 

Summary and Conclusions 
 
 

Coastal and estuarine regions, such as the Chesapeake Bay, are complex and dynamic 

environments, where terrestrial, oceanic, atmospheric and human inputs of energy and 

matter converge. Since the water optical characteristics are strongly related to biological, 

chemical and physical processes in the water, in-situ measurements of water optical 

properties and theoretical estimations of underwater light fields play a critical role in our 

efforts to determine changes in the composition and concentration of optically active 

substances in coastal regions, monitor the water quality and identify the underlying 

causes (human activities or natural processes) of any changes in the water characteristics. 

At the same time, by using appropriate bio-optical models, remote sensing observations 

of ocean color can uniquely provide a synoptic, spatially and temporally cohesive picture 

of the distribution and abundance of dissolved and particulate material in the surface 

coastal waters. This information can be used to investigate biological productivity in the 

oceans, and study the interaction between physical processes (e.g. currents) and ocean 

biology as well as the effects of human activities on the oceanic environment.  

 

However, the large variety of physical, chemical and biological phenomena along the 

coastal regions poses great difficulties for systematic scientific studies. The presence of 

quite shallow areas, high turbidity and re-suspended sediments in the water, the proximity 

to landmass, and the large concentrations of highly absorbing aerosols in the atmosphere, 

greatly complicate satellite estimations of underwater properties. A major obstacle to the 

remote observations of coastal chlorophyll concentrations or distribution of other 
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optically active substances has been the lack of precise information concerning the 

optical properties of inland, estuarine and coastal waters. While bio-optical models 

currently used in satellite algorithms adequately describe the optical properties of open-

ocean waters, where phytoplankton and covarying material are the major optical 

component, they are not necessarily applicable in the coastal zones, where bio-optical 

characteristics depend on the composition, distribution and concentration of various 

living and non-living, dissolved and particulate material of marine or terrestrial origin. 

The core subject of this thesis was the development of coordinated atmospheric, in-water, 

and laboratory measurements leading to characterization of in-water optical properties in 

the northern Chesapeake Bay case-2 waters. One of the main objectives was obtaining a 

sufficiently complete suite of measurements, combined with detailed radiative transfer 

calculations, so as to produce a closure experiment for the underwater inherent and 

apparent optical properties. The in-situ results were applied to the interpretation of 

satellite (MODIS) water leaving radiance data and their validation. 

 

Specific questions addressed in the framework of this thesis were:  

i) What are the optical characteristics of phytoplankton, CDOM and non-pigmented 

particulate matter in the Chesapeake Bay waters?  How do these optical characteristics 

affect the penetration of light and especially the water-leaving radiance, since this is the 

quantity measured remotely by a satellite sensor or an airborne instrument?  

ii) What is the contribution of phytoplankton, CDOM and non-pigmented particulate 

matter to the total light attenuation in the Chesapeake Bay waters? 

iii) To what extent can we obtain “closure” between measured inherent and apparent  
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optical properties based on theoretical estimations of radiation fields in this optically 

complex, estuarine environment? How accurately can we predict the underwater radiation 

fields and can we use the model estimations when underwater radiances are not 

measured, but detailed information on the water’s optical characteristics is available? 

What are the measured input parameters to the model, that most significantly affect the 

model estimations of radiation fields, and what changes in the model assumptions can 

improve the agreement with measurements? 

iv) What is the interpretation of satellite (MODIS) remote sensing reflectance data in 

the case-2 Chesapeake Bay waters? How do atmospheric conditions, satellite zenith 

angle, proximity to land, affect the quality and accuracy of satellite observations?   

v) How do errors and inaccuracies in satellite Rrs measurements (due, for example, to 

errors in atmospheric correction) affect the derived satellite products of chlorophyll 

concentration? 

vi) Are the bio-optical models or empirical relationships currently used in MODIS 

satellite chlorophyll algorithms applicable to the Chesapeake Bay waters?  

vii) What are the relationships between remote sensing reflectances and water’s 

inherent optical properties (such as chlorophyll concentration and total backscattering) 

that could be used in the Chesapeake Bay waters, where various substances, which do not 

necessarily covary with each other, affect the light that eventually leaves the water 

surface?  

 

To address the above issues, I performed detailed in-situ measurements of in-water 

inherent optical properties (vertical profiles of a(λ), b(λ), c(λ), bb(λ), and [Chl-a]) and 
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radiation fields (surface measurements of Es(λ), and vertical profiles of Ed(λ), Lu(λ)), 

analyzed laboratory measurements of phytoplankton, non-pigmented particulate matter 

and CDOM absorption properties, and made measurements of atmospheric transmission 

characteristics within the northern part of the main stem of the Chesapeake Bay estuary. 

Seventeen cruises were performed between 4 June 2001 and 8 November 2002. Specific 

cases of stratified and vertically homogeneous waters, relatively clear or optically thicker 

waters, phytoplankton bloom events, rainfall events, and riverine outflows were 

examined in order to study the total absorption and attenuation of light under various 

conditions (chapter 2).  

 

Water temperature, Tw, and salinity, Sw, showed the typical patterns expected for 

Chesapeake Bay waters, with high temperature (and low salinity) values during the 

summer cruises and a decrease in temperature (and increase in salinity) during the colder 

(and drier) fall months. Density stratification, brought about by vertical variation in 

temperature and salinity during the summer cruises, affected mixing processes, and hence 

also, vertical variations in optical properties, within the water column. The larger vertical 

stratification, in combination with higher levels of incident radiation and increased 

availability of nutrients during the late spring - early summer months, resulted in more 

intense biological activity and favorable conditions for phytoplankton growth. Surface 

phytoplankton bloom events were observed during some of the spring and summer 

cruises in the Bay. With the exception of the localized phytoplankton bloom events, when 

high spatial variability was observed in phytoplankton absorption, aphyt(676) did not show 

large spatial variation among the four stations. Large spatial variation was observed in 
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absorption by non-pigmented particulate matter, anpp(λ), with higher values observed, 

consistently, at the turbid JT station, most probably due to the proximity of the station to 

land, the stronger influence of inflow of terrigenous particulate matter, and also the 

shallower depths measured at this region of the Bay.  

 

Large spatial variation was observed in the total backscattering, bb, measured in the 

northern Bay waters, with higher values, during most of the stations, at the turbid JT 

station. The backscattering fraction bb/b(530) had an average value of 0.013 (smaller than 

the widely used bb/b value for the Petzold “average particle”, bb/b=0.018). Considerable 

variation was observed in the measured bb/b in the Bay, with values as low as 0.006 and 

higher than 0.036, with larger values close to the bottom, probably due to re-suspension 

of inorganic sediments with high index of refraction. Seasonal and temporal variation in 

backscattering, bb, were related strongly to seasonal and temporal patterns of absorption 

by non-pigmented particulate matter, anpp. Surface values of bb were strongly correlated 

to surface values of anpp especially at 412 nm and 380 nm, where absorption by non-

pigmented particles is strong. Smaller correlation was found between bb and [Chl-a], 

especially at large chlorophyll concentrations. These results are in agreement with 

previous studies (Stramski and Kiefer, 1991) according to which the major source of 

particulate backscattering in the water is small, non-living particles, which may include 

decaying biogenous products of organic and inorganic nature, extract of organisms, as 

well as terrigenous material such as minerals and organic debris. The strong relationship 

between anpp and bb and their effect on the remote sensing reflectances measured in-situ 

and by MODIS in these waters, was further investigated in chapter 5.  
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Small variability was observed in the spectral shape of anpp(λ) measured during the 

cruises, with average value for the exponential slope Snpp=0.010-0.011 nm-1 and small 

standard deviation. Therefore, an exponential model with an exponential slope of        

Snpp = 0.0105 nm-1, would provide a very good fit to the non-pigmented particulate matter 

absorption spectra measured in the Bay waters. Larger variation was observed in the 

normalized, aphyt(λi)/aphyt(676), phytoplankton absorption spectra, as well as in the 

CDOM exponential slope, SCDOM. Although an inverse relationship was observed 

between aCDOM and SCDOM during the measurements in the Bay, with SCDOM decreasing 

with increasing aCDOM(440), no strong correlation was found overall between salinity and 

aCDOM or salinity and SCDOM during the cruises in the Bay. However, the four stations 

sampled, encompass only a small portion of the entire mouth-to-head salinity gradient of 

the Bay, and salinity differences among the four stations were less than 2-3 ppt during 

individual cruises. The high variability observed in the CDOM exponential slope and the 

uncertainties associated with modeling the phytoplankton absorption wavelength 

dependence in the Bay waters, would affect the accuracy of inversion algorithms and 

absorption partitioning methods, such as those used currently in satellite algorithms (e.g 

MODIS semianalytical chl-algorithm). More research related to studies on the temporal 

and seasonal variation in CDOM optical characteristics and their relation to physical, 

chemical and photobiological processes in the Bay, is needed.  

 

Contribution by phytoplankton to total (minus water) absorption was found to be large  

(larger than 80%) in the 676 nm wavelength region. However, contribution by CDOM 

and non-pigmented particles to total absorption in the Chesapeake Bay waters was found 

to be large in the blue-green wavelength region (average contribution by CDOM and 
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non-pigmented particulate matter to at-w was 60% at 488 nm, and even larger at the 

shorter wavelengths 412 and 443 nm, due to the exponential increase of aCDOM and anpp 

with decreasing wavelength). No strong covariation was found between absorption by 

phytoplankton and absorption by non-pigmented particulate matter or CDOM during our 

cruises. Therefore, total absorption and attenuation of light at wavelengths 412, 443 and 

488 nm in the Chesapeake Bay waters, is largely affected by substances other than 

phytoplankton, that do not covary with [Chl-a]. As shown in chapter 5, this has 

significant implications on the accuracy of the chlorophyll algorithms currently used by 

MODIS. 

 

The combination of measurements in the Chesapeake Bay formed a “closure 

experiment”, since measured inherent optical properties and boundary conditions can be 

used as input information to perform theoretical estimations of the underwater light field 

using a radiative transfer model, while measured radiometric quantities can be compared 

to the model’s output. The detailed suite of measurements performed in the Bay, made it 

possible to perform the model simulations with minimum assumptions on the water’s 

optical characteristics, using the detailed in-situ measurements of inherent optical 

properties and boundary conditions as input information to the model (chapter 3).  

 

Good agreement was obtained between measured and model estimated underwater  

radiation fields and water-leaving radiances. For almost all of the cases, the percent 

differences between measured and model-estimated water-leaving radiances, Lw, were 

less than ±11.6% at 443 nm (absolute average of 6.25%), less than ±15.2% at 555nm 
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(absolute average of 8.3%) and less than ±11.5% at 670nm (absolute average of 6.85%). 

Two main assumptions made in the model simulations of the underwater light fields 

(based on the measurements of optical properties in the Chesapeake Bay waters), 

improved the agreement between model-estimated and measured radiation fields:  

i) Use of a Fournier Forand scattering phase function, as determined by measured 

wavelength- and depth-dependent backscattering fractions, in place of the widely used 

“Petzold” average particle scattering phase function (Mobley et al, 2002).   ii) The 

assumption of non-zero total-minus-water absorption at the near-infrared wavelengths 

(e.g. 715 nm), supported by laboratory spectrophotometric measurements of absorption 

spectra in the 290-750 nm wavelength region (chapter 2). Accounting for the small NIR 

absorption (total minus water), was important in model simulations of underwater light 

fields, especially in the green wavelengths where at-w is relatively small.  

 

As discussed in chapter 2, the in-situ measurements of backscattering fraction in the 

Bay showed that bb/b can be much different than the Petzold “average particle” 

backscattering fraction, bb/b=0.018, that has been widely used as a default value for 

modeling backscattering in moderately turbid waters. Hydrolight simulations showed that 

underwater radiances and irradiances, as well as water-leaving radiances and reflectances, 

are sensitive to the value of bb/b, and the bb/b vertical structure and wavelength 

dependence. Therefore, accurate depth- and wavelength-dependent measurements of bb/b 

are crucial for accurate predictions of underwater light fields and for achieving good 

agreement between data and model. According to the Hydrolight simulations, inclusion 

of the inelastic process of chlorophyll fluorescence, can also significantly affect (e.g., by 
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30-40%) the model estimated water-leaving radiances around 685 nm (chl-a fluorescence 

emission maximum). However, since measurements of chlorophyll and CDOM 

fluorescence efficiencies were not performed in this study, Hydrolight assumptions about 

the CDOM and chlorophyll fluorescence quantum efficiency and spectral quantum 

efficiency functions might be a source of error in the model estimations. 

 

Given all the errors associated with the measured quantities used as input information 

to run the model, the errors associated with the radiometric measurements, and the 

assumptions made in the model simulations, the agreement obtained between 

measurements in the Bay and model-estimations is remarkably good. Obtaining such a 

good agreement between measurements and theoretical estimations:  

i) Suggests that, when in-situ radiance measurements are not available, the Hydrolight 

radiative transfer model can be used to accurately estimate the radiation fields in the 

Chesapeake Bay and other open ocean or coastal waters, provided that accurate and 

detailed measurements of the inherent optical properties of the water body are available. 

ii) Increases confidence on the accuracy of the in-situ measurements performed in the 

Chesapeake Bay and demonstrates “closure” between the independently measured 

inherent and apparent water optical properties. This was extremely important for moving 

to my next goal: using the in-situ measurements and radiative transfer modelling in the 

interpretation and validation of remote-sensing, satellite observations (chapter 4).  

 

The accuracy of all satellite derived ocean color products (such as chlorophyll 

concentration, calcite concentration or ocean primary productivity products) depends on 

the quality and accuracy of the ‘primary’ parameters (normalized water leaving radiances 



 364

or remote sensing reflectances) measured by the satellite sensor. The in-sutu 

measurements and theoretical estimations of water leaving radiances in the Bay waters 

were applied to the interpretation and validation of satellite (MODIS/Terra) observations 

of normalized water-leaving radiances, under various atmospheric conditions and in-

water optical properties. The main questions addressed were: i) How good is the 

agreement between satellite and in-situ measurements of remote sensing reflectance in 

the case 2 Chesapeake Bay waters? ii) How do atmospheric conditions and large 

concentrations of highly absorbing aerosols, large satellite scan angle, proximity to land, 

affect the quality of satellite observations of ocean color in this coastal region?    

 

Although satellite measurements of the best quality are those characterized by a 

quality-level 0 or at most 1, satellite pixels with nLw values of all quality-levels have 

been examined in this study, mainly because the number of pixels of quality-level 0 

(concerning the nLw products) was small for the Bay waters (only 18% of the total 

number of pixels studied), and also because in certain cases, pixels of quality-level 0 had 

flagged nLw values (negative or zero) at most or all of the satellite wavelength bands, 

while MODIS nLw values measured at pixels of quality-level 3 were in closer agreement 

with the nLw values measured in-situ. 

 

The quality of MODIS nLw values was reduced for satellite measurements performed 

at satellite zenith angles between 55o and 65o, although these satellite zenith angles are 

smaller than the MODIS threshold set for ocean color products. Atmospheric conditions 

with high aerosol optical thickness significantly affected the quality of MODIS nLw 

spectra. Under such conditions, errors in the atmospheric correction resulted in erroneous 



 365

(flagged as negative or zero values) or highly overestimated (compared to in-situ 

measurements and model estimations) nLw MODIS values in the blue wavelength 

region. The quality of nLw values was affected at pixels close to land, due to the presence 

of more shallow turbid waters, proximity to bright source and atmospheric correction 

algorithm failure.  

 

The agreement between MODIS and in-situ measurements was found to be better, for 

satellite zenith angles smaller than 55o and under relatively clear atmospheric conditions, 

at 551, 667, 677 nm, especially at the TI station that is located farther away from the bay 

shores. However, MODIS nLw values were underestimated compared to in-situ 

measurements, especially at 677 nm. MODIS measurements of nLw at the shorter, blue 

wavelengths 412 nm and 443 nm were in most of the cases either flagged as negative 

values or significantly overestimated compared to in-situ measurements. Higher nLw 

values at 551 nm were measured both in-situ and by MODIS at HB and JT stations 

compared to TI and PI. This is in agreement with the higher abundance of non-pigmented 

particles and the higher backscattering coefficients measured in-situ at the turbid HB and 

JT stations, compared to PI and TI (chapter 2).  

  

The dependence of the MODIS chlorophyll products on the MODIS nLw (or Rrs) 

measurements was clear for the cases studied: i) For all cases with nLw(443) or 

nLw(488) flagged as negative values, no [Chl-a] values were estimated by MODIS, since 

for high-chlorophyll waters, with [Chl-a]>2 mg m-3 
 (always the case during our cruises in 

the Bay) MODIS estimations of [Chl-a] are based on empirical relationships between 
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Rrs(443)/Rrs(551) or Rrs(488)/Rrs(551) and [Chl-a]. ii) Under conditions of high aerosol 

optical thickness all three MODIS chl-algorithms significantly underestimated [Chl-a], 

due to overestimations of the MODIS nLw values in the blue wavelengths (discussion in 

chapter 5). 

 

For cases with almost clear atmospheric conditions and no negative MODIS nLw 

values at 443 and 488 nm, MODIS chlorophyll products (especially chlor_a_3), showed 

better agreement with in-situ [Chl-a] values, especially for [Chl-a] less than 10 mg m-3. 

However, large disagreement was observed at larger chlorophyll concentrations. The 

main reason for this disagreement in the Chesapeake Bay waters, is that CDOM and non-

pigmented particulate mater, that do not necessarily covary with chlorophyll-a 

concentration, significantly affect the total absorption and backscattering of light, and 

therefore the remote sensing reflectances, at the blue-green wavelengths (443, 488 nm) 

used in the MODIS empirical chlorophyll algorithms.  

 

When the relationships between in-situ Rrs(λi)/Rrs(554) and [Chl-a]  values were 

examined for λi = 443, 488, estimated correlation coefficients were small, while a 

stronger relationship was observed between the ratio Rrs(677)/ Rrs(554) and [Chl-a]. In 

the 676 nm wavelength region, absorption by CDOM and non-pigmented particles is 

relatively small and most of the total in-water absorption (minus the absorption by pure 

water) is due to the presence of phytoplankton (contribution by phytoplankton to            

at-w(676) larger than 80%). Therefore, an algorithm that is based on the relationship 

between Rrs(677)/ Rrs(554) and [Chl-a] could be used for [Chl-a] estimations in the 
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Chesapeake Bay waters. However, large disagreement between the Rrs(677)/ Rrs(554) 

ratios measured by MODIS and in-situ, resulted in large errors in the estimated [Chl-a] 

values when the algorithm was applied to MODIS data. Improvements in the accuracy of 

MODIS Rrs measurements in future reprocessing could result in better application of 

such an algorithm to satellite observations.  

 

Both measured and Hydrolight estimated Rrs(670) values were found to be strongly 

related to backscattering values at 650 nm (R2=0.88). Although MODIS generally 

underestimated Rrs at 670 nm a good correlation was observed between the MODIS 

measured Rrs(670) and backscattering at 650 nm (figure 5.3-13). The strong relationship 

found between Rrs(670), a quantity that can be measured remotely by an aircraft or a 

satellite, and bb(650) in the Chesapeake Bay waters is very important since bb is an 

optical property characteristic of the particulate matter present in these waters. As 

mentioned previously, re-suspended sediments and detrital material of organic and 

inorganic nature seem to be responsible for most of backscattering in the Chesapeake Bay 

waters, with surface values of bb being strongly correlated to surface values of anpp 

especially at 412 nm and 380 nm where absorption by non-pigmented particles is strong 

(fig. 5.3-16, chapter 5).  

 

The strong relationships found between Rrs(670) and bb(650) and between bb(650) and 

anpp(412) could potentially be used in remote estimations of the amount of non-pigmented 

particulate matter in turbid waters (fig. 5.3-17, chapter 5). In the MODIS semianalytic 

algorithm (Carder et al, 2002) non-pigmented particles and CDOM are combined in one 
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term (gelbstoff) owing to the similarity in the absorption spectral shapes of these 

substances and the difficulties associated with separating their contribution to total light 

absorption. Relationships such as those between Rrs(670), bb(650) and anpp(412), which 

are based on the backscattering properties of the non-pigmented particles, could be used 

to separately estimate contribution by non-pigmented particles to total light attenuation. 

 

This research project is a contribution towards gaining a better understanding of the 

optical characteristics of various substances, such as phytoplankton, non-pigmented 

particles and CDOM, in the Chesapeake Bay waters, and the way they influence the 

amount of light leaving the water surface that can be measured in-situ or remotely from 

instruments on aircrafts or satellites. This knowledge is necessary when in-situ or satellite 

measurements of Rrs or nLw are used to extract information on the water’s inherent 

optical properties (e.g. anpp, aphyt, bb), or the abundance and distribution of chlorophyll or 

other optically active substances in these estuarine waters. The in-situ measurements 

performed in the Bay were applied to the interpretation of satellite (MODIS) water 

leaving radiance data and their validation. The applicability of bio-optical models and 

parameterizations currently used in satellite algorithms were examined for the case of the 

optically complex, Chesapeake Bay waters. Relationships between remotely sensed water 

leaving radiances and properties of optically active components in these waters were 

investigated. The resulting techniques and analysis should be broadly applicable to other 

coastal areas of the world. The results from this thesis, and other future work, will 

contribute to our ability to obtain more accurate information from remotely measured 

optical characteristics of estuarine and coastal regions. The combined use of in-situ 
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measurements and detailed radiative transfer modeling enables the improvement of both 

the theoretical models and satellite remote sensing algorithms needed to a better 

understanding of biotic responses to environmental forcing. 

 

Future work involves: i) Testing the relationships found between Rrs ratios and [Chl-a] 

or Rrs(670) and anpp(412), using future and improved reprocessing of MODIS data. 

Future improvements of MODIS data are associated with removing bi-directional effects 

from satellite observations, as well as using recently developed atmospheric correction 

algorithms (e.g Chomko and Gordon, 1998; Gordon et al, 1997) that are based on 

simultaneous determinations of oceanic and atmospheric properties and show promise in 

dealing with strongly absorbing aerosols. ii) More detailed studies on the CDOM optical 

characteristics. CDOM is the main absorber of light at the short, ultraviolet wavelengths 

that have the most harmful effects on aquatic organisms. Part of my research in the future 

will be focused on how variations in the optical and chemical characteristics of CDOM 

are related to mixing processes or photochemical and biological processes in estuarine 

and coastal environments. The information obtained will be used to help interpret satellite 

data for MODIS (visible) and in the future for OMI (UV+visible). iii) More research on 

water’s optical properties in Chesapeake Bay and other coastal and estuarine 

environments, using a combination of radiative transfer modeling, in-situ measurements 

and remote sensing, in order to contribute towards gaining a better understanding on the 

interaction between natural and human-induced processes in these optically and 

biologically complex regions of the world’s oceans.      
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APPENDIX 

 

Level 2 Quality-Level Flags (Terra Collection 4) 
(Applies also to Aqua Collection 3) 

MODOCL2 Quality Levels  

NOTE: Values in the MODOCL2 'quality' SDS are of type BYTE. Bits 1-2 are the least significant bit 
pair; bits 7-8 are the most significant bit pair. 

Bit Description 

1-2 

Mandatory Quality for all of Gordon's nLw parameters  
0 = good, if common flags 1-3,6,8 are clear, and product-specific L2_flags 1, 9-16 are clear.  
1 = questionable, if large satellite or solar zenith angles  
2 = cloud or sun glint contaminated  
3 = bad other than cloud, if any input radiances are negative or saturated , or Atmospheric 
Correction failed, aerosol model==16,or Land 

3-4 

Mandatory Quality Carder's eps_clr_water parameter  
0 = good, if common flags, input Lw flags and product specific L2_flag 15 is clear.  
1 = questionable, if any of: shallow, large zenith angles, bad ancillary data, or product-specific 
L2_flag 15 is set.  
2 = cloud or sun glint contaminated  
3 = bad, if any input radiances are negative  or saturated, or Atmospheric Correction failed, or 
Land 

5-8 Spare 

 

MODOCL2A Quality Levels  

NOTE: The MODOCL2A 'quality' SDS is written as an unsigned long integer (ULONG). The byte 
containing bits 1-8 is the least significant byte and is unused. The byte containing bits 25-32 is the most 

significant byte. 

Bit Description 

1-8 Spare 

9-10 

Mandatory Quality for Hoge's phycoeryth_conc and phycou_conc parameters  
0 = good, if common flags are clear, input Lw flags are clear, and product-specific L2_flags 19-
23 are clear  
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1 = questionable, if any: shallow, large satellite or solar zenith angles, bad ancillary data, or 
product specific flags 19-23  
2 = if cloudy or glint  
3 = bad, if any  PEB or PUB values < 0 , input radiances are negative or saturated, or 
Atmospheric Correction failed, or Land, or product-specific L2_flags 1 value1-15 are set 

11-12 

Mandatory Quality for Clark Chlor_MODIS  
0 = good, if pigc between 0.01 and 100 mg/m**3 
1 = questionable, ifhigh satellite zenith angle , shallow water, bad ancillary data, data values 
<0.01 or >100 mg/m**3 
2 = Sun glint contaminated 
3 = input radiances are negative or saturated, cloudy, aersol model==16, land or atmospheric 
correction problem, pig_c <0.0 mg/m**3 

13-18 spare 

19-20 

Mandatory Quality for Abbott's chlor_fluor_ht parameter  
( quality  level demoted by 1 if high sat or solar zenith angle)  
0 = good, if common flags except shallow are clear, input Lw flags are clear, product specific 
flags clear  
1 = questionable, flags 7 (FLH/CHL too large) or 9 (FLH too large)  
2 = if FLH/Chl way too large, FLH way too large, or modis_chl=-1  
3 = bad,  if input radiances are negative or saturated , cloudy/albedo,Â  atmospheric correction 
problem, glint,  
  bad ancillary data, or land 

21-22 

Mandatory Quality for Abbott's chlor_fluor_effic parameter  
( qualityÂ  level demoted by 1 if high sat or solar zenith angle)  
0 = good, if common flags except shallow are ok, input Lw flags are clear, and product-specific 
L2_flags are clear  
1 = questionable, FLH quality == 1 or ARP quality ==1  
2 = if any CFE >0.1 or FLH quality ==2, or ARP ==2 
3 = bad if input radiances are negative or saturated, cloudy/albedo, atmospheric correction 
problem, glint,  
ancillary data problem, land, CFE > 0.15, or FLH quality ==3 

23-24 

Mandatory Quality for Gordon's cocco_pigmnt_conc, cocco_conc_detach, calcite_conc  
0 = good, if common flags are clear, input Lw flags are clear, and product-specific L2_flags 
clear.  
1 = questionable, if any of: shallow, large zenith angles, bad ancillary or product flags 15-17  
2 = cloud, if any input radiances are negative and saturated, cloud, or glint  
3 = bad, if any input radiances are negative or saturated, or Atmospheric Correction failed, 
aersol model==16, Land, or product-specific flags 22-24 are set 

25-26 

Mandatory Quality for Clark's CZCS_pigment parameter  
0 = good, if pigc between 0.01 and 100 mg/m**3 
1 = if any high satellitee zenith angle , shallow water, bad ancillary data, or data vales <0.01 or 
>100 mg/m**3 
2 = Sun glint contaminated 
3 =Â bad, if input radiances are negative or saturated , glint, cloudy, aersol model==16, land or 
atmospheric correction problem , pig_c <0.0 mg/m** 
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27-28 

Mandatory Quality for Clark's pigment_c1_totalÂ  
0 = good, if pigc between 0.01 and 200 mg/m**3 
1 = questionable if any high Sateillite zenith angle, shallow water, bad ancillary data, data vales 
<0.01 or >200 mg/m**3 
2 = Sun glint contaminated 
3 =Â bad, if any input radiances are negative or saturated, glint, cloudy, aersol model==16, land 
or atmospheric correction problem , pig_c <0.0 mg/m** 

29-30 

Mandatory Quality for Clark's susp_solids_conc parameter  
0 = good, if values between  0.03 and 100 g/m**3 
1 = questionable, susp_solid  <0.03 or > 100 g/m**3, high satellite or solar zenith angle, 
shallow water, bad ancillary data2 = sun glint contaminated 
3 = bad, if any input radiances are negative or saturated, or AtmosphericCorrection failed, aersol 
model==16, or susp_solid less than 0.03 or greater than 100 g/m**3, Land, cloudy 

31-32 

Mandatory Quality for Clark's K_490 parameter   
0 = good, K490 between 0.016 and 20.0 
1 = questionable, if any values <0.016 or > 20.0 , high satellite or solar zenith angle, shallow 
water, or bad ancillary data 
2 = glint contaminated 
3 = bad, if any input radiances are negative and or saturated, or Atmospheric Correction failed, 
aersol model==16, k490 <0.0 or k490 >,  if < 0, Land, or cloudy 

   

MODOCL2B Quality Levels  

NOTE: Values in the MODOCL2B 'quality' SDS are of type BYTE. Bits 1-2 are the least significant bit 
pair; bits 7-8 are the most significant bit pair. 

Bit Description 

1-2 

Mandatory Quality for Carder's chlor_a_3, absorp_coeff_gelb, chlor_absorb, tot_absorb_*  
0 = good, if common flags are clear, input Lw flags are clear, and product-specific L2_flags 1,9-
16 are clear  
1 = questionable, if any of: shallow, large satellite or solar zenith angles, bad ancillary, aphi675 
too small, low 412 or 555 flag set, or calculated chlorophyll exceeds chl_incon._thresh  
2 = glint contaminated 
3 = bad, if any input radiances are negative or saturated, or Atmospheric Correction failed, or 
Land, aerosol model==16, RRS <0 

3-4 

Mandatory Quality Carder's IPAR  
0 = good, if common flags are clear, input Lw flags are clear, and product-specific L2_flags 
clear  
1 = questionable, if any of: shallow, large zenith angles, bad ancillary  
2 = cloud or glint contaminated 
3 = bad, if any input radiances are negative or saturated, or Atmospheric Correction failed, or 
Land, or aerosol model==16 

5-6 

Mandatory Quality Carder's  ARP parameter 
0 = good, if common flags are clear, input Lw flags are clear, and product-specific L2_flags  is 
clear  
1 = questionable, if any of: shallow, large satellite or solar zenith angles, bad ancillary, or  high  
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windspeed flag set 
2 = cloud or glint contaminated 
3 =  bad, if any input radiances are negative or saturated, or Atmospheric Correction failed, or 
Land, or aersol model==16, or RRS< 0 

7-8 

Mandatory Quality for SeaWiFs analog OC3M Chlorophyll chlor_a2   
0 = good, if product value between 0.01 and 100 mg/m**3 
1 = Sat Zenth angle >70, shallow water, bad ancillary data, data vales <0.01 or >100 mg/m**3 
2 = Sun glint contaminated 
3 = input radiances are negative or saturated, glint, cloudy, aersol model==16, land or 
atmospheric correction problem, pig 

   

MOD28L2 Quality Levels  

NOTE: Values in the MOD28L2 'quality' SDS are of type BYTE. Bits 1-2 are the least significant bit 
pair; bits 7-8 are the most significant bit pair. 

Bit Description 

1-2 

Mandatory Quality for SST products  
0 = good, if common flags are clear, input radiance flags are clear, and product-specific L2_flags 
9,11-16 are clear  
1 = questionable, large zenith angle, bad ancillary or flags 3,10-11  
2 = sun glint or channel uniformity bad contaminated  
3 =  if any input radiances are negative and not saturated, or Atmospheric Correction failed, or 
Land 

3-4 

Mandatory Quality for SST4 products  
0 = good, if common flags are ok, inputs, both sat zenith tests, both sst4-sst, BT22-BT23-ref,  
both uniformity, brights, and reynolds(optional)  
1 = questionable, if any of: if sst4-sst test2 , sat zenith test 2, or unif test2  
2 =  if sst4-sst test 1, sat  zenith angle test 1, or uniformity test1  
3 = if any input radiances are negative and not saturated, BT22-BT23-ref out of range, brights 
outside (-4..33) 

5-8 Spare 

 
Developed by:  Kay Kilpatrick, RSMAS/U.Miami  (kkilpatrick@rsmas.miami.edu )  
Authorized by:  Wayne E. Esaias, Code 971, NASA Goddard Space Flight Center 
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Common and Product Specific Flags (Level 2 and Level 3) 
for Terra Collection 4 (also applies to Aqua Collection 3)  

For each parameter at Level 3 maps there are a maximum of 5 bytes of flags (common, 
maximum of three product specific, and one quality). Each byte is mapped to a separate 
file.   

Common Flags 

L3 maps MO*F.*.hdf - 1 byte integer. Tests are the same for all 40 products.  

MO*.F.{1:40}*.hdf  

Common 
tests  

L3 
map 

bit 

L3 
binned 

bit 

L2 

bit 

Pixel not processed  1 1 1 

Atmospheric correction 
failed  

2 2 2 

Satellite zenith angle > 
55 (SST), 
> 65 (Ocean Color)  

3 3 3 

Solar zenith angle >70  4 4 4 

Shallow water (i.e. < 
5km from coast or < 50 
m deep, or inland lake)  

5 5 5 

Sun glint greater than 
threshold  

6 6 6 
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Invalid or missing 
ancillary data  

7 7 7 

Land (includes 
ephemeral water)  

8 8 8 

Product-Specific Flags 

Maximum of 3 bytes of flags per parameter, each byte mapped in a separate file in the 
level 3 maps.  
  
 
Parameters 1-12 (Gordon products from MODOCL2 - 2 bytes of product specific 
flags.  

(nLw_412, nLw_443, nLw_488, nLw_531, nLw_551, nLw_667, nLw_678, Tau_865, 
Eps_78, aer_model1, aer_model2)  

Please note that in the MODOCL2 file the 2 bytes are contained in a single SDS in 
contrast to the maps where the information is stored into two separate files. In the L2 file 
the information is stored such that the least significant byte contains the MO*.2* bits 
with bit 1 being in the least significant bit. The most significant bit contains MO*.1* bit 
8. For the L3 binned files the bytes are in the same order as that of the L2 file except the 
bytes are stored as a 4 byte field. MO*1*.hdf is always in the most significant byte of the 
4 byte field, the two least significant bytes are not used in the Level 3 binned files.  
   
   
Map MO*.1{1:12}*.hdf  

Product specific test L3 map  

bit 

L3 binned  

bit 

L2 
MODOCL2 

bit 

Cloudy; Albedo @ 865 threshold 1 25 9 
Bad_Lw; One or more bands missing 2 26 10 

Bad_Lw; Any LwXXX <= 0 3 27 11 
Bad_Lw; Any band counts < 0 4 28 12 

Atmos_Corr; Questionable polarization 
correction/mirror reflectance (not currently used) 

5 29 13 

Atmos_Corr; Gordon aerosol failure 6 30 14 

Atmos_Corr; epsilon out of range 7 31 15 
Atmos_Corr - Any LaXXX <= 0 8 32 16 
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Map MO*.2{1-12}*.hdf  

Product specific test L3 
map  

bit 

L3 
binned  

bit 

L2  
MODOCL2 

bit 
Atmos_Corr ; Invalid Raleigh scattering data 1  17 1 

nLw550_low; Calculated nLw550 is too small 2  18 2 

Cocco; Coccolithophorid radiance exceeds 
threshold 

3  19 3 

TurbidCase2; Actual_rrs555 Turbid_rs555 4  20 4 

Hi_la865; Calculated La865 is too large 5  21 5 
Input Lw's for Carder's clear water epsilon 
band (11,13) bad. 

6  22 6 

lo_eps; epsilon < 0.67 7  23 7 
spare 8  24 8 

 
Parameters 13-25 (derived products from MODOCL2A) 3 bytes of product specific 
flags.  

(eps_clr_water, CZCS_pigment, chlor_MODIS, pigment_c1_total, chlor_fluor_ht, 
chlor_fluor_base, chlor_fluor_effic, susp_solids_conc, cocco_pigmnt_conc, 
cocco_conc_detach, clacite_conc, K_490, phycoeryth_conc, phycou_conc)  

Please note that in the MODOCL2A file the 3 bytes are contained in a single 4-byte SDS 
in contrast to the maps where the information is stored into three separate files. In the L2 
file the information is stored such that the most significant byte contains the MO*1.* bits 
with bit 8 of MO*1.*.hdf being in the most significant bit. The least significant byte of 
the 4 byte field is unused. For the L3 binned files the bytes are in the same order as that 
of the L2 file except the bytes are stored as a 4 byte field. MO*1*.hdf is always in the 
most significant byte of the 4 byte field  
   
 Map MO*.1{13:25}*.hdf  

Product specific test L3   
map  

bit 

L3 binned  
 

        bit 

L2 
MODOCL2A 

bit 
pig_C input Lwís (bands 9 and 12) bad 1 25 25 

chl_a input Lwís (bands 9,10,11,12) bad 2 26 26 
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pig_total input Lwís (bands 9,10,11,12) bad 3 27 27 

susp_solid inout Lwís (bands 9,10,11,12) bad 4 28 28 

K490 input Lwís (bands 9 and 12) bad 5 29 29 

FLH/chl_modis way too high, not reasonable 6 30 30 
FLH/chl_modis too high, approaching limit 
higher uncertainty 

7 31 31 

FLH way too high, not a reasonable value 8 32 32 

 
Map MO*.2{13-25}.hdf  

Product specific test L3   
map  

bit 

L3 binned 
  

bit 

L2 
MODOCL2A 

bit 
FLH_Range; approaching limit higher 
uncertainty 

1 17 17 

chl_modis == -1, algorithm failed, fill value 
present 

2 18 18 

ARP qual >= 2, questionable  3 19 19 

ARP qual == 1 , higher uncertainty  4 20 20 

CFE too high, not reasonable value 5 21 21 

coccolith algorithm input Lwís (bands 9 and 
12) bad 

6 22 22 

LoRadiance; radiance value below lower bound 
of coccolith lookup table  

7 23 23 

HiRadiance; radiance value above upper bound 
of coccolith lookup table  

8 24 24 

 
Map MO*.3{13-25}*.hdf  

Product specific test L3 map  

bit 

L3 binned  

bit 

L2 
MODOCL2A 

bit 
InvalidEntry; invalid data coccolith lookup 
table 

1 9 9 

PEB and PUB input Lw's (8-12) bad 2 10 10 
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range_iop_flags[1]: PEB/PUB algorithm 
calculated IOP outside realistic range  

3 11 11 

range_iop_flags[2]: PEB/PUB algorithm 
calculated IOP outside realistic range  

4 12 12 

range_iop_flags[3]: PEB/PUB algorithm 
calculated IOP outside realistic range  

5 13 13 

range_iop_flags[4]: PEB/PUB algorithm 
calculated IOP outside realistic range  

6 14 14 

range_iop_flags[5]: PEB/PUB algorithm 
calculated IOP outside realistic range  

7 15 15 

Cloudy - albedo @ 865 >threshold 8 16 16 

 
Parameters 26 - 36 (Products from MODOCL2B) two bytes of product specific flags  

(chlor_a_2, chlor_a_3, ipar, arp, absopr_coef_gelb, chlor_absorb, tot_absorb_412, 
tot_absorb_443, tot_absorb_488, tot_absorb_531, tot_absorb_551)  

Please note that in the MODOCL2B file the 2 bytes are contained in a single SDS in 
contrast to the maps where the information is stored into two separate files. In the L2 file 
the information is stored such that the least significant byte contains the MO*.2* bits 
with bit 1 being in the least significant bit. The most significant bit contains MO*.1* bit 
8. For the L3 binned files the bytes are in the same order as that of the L2 file except the 
bytes are stored as a 4 byte field. MO*1*.hdf is always in the most significant byte of the 
4 byte field.  
   
   
Map MO*.1{26-36}*.hdf  

Product specific test L3 map   

bit 

L3 binned   

bit 

L2 
MODOCL2B 

bit 
Input Lwís to Carder Chlorophyll routine (bands 
8-13) bad 

1 25 9 

neg_rrs_flag; One or more remote sensing 
reflectance values are equal or less than zero 

2 26 10 

low_412_flag; rrs[0](412) less than thresh_412 3 27 11 

low_555_flag; rrs[4](555) less than thresh_555 4 28 12 

default_flag ; using default chlorophyll model 5 29 13 

chl_inconsistent_flag; calculated chlorophyll 6 30 14 
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exceeds chl_incon._thresh 

Reserved; chl_quality_flag - (currently unused) 7 31 15 

Reserved;hi_scat_flag - (currently unused) 8 32 16 

 
MAP MO*.2{26-36}*.hdf  

Product specific test L3 map   

bit 

L3 binned   

bit 

L2 
MODOCL2B 

bit 
blend_flag; aph_model between .03 and .06 
(chlorophyll blended) 

1 17 1 

package_flag ; chlorophyll packaged 2 18 2 
input nLwís (bands 8-13) for ipar and arp 
products bad 

3 19 3 

hi_windspeed; wind speed 12 m/s 4 20 4 
Cloudy ; Albedo @ 865 > threshold 5 21 5 

chl_a3, high packaging 6 22 6 
if (reynodolsst-ndtsst)> 3.0 ; Carder NDT un-
packaged 

7 23 7 

If (reynodolsst-ndtsst )< 1.8; Carder NDT 
packaged  

8 24 8 

 
 

 Parameters 37-40 (Products from MOD28L2) two bytes only  

(SST_D1, SST4_D2, SST_N1, SST4_N2)  

Please note that in the MOD28L2 file the 2 bytes are contained in a single SDS in 
contrast to the maps where the information is stored into two separate files. In the L2 file 
the information is stored such that the least significant byte contains the MO*.2* bits 
with bit 1 being in the least significant bit. The most significant bit contains MO*.1* bit 
8. For the L3 binned files the bytes are in the same order as that of the L2 file except the 
bytes are stored as a 4 byte field. MO*1*.hdf is always in the most significant byte of the 
4 byte field.  
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Map MO*.1{37:40}*hdf  

Product specific test L3 map  

bit 

L3 binned  

bit 

L2 
MOD28L2  

bit 
SST input radiance bad;negative radiance in any of 
bands (20,31,32),  

1 25 9 

SST4 input radiances bad; negative values 
(20,22,23) 

2 26 10 

Band 31 or band 32 failed uniformity test 1   

( max-min of 3x3 pixel box >0.7) 

3 27 11 

Band 31 or band 32 failed uniformity test 2   

( max-min of 3x3 pixel box >1.2) 

4 28 12 

SST algorithm zenith angle test 1, sat zenith angle> 

40 

5 29 13 

SST algorithm zenith angle test 2, sat zenith angle 
>55 

6 30 14 

Failed SST tree tests  7 31 15 

SST more than 2 degrees different from reference 8 32 16 

 
Map MO*.2{37-40}*.hdf  

Product specific test L3 map  

bit 

L3 binned  

bit 

L2 
MOD28L2  

bit 
ch20/31/32 brightness temps bad; unreasonable 
values in one or more bands less than -10 or greater 
than 35. 

1 17 1 

SST4 algorithm uniformity test 1 ( max-min of 3x3 
pixel box >0.7) 

2 18 2 

SST4 algorithm uniformity test 2 ( max-min of 3x3 
pixel box >0.1.2) 

3 19 3 

SST4 algorithm zenith angle test 1; sat zenith angle 
>40 

4 20 4 



 381

SST4 algorithm zenith angle test 2; sat zenith angle 
>55 

5 21 5 

Failed SST4 tree tests 6 22 6 
SST4 more than 2 degrees C different from 
reference 

7 23 7 

ch20/22/23 brightness temps bad, unreasonable 
values in one or more bands less than -10 or greater 
than 35. 

8 24 8 

 

Developed by: Kay Kilpatrick, University of Miami (kkilpatrick@rsmas.miami.edu)  
Authorized by: Wayne E. Esaias, Code 971, NASA Goddard Space Flight Center 
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                                        NOTATION 

  
a(λ)  total absorption coefficient 
at-w(λ) total absorption coefficient minus absorption by pure sea-water 
aCDOM(λ)  CDOM absorption coefficient 
anpp(λ)  non-pigmented particulate matter absorption coefficient  
a*

phyt(λ)  phytoplankton absorption per unit concentration of chl-a + pheopigments 
aphyt(λ)    phytoplankton absorption coefficient 
aw(λ) absorption coefficient of pure water 
Ac 

AOPs 
AOT 

clearance area of filter 
Apparent Optical Properties 
Aerosol Optical Thickness 

b(λ)  total scattering coefficient 
bb(λ)  total backscattering coefficient 
bsw(λ) scattering coefficient of pure sea water 
c(λ) total attenuation coefficient 
CDOM Chromophoric Dissolved Organic Matter 
[Chl-a] 
chl-a 
chl-b 
chl-c 
chl-d 

Chlorophyll-a concentration 
chlorophyll-a 
chlorophyll-b 
chlorophyll-c 
chlorophyll-d 

DOM 
Ed  
Es 
Eu  

Dissolved Organic Matter 
in-water downwelling irradiance  
surface downwelling irradiance 
in-water upwelling irradiance  

Fo solar irradiance at the top of the atmosphere 
IOPs 
Kd   

Inherent Optical Properties 
downwelling irradiance diffuse attenuation coefficient 

lg 

la 

Ld 
Lu   

geometric optical pathlength 
amplified optical pathlength 
in-water downwelling radiance  
in-water upwelling radiance  

Lt total radiance received by a sensor at the top of the atmosphere 
Lpath radiance generated along the optical path by scattering (Rayleigh and 

aerosols) in the atmosphere and by specular reflection of atmospherically 
scattered light from the sea surface 

Lg contribution by sun glint  to total radiance received by a sensor at the top 
of the atmosphere 

Lwc contribution to Lt arising from reflection of skylight and direct sunlight 
from individual whitecaps on the sea surface 

Lw 
MAAs 
nLw 

Water-leaving radiance 
Mycosporine-like Amino Acids 
normalized water leaving radiance 
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nw index of refraction by water 
OD optical density 
Rrs remote sensing reflectance (defined as the ratio Lw/Es ) 
SCDOM     CDOM absorption spectral slope coefficient 
Snpp  non-pigmented particulate matter absorption spectral slope coefficient 
Sw    water salinity 
sza 
satza 
Tw    

solar zenith angle 
satellite zenith angle 
water temperature 

t(λ i) diffuse transmittance of the atmosphere 
T(λ i) 
UV 

direct transmittance of the atmosphere 
UltraViolet radiation 

  
  
β(ψ, λ)  volume scattering function,  
β pathlength amplification factor 
εss   instrument’s self-shading error   
θo  solar zenith angle 
θsw  solar angle measured in the water 
λ wavelength 
ρw water-leaving reflectance 
τ optical depth 
φ azimuth angle 
ψ scattering angle  
ωo single scattering albedo 
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