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Abstract: In this paper, we consider a new method dealing with the problem of estimating the
scoring function γa, with a constant a, in functional space and an unknown scale parameter under a
nonparametric robust regression model. Based on the k Nearest Neighbors (kNN) method, the primary
objective is to prove the asymptotic normality aspect in the case of a stationary ergodic process of
this estimator. We begin by establishing the almost certain convergence of a conditional distribution
estimator. Then, we derive the almost certain convergence (with rate) of the conditional median (scale
parameter estimator) and the asymptotic normality of the robust regression function, even when the
scale parameter is unknown. Finally, the simulation and real-world data results reveal the consistency
and superiority of our theoretical analysis in which the performance of the kNN estimator is comparable
to that of the well-known kernel estimator, and it outperforms a nonparametric series (spline) estimator
when there are irrelevant regressors.
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1. Introduction

Nonparametric regression using kernel methods is a well-known technique for examining the
underlying relationship between response variables and covariates. In research including functional
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data, estimators based on this technique are provided by [1, 2]. Similar to the estimator utilized in the
parametric method, the kernel estimator might be affected by outliers; hence, robustness is necessary.

Let (Ai, Bi)i=1,...,n represent a set of strictly stationary dependent random variables generated by
(A, B). The latter is valued in F × R, where F represents a semi-metric space and d signifies a
semi-metric, we denote by Υ(a) the unique solution of Γ(a, x, δ). In this study, we aim to investigate
the nonparametric estimate of the robust regression Υ(a) when the scale parameter is unidentified and
strong dependencies occur (ergodicity). In the following equation,

Γ(a, x, δ) = E
[
γa

(B − x
δ

)
| A = a

]
= 0, (1.1)

γ(a) is defined as 0 with regard to the parameter x for each a ∈ F . The δ is a robust measure of
conditional scale, and γa is a real-valued function that satisfies a number of regularity constraints, as
detailed below. In what follows, we assume that the robust regression Γ exists and is unique for all
a ∈ F (see, for example, [3]).

It is essential to keep in mind that robust regression modeling is an age-old statistical problem. In
his 1964 debut publication, [4] investigated the estimation of a location parameter. There are a number
of conclusions concerning multivariate time series that are cited in the works of [5–7] (ergodicity,
mixing conditions, or Bayesian robustness). In functional nonparametric statistics, robust regression
is intensively explored. In fact, [8] introduced it for the first time in 2008. In the case of independent
and identically distributed variables, they established this model’s complete and absolute convergence.
Other robust nonparametric functional regression studies have been conducted since their work. The
work of [9] is important, and the references therein on this topic. It is important to note that all these
results were achieved with the scale parameter set to a fixed value. In this study, we look at a more
general scenario in which the scale is unknown, and the data are dependent (for a state-of-the-art and
some discussions on this topic, see, for example, [10] and references therein).

In contrast to the mixing requirement typically used in functional time series research, the ergodicity
assumption is more flexible. Specifically, it is present in the majority of mixing circumstances. Few
studies have been conducted on time series data with an ergodic functional. Among the limited results
are those of ( [11–15]).

We simply mention the overviews of parametric models presented by [16, 17], as well as the
monographs of [2, 18] as important contributions to the non-parametric model, among the literature
review on functional data analysis.

In this paper, as mentioned early, we consider the case in which the scale is unknown. In this
sense, we extend the result found by [10] from the independent case to the ergodic case, using the
k Nearest Neighbors (kNN) approach and rely mainly on [19] study and also the studies of [20, 21].
This study was carried out under standard conditions, allowing us to examine the subject’s multiple
structural axes, including the robustness of the regression function and the correlation between the
observations. In this case, it is important to note that it is necessary to estimate the scale parameter,
which makes it harder to find asymptotic properties compared to the case of a fixed scale. Then, the
objective of this contribution is to estimate this robust regression model using the kNN-method. It is
an alternative smoothing technique that permits an estimate of the bandwidth parameter of the robust
regression operator based on data.

The distance between the functional random variables precisely determines the bandwidth
parameter. The kNN algorithm permits the exploration of the data’s topological and spectral
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components. In recent years, the functional kNN smoothing method has garnered great interest due to
its sophisticated bandwidth selection mechanism. Burba et al. [22] developed the first results in this
subject; they offered a convergence rate that was nearly consistent. Attouch and Bouabca [23, 24]
used the same methods to establish the almost complete consistency of the conditional mode
estimator, and [25] deduced the conditional hazard function. Recent developments in the field are
listed by [26]; we refer to [20, 21] for the most up-to-date developments and references.

The study is structured as follows: Section 2 presents the robust estimator with an unknown scale
parameter. In Section 3, we list the necessary assumptions and notations. In Section 4, we give the
results with their proofs. Sections 5 and 6 are devoted to using simulations and real data to prove the
efficiency of the estimators.

2. The equivariant robust estimators with the k Nearest Neighbors estimation

Consider the ergodic stationary functional process Mi = (Ai, Bi)i=1,...,n (for various definitions and
examples, see [12]). The robust estimator can be built using the two steps if the scale parameter is
unknown. The scale parameter δ is initially estimated via the local median of the absolute deviation
from the conditional median (MED), m̂MED(a) of the conditional distribution of B given A = a, denoted
F(b|A = a) = E

(
1(−∞,b](B)|A = a

)
, for any b ∈ R, where 1D represents the indicator function on the

set D. Thus, the kernel estimator t̂ of t(a) is the zero of the equation that follows for a ∈ F :

F̂(t|A = a) =
1
2
,

where, F̂(b|A = a) is given by

F̂(b|A = a) =

∑n
i=1 Z

(
h−1d(a, Ai)

)
1(−∞,b](Bi)∑n

i=1 Z
(
h−1d(a, Ai)

) , (2.1)

where Z is a kernel function and h = hn is a series of positive real numbers that tend to zero when n
tends to infinity. Then, the classical estimator Υ̌(a) of Υ(a) is the zero, with respect to l, of the equation

Γ̌(a, l, t̂) = 0 with Γ̌(a, l, t̂) =

∑n
i=1 Z

(
h−1d(a, Ai)

)
γa

(
Bi − l

t̂

)
∑n

i=1 Z
(
h−1d(a, Ai)

) . (2.2)

This estimator’s asymptotic properties have been examined by [27]. Alternatively, in this paper,
we focus on the asymptotic properties of the kNN estimator of the robust kernel regression function
with uncertain scale parameter for which the scalar bandwidth parameter h is replaced by a random

sequence of positive real integers defined by Hn,k(a) = min

un ∈ R
+ :

n∑
i=1

1B(a,un)(ai) = k

. So, our

main estimator Υ̂(a) of the robust estimator Υ(a) is the zero, with respect to l, of the following equation

Γ̂(a, l, t̂) = 0 with Γ̂(a, l, t̂) =

∑n
i=1 Z

(
Hn,k(a)−1d(a, Ai)

)
γa

(
Bi − l

t̂

)
∑n

i=1 Z
(
Hn,k(a)−1d(a, Ai)

) . (2.3)
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3. Notations, hypotheses, and comments

In this work, some strictly positive generic constants will be represented by C and C′ where there
is no possibility of error. In F , a is a fixed point, and Na designates the fixed area around a. Let
consider B(a, s) := {a′ ∈ F /d(a′, a) < s}, for s > 0. In addition, we propose that the σ-field produced
by ((A1, B1), . . . , (AK , BK ), AK+1) is known as BK . We take the following assumptions into account:

(AS1): γa’s function is monotone and continuous with respect to the second component.

(AS2): The processes (Ai, Bi)i∈N satisfies:

i) σ(a, s) = P(A ∈ B(a, s)) > 0 and
σi(a, s) = P(Ai ∈ B(a, s)|Fi−1) > 0 ∀s > 0.

ii) For all s > 0,
1

nσ(a, s)

n∑
i=1

σi(a, s)→p 1 and

nσ(a, s)→ ∞ as h→ 0.

(AS3): The function Γ is as follows:

i) Γ(a, ., δ) is of class C1 in Na, a fixed neighborhood of Υ(a).
ii) For any fixed r in Na the functions Γ(., r.δ) and

Λ2(., r, δ) = E[γ2
a(

B − r
δ

)|A = .],

are continuous at a.
iii) The derivative of the real function

Θ(a, u, δ) = E[Γ(A1, u, δ) − Γ(a, u, δ)|d(a, A1) = t],

exists at t = 0 and is continuous in Na second component.

(AS4): For any fixed r in the neighborhood of Υ(a) and ∀ j ≥ 2,

E

[
γ

j
a

(B − r
δ

)
|Bi−1

]
= E

[
γ

j
a

(B − r
δ

)
|Ai

]
< c < ∞, a.s.

(AS5): The kernel Z(·) is a positive function supported on [0, 1] and is a differentiable function
on ]0, 1[ with derivative Z′(·) such that

−∞ < C < Z′(·) < C′ < 0.

(AS6): There exists a function ϑa(.) such that

∀r ∈ [0, 1] lim
h→0

σ(a, rh)
σ(a, h)

= ϑa(r),

Z2(1) −
∫ 1

0
(Z2(v))′ ϑa(v)dv > 0,

and

Z(1) −
∫ 1

0
Z′(v) ϑa(v)dv , 0.
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(AS7):

i) In the neighborhood of S, F(b|A = a) is a continuous function of a. It also fulfills the
following equicontinuity condition:

∀ ϵ > 0,∃µ > 0 : |v − w| < µ =⇒ |F(v|A = a) − F(w|A = a)| < ϵ.

ii) F(b|A = a) is symmetric around Υ(a) and a continuous function of b for each fixed a.

Remark Convexity and boundedness are well-known properties of robust functions and are present in
the scoring function. The existence and uniqueness of the estimate are dependent on the primer, as is
its usefulness in minimizing the effects of atypical data. This study employs the monotonicity criterion
(AS1) to control convexity. For example, the classical regression has been read in the ergodic process
(see [12]), hence we adopted a contribution without the boundedness condition.

Assumptions (AS2) and (AS3) are the same conditions utilized in [13]. Additionally, the conditions
used by [28] are very similar to conditions (AS4) and (AS6).

4. Main result

For either kernel or nearest neighbor with kernel estimates, the result in Proposition 4.1 ensures the
consistency on a set S ∈ F . Following this, the asymptotic normality of the suggested estimator is
handled by the Theorem 1.

Proposition 4.1. Suppose that (AS2), (AS4) and (AS5), hold. Then, for any set S,

1) Under assumptions (AS7(i)), we get ∣∣∣Υ̂(a) − Υ(a)
∣∣∣ a.s
−−→ 0.

2) Additionally, if, F(b|A = a) has a unique median at Υ(a), then

|m̂MED(a) − Υ(a)|
a.s
−−→ 0.

For the sake of shortness, the Proof of this proposition is omitted. It is obtained by combining the
classical techniques of [22] to those used by [19].

Theorem 1. Suppose that (AS1)–(AS6), with (AS7.ii) hold. Then, if kσ−1(a, k/n)→ 0 we have(
k

δ2(a, Υ(a))

)1/2 (
Υ̂(a) − Υ(a)

) D
−→ N(0, 1) as n→ ∞,

where
δ2(a, Υ(a) =

ϱ2Λ2(a, Υ(a), δ)
ϱ2

1(ϕ1(a, Υ(a), δ))2
,

with

ϱ0 =

∫ 0

1
(tZ(t))

′

ϱa(t)dt,
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ϱ j = −

∫ 0

1

(
Z j

)′
(t)ϱa(t)dt, j = 1, 2,

ϕ1(a, Υ(a), δ) =
∂Γ(a, r, δ)

∂r

∣∣∣r=Υ(a) ,

M = {w ∈ F ,Λ2(w, Υ(w), δ)ϕ1(w, Υ(w), δ)} , 0,

signifies the convergence of distributions.

Proof. We prove the increasing case γa and then the decreasing case is getting by looking at −γa. To
do that, for ζn such that ζn − 1 = o(1), we define xn := σ−1(a, ζn

k
n ) and yn := σ−1(a, k

nζn
) and

∀v ∈ R, u = Υ(a) + v[nσ(a, h)]1/2δ(a, Υ(a)).

It is clear that, 1xn≤h≤yn

a.co.
−→1 when k

n −→ 0, so

P


(

nσ(a, h)
δ2(a, Υ(a))

)1/2 (
Υ̂(a) − Υ(a)

)
< v


= P

{
Υ̂(a) < Υ(a) − +v[nσ(a, h)]1/2δ(a, Υ(a))

}
= P

{
0 < Γ̂(a, u, t̂)

}
.

We can write

Γ̂(a, r, t̂) = Bn(h, a, r, t̂) +
Rn(h, a, r, t̂)
Γ̂D(h, a)

+
Qn(h, a, r, t̂)
Γ̂D(h, a)

,

with

Qn(h, a, r, t̂) =
(
Γ̂N(h, a, r, t̂) − Γ̄N(h, a, r, t̂)

)
− ΓN(h, a, r, t̂)

(
Γ̂D(h, a) − Γ̄D(h, a)

)
,

Rn(h, a, r, t̂) = −
(
Γ̄N(h, a, r, t̂)
Γ̄D(h, a)

− Γ(h, a, r, t̂)
) (
Γ̂N(h, a, r, t̂) − Γ̄N(h, a, r, t̂)

)
,

Bn(h, a, r, t̂) =
Γ̄N(h, a, r, t̂)
Γ̄D(h, a)

,

where

Γ̂N(h, a, r, t̂) =
1

nE[Z(y−1
n d(a, A1))]

n∑
i=1

Z
(
h−1d(a, Ai)

)
γa

(Bi − r
t̂

)
,

Γ̄N(h, a, r, t̂) =
1

nE[Z(y−1
n d(a, A1))]

n∑
i=1

E

[
Z

(
h−1d(a, Ai)

)
γa

(Bi − r
t̂

)
/Fi−1

]
,

Γ̂D(h, a) =
1

nE[Z(y−1
n d(a, A1))]

n∑
i=1

Z
(
h−1d(a, Ai)

)
,

Γ̄D(h, a) =
1

nE[Z(y−1
n d(a, A1))]

n∑
i=1

E
[
Z

(
h−1d(a, Ai)

)
/Fi−1

]
.
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Consequently,

P


(

kϱ2
1

ϱ2Λ2(a, Υ(a), t)

)1/2 (
Υ̂(a) − Υ(a)

)
< v

 =
P

{
−Γ̂D(h, a)Bn(h, a, u, t̂) − Rn(h, a, u, t̂) < Qn(h, a, u, t̂)

}
.

The following intermediate results lead to our main consequence. □

Lemma 1. Assume that the assumptions of Theorem 1 holds, then, we obtain, for any a ∈ M,(
kϱ2

1

ϱ2Λ2(a, Υ(a), t)

)1/2

Qn(h, a, u, t̂)
D
−→ N(0, 1) as n→ ∞.

Proof. We write

Qn(h, a, u, t̂) = Qn(yn, a, u, t̂) + (Qn(h, a, u, t̂) − Qn(yn, a, u, t̂)).

As
Qn(yn, a, u, t̂) ≤ Qn(h, a, u, t̂) ≤ Qn(xn, a, u, t̂), (4.1)

then
|Qn(h, a, u, t̂) − Qn(yn, a, u, t̂)| ≤ |Qn(xn, a, u, t̂) − Qn(yn, a, u, t̂)|.

So, all it remains is to prove that(
kϱ2

1

ϱ2Λ2(a, Υ(a), t)

)1/2

Qn(yn, a, u, t)
D
−→ N(0, 1) as n→ ∞. (4.2)

(
kϱ2

1

ϱ2Λ2(a, Υ(a), t)

)1/2

Qn(yn, a, u, t̂) − Qn(yn, a, u, t̂) = op(1). (4.3)

and (
kϱ2

1

ϱ2Λ2(a, Υ(a), t)

)1/2

||Qn(xn, a, u, t̂) − Qn(yn, a, u, t̂)| = op(1). (4.4)

The required result in (4.4) can be deduced from the standard consistency in [13], while (4.3) is
similar to the Eq (A. 25 ) in [27]. Hence, we focus now on (4.2). For this purpose, we put
Zi(a) = Z

(
h−1d(a, Ai)

)
, for all i = 1, ..., n, and

τni =

(
σ(a, h)ϱ2

1

ϱ2Λ2(a, Υ(a), t)

)1/2 (
γa

(Bi − u
t

)
− Γ(a, u, t)

) Zi(a)
E[Z1(a)]

,

which determines ξni = τni − E [τni|Fi−1]. Then, we get(
nσ(a, xn)ϱ2

1

ϱ2Λ2(a, Υ(a), t)

)1/2

Q (a, u, t) =
1
√

n

n∑
i=1

ξni.
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Since ξni is a triangular array of martingale differences (according to the δ− field Fi−1) and based on
the unconditional Lindeberg condition, we may apply the central limit theorem (see [29]). Specifically,
we should investigate the following conditions:

1
n

n∑
i=1

E[ξ2
ni|Fi−1]→ 1 in probability, (4.5)

and

∀ε > 0,
1
n

n∑
i=1

E[ξ2
niIξ2

ni>ϵn
.]→ 0. (4.6)

We start with the proof of (4.5). To do this, we write

E[ξ2
ni|Fi−1] = E[τ2

ni|Fi−1] − E2[τni|Fi−1].

So, it is enough to show that
1
n

n∑
i=1

E2[ξni|Fi−1]
P
−→ 0, (4.7)

and
1
n

n∑
i=1

E[ξ2
ni|Fi−1]

P
−→ 1. (4.8)

For the first convergence, we have

|E[ξni|Fi−1]| =
1

EZ1(a)

(
σ(a, h)ϱ2

1

ϱ2Λ2(a, Υ(a), t)

)1/2

|E[(Γ(Ai, r, t) − Γ(a, r, t)Zi(a))|Fi−1]|,

≤
1

E[Z1(a)]

(
σ(a, h)ϱ2

1

ϱ2Λ2(a, Υ(a), t)

)1/2

sup
v∈B(a,yn)

|Γ(v, r, t) − Γ(a, r, t)|E[Zi(a)|Fi−1].

So, under the (AS2) and (AS3.ii)) means that

sup
v∈B(a,yn)

|Γ(v, r, t) − Γ(a, r, t)| = o(1).

By combining the last three results, we get

(|E[ξni|Fi−1]|)2
≤

∣∣∣∣∣∣Γ(v, r, t) − Γ(a, r, t)
(

ϱ2
1

ϱ2Λ2(a, Υ(a), t)

)∣∣∣∣∣∣ 1
σ(a, yn)

σ2
i (a, yn),

≤

∣∣∣∣∣∣Γ(v, r, t) − Γ(a, r, t)
(

ϱ2
1

ϱ2Λ2(a, Υ(a), t)

)∣∣∣∣∣∣ 1
σ(a, yn)

σi(a, yn).

Finally, using the fact that

1
nσ(a, yn)

n∑
i=1
σi(a, yn)

P
−→ 1,
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we get
1
n

n∑
i=1

(E[ξni|Fi−1])2 = sup
v∈B(a,h)

|Γ(v, r, t) − Γ(a, r, t)| ,

(
ϱ2

1

ϱ2Λ2(a, Υ(a), t)

)  1
nσ(a, yn)

n∑
i=1

σi(a, yn)

 = op(1).

Now, we look at convergence in (4.7). We compose

1
n

n∑
i=1

E[ξ2
ni|Fi−1]

=
1

n(EZ1(a))2

(
σ(a, h)ϱ2

1

ϱ2Λ2(a, Υ(a), t)

) n∑
i=1

E

[(
γa

(Bi − u
t

)
− Γ(a, u, t)

)2

Z2
i (a)|Fi−1

]
,

=
1

n(EZ1(a))2

(
σ(a, h)ϱ2

1

ϱ2Λ2(a, Υ(a), t)

)  n∑
i=1

E

[
γ2

a

(Bi − u
t

)
Φ2

i (a)|Fi−1

]
−

2Γ(a, u, t)
n(EZ1(a))2

(
σ(a, h)ϱ2

1

ϱ2Λ2(a, Υ(a), t)

) n∑
i=1

E

[
γa

(Bi − u
t

)
Φ2

i (a)|Fi−1

]
+

1
n(EZ1(a))2

(
σ(a, h)ϱ2

1

ϱ2Λ2(a, Υ(a), t)

)
Γ2(a, u, t)

n∑
i=1

E
[
Φ2

i (a)|Fi−1

]
.

Next, set the following variables:

D1 =

n∑
i=1

E

[
γ2

a

(Bi − u
t

)
Φ2

i (a)|Fi−1

]
,D2 =

n∑
i=1

E

[
γa

(Bi − u
t

)
Φ2

i (a)|Fi−1

]
,

and

D3 =

n∑
i=1

E
[
Φ2

i (a)|Fi−1

]
.

Then, use mathematical manipulation to writeD1 as:

D1 =Λ2(a, u, t)
n∑

i=1

E
[
Z2

i (a)|Fi−1

]
+

n∑
i=1

[
E

[
γ2

a

(Bi − u
t

)
Z2

i (a)
]
|Fi−1

]
−

n∑
i=1

Λ2(a, u, t)E
[
Z2

i |Fi−1

]
,

=Λ2(a, u, t)
n∑

i=1

E
[
Z2

i (a)|Fi−1

]
+

n∑
i=1

[
E

[
Z2

i (a)E
[
γ2

a

(Bi − u
t

)
|Bi−1

]
|Fi−1

]]
−

n∑
i=1

Λ2(a, u, t)E
[
Z2

i (a)|Fi−1

]
,

=Λ2(a, u, t)
n∑

i=1

E
[
Z2

i (a)|Fi−1

]
+

n∑
i=1

E

[
Z2

i (a)E
[
γ2

a

(Bi − u
t

)
|Ai

]
|Fi−1

]
AIMS Mathematics Volume 8, Issue 6, 13000–13023.



13009

−

n∑
i=1

Λ2(a, u, t)E
[
Z2

i (a)|Fi−1

]
.

We may determine the second term by using

1
nE [Z1(a)]

n∑
i=1

[
E

[
Z2

i (a)E
[
γ2

a

(Bi − u
t

)
|Ai

]
|Fi−1

]
− Λ2(a, u, t)E[Z2

i (a)|Fi−1]
]

≤ sup
v∈B(a,h)

|Λ2(a, v, t) − Λ2(a, u, t)|

 1
nσ(a, h)

n∑
i=1

P(σ(a, h)|Fi−1)

 .
Next, employ the continuity of Λ2 to get

1
n

n∑
i=1

E[τ2
ni|Fi−1] =

1
(nE [Z1(a)])2

(
σ(a, yn)ϱ2

1

ϱ2

) n∑
i=1

E
[
Z2

i (a)|Fi−1

]
+ o(1).

Here, we apply the identical methods described by [30] to

E
[
Z2

i (a)|Fi−1

]
= Z2(1)σi(a, yn) −

∫ 1

0
(Z2(v))

′

σi(a, vyn)dv

and

E [Z1(a)] = Z(1)σ(a, yn) −
∫ 1

0
(Z(v))

′

σi(a, vyn)dv.

It follows that
1

nσ(a, yn)

n∑
i=1

E
[
Z2

i (a)|Fi−1

]
=

Z2(1)
nσ(a, yn)

n∑
i=1

σi(a, yn)

−

∫ 1

0
(Z2(v))

′ σi(a, vyn)
nσ(a, yn)σ(a, vyn)

n∑
i=1

σi(a, vyn)dv

= Z2(1) −
∫ 1

0
(Z2(v))

′

ηa(v)dv + op(1) = ϱ2 + op(1),

and
1

nσ(a, yn)
E [Z1(a)] = ϱ2 + op(1).

We conclude that

lim
n→∞

1
n

n∑
i=1
E[τ2

ni|Fi−1] = 1,

which completes the proof of (4.5). In regards to (4.6), we write

ξ2
niIξ2

ni>ϵn
≤
|ξni|

2+µ

√
(ϵn)µ

, ∀ µ > 0.

Note that

E[ξ2+µ
ni ] = E

[
|τni(a) − E[τni(a)|Fi−1]|2+µ

]
≤ 21+µE

[
|τni(a)|2+µ

]
+ 21+µ

∣∣∣∣E [
E[τni(a)|Fi−1]2+µ

]∣∣∣∣ .
Then, use Jensen’s inequality to get
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E[ξ2+µ
ni ] ≤ CE

[
|τni(a)|2+µ

]
.

Consequently, it is necessary to evaluate E
[
|τni(a)|2+µ

]
. To do this, we again employ the Cr-inequality

to obtain

E
[
|τni(a)|2+k

]
≤ C

(
σ(a, xn)ϱ2

1

ϱ2Λ2(a, Υ(a), t)
E2[Z1(a)]

)1+µ/2

E

[
Z2+µ

i (a)γ2+µ
a

(Bi − r
t

)]
+ Γ2+µ(a, u, t)E

[
Z2+µ

i (a)
]
.

Now conditioning on Ai and using the fact that

E
[
γ

2+µ
a

(
Bi−r

t

)
|Ai

]
< ∞,

we obtain, with h ∈ (xn, yn), that

E
[
|τni(a)|2+µ

]
≤ C

(
1

σ(a, xn)

)2+µ/2

E
(
[Zi(a)]2+µ

)
≤ C

(
1

σ(a, xn)

)µ/2
.

Therefore,
1
n

n∑
i=1

E
[
ξ2

niIξ2
ni>ϵn

]
≤ C

(
1

nσ(a, xn)

)µ/2
→ 0,

completes the proof.
□

Lemma 2. Assume that the assumptions (AS1), (AS2) and (AS7) holds. Then, we get that

Γ̂D(h, a) − 1 = op(1).

Proof. Observe that Γ̂D(h, a) − 1 = R1,D(a) − R2,D(a), where

R1,D(h, a) := Γ̂D(h, a) − Γ̄D(h, a)

:=
1

nE[Z(h−1d(a, A1))]

n∑
i=1

(
Z

(
h−1d(a, Ai)

)
− E[Z(h−1d(a, Ai))|Fi−1]

)
,

R2,D(h, a) := Γ̂D(h, a) − E
(
Γ̄D(h, a)

)
:=

1
nE[Z(h−1d(a, A1))]

n∑
i=1

(
E[Z(h−1d(a, Ai))|Fi−1] − EZ(h−1d(a, A1))

)
,

=
1

nE[Z(h−1d(a, A1))]

n∑
i=1

E[Z(h−1d(a, Ai))|Fi−1] − 1.

So,

lim
xn≤h≤yn

R2,D(a) = oa.s.(1).

To address the first term R1,D(a) =
n∑

i=1

Lni(a), observe that Lni(a) is a triangular array of martingale

differences relative to the δ-field Fi−1. Combining the Burkholder ( [31], p. 23) and Jensen
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inequalities yield the following result:

∀ ε > 0, there exists a constant C0 > 0 such that

P(|R1,D(a)| > ε) ≤ C0

E
(
Z(h−1d(a, A1))

)2

ε2n
(
EZ(h−1d(a, A1))

)2 = O
(

1
ε2nσ(a, xn)

+ o(1)
)
.

Hence, we conclude that
R1,D(a) = oP(1) as n→ ∞.

□

Lemma 3. Assume that the assumptions (AS1), (AS2), (AS4) and (AS7) holds. Then, we get that(
nσ(a, xn)ϱ2

1

ϱ2Λ2(a, Υ(a), t)

)1/2

Bn(a, u, t̂) = v + o(1) as n→ ∞.

Proof. We get the following results from a simple manipulation:

Γ̄N(h, a, u, t̂)
Γ̄D(h, a)

=
1

n∑
i=1
E [Zi(a)|Fi−1]

n∑
i=1

E

[
Zi

[
E

[
γa

(B − u
t̂

)
|A1

]
− E

[
γa

(B − u
t̂

)
|A = a

]]
|Fi−1

]

+ E

[
γa

(B − u
t̂

)
|A = a

]
− E

[
γa

(
B − Υ(a)

t̂

)
|A = a

]
,

= D1(a) + D2(a).

(4.9)

The key idea of the proof for D1(a) is to employ the same method as in [28]. We obtain the following
under (AS3.iii):

Mi = E

[
Zi

[
E

[
γa

(B − u
t̂

)
|Ai

]
− E

[
γa

(B − u
t̂

)
|A = a

]]
|Fi−1

]
,

= E
[
Zi

[
E

[
Γ(Ai, u, t̂) − Γ(a, u, t̂)|d(a, Ai)|Fi−1

]]]
,

= E [ZiΘ(d(a, Ai), u)|Fi−1] ,

=

∫
Θ(rxn, u)Z(r)dPFi−1(rh),

= hΘ
′

(0, u)
∫

rZ(r)dPFi−1(rh).

So, with h ∈ (xn, yn), we employ continuity and the fact that∫
rZ(r)dPFi−1(rh) = Z(1)σi(a, h) −

∫ 1

0
(tZ(t))

′

σi(a, th)dt,

to get
1
n

n∑
i=1

Mi = xnΘ
′

(0, Υ(a))
(
Z(1) −

∫ 1

0
(tZ(t))

′

ηa(t)dt
)
+ op(yn).

Similarly, we obtain
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1
n

n∑
i=1
E [Zi(a)|Fi−1] =

(
Z(1) −

∫ 1

0
Z
′

(t)ηa(t)dt
)
+ op(1).

Lastly,
D1 = o(yn).

In the case of D2, we can use the Taylor expansion to lead, under (AS 3),

D2 = +v[nσ(a, xn)]−1/2δ(a, Υ(a))
∂

∂r
Γ(h, a, Υ(a), t̂) + o

(
[nσ(a, xn)]−1/2

)
.

As a result of the decomposition in (4.9), the outcome is obtained. □

Lemma 4. Assume that the assumptions (AS1), (AS2), (AS4) and (AS7) holds. Then, we get that(
nσ(a, xn)ϱ2

1

ϱ2Λ2(a, Υ(a), t)

)1/2

Rn(a, u, t̂) = o(1), a.co.

Proof. It suffices to demonstrate that

Γ̄N(h, a, r, t̂) − Γ(h, a, r, t̂)Γ̄D(h, a)
Γ̄D(h, a)

= op(1),

and ∣∣∣Γ̂N(h, a, r, t̂) − Γ̄N(h, a, r, t̂)
∣∣∣ = op(1).

On other hand, there is

Γ̄N(h, a, r, t̂) − Γ(h, a, r, t̂)Γ̄D(h, a)
Γ̄D(h, a)

=

1
nE[Z1(a)]Γ̄D(h, a)

n∑
i=1

E

[
Zi(a)E

[
γa

(Bi − r
t̂

)
|Bi−1

]
|Fi−1

]
− Γ(a, r, t̂)E [Zi(a)|Fi−1] ,

=
1

nE[Z1(a)]Γ̄D(h, a)

n∑
i=1

E

[
Zi(a)E

[
γa

(Bi − r
t̂

)
|Ai

]
|Fi−1

]
− Γ(a, r, t̂)E [Zi(a)|Fi−1] ,

≤
1

nE[Z1(a)]Γ̄D(h, a)

n∑
i=1

E
[
Zi(a)|Γ(Ai, r, t̂) − Γ(a, r, t̂)||Fi−1

]
.

We can conclude by using (AS2.ii)) that

Γ̄N(h, a, r, t̂) − Γ(a, r, t̂)Γ̄D(h, a)
Γ̄D(h, a)

≤ sup
a′∈B(a,h)

∣∣∣Γ(a′ , r, t̂) − Γ(a, r, t̂)∣∣∣→ 0.

However, when viewed from the other side,

Γ̂N(h, a, u, t̂) − Γ̄N(h, a, u, t̂) = op(1).

Our next objective is to present the following two results:
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E
[
Γ̂N(h, a, u, t̂) − Γ̄N(a, u, t̂)

]
→ 0,

and

Var
[
Γ̂N(a, u, t̂) − Γ̄N(a, u, t̂)

]
→ 0.

The first comes as a result of the Γ̂N(a, u, t̂) and Γ̄N(a, u, t̂) definitions. For the second one, we have

Γ̂N(a, u, t̂) − Γ̄N(a, u, t̂) =
n∑

i=1
µi(a, u, t̂),

where,

µi(a, u, t̂) =
1

nE[Z1]
Ziγa

(Bi − u
t̂

)
− E

[
Ziγa

(Bi − u
t̂

)
|Fi−1

]
.

Using the Burkholder’s inequality, we have

E

[
n∑

i=1
µi(a, u, t̂)

]2

≤
n∑

i=1
E

[
µi(a, u, t̂)

]2
.

Furthermore, using Jensen’s inequality, we can establish that

E2 [
µi(a, u, t̂)

]
≤

1
n2E2[Z1]

E

[
Z2

i γ
2
a

(Bi − u
t̂

)]
≤

1
n2E2[Z1]

E
[
Z2

i

]
≤

1
nσ2(a, xn)

σi(a, xn).

(AS2) now produces

Var
[
Γ̂N(a, u, t̂) − Γ̄N(a, u, t̂)

]
→ 0.

□

Lemma 5. Assume that the assumptions (AS1), (AS2) and (AS7) hold. For all n that is large enough,
Υ̂(a) exists a.s.

Proof. From the monotonicity of γa

(
B−.

t̂

)
, for all ϵ > 0,

Γ(a, Υ(a) − ϵ, t̂) ≤ Γ(a, Υ(a), t̂) ≤ Γ(a, Υ(a) + ϵ, t̂).

It is shown to us by employing an argument similar to that used in previous Lemmas that

Γ̂(a, r, t̂)→ Γ(a, r, t̂) in probability,

for all real fixed r ∈ Na. So, for n large enough and, ∀ϵ small enough

Γ̂(a, Υ(a) − ϵ, t̂) ≤ 0 ≤ Γ̂(a, Υ(a) + ϵ, t̂)

is verified with a probability approaching 1.
As γa is a continuous function, this implies that Γ̂(a, r, t̂) is a continuous function of r, and there

exists Υ̂(a) ∈ [Υ(a) − ϵ, Υ(a) + ϵ] such that Γ̂(a, Υ̂(a), t̂) = 0.
The uniqueness of Υ̂(a) is a direct result of the strict monotonicity of γa in the second component

and the fact that
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P

(
n∑

i=1
Zi = 0

)
= P

(
Γ̂D(a) = 0

)
→ 0 as n→ 0,

which indicates
(

n∑
i=1

Zi , 0
)

with a probability tends to 1. Furthermore, since Υ̂(a) ∈ [Υ(a) − ϵ, Υ(a) + ϵ]

in probability, accordingly, it produces

Υ̂(a)→ Υ(a) in probability as n→ ∞.

□

5. Simulation studies

In this section, we use simulation to evaluate the proposed estimate’s finite sample performance
compared to the other classical estimators.

Applying the following regression model:

B = r(A) + ϵ,

where B is the scalar response, r(A) is the functional variables, and ϵ is a normally distributed random
variable with a variance of 0.075. The functional variables used for explanation are built by:

Ai(r) = 2ωir2 +
1
2

cos (πuir) i = 1, . . . 200, r ∈ [0, 1],

where ωi are n independent real random variables, and follow Unif(0,1). Here ςi are i.i.d. realizations
of N(0, 1) and are independent from ωi and ui, which are generated independently by u0 ∼ N(0, 1). All
the curves Ai’s were discretized on the same grid generated from 200 measurements with equal spacing
in the interval (0, 1). The curves, Ai’s, are plotted in Figure 1.
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0
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1
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2
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t

X
(t

)

Figure 1. The curves Ai.

The second step in calculating the scalar response Bi is to consider the following operator:

r (a) =
∫ 1

0

10
(1 + |a (r) |)

dr.

Our main goal is to compare the following three methods.
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Method 1. Our estimator kNN Robust Equivariant Estimator (kNN REE) Υ̂ (a) is the zero with respect
to x of

n∑
i=1

Z
(
d (a, Ai)
Hn,k(a)

)
γa

(
Bi − x
t̂ (a)

)
n∑

i=1

Z
(
d (a, Ai)
Hn,k(a)

) = 0.

Method 2. kNN robust Kernel Estimator (kNN RKE), Υ̃(a) introduced by [32] Υ̃ (a) is the zero with
respect to x of

n∑
i=1

Z
(
d (a, Ai)
Hn,k(a)

)
γa (Bi − x)

n∑
i=1

Z
(
d (a, Ai)
Hn,k(a)

) = 0.

Method 3. The Classical kNN Kernel Estimator (kNN CKE) m̂ (a) (see [22]), is defined as

m̂ (a) =

∑n
i=1 BiZ

(
d(a,Ai)
Hn,k(a)

)
n∑

i=1

Z
(
d (a, Ai)
Hn,k(a)

) .

Next, the 200-sample is divided randomly into two parts: a training sample (Ai, Bi)150
i=1 used for

modeling, and a testing sample (Ai, Bi)200
i=151 used to validate the prediction effect. Using the training

sample, we can choose the optimal parameter kopt for kNN robust equivariant and robust estimators,
and the optimal parameter hopt for NW robust estimator by the following cross-validation procedures,
respectively. Specifically, for the robust equivariant kNN, we choose kopt = arg mink CV1(k), where

CV1(k) =
∑n

i=1

(
Yi − Υ̂

kNN
(−i) (a)

)2
and Υ̂kNN

(−i) (a) is the zero with respect to x of

n∑
j=1, j,i

Z

d
(
a, A j

)
Hn,k(a)

 γa

(
B j − x

t̂ (a)

)
n∑

j=1, j,i

Z

d
(
a, A j

)
Hn,k(a)


.

And the robust kNN one by kopt = arg mink CV2(k), where CV2(k) =
∑n

i=1

(
Yi − Υ̃

kNN
(−i) (a)

)2
and Υ̃kNN

(−i) (a)
is the zero with respect to x of

n∑
j=1, j,i

Z

d
(
a, A j

)
Hn,k(a)

 γa

(
B j − x

)
n∑

j=1, j,i

Z

d
(
a, A j

)
Hn,k(a)


.
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Similarly, we choose hopt = arg minh CV3(h) for the NW-kernel regression method, where CV3(h) =
n∑

i=1

(
Yi − m̂kernel

(−i) (a)
)2

and

m̂kernel
(−i) (a) =

n∑
j=1, j,i

BiZ

d
(
a, A j

)
Hn,k(a)


n∑

j=1, j,i

Z

d
(
a, A j

)
Hn,k(a)


.

Through this simulation study, we use the quadratic kernel Z, defined as Z(v) = 3
4

(
1 − v2

)
1[0,1](v). The

semi-metric employed here is the first derivative of the sample curves provided by:

d
(
Ai, A j

)
=

√∫ (
A′i(r) − A′j(r)

)2
dr.

We worked with several functions (L1 − L2, Androws, Tuckey, Cauchy . . . ), but we found that the best

results are obtained when the L1−L2 function

γa(t) =
t√

1 + t2/2

 is used. The predictions of the three

models are displayed in Figure 2.
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Figure 2. Predictions of the three models.

The empirical mean square error (MSE) is used to evaluate the predictors’ effectiveness, where,

MS EΥ̂ = n−1
n∑

i=1

(
Υ (Ai) − Υ̂kNN

(−i) (Ai)
)2
, MS EΥ̃ = n−1

n∑
i=1

(
Υ (Ai) − Υ̃kNN

(−i) (Ai)
)2
,

and

MS Em̂ = n−1
n∑

i=1

(
Υ (Ai) − m̂kernel

(−i) (Ai)
)2
.

The MSEs of the three models are displayed in Figure 3. In this comparative study, identical conditions
are applied to the three estimators. The first illustration relates to the MSE of each estimator. Then, 100
independent replications of the same data are generated using n−samples(n = 200).
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Figure 3. MSE of the three models.

For the second scenario, we introduce some outliers to the data to highlight the major aspect of our
approach. In this part, we simulated data with MC = 0, 5, and 10 for the multiplier (MC is the number
of perturbed observations). In all six instances, we reached the same conclusion: typically, when
outliers are presented, the robust regression method performs better than the traditional one. Even
if the MS E of both approaches increases significantly with the number of perturbed points and the
multiplicative coefficient MC value, the MS E of the robust kNN method remains extremely low. The
results presented in Table 1 demonstrate that the robust kNN technique is superior to the other methods
and that our functional forecasting procedure for the robust method behaves well in the presence of
outliers.

Table 1. Comparison between the three methods in the presence of outliers.

MC kNN CKE kNN RKE kNN REE
0 0.5507103 0.5919875 0.5519775
5 944.1715413 0.9448654 0.5738740
10 2819.2037625 1.6516898 0.5877922

The primary use of Theorem 1 is to construct a confidence interval for the actual value of r(a)
given the curve A = a. Figures 4 and 5 clearly demonstrate the superior performance of our estimator
compared to the standard regression, both in the absence and presence of outliers.
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Figure 4. Extremes of real values and confidence intervals (simulation data in the presence
of 10 outliers). The true values are connected by the solid black curve. The dashed Blue
curves connect the expected minimum and maximum values.

AIMS Mathematics Volume 8, Issue 6, 13000–13023.



13018

●
● ● ● ●

● ● ● ● ● ●
● ● ● ●

2 4 6 8 10 12 14

−1
00

0
10

0
20

0

Classic IC

Y 
tes

t

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

2 4 6 8 10 12 14

−5
0

5
10

15
20

25

Robust IC

Y 
tes

t

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10 12 14

4
5

6
7

8
9

10

Robust Equivariant IC

Y 
tes

t

Figure 5. Extremes of real values and confidence intervals (simulation data in the presence
of 10 outliers). The true values are connected by the solid black curve. The dashed Blue
curves connect the expected minimum and maximum values.

6. Real data application

We will also look at how straightforward it is to apply the k-NN robust regression with an unknown
scale parameter in practice, in addition to discussing its advantages over competing models (regression
and robust regression). In this paper, we compare the k-NN robust regression with a scale parameter
to other regressions in the risk analysis field (robust also). Therefore, we perform an empirical study
based on the daily returns of r(t) of 4 worldwide financial stock indices to quantify this gain in the
real world.

The link to the data used in this study is mentioned in the “Data Availability Statement”
Section, which has all the information you need. It covers the time span from January 1, 2017 to
December 31, 2020. We use this information to analyze 192 random months from various sources.
All primary characteristics are still present in the evaluated functional data (see Figure 6).

Time
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NASDAQ 1000
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WILL2500IND

Figure 6. The daily values of Z(t) = −100 log
(

r(t)
r(t − 1)

)
for the 4 stocks index.

We assume that the curve X(.) represents the monthly curve of the time series.
Z(t) = −100log( r(t)

r(t−1) ), and Y = Z(tl + 1) indicates the true response variable, where tl her means the
month’s last day. The efficiency of these approaches, like that of all statistical modeling, is firmly
connected to the selection of the various parameters included in the estimators’ definition. To perform
a fair comparison of the two mean squared errors, we follow the same procedure when selecting the
fundamental parameters in the estimators. Specifically, we employ this procedure with a quadratic
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kernel on the interval (0, 1) and the PCA metric. Note that the ideal bandwidth was determined by
dividing the data into subsets (Learning and testing samples (150+42)) and using the Cross-Validation
rule to the 150-learning observations to determine the best smoothing parameter. We have only
studied the most prevalent approach, cross-validated selected bandwidth, for the purpose of brevity.
Lastly, the effectiveness of the proposed estimator’s strategies is computed using the empirical mean
square error (MSE) criterion (defined in the simulation section).

We test the proposed criteria 100 times, and in each case, we switch the observations from the
learning part to the testing part. These box-plot figures show the errors that were found. It is clear that
the k-NN robust equivariant estimation is slightly more accurate than the other estimation methods (see
Figures 7–10).
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Figure 7. Comparison of the MSE between the kNN CKE, kNN RKE and kNN REE
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Figure 8. Comparison of the MSE between the kNN CKE, kNN RKE and kNN REE
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Figures 11–14 show the observed responses in terms of their predictions of the four Index markets
for the various proposed estimators. The robust equivariant k-NN method appears to have a slight
precision advantage over the other presented models.
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Figure 11. Yi’s predictions versus their Classical (left panel), Robust (middle panel), and
Equivariant models (right panel) for DJA Index.
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Figure 12. Yi’s predictions versus their Classical (left panel), Robust (middle panel), and
Equivariant models (right panel) for NASDAQ Index.
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Figure 13. Yi’s predictions versus their Classical (left panel), Robust (middle panel), and
Equivariant models (right panel) for SP500 Index.
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Figure 14. Yi’s predictions versus their Classical (left panel), Robust (middle panel), and
Equivariant models (right panel) for WILL2500 Index.

7. Conclusions

In this paper, we estimate the functional ergodic data with the k-NN method and show their almost
certainly convergence. The asymptotic normality aspect in the case of the robust regression function
holds even when the scale parameter is unknown. The results were established under enough standard
conditions that make it possible to look at different structural axes, such as the functional naturalness
of the model and the data, the regression function’s robustness, and the observations’ correlation. The
simulation study results and data application reveal the consistency and superiority of our theoretical
analysis since our k-NN estimator’s performance outperforms a nonparametric series estimator.

For future work, most techniques that use nonparametric functional kernel smoothers could be
effectively extended. Among other things, the challenge here would be to extend the concepts to other
nonparametric predictors, such as functional local linear, functional kNN, etc. Further applications to
other types of prediction models (such as functional single index models, partial linear models, . . .,
etc.) in which an initial kernel stage plays a crucial role are also possible. Also, our asymptotic result
could be applied to other types of dependency data, especially those associated positively (see [33]).
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