Research article

Results on monochromatic vertex disconnection of graphs

Miao $\mathbf{F u}^{1}$ and Yuqin Zhang ${ }^{2, *}$
${ }^{1}$ Center for Applied Mathematics, Tianjin University, Tianjin 300072, China
${ }^{2}$ School of Mathematics, Tianjin University, Tianjin 300072, China

* Correspondence: Email: yuqinzhang@tju.edu.cn.

Abstract

Let G be a vertex-colored graph. A vertex cut S of G is called a monochromatic vertex cut if the vertices of S are colored with the same color. A graph G is monochromatically vertex-disconnected if any two nonadjacent vertices of G have a monochromatic vertex cut separating them. The monochromatic vertex disconnection number of G, denoted by $\operatorname{mvd}(G)$, is the maximum number of colors that are used to make G monochromatically vertex-disconnected. In this paper, the connection between the graph parameters are studied: $m v d(G)$, connectivity and block decomposition. We determine the value of $\operatorname{mvd}(G)$ for some well-known graphs, and then characterize G when $n-5 \leq m v d(G) \leq n$ and all blocks of G are minimally 2 -connected triangle-free graphs. We obtain the maximum size of a graph G with $\operatorname{mvd}(G)=k$ for any k. Finally, we study the Erdős-Gallai-type results for $m v d(G)$, and completely solve them.

Keywords: monochromatic vertex cut; monochromatic vertex disconnection number; connectivity; block; Erdős-Gallai-type problems
Mathematics Subject Classification: 05C15, 05C35, 05C40

1. Introduction

Connectivity is perhaps the most fundamental graph theoretic subject, in both the combinatorial and network science senses. To expand its application area, connectivity is strengthened through tasks such as requiring graph coloring, Hamiltonicity [13] and conditional connectivity [11].

In 2008, Chartrand et al. [5, 6] introduced an interesting way, i.e., the rainbow k-connection, to strengthen conventional connectivity. An edge-colored graph G is called rainbow k-connected if any pair of vertices are connected by k internally vertex-disjoint rainbow paths, where a rainbow path is a path with edges that all carry different colors. This concept comes from the communication of information between agencies of the government, and it is also applied to communication networks. More developments for variants of rainbow k-connectivity of different graph families can be found,
e.g., in the survey [18].

Moving away from deterministic graphs, similar results have also been investigated for random graph models (see [7,22]). In particular, a multiplex approach to cope with rainbow-related concepts has recently attracted increasing research attention in random settings. For example, Shang [23] approached rainbow k-connectivity by considering an alternative random network with multiple layers. Meanwhile, many colored versions of connectivity parameters have been introduced in recent years. For example, the monochromatic connection introduced by Caro and Yuster [3] in 2011 is defined from the monochromatic version; the monochromatic vertex connection introduced by Cai, Li and Wu [4] in 2018 is defined from the vertex version. For more results, we refer the reader to [$10,14,19,23$].

There are two ways to study the connectivity, one using paths and the other using vertex cuts. These concepts mentioned above use paths, so it is natural to consider monochromatic vertex cuts. Let G be a vertex-colored graph. A vertex cut S is called a monochromatic vertex cut if the vertices of S are colored with the same color, and a monochromatic $x-y$ vertex cut is a monochromatic vertex cut that separates x and y. Obviously, if x is adjacent to y, there is no $x-y$ vertex cut, so we only need to consider nonadjacent vertices in the sequel. Then, G is called monochromatically vertexdisconnected if any two nonadjacent vertices of G have a monochromatic vertex cut separating them; the corresponding coloring is called monochromatic vertex-disconnection coloring (MVD-coloring for short). The monochromatic vertex disconnection number of G, denoted by $m v d(G)$, is the maximum number of colors that are used to make G monochromatically vertex-disconnected. An MVD-coloring with $m v d(G)$ colors is called an $m v d$-coloring of G.

In addition to being a natural combinatorial measure, our parameter can also be applied to communication networks. Suppose that G represents a network (e.g., a cellular network) where messages can be transmitted between any two vertices. To intercept messages (e.g., to prevent the transmission of error messages), each vertex is equipped with an interceptor that requires a fixed password (color) to be turned on. There is a fixed interception passphrase between any two different vertices. Entering this passphrase at the vertex cut where the password matches will turn on these interceptors and intercept the message between the two vertices. To enhance system security, the number of passwords should be as large as possible. This number is precisely $\operatorname{mvd}(G)$.

In this paper, the connection between graph parameters are studied: $m v d(G)$ and connectivity $\kappa(G)$. We obtain the following results in Section 2:
Theorem 1.1. If G is a connected non-complete graph, then $1 \leq m v d(G) \leq n-\kappa^{+}(G)+1 \leq n-\kappa(G)+1$. The upper bound is tight.

Further, for the minimally 2-connected graph of order $n \geq 4$, we give a new upper bound:
Theorem 1.2. If G is a minimally 2-connected graph of order $n \geq 4$, then $m v d(G) \leq\left\lfloor\frac{n}{2}\right\rfloor$. The bound is tight.

For the graph G with $\kappa(G)=1, m v d$-coloring, a global property of G, is transformed into a local property of each block, which greatly simplifies the original problem:
Theorem 1.3. If $\kappa(G)=1$ and G has r blocks B_{1}, \ldots, B_{r}, then $\operatorname{mvd}(G)=\left(\sum_{i=1}^{r} m v d\left(B_{i}\right)\right)-r+1$.
In Section 3, we focus on the value of $\operatorname{mvd}(G)$ for some well-known graphs with $\kappa(G) \geq 2$ and obtain several classes of graphs with $\operatorname{mvd}(G)=k$, where $k \in\{1,2, n\}$. Moreover, we completely characterize G when $n-5 \leq \operatorname{mvd}(G) \leq n$ and all blocks of G are minimally 2-connected triangle-free graphs.

The Erdős-Gallai theorem [8] originated in 1959 and is an interesting problem in extremal graph theory, where the Erdős-Gallai-type result aims at determining the maximum or minimum value of a graph parameter with some given properties. For a graph parameter, it is always interesting and challenging to get the Erdős-Gallai-type results; see $[1,9,15,16,20]$ for more such results on various kinds of graph parameters. In Section 4, we study two kinds of Erdős-Gallai-type problems for our parameter $m v d(G)$.
Problem I. Given two positive integers n and k with $1 \leq k \leq n$, compute the minimum integer $f_{v}(n, k)$ such that, for any graph G of order n, if $|E(G)| \geq f_{v}(n, k)$, then $\operatorname{mvd}(G) \geq k$.
Problem II. Given two positive integers n and k with $1 \leq k \leq n$, compute the maximum integer $g_{v}(n, k)$ such that, for any graph G of order n, if $|E(G)| \leq g_{v}(n, k)$, then $\operatorname{mvd}(G) \leq k$.

By Theorem 1.3, for any tree G of order n, we have $\operatorname{mvd}(G)=n$, so $g_{v}(n, k)$ does not exist for $1 \leq k \leq n-1$. Since $\operatorname{mvd}\left(K_{n}\right)=n$, where K_{n} is a complete graph, $g_{v}(n, n)=\frac{n(n-1)}{2}$. The result of Problem I is shown below.

Theorem 1.4. Given two positive integers n and k with $n \geq 5$ and $1 \leq k \leq n$,

$$
f_{v}(n, k)= \begin{cases}n-1, & k=1 \\ \frac{n(n-1)}{2}-1, & 2 \leq k \leq 3 \\ \frac{n(n-1)}{2}, & 4 \leq k \leq n\end{cases}
$$

Moreover, we obtain the maximum size of G with $m v d(G)=k$ for any k.
Theorem 1.5. Given two positive integers n and k with $n>4$ and $1 \leq k \leq n$, the maximum size of a connected graph G of order n with $m v d(G)=k$ is

$$
|E(G)|_{\max }= \begin{cases}\frac{n(n-1)}{2}-2, & k=1 \text { and } n \geq 5, \\ 7, & k=2 \text { and } n=5, \\ \frac{n(n-1)}{2}-4, & k=2 \text { and } n \geq 6, \\ \frac{n(n-1)}{2}-k+2, & 3 \leq k \leq n-1, \\ \frac{n(n-1)}{2}, & k=n\end{cases}
$$

2. Some basic results

All graphs considered in this paper are simple, connected, finite and undirected. We follow the terminology and notation of Bondy and Murty [2]. Let $n=|G|$ be the order of G, and let $|E(G)|$ be the size of G. For $D \subseteq E(G), G-D$ is the graph obtained by removing D from G. For $S \subseteq V(G), G-S$ is the graph obtained by removing S and the edges incident to the vertices of S from G. We use $[r]$ to denote the set $\{1,2, \ldots, r\}$. For a vertex-coloring τ of $G, \tau(v)$ is the color of vertex $v, \tau(G)$ is the set of colors used in G and $|\tau(G)|$ is the number of colors in $\tau(G)$. If H is a subgraph of G, then the part of the coloring of τ on H is called τ-restricted on H. To show the connection between $\operatorname{mvd}(G)$ and connectivity $\kappa(G)$, we need the following lemma:

Lemma 2.1. If τ is an MVD-coloring of G, then τ restricted on $G[S]$ is also an MVD-coloring of $G[S]$.

Proof. Let the coloring of τ restricted on $G[S]$ be denoted as τ^{\prime}, and let x and y be two nonadjacent vertices of $G[S]$. If D is a monochromatic $x-y$ vertex cut of G, then $D^{\prime}=D \cap V(G[S])$ is a monochromatic x - y vertex cut in $G[S]$. Otherwise, if there is an x, y-path P in $G[S]-D^{\prime}$, then P is also in $G-D$, which is a contradiction. Thus, τ^{\prime} is an $M V D$-coloring of $G[S]$.

Proof of Theorem 1.1. G is a non-complete graph and x and y are two nonadjacent vertices of G. Let $\kappa(x, y)$ be the minimum size of an $x-y$ vertex cut, and let $\kappa^{+}(G)$ be the upper bound of the function $\kappa(x, y)$. Obviously, $\operatorname{mvd}(G) \geq 1$. For the upper bound, assume that S is a monochromatic $x-y$ vertex cut. Therefore, $\operatorname{mvd}(G) \leq 1+(n-|S|) \leq n-\kappa(x, y)+1$. Thus, $\operatorname{mvd}(G) \leq n-\kappa^{+}(G)+1 \leq n-\kappa(G)+1$.

Tight example 1: Let G be a graph obtained by adding k edges to K_{n-1} from a vertex v outside K_{n-1}, where $k \in[n-2]$. Clearly, $\kappa(G)=k$. Define a vertex-coloring τ of $G: V(G) \rightarrow[n-k+1]$ such that $\tau(G-N(v)) \rightarrow[n-k]$ and $\tau(N(v))=n-k+1$. If x and y are two nonadjacent vertices in G, then either x or y is v, i.e., $v=x$. Since $\tau(N(v))=n-k+1, N(v)$ is a monochromatic $v-y$ vertex cut and τ is a $M V D$-coloring of G. So, $m v d(G) \geq n-k+1$. It follows that $m v d(G)=n-\kappa(G)+1$. The upper bound is tight.

A graph G is minimally 2-connected (minimal block) if G is 2 -connected but $G-\{e\}$ is not 2connected for every $e \in E(G)$. Before proving Theorem 1.2, we need more preparation: a nest sequence of graphs is a sequence $G_{0}, G_{1}, \ldots, G_{t}$ of graphs such that $G_{i} \subset G_{i+1}, 0 \leq i<t$; an ear decomposition of a 2 -connected graph G is a nest sequence $G_{0}, G_{1}, \ldots, G_{t}$ of 2-connected subgraphs of G satisfying the following conditions: (i) G_{0} is a cycle of G; (ii) $G_{i+1}=G_{i} \cup P_{i}$, where P_{i} is an ear of $G_{i}, 0 \leq i<t$; (iii) $G_{t}=G$.

Lemma 2.2. [17] Let G be a minimally 2-connected graph, and G is not a cycle. Then, G has an ear decomposition $G_{0}, G_{1}, \ldots, G_{t}(t \geq 1)$ satisfying the following conditions:
(i) $G_{i+1}=G_{i} \cup P_{i}(0 \leq i<t)$, where P_{i} is an ear of G_{i} in G and at least one vertex of P_{i} has degree two in G;
(ii) each of the two internally disjoint paths in G_{0} between the endpoints of P_{0} has at least one vertex with degree two in G.

Lemma 2.3. [21] If G is a minimally 2-connected graph of order $n \geq 4$, then G contains no triangles.
Lemma 2.4. If G is a cycle of order $n \geq 4$, then $\operatorname{mvd}(G)=\left\lfloor\frac{n}{2}\right\rfloor$.
Proof. Let $G=v_{1} e_{1} \ldots v_{n} e_{n} v_{1}$. Define a vertex-coloring $\tau: V(G) \rightarrow\left[\left\lfloor\frac{n}{2}\right\rfloor\right]$ such that, if $j \equiv i(\bmod$ $\left\lfloor\frac{n}{2}\right\rfloor$, then $\tau\left(v_{j}\right)=i$, where $i \in\left[\left\lfloor\frac{n}{2}\right\rfloor\right]$ and $j \in[n]$. It can be shown that, for any two nonadjacent vertices x and y, there is a monochromatic $x-y$ vertex cut. So, τ is an $M V D$-coloring and $\operatorname{mvd}(G) \geq\left\lfloor\frac{n}{2}\right\rfloor$.

If, on the contrary, for $n \geq 4, \operatorname{mvd}(G) \geq\left\lfloor\frac{n}{2}\right\rfloor+1$ and τ is an $m v d$-coloring of G with $|\tau(G)|=$ $\operatorname{mvd}(G) \geq\left\lfloor\frac{n}{2}\right\rfloor+1$, then there must be a color that colors only one vertex v_{i}; otherwise, we have $V(G) \geq 2|\tau(G)| \geq 2\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right) \geq n+1$. Since $\kappa(G)=2$, the monochromatic $v_{i-1}-v_{i+1}$ vertex cut must contain v_{i} and some vertex v_{j} in $G-\left\{v_{i-1}, v_{i}, v_{i+1}\right\}$. However, $\tau\left(v_{i}\right) \neq \tau\left(v_{j}\right)$, which contradicts the fact that τ is an $m v d$-coloring. Thus, $m v d(G)=\left\lfloor\frac{n}{2}\right\rfloor$.

Proof of Theorem 1.2. We make the following claim:

Claim 1: If G is a 2-connected triangle-free graph and every ear $P_{i}(0 \leq i<t)$ has internal vertices, then $m v d(G) \leq\left\lfloor\frac{n}{2}\right\rfloor$.

Let $F=\left\{G_{0}, G_{1}, \ldots, G_{t}\right\}$ be an ear decomposition of G. We use induction on $|F|$. By Lemma 2.4, the claim holds for $|F|=1$. If $|F|=t+1>1$, let τ be an $m v d$-coloring of G. Since $\left|P_{t-1}\right| \geq 3, G_{t-1}$ is a connected vertex-induced subgraph of G. By Lemma 2.1, τ restricted on G_{t-1} is an $M V D$-coloring of G_{t-1}. By induction, we have

$$
\left|\tau\left(G_{t-1}\right)\right| \leq m v d\left(G_{t-1}\right) \leq\left\lfloor\frac{\left|G_{t-1}\right|}{2}\right\rfloor=\left\lfloor\frac{n-\left|P_{t-1}\right|+2}{2}\right\rfloor .
$$

Suppose that the endpoints of P_{t-1} are a and b and L is the shortest a, b-path in G_{t-1}. Since P_{t-1} is the last ear, cycle $C=L \cup P_{t-1}$ is a connected vertex-induced subgraph of G and τ restricted on C is an $M V D$-coloring of C. Then, there are at most $\left|P_{t-1}\right|-2$ vertices that are assigned colors in $\tau(G)-\tau\left(G_{t-1}\right)$. Since $|C| \geq 4$, each color in $\tau(G)-\tau\left(G_{t-1}\right)$ colors at least two internal vertices of P_{t-1}. Otherwise, if $j \in \tau(G)-\tau\left(G_{t-1}\right)$ and only colors one internal vertex of P_{t-1}, say x_{j}, then x_{j-1} and x_{j+1} are two nonadjacent vertices of G and the monochromatic $x_{j-1}-x_{j+1}$ vertex cut must contain x_{j} and another vertex, which is a contradiction. Then, $\left|\tau(G)-\tau\left(G_{t-1}\right)\right| \leq\left\lfloor\frac{\mid P_{t-1}-2}{2}\right\rfloor$. So,

$$
\operatorname{mvd}(G)=|\tau(G)|=\left|\tau\left(G_{t-1}\right)\right|+\left|\tau(G)-\tau\left(G_{t-1}\right)\right| \leq\left\lfloor\frac{n-\left|P_{t-1}\right|+2}{2}\right\rfloor+\left\lfloor\frac{\left|P_{t-1}\right|-2}{2}\right\rfloor \leq\left\lfloor\frac{n}{2}\right\rfloor .
$$

Above all, $m v d(G) \leq\left\lfloor\frac{n}{2}\right\rfloor$.
By Lemmas 2.2 and 2.3, if G is not a cycle, then there is an ear decomposition satisfying the conditions in Claim 1. Thus, $\operatorname{mvd}(G) \leq\left\lfloor\frac{n}{2}\right\rfloor$.
Tight example 2: If G is a cycle, then, according to Lemma 2.4, we have $\operatorname{mvd}(G)=\left\lfloor\frac{n}{2}\right\rfloor$. The bound is tight.

A block is a maximal connected subgraph of G that has no cut-vertex. Every block of a nontrivial connected graph is either K_{2} or a 2-connected subgraph, called trivial and nontrivial, respectively. To show the connection between $\operatorname{mvd}(G)$ and block decomposition, we need the following result:
Theorem 2.1. Let G be a connected graph with r blocks. Then, τ is an $m v d$-coloring of G if and only if τ restricted on each block is an mvd-coloring of each block and the colors of different blocks are different except at the cut vertices.

Proof. Let $\left\{B_{1}, \ldots, B_{r}\right\}$ be the block decomposition of G. Let τ be a vertex-coloring of G, and let τ_{i} be the coloring of τ restricted on $B_{i}, i \in[r]$. If G has no cut vertex, then $G=B_{1}$ and the result follows. Now, we assume that G has at least one cut vertex:
Claim 1: τ is an $M V D$-coloring of G if and only if τ restricted on each block is an $M V D$-coloring of each block.

Since each block is a vertex-induced subgraph of G, the necessity is obvious by Lemma 2.1. Now, let τ_{i} be an $M V D$-coloring of B_{i}, where $i \in[r]$. For any two nonadjacent vertices x and y in G, if there is a block, say B_{1}, which contains both x and y, then any monochromatic $x-y$ vertex cut in B_{1} is also a monochromatic $x-y$ vertex cut in G. If x and y are in different blocks, then there is exactly one internally disjoint x, y-path containing at least one cut vertex v. The vertex v is monochromatic $x-y$ vertex cut in G. Thus, τ is an $M V D$-coloring of G.

Next, let τ_{i} be an $m v d$-coloring of B_{i} satisfying that, if $B_{i} \cap B_{j}=v$, then $\tau_{i}\left(B_{i}\right) \cap \tau_{j}\left(B_{j}\right)=\tau_{i}(v)=\tau_{j}(v)$, and if $B_{i} \cap B_{j}=\varnothing$, then $\tau_{i}\left(B_{i}\right) \cap \tau_{j}\left(B_{j}\right)=\varnothing$, where $i, j \in[r]$ and $i \neq j$. Then, τ is an MVD-coloring of G by Claim 1. We claim that τ is an $m v d$-coloring of G. Otherwise, there is an $m v d$-coloring τ^{\prime} of G satisfying $\left|\tau^{\prime}(G)\right|>|\tau(G)|$. Let the coloring of τ^{\prime} restricted on B_{i} be τ_{i}^{\prime}, which is an MVD-coloring of B_{i} by Claim 1. Then, for any $i \in[r],\left|\tau_{i}^{\prime}\left(B_{i}\right)\right| \leq\left|\tau_{i}\left(B_{i}\right)\right|$, which contradicts $\left|\tau^{\prime}(G)\right|>|\tau(G)|$. Thus, τ is an $m v d$-coloring of G.

Now, we prove the necessity of the theorem. Let τ be an $m v d$-coloring of G. According to Claim 1, τ_{i} is an $M V D$-coloring of $B_{i}, i \in[r]$. Similar to the proof of Claim 1, it can be shown that, if $B_{i} \cap B_{j}=v$, then $\tau_{i}\left(B_{i}\right) \cap \tau_{j}\left(B_{j}\right)=\tau_{i}(v)=\tau_{j}(v)$, and if $B_{i} \cap B_{j}=\varnothing$, then $\tau_{i}\left(B_{i}\right) \cap \tau_{j}\left(B_{j}\right)=\varnothing$, where $i, j \in[r]$ and $i \neq j$. We only need to prove that τ_{i} is an $m v d$-coloring of $B_{i}, i \in[r]$. If τ_{1} is not an $m v d$-coloring of B_{1}, then there must be an $m v d$-coloring τ_{1}^{\prime} of B_{1} satisfying that all colors in $\tau_{1}^{\prime}\left(B_{1}\right)$ are unused colors, except for those owned by cut vertices. It follows that $\left|\tau_{1}^{\prime}\left(B_{1}\right)\right|>\left|\tau_{1}\left(B_{1}\right)\right|$ and $\left|\tau^{\prime}(G)\right|>|\tau(G)|$. According to the sufficiency of Claim $1, \tau^{\prime}$ is an $M V D$-coloring of G, which contradicts the maximality of τ.

Proof of Theorem 1.3. Let G be a connected graph with blocks $B_{1}, B_{2}, \ldots, B_{r}$, and let τ be an $m v d$ coloring of G. We use induction on r. The result holds for $r=1$. If $r>1$, then G is not 2-connected; we know that there is a block, say B_{r}, containing only one cut vertex, say v. Let $G^{\prime}=G-\left(V\left(B_{r}\right)-\{v\}\right)$. Then, G^{\prime} is a connected graph with blocks $B_{1}, B_{2}, \ldots, B_{r-1}$. By Theorem $2.1, \tau$ restricted on G^{\prime} is an $m v d$-coloring of G^{\prime}, and, combined with the induction hypothesis, we have $\left|\tau\left(G^{\prime}\right)\right|=m v d\left(G^{\prime}\right)=$ $\left(\sum_{i=1}^{r-1} m v d\left(B_{i}\right)\right)-(r-1)+1$. According to Theorem 2.1, τ restricted on B_{r} is an $m v d$-coloring of B_{r} and $\tau\left(B_{r}\right) \cap \tau\left(G^{\prime}\right)=\tau(v)$. So, we deleted $\left|m v d\left(B_{r}\right)\right|-1$ colors from $\tau(G)$ to obtain $\tau\left(G^{\prime}\right) ; m v d(G)$ is as desired.

3. Results for special graphs

If G and H are vertex-disjoint, then let $G \vee H$ denote the join of G and H, which is obtained from G and H by adding edges $\{x y: x \in V(G), y \in V(H)\}$. If C_{n-1} is a cycle of order $n-1$, then $W_{n}=C_{n-1} \vee K_{1}$ is called a wheel graph. We first show several classes of graphs with $\operatorname{mvd}(G)=k$, where $k \in\{1,2, n\}$.

Theorem 3.1. If G is one of the following graphs, then $m v d(G)=1$.
(i) G is a wheel graph other than W_{4};
(ii) $G=K_{n_{1}, \ldots, n_{k}}$ is a complete k-partite graph with $n_{k}, n_{k-1} \geq 2$ and $k>2$.
(1) Let $G=W_{n}=C_{n-1} \vee K_{1}$, where cycle $C_{n-1}=v_{1} v_{2} \ldots v_{n-1} v_{1}$ and $K_{1}=v$. It is known that $\operatorname{mvd}\left(W_{4}\right)=m v d\left(K_{4}\right)=4$. We claim that $\operatorname{mvd}\left(W_{n}\right)=1$ for $n>4$.

Let τ be an $m v d$-coloring of W_{n}, say $\tau(v)=1$. Since $n>4, v_{1}$ and v_{3} are two nonadjacent vertices with three internally disjoint v_{1}, v_{3}-paths, namely, $v_{1} v_{2} v_{3}, v_{1} v v_{3}$ and $v_{1} v_{n-1} v_{n-2} \cdots v_{4} v_{3}$. Since $\kappa\left(W_{n}\right)=3$, any monochromatic $v_{1}-v_{3}$ vertex cut must contain the vertex set $\left\{v_{2}, v, v_{i}\right\}$, where $v_{i} \in\left\{v_{n-1}, v_{n-2}, \ldots, v_{4}\right\}$, so $\tau\left(v_{2}\right)=1$. Similarly, v_{2} and v_{4} are two nonadjacent vertices, and we get $\tau\left(v_{3}\right)=1$. Repeat operations above until all vertices of C_{n-1} are colored, and we get $\tau(v)=\tau\left(v_{1}\right)=\tau\left(v_{2}\right)=\cdots=\tau\left(v_{n-1}\right)=1$. Therefore, $\operatorname{mvd}\left(W_{n}\right)=1$ for $n>4$.
(2) Let $G=K_{n_{1}, n_{2}, \ldots, n_{k}}$ be a complete k-partite graph of order n, where $k \geq 2$ and $1 \leq n_{1} \leq n_{2} \leq \cdots \leq$ n_{k}. Let $V_{1}, V_{2}, \ldots, V_{k}$ be the vertex-partition sets of G with $\left|V_{i}\right|=n_{i}$, where $i \in[k]$. There are four cases below.

Case 1. $n_{i}=1$ for $i \in[k]$; then, $\operatorname{mvd}(G)=\operatorname{mvd}\left(K_{n}\right)=n$.
Case 2. $n_{i}=1$ for $i \in[k-1]$, and $n_{k} \geq 2$:
Define a vertex-coloring $\tau: V(G) \rightarrow[n-k+2]$ such that $\tau\left(V_{k}\right) \rightarrow[n-k+1]$ and $\tau\left(V_{i}\right)=n-k+2$ for $i \in[k-1]$. If x and y are two nonadjacent vertices in G, then $x, y \in V_{k}$ and $V(G)-V_{k}$ is a monochromatic $x-y$ vertex cut in G. Thus, τ is an MVD-coloring of G and $\operatorname{mvd}(G) \geq n-k+2$. On the other hand, since any two vertices in V_{k} have $k-1$ internally disjoint paths, according to Theorem 1.1, $m v d(G) \leq n-\kappa^{+}(G)+1=n-k+2$.
Case 3. $k>2$ and $n_{k} \geq n_{k-1} \geq 2$:
x and y are nonadjacent. If $x, y \in V_{k-1}$, then any $x-y$ vertex cut must contain $V(G)-V_{k-1}$. So, $V(G)-V_{k-1}$ are assigned the same color. Similarly, if $x, y \in V_{k}$, then $V(G)-V_{k}$ are assigned the same color. Since $k>2$, the sets $V(G)-V_{k-1}$ and $V(G)-V_{k-1}$ intersect. Then, $m v d(G)=1$.
Case 4. $k=2, n_{2} \geq n_{1} \geq 2$:
Similarly, since $k=2$, the sets $V(G)-V_{1}$ and $V(G)-V_{2}$ are disjoint; then, $m v d\left(K_{n_{1}, n_{2}}\right)=2$.
The Cartesian product of G and H, written as $G \square H$, is the graph with the vertex set $V(G) \times V(H)$, specified by putting (u, v) adjacent to $\left(u^{\prime}, v^{\prime}\right)$ if and only if either $u=u^{\prime}$ and $v v^{\prime} \in E(H)$, or $v=v^{\prime}$ and $u u^{\prime} \in E(G)$. If P_{n} is a path with order n, then $P_{m} \square P_{n}$ is called the m-by- n grid.

Theorem 3.2. If G is one of the following graphs, then $m v d(G)=2$.
(i) $G=P_{m} \square P_{n}$ is a nontrivial grid other than $P_{1} \square P_{n}$ with $n>2$;
(ii) G is a Petersen graph.

Proof. (1) Let $G=P_{m} \square P_{n}$ and define $x_{i, j}$ to be the vertex in the i-th row and j-th column, where $i \in[m]$ and $j \in[n]$. It is known that $\operatorname{mvd}\left(P_{1} \square P_{n}\right)=m v d\left(P_{n}\right)=n$. Then, $m v d\left(P_{1} \square P_{2}\right)=2$ and $m v d\left(P_{1} \square P_{n}\right)>2$ for $n>2$. We claim that $\operatorname{mvd}\left(P_{m} \square P_{n}\right)=2$ for $m, n \geq 2$.

Define a vertex-coloring τ of $G: V(G) \rightarrow[2]$ such that $\tau\left(x_{i, j}\right)=1$ if $i+j$ is even and $\tau\left(x_{i, j}\right)=2$ if $i+j$ is odd. For any vertex x in G, the set $N(x)$ is monochromatic. Thus, for any two nonadjacent vertices x and y in $G, N(x)$ is a monochromatic $x-y$ vertex cut. So, $\operatorname{mvd}(G) \geq 2$.

Now, we prove that $\operatorname{mvd}(G)=2$. Any $M V D$-coloring of a 4 -cycle can have only two cases, where one is trivial and the other is to assign colors 1 and 2 to the four vertices of the 4-cycle alternately. Suppose that $m v d(G)>2$ and τ is an $m v d$-coloring of G. By Lemma 2.1, τ restricted on each 4 -cycle $G\left[x_{i, j}, x_{i, j+1}, x_{i+1, j+1}, x_{i+1, j}\right]$ is an MVD-coloring, given $1 \leq i<m, 1 \leq j<n$, which contradicts that $m v d(G)>2$. Therefore, $m v d\left(P_{m} \square P_{n}\right)=2$ for $m, n \geq 2$.
(2) Define a vertex-coloring τ of $G: V(G) \rightarrow$ [2] as shown in Figure 1(2). For any two nonadjacent vertices x and y, there is only one common neighbor, say z. Suppose that $\tau(z)=t$; it can be shown that the set of all vertices colored by t, except x and y, is a monochromatic $x-y$ vertex cut. Thus, τ is an $M V D$-coloring of G and $\operatorname{mvd}(G) \geq 2$. We prove that $\operatorname{mvd}(G)=2$ below.

Any $M V D$-coloring of C_{5} can only be two cases, where one is trivial and the other is to assign colors 1 and 2 to the five vertices of C_{5} alternately. At least two adjacent vertices in C_{5} have the same color. Suppose that $\operatorname{mvd}(G)>2$ and τ is an $m v d$-coloring of G. Let the four 5 -cycles of G be $G_{1}=G[a, b, c, d, e], G_{2}=G[c, d, i, f, h], G_{3}=G[a, b, c, h, f]$ and $G_{4}=G[f, h, j, g, i]$. Since τ restricted on G_{1} is an $M V D$-coloring, there are two cases.

(1)

(2)

Figure 1. Vertex-coloring of Peterson graph.

Case 1. G_{1} is colored nontrivially.
Suppose that $\tau(a)=\tau(c)=\tau(d)=1$ and $\tau(b)=\tau(e)=2$. Then, τ restricted on G_{2} is an MVDcoloring. If G_{2} is colored trivially, i.e., $\tau(f)=\tau(h)=\tau(i)=1$, it is obvious that τ is not an MVDcoloring restricted on G_{3}. By Lemma 2.1, τ is not an $M V D$-coloring of G, which contradicts that τ is an $m v d$-coloring of G. If G_{2} is colored nontrivially, i.e., $\tau(f)=1$ and $\tau(h)=\tau(i)=2$, then τ is a nontrivial $M V D$-coloring restricted on G_{4} with $\tau(g)=\tau(j)=1$, which contradicts that $m v d(G)>2$.
Case 2. G_{1} is colored trivially.
Suppose that $\tau(a)=\tau(b)=\tau(c)=\tau(d)=\tau(e)=1$. Then, τ is a trivial $M V D$-coloring restricted on G_{3} with $\tau(f)=\tau(h)=1$. Since τ is an $M V D$-coloring restricted on $G_{4},\left|\tau\left(G_{4}\right)\right| \leq 2$, which contradicts that $\operatorname{mvd}(G)>2$.

Above all, $\operatorname{mvd}(G)=2$.
Theorem 3.3. Let G be a connected graph of order n. Then, $\operatorname{mvd}(G)=n$ if and only if each block of G is complete.

Proof. Let $\left\{B_{1}, B_{2}, \ldots, B_{r}\right\}$ be a block decomposition of G. If $B_{i}(i \in[r])$ is complete, we define a coloring $\tau: V(G) \rightarrow[n]$ such that all vertices of G have different colors. By Theorem 2.1, τ is an $m v d$ coloring of G and $\operatorname{mvd}(G)=n$. On the contrary, if $m v d(G)=n$, we define a coloring $\tau: V(G) \rightarrow[n]$ such that all vertices of G have different colors. By Theorem 2.1, $\tau\left(B_{i}\right)$ is an $m v d$-coloring of B_{i}. Then, B_{i} is complete. Otherwise, since B_{i} is 2-connected, by Theorem 1.1, $\operatorname{mvd}\left(B_{i}\right) \leq\left|B_{i}\right|-\kappa\left(B_{i}\right)+1 \leq\left|B_{i}\right|-1$, which is a contradiction.

Figure 2. An example.

Now, we focus on minimally 2 -connected graphs [12] of order 10 or less. As an example, see Figure 2; let the three 4-cycles of G be $G_{1}=G[a, b, c, d], G_{2}=G[a, b, c, e]$ and $G_{3}=G[a, f, c, d]$. According to Lemma 2.1, if τ is an $m v d$-coloring of G, then $\tau\left(G_{1}\right)$ may be (1) or (3), i.e., an MVDcoloring of G_{1}. For Case (1), $\tau\left(G_{2}\right)$ and $\tau\left(G_{3}\right)$ must be (2). For Case (3), $\tau\left(G_{2}\right)$ and $\tau\left(G_{3}\right)$ must be (4).

It can be shown that both (2) and (4) are $M V D$-colorings of G and (4) is an $m v d$-coloring of G. Using the same method, after tedious calculations, the $m v d(G)$ of minimally 2 -connected graph G is shown in *Table 1, and the $m v d$-coloring of G is shown in Appendix A (In fact, this method is applicable to many graphs with small order).

Table 1. $m v d(G)$ for minimally 2-connected graph G.

$m v d(G)$	$n \leq 5$	$n=6$	$n=7$	$n=8$	$n=9$	$n=10$
5	-	-	-	-	-	$P(4,4)$
4	-	-	-	$P(3,3)$	$\begin{array}{lr} P(4,3) & P(5,1,1) \\ P(3,3,1) & \end{array}$	$\begin{array}{lr} \hline \text { (48)-(50) } & P(5,1,1,1) \\ P(5,2,1) & P(4,2,2) \\ P(4,3,1) & P(3,3,2) \\ P(6,1,1) & P(3,3,1,1) \end{array}$
3	K_{3}	$P(2,2)$	$\begin{aligned} & P(3,2) \\ & P(3,1,1) \end{aligned}$	$\begin{array}{lr} 4 & P(3,2,1) \\ P(2,2,2) & P(4,1,1) \\ P(3,1,1,1) \end{array}$	$\begin{array}{ll} \hline \text { (12)-(16) } & P(3,2,1,1) \\ P(4,2,1) & P(3,4 * 1) \\ P(3,2,2) & P(4,1,1,1) \end{array}$	$\begin{aligned} & \text { (28)-47) } P(4,2,1,1) \\ & P(3,2,2,1) P(4 * 2) \\ & P(4,4 * 1) P(3,5 * 1) \\ & P(3,2,3 * 1) \end{aligned}$
2	$\begin{aligned} & \hline C_{4} \quad K_{2} \\ & P(2,1) \\ & P(1,1,1) \end{aligned}$	$\begin{aligned} & P(2,1,1) \\ & P(1,1,1,1) \end{aligned}$	$\begin{aligned} & \text { (1) } P\left(5^{*} 1\right) \\ & P(2,2,1) \\ & P(2,1,1,1) \end{aligned}$	$\begin{aligned} & \text { (1)-(3) } \quad P(2,2,1,1) \\ & P(2,4 * 1) P(6 * 1) \end{aligned}$	$\begin{aligned} & \text { (1)-(11) } \quad P(7 * 1) \\ & P(2,5 * 1) P(2,2,2,1) \\ & P(2,2,1,1,1) \end{aligned}$	$\begin{aligned} & \text { (1)-(27) } P(2,2,4 * 1) \\ & P(8 * 1) P(2,6 * 1) \\ & P(2,2,2,1,1) \end{aligned}$

Finally, when $n-5 \leq \operatorname{mvd}(G) \leq n$ and all blocks of the graph G are minimally 2-connected trianglefree graphs, we characterize G. We need the following lemma:
Lemma 3.1. G is a connected graph of order n with r blocks, where t blocks are trivial. If all blocks are minimally 2-connected triangle-free graphs, then $\operatorname{mvd}(G) \leq\left\lfloor\frac{n+2 t-r+1}{2}\right\rfloor$.
Proof. Let $\left\{B_{1}, B_{2}, \ldots, B_{r}\right\}$ be the block decomposition of G. We claim that

$$
\begin{equation*}
n=\left(\sum_{i=1}^{r}\left|B_{i}\right|\right)-r+1 . \tag{3.1}
\end{equation*}
$$

The proof proceeds by induction on r. The result holds for $r=1$. If $r>1$, then G is not 2 -connected, we know that there is a block, say B_{r}, containing only one cut vertex, say v. Let $G^{\prime}=G-\left(V\left(B_{r}\right)-\right.$ $\{v\})$. Then, G^{\prime} is a connected graph with blocks $B_{1}, B_{2}, \ldots, B_{r-1}$. By the induction hypothesis, $\left|G^{\prime}\right|=$ $\left(\sum_{i=1}^{r-1}\left|B_{i}\right|\right)-(r-1)+1$. Since we deleted $\left|B_{r}\right|-1$ vertices from G to obtain G^{\prime}, the number of vertices in G is as desired.

Without loss of generality, let the trivial blocks be B_{1}, \ldots, B_{t}, and let the nontrivial blocks be B_{t+1}, \ldots, B_{r}. By Theorems 1.2 and 1.3, we have

$$
\begin{aligned}
\operatorname{mvd}(G) & =\left(\sum_{i=1}^{t} \operatorname{mvd}\left(B_{i}\right)\right)+\left(\sum_{i=t+1}^{r} \operatorname{mvd}\left(B_{i}\right)\right)-r+1 \leq 2 t+\left\lfloor\frac{\left|B_{t+1}\right|}{2}\right\rfloor+\ldots+\left\lfloor\frac{\left|B_{r}\right|}{2}\right\rfloor-r+1 \\
& \left.=\left\lfloor t+\frac{\left|B_{t+1}\right|}{2}\right\rfloor+\left\lfloor\frac{\left|B_{t+2}\right|}{2}\right\rfloor+\ldots+\left\lfloor\frac{\left|B_{r}\right|}{2}\right\rfloor+t-r+1 \leq \frac{2 t+\left|B_{t+1}\right|+\ldots+\left|B_{r}\right|}{2}\right\rfloor+t-r+1=I .
\end{aligned}
$$

[^0]Combined with Eq (3.1), we have

$$
I=\left\lfloor\frac{n+r-1}{2}\right\rfloor+t-r+1=\left\lfloor\frac{n+2 t-r+1}{2}\right\rfloor .
$$

The nontrivial block-induced subgraph of G is the subgraph induced by all nontrivial blocks of G. Let \mathcal{A} be a set of connected graphs whose nontrivial block-induced graph is exactly one of the graphs shown in Figure 3(a). Similarly, we define \mathcal{B} and C according to Figure 3(b) and 3(c), respectively.

(a)

(b)

(c)

Figure 3. Results for Theorem 3.4.

Theorem 3.4. For a connected graph G, if blocks in G are all minimally 2-connected triangle-free graphs, then

$$
\operatorname{mvd}(G)= \begin{cases}n, & \Leftrightarrow G \text { is a tree } \\ n-1, & \text { no graph } \\ n-2, & \Leftrightarrow G \text { is a unicycle graph with cycle } C_{4}, \\ n-3, & \Leftrightarrow G \in \mathcal{A}, \\ n-4, & \Leftrightarrow G \in \mathcal{B} \\ n-5, & \Leftrightarrow G \in C\end{cases}
$$

Proof. By Table 1 and Theorems 1.3 and 2.1, it is easy to verify the sufficiency. Now, we prove the necessity. If $m v d(G)=n$, then B_{i} is complete by Theorem 3.3. Since G is triangle-free, G is a tree.

Now, suppose that $m v d(G) \geq n-5$ and G has r blocks, of which t are trivial. By Lemma 3.1, $n-5 \leq m v d(G) \leq\left\lfloor\frac{n+2 t-r+1}{2}\right\rfloor$. There are two cases below.
Case 1. $n-r$ is even.
So, $2 t \geq n+r-10$. Since $t \leq r, r \geq n-10$, then r may be $n-2, n-4, n-6, n-8$ or $n-10$. We discuss them below.
(I) For $r=n-2$, combined with $2 t \geq n+r-10$ and the fact that $r=t$ if and only if G is a tree (i.e., $r=n-1$), we have that $n-6 \leq t \leq n-3$. Since G is triangle-free, when $t=n-3, n-4, n-5$ or $n-6$, respectively, we have $\sum_{i=1}^{r}\left|B_{i}\right| \geq 4+2(n-3), 8+2(n-4), 12+2(n-5)$ or $16+2(n-6)$, contradicting Eq (3.1). Note that, in other cases, we first use this method to determine the number of nontrivial blocks in G.
(II) For $r=n-4$, similarly, we have that $n-7 \leq t \leq n-5$, and there is only one nontrivial block in G. By Eq (3.1), this nontrivial block is of order 5, i.e., $P(2,1)$ or $P(1,1,1)$ (see Appendix A. 5 VERTEX). According to Table 1 and Theorems 1.3 and $2.1, \operatorname{mvd}(G)=n-3$ in both cases.
(III) For $r=n-6$, similarly, we have that $n-8 \leq t \leq n-7$. Since G is triangle-free, combined with Eq (3.1), we obtain the following.

If $t=n-7$, then the order of this nontrivial block is 7, i.e., one of the graphs in Appendix A. 7 VERTEX.

If $t=n-8$, then there are two nontrivial blocks B_{i} and B_{j} with $\left|B_{i}\right|+\left|B_{j}\right|=9$, and the nontrivial block-induced subgraph of G is one of the graphs in Figure 4. Note that B_{i} and B_{j} may or may not be adjacent, and the figure only shows the case when B_{i} and B_{j} are not adjacent.

Figure 4. Case when $r=n-6, t=n-8$.

According to Table 1 and Theorems 1.3 and 2.1, $m v d(G)=n-4$ when the nontrivial block-induced subgraph of G is $P(3,2)$ or $P(3,1,1)$, and $m v d(G)=n-5$ for the remaining cases.
(IV) For $r=n-8$, similarly, we have that $t=n-9$. By Eq (3.1), this nontrivial block is of order 9, i.e., one of the graphs in Appendix A. 9 VERTEX. According to Table 1 and Theorems 1.3 and $2.1, \operatorname{mvd}(G)=n-5$ when the nontrivial block-induced subgraph of G is one among $\{P(4,3), P(5,1,1), P(3,3,1)\}$, and $m v d(G)<n-5$ for the remaining cases.
(V) For $r=n-10$, similarly, we have that $n-10 \leq t \leq n-11$, which is a contradiction.

Case 2. $n-r$ is odd.
So, $2 t \geq n+r-11$. Since $t \leq r, r \geq n-11$, then r may be $n-1, n-3, n-5, n-7, n-9$ or $n-11$. We discuss them below.
(I) For $r=n-1, G$ is a tree and $m v d(G)=n$.
(II) For $r=n-3$, combined with $2 t \geq n+r-11$ and the fact that $r=t$ if and only if G is a tree (i.e., $r=n-1$), we have that $n-7 \leq t \leq n-4$. Since G is triangle-free, when $t=n-5, n-6$ or
$n-7$, respectively, we have that $\sum_{i=1}^{r}\left|B_{i}\right| \geq 8+2(n-5), 12+2(n-6)$ or $16+2(n-7)$, contradicting Eq (3.1). Then, G has exactly one nontrivial block. Note that, in other cases, we first use this method to determine the number of nontrivial blocks in G. By Eq (3.1), this nontrivial block is of order 4, i.e., C_{4}. According to Table 1 and Theorems 1.3 and $2.1, \operatorname{mvd}(G)=n-2$.
(III) For $r=n-5$, similarly, we have that $n-8 \leq t \leq n-6$, and there are at most two nontrivial blocks in G. Since G is triangle-free, combined with Eq (3.1), we obtain the following.

If $t=n-6$, then the order of this nontrivial block is 6, i.e., one of the graphs in Appendix A. 6 VERTEX.

If $t=n-7$, then there are two nontrivial blocks B_{i} and B_{j} with $\left|B_{i}\right|+\left|B_{j}\right|=8$, i.e., both B_{i} and B_{j} are C_{4}.

According to Table 1 and Theorems 1.3 and 2.1, $\operatorname{mvd}(G)=n-3$ when the nontrivial block-induced subgraph of G is $P(2,2)$, and $\operatorname{mvd}(G)=n-4$ for the remaining cases.
(IV) For $r=n-7$, similarly, we have that $n-9 \leq t \leq n-8$. Since G is triangle-free, combined with Eq (3.1), we obtain the following.

If $t=n-8$, then the order of this nontrivial block is 8 , i.e., one of the graphs in Appendix A. 8 VERTEX.

If $t=n-9$, then there are two nontrivial blocks B_{i} and B_{j} with $\left|B_{i}\right|+\left|B_{j}\right|=10$, and the nontrivial block-induced subgraph of G is one of the graphs in Figure 5. Note that B_{i} and B_{j} may or may not be adjacent, and the figure only shows the case when B_{i} and B_{j} are not adjacent.

Figure 5. Case when $r=n-7, t=n-9$.

According to Table 1 and Theorems 1.3 and $2.1, m v d(G)=n-4$ when the nontrivial block-induced subgraph of G is $P(3,3), \operatorname{mvd}(G)=n-5$ when it is one among $\{P(4,1,1), P(3,2,1), P(3,1,1,1)$, $P(2,2,2)$, Appendix A. 8VERTEX(4), Figure 5(6)\} and $m v d(G)=n-6$ for the remaining cases.
(V) For $r=n-9$, similarly, we have that $t=n-10$. By Eq (3.1), this nontrivial block is of order 10, i.e., one of the graphs in Appendix A. 10 VERTEX. According to Table 1 and Theorems 1.3 and 2.1, $\operatorname{mvd}(G)=n-5$ when the nontrivial block-induced subgraph of G is $P(4,4)$, and $\operatorname{mvd}(G)<n-5$ for the remaining cases.
(VI) For $r=n-11$, similarly, we have that $n-11 \leq t \leq n-12$, which is a contradiction.

For easy reading, when $\operatorname{mvd}(G)=n-3, n-4$ or $n-5$, the possible configurations of the nontrivial block-induced subgraph of G are as summarized in Figure 3. The theorem is proved.

4. Erdős-Gallai-type problems

In this section, we first study the following extremal problem and obtain Theorem 1.5. To solve this problem, we show some lemmas.

For integers k and n with $1 \leq k \leq n$, what is the maximum possible size of a connected graph G of order n with $\operatorname{mvd}(G)=k$?

Lemma 4.1. If G is obtained by removing any edge e from K_{n}, where $n \geq 3$, then $\operatorname{mvd}(G)=3$; if G is obtained by removing any two edges e_{1} and e_{2} from K_{n}, where $n \geq 4$, then $\operatorname{mvd}(G) \leq 4$.
Proof. Let v be one of the endpoints of e; then, G is obtained by adding $n-2$ edges from v to K_{n-1}. From (1), $m v d(G)=3$. If e_{1} and e_{2} are adjacent edges incident with a vertex v of G, then G is obtained by adding $n-3$ edges from v to K_{n-1}. So, $m v d(G)=4$. If e_{1} and e_{2} are nonadjacent, then $G=K_{2,2}$ when $n=4$, or $G=K_{2,2,1, \ldots, 1}$ when $n>4$. According to Theorem 3.1(2), $\operatorname{mvd}(G)=2$ or $m v d(G)=1$.

Lemma 4.2. Let G be a connected graph of order $n \geq 2$. Then, the maximum size of G with $\operatorname{mvd}(G)=2$ is

$$
|E(G)|_{\max }= \begin{cases}1, & n=2 \\ -\infty, & n=3 \\ 4, & n=4 \\ 7, & n=5 \\ \frac{n(n-1)}{2}-4, & n \geq 6\end{cases}
$$

Proof. Since $m v d\left(K_{n}\right)=n$, the maximum size of G with $m v d(G)=n=2$ is 1 . There is no graph G with $n=3$ and $m v d(G)=2$. According to Lemma 4.1, if $n \geq 4$ and $m v d(G)=2$, then $|E(G)| \leq\left|E\left(K_{n}\right)\right|-2$ and the equation holds only when $n=4$. Now, let $n \geq 5$.

Claim 1: If G is a graph of order n that is obtained by removing any three edges from K_{n}, where $n \geq 5$, then $m v d(G)=2$ if and only if $n=5$, and the three removed edges are shown as G_{4} in Figure 6.

There are five cases to consider for the three removed edges (see $G_{i}, i \in[5]$ in Figure 6), and if $n=5, G_{5}$ is excluded. Note that, for the case $G_{i}, i \in[4], G$ is connected since $n \geq 5$, and for the case G_{5}, G is connected only when $n>5$. For the case G_{1}, G is obtained by adding $n-4$ edges from v_{1} to K_{n-1}. It follows by Tight example 1 that $\operatorname{mvd}(G)=5$. For the case of G_{2}, define a vertexcoloring $\tau: V(G) \rightarrow[4]$ such that $\tau\left(N\left(v_{1}\right)\right)=\tau\left(N\left(v_{2}\right)\right)=\tau\left(N\left(v_{3}\right)\right)=1, \tau\left(v_{1}\right)=2, \tau\left(v_{2}\right)=3$ and $\tau\left(v_{3}\right)=4$. For any two nonadjacent vertices x and $y, N\left(v_{1}\right)$ is a monochromatic $x-y$ vertex cut since $N\left(v_{1}\right)=N\left(v_{2}\right)=N\left(v_{3}\right)$. Then, $\operatorname{mvd}(G) \geq 4$. For the case of G_{3}, define a vertex-coloring $\tau: V(G) \rightarrow$ [3] such that $\tau\left(N\left(v_{2}\right)\right)=\tau\left(N\left(v_{3}\right)\right)=1, \tau\left(v_{2}\right)=2$ and $\tau\left(v_{3}\right)=3$. For any two nonadjacent vertices x and y, $N\left(v_{2}\right)$ or $N\left(v_{3}\right)$ is a monochromatic $x-y$ vertex cut; then, $m v d(G) \geq 3$.

For the case of G_{4}, we claim that, if $n=5$, then $m v d(G)=2$; if $n \geq 6$, then $m v d(G)=1$. If $n=5$, define a vertex-coloring $\tau: V(G) \rightarrow[2]$ such that $\tau\left(v_{1}\right)=\tau\left(v_{2}\right)=\tau\left(v_{3}\right)=1$ and $\tau\left(v_{4}\right)=\tau\left(v_{5}\right)=2$. For any two nonadjacent vertices x and y, if $\{x, y\}=\left\{v_{4}, v_{5}\right\}$, then $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a monochromatic $x-y$ vertex cut; otherwise, $\left\{v_{4}, v_{5}\right\}$ is a monochromatic x - y vertex cut. Then, $m v d(G) \geq 2$. Suppose that $m v d(G)>2$ and τ^{\prime} is an $m v d$-coloring of G. For nonadjacent vertices v_{4} and v_{5}, it must be that $\tau^{\prime}\left(v_{1}\right)=\tau^{\prime}\left(v_{2}\right)=$ $\tau^{\prime}\left(v_{3}\right)$ since $N\left(v_{4}\right)=N\left(v_{5}\right)=\left\{v_{1}, v_{2}, v_{3}\right\}$. Thus, $\tau^{\prime}\left(v_{4}\right) \neq \tau^{\prime}\left(v_{5}\right)$, and both are different from $\tau^{\prime}\left(v_{1}\right)$, which contradicts the existence of a monochromatic $v_{1}-v_{2}$ vertex cut since $N\left(v_{1}\right) \cap N\left(v_{2}\right)=\left\{v_{4}, v_{5}\right\}$. If $n \geq 6$ and τ^{\prime} is an $m v d$-coloring of G, then $\tau^{\prime}\left(V(G)-\left\{v_{4}, v_{5}\right\}\right)$ is monochromatic since $N\left(v_{4}\right)=N\left(v_{5}\right)=$
$V(G)-\left\{v_{4}, v_{5}\right\}$. For nonadjacent vertices v_{1} and v_{2}, since $N\left(v_{1}\right) \cap N\left(v_{2}\right)=N\left(v_{1}\right)=V(G)-\left\{v_{1}, v_{2}, v_{3}\right\}$ and $\left(V(G)-\left\{v_{4}, v_{5}\right\}\right) \cap\left(V(G)-\left\{v_{1}, v_{2}, v_{3}\right\}\right) \neq \varnothing$ for $n \geq 6, \tau^{\prime}\left(V(G)-\left\{v_{1}, v_{2}, v_{3}\right\}\right)=\tau^{\prime}\left(V(G)-\left\{v_{4}, v_{5}\right\}\right)$. Therefore, $\operatorname{mvd}(G)=1$. At last, $G=K_{2,2,2,1, \ldots, 1}$ for the case of G_{5}; then, it follows by Theorem 3.1(2) that $\operatorname{mvd}(G)=1$.

Therefore, the maximum size of G with $n=5$ and $m v d(G)=2$ is 7 . Furthermore, if $n \geq 6$ and $\operatorname{mvd}(G)=2$, then $|E(G)| \leq\left|E\left(K_{n}\right)\right|-4$. Thus, we only need to prove the following claim to complete the proof of Lemma 4.2.

Claim 2: G is a graph of order $n, n \geq 6$, and if G is obtained by removing any four edges from K_{n}, where the four removed edges are shown as G_{6} in Figure 6, then $\operatorname{mvd}(G)=2$.
G is connected since $n \geq 6$. Define a vertex-coloring $\tau: V(G) \rightarrow[2]$ such that $\tau\left(V(G)-\left\{v_{3}\right\}\right)=1$ and $\tau\left(v_{3}\right)=2$. For any two nonadjacent vertices x and $y, V(G)-\left\{x, y, v_{3}\right\}$ is a monochromatic $x-y$ vertex cut. Then, $\operatorname{mvd}(G) \geq 2$. Let τ^{\prime} be an $m v d$-coloring of G. For nonadjacent vertices v_{4} and $v_{5}, \tau^{\prime}\left(V(G)-\left\{v_{3}, v_{4}, v_{5}\right\}\right)$ is monochromatic since $N\left(v_{4}\right) \cap N\left(v_{5}\right)=N\left(v_{4}\right)=V(G)-\left\{v_{3}, v_{4}, v_{5}\right\}$. For nonadjacent vertices v_{1} and v_{2}, since $N\left(v_{1}\right) \cap N\left(v_{2}\right)=N\left(v_{2}\right)=V(G)-\left\{v_{1}, v_{2}, v_{3}\right\}$ and $\left(V(G)-\left\{v_{3}, v_{4}, v_{5}\right\}\right) \cap$ $\left(V(G)-\left\{v_{1}, v_{2}, v_{3}\right\}\right) \neq \varnothing$ for $n \geq 6, \tau^{\prime}\left(V(G)-\left\{v_{1}, v_{2}, v_{3}\right\}\right)=1$. Uncolored vertex v_{3} adds a new color at most. Therefore, $\operatorname{mvd}(G)=2$.

Figure 6. Proof process for Lemma 4.2.

Proof of Theorem 1.5. If $\operatorname{mvd}(G)=n$, then the size is maximum when $G=K_{n}$. By Lemma 4.1, if G is a graph of order n that is obtained by removing any edge from K_{n}, where $n \geq 3$, then $m v d(G)=3$. So, if $m v d(G)=3$ and $n \geq 4$, then the maximum size of G of order n is $\frac{n(n-1)}{2}-1$. There is no graph G with $1<n \leq 4$ and $\operatorname{mvd}(G)=1$. By Lemma 4.1, if $\operatorname{mvd}(G)=1$ and $n \geq 5$, then the maximum size of G is $\frac{n(n-1)}{2}-2$. If $m v d(G)=2$, we refer to Lemma 4.2. Now, we consider the case that $4 \leq k \leq n-1$. Let t denote the number of vertices with degree $n-1$. We first claim that, if the size of a connected graph G of order n is at least $\frac{n(n-1)}{2}-k+3$, then $\operatorname{mvd}(G) \leq k-1$.
Case 1. $n-k+2 \leq t \leq n-1$.
For any two nonadjacent vertices x and y in G, since x and y are adjacent to each vertex of degree $n-1$ in $G,|N(x) \cap N(y)| \geq n-k+2$. Therefore, $m v d(G) \leq k-1$ by Theorem 1.1.
Case 2. $0 \leq t \leq n-k+2$.
Claim 1: There is at least one vertex with degree $n-2$.

Otherwise, with the exception of t vertices with degree $n-1$, the maximum degree of the remaining vertices in G is $n-3$ at most. Then, the size is

$$
|E(G)| \leq \frac{t(n-1)+(n-t)(n-3)}{2}=\frac{n^{2}-3 n+2 t}{2} \leq \frac{n^{2}-3 n+2(n-k+2)}{2}<\frac{n(n-1)}{2}-k+3,
$$

which is a contradiction. Thus, G has at least one vertex with degree $n-2$.
Claim 2: $\delta(G) \geq n-k+2$.
Otherwise, there is a vertex with degree at most $n-k+1$; then, the size is

$$
|E(G)| \leq \frac{(n-k+2)(n-1)+(n-k+1)+(k-3)(n-2)}{2}=\frac{n^{2}-n-2 k+5}{2}<\frac{n(n-1)}{2}-k+3,
$$

which is a contradiction. Thus, $\delta(G) \geq n-k+2$.
Let x be a vertex of G with degree $n-2$. There is a vertex y in G which is nonadjacent to x. By Claim 2, $d(y) \geq n-k+2$; then, $|N(x) \cap N(y)| \geq n-k+2$. In other words, there are at least $n-k+2$ internal disjoint x, y-paths. Therefore, $\operatorname{mvd}(G) \leq k-1$ by Theorem 1.1.

Above all, if $\operatorname{mvd}(G) \geq k$, then the size of G of order n is at most $\frac{n(n-1)}{2}-k+2$. It remains to show that, for any integers k and n, where $4 \leq k \leq n-1$, there must be a connected graph G of order n and size $\frac{n(n-1)}{2}-k+2$ such that $m v d(G)=k$. Suppose that G is a graph of order n and size $\frac{n(n-1)}{2}-k+2$ that is obtained by adding $n-k+1$ edges to K_{n-1} from a vertex v outside K_{n-1}. By Tight example 1 , $m v d(G)=k$.

Proof of Theorem 1.4. It is worth mentioning that the parameter $f_{v}(n, k)$ is equivalent to another parameter. Let $s_{v}(n, k)=\max \{|E(G)|:|G|=n, \operatorname{mvd}(G) \leq k\}$. It is easy to see that $f_{v}(n, k)=$ $s_{v}(n, k-1)+1$. Let $n \geq 5$. There are three cases, as follows.
Case 1. $k=1$.
Since $\operatorname{mvd}(G) \geq 1$ holds for any graph G and the tree has minimum size, $f_{v}(n, 1)=n-1$.
Case 2. $2 \leq k \leq 3$.
According to Theorem 1.5, $|E(G)|_{\max }=\frac{n(n-1)}{2}-2$ if $m v d(G)=1,|E(G)|_{\max }=\frac{n(n-1)}{2}-3$ if $m v d(G)=2$ and $n=5$ and $|E(G)|_{\max }=\frac{n(n-1)}{2}-4$ if $\operatorname{mvd}(G)=2$ and $n \geq 6$. So, we have that $s_{v}(n, 1)=s_{v}(n, 2)=$ $\frac{n(n-1)}{2}-2$. Since $f_{v}(n, k)=s_{v}(n, k-1)+1, f_{v}(n, 2)=f_{v}(n, 3)=\frac{n(n-1)}{2}-1$.
Case 3. $4 \leq k \leq n$.
According to Theorem 1.5, $|E(G)|_{\max }=\frac{n(n-1)}{2}-1$ if $m v d(G)=3$, and $|E(G)|_{\max }<\frac{n(n-1)}{2}-1$ if $3<\operatorname{mvd}(G) \leq n-1$. So, we have that $s_{v}(n, 3)=s_{v}(n, 4)=\cdots=s_{v}(n, n-1)=\frac{n(n-1)}{2}-1$. Since $f_{v}(n, k)=s_{v}(n, k-1)+1, f_{v}(n, 4)=f_{v}(n, 5)=\cdots=f_{v}(n, n)=\frac{n(n-1)}{2}$.
Remark 1. For positive integers n and k with $1 \leq k \leq n \leq 4$, the results are shown in Table 2 . Moreover, to further understand Theorems 1.4 and 1.5, when $n=5,6,7$, the evolution between k and $f_{v}(n, k)$ are shown in Figure 7(1), and the evolution between k and $|E(G)|_{\text {max }}$ are shown in Figure 7(2).

Table 2. Values of $|E(G)|_{\max }$ and $f_{v}(n, k)$ when $1 \leq k \leq n \leq 4$.

n	1				2				3				4			
k	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
$\|E(G)\|_{\text {max }}$	0	-	-	-	-	1	-	-	-	-	3	-	-	4	5	6
$f_{v}(n, k)$	0	-	-	-	1	1	-	-	2	2	2	-	3	3	5	6

Figure 7. For $n=5,6,7$, the evolution of $f_{v}(n, k)$ and $|E(G)|_{\text {max }}$.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC11801410 and NSFC11971346) and the China Scholarship Council.

Conflict of interest

The authors declare no conflict of interest.

References

1. P. Allen, J. Böttcher, O. Cooley, R. Mycroft, Tight cycles and regular slices in dense hypergraphs, J. Combin. Theory A, 149 (2017), 30-100. https://doi.org/10.1016/j.jcta.2017.01.003
2. J. A. Bondy, U. S. R. Murty, Graph Theory, Berlin: Springer, 2008.
3. Y. Caro, R. Yuster, Colorful monochromatic connectivity, Discrete Math., 311 (2011), 1786-1792. https://doi.org/10.1016/j.disc.2011.04.020
4. Q. Q. Cai, X. L. Li, D. Wu, Some extremal results on the colorful monochromatic vertexconnectivity of a graph, J. Comb. Optim., 35 (2018), 1300-1311. https://doi.org/10.1007/s10878-018-0258-x
5. G. Chartrand, G. L. Johns, K. A. McKeon, P. Zhang, Rainbow connection in graphs, Math. Bohem., 133 (2008), 85-98. https://doi.org/10.21136/MB.2008.133947
6. G. Chartrand, G. L. Johns, K. A. McKeon, P. Zhang, The rainbow connectivity of a graph, Networks, 54 (2009), 75-81. https://doi.org/10.1002/net. 20296
7. A. Dudek, A. M. Frieze, C. E. Tsourakakis, Rainbow connection of random regular graphs, SIAM J. Discrete Math., 29 (2015), 2255-2266. https://doi.org/10.1137/140998433
8. P. Erdős, T. Gallai, On maximal paths and circuits of graphs, Acta Mathematica Academiae Scientiarum Hungarica, 10 (1959), 337-356. https://doi.org/10.1007/bf02024498
9. R. J. Faudree, R. H. Schelp, Path ramsey numbers in multicolorings, J. Comb. Theory B, 19 (1975), 150-160. https://doi.org/10.1016/0095-8956(75)90080-5
10. R. Gu, X. L. Li, Z. M. Qin, Y. Zhao, More on the colorful monochromatic connectivity, Bull. Malays. Math. Sci. Soc., 40 (2017), 1769-1779. https://doi.org/10.1007/s40840-015-0274-2
11. F. Harary, Conditional connectivity, Networks, 13 (1983), 347-357. https://doi.org/10.1002/net. 3230130303
12. A. M. Hobbs, A catalog of minimal blocks, Journal Of Research of the Notional Bureau of Standards-B, 77B (1973), 53-60. https://doi.org/10.6028/jres.077b. 005
13. T. P. Kirkman, On the representation of polyhedra, Philos. Trans. Roy. Soc. London Ser. A, 146 (1856), 413-418. https://doi.org/10.1098/rspl.1854.0122
14. Z. P. Lu, Y. B. Ma, Graphs with vertex rainbow connection number two, Sci. China Math., 58 (2015), 1803-1810. https://doi.org/10.1007/s11425-014-4905-0
15. P. Li, X. L. Li, Monochromatic disconnection: Erdős-Gallai-type problems and product graphs, J. Comb. Optim., 44 (2022), 136-153. https://doi.org/10.1007/s10878-021-00820-3
16. M. Lewin, On maximal circuits in directed graphs, J. Comb. Theory B, 18 (1975), 175-179. https://doi.org/10.1016/0095-8956(75)90045-3
17. X. L. Li, S. J. Liu, A sharp upper bound for the rainbow 2-connection number of a 2 -connected graph, Discrete Math., 313 (2013), 755-759. https://doi.org/10.1016/j.disc.2012.12.014
18. X. L. Li, Y. F. Sun, An updated survey on rainbow connections of graphs - a dynamic survey, Theory and Applications of Graphs, 1 (2017), 3. https://doi.org/10.20429/tag.2017.000103
19. Y. B. Ma, L. Chen, H. Z. Li, Graphs with small total rainbow connection number, Front. Math. China, 12 (2017), 921-936. https://doi.org/10.1007/s11464-017-0651-2
20. B. Ning, X. Peng, Extensions of the Erdős-Gallai theorem and Luo's theorem, Comb. Probab. Comput., 29 (2020), 128-136. https://doi.org/10.1017/S0963548319000269
21. M. D. Plummer, On minimal blocks, Trans. Amer. Math. Soc., 134 (1968), 85-94. https://doi.org/10.1090/S0002-9947-1968-0228369-8
22. Y. Shang, A sharp threshold for rainbow connection in small-world networks, Miskolc Math. Notes, 13 (2012), 493-497. https://doi.org/10.18514/MMN. 2012.347
23. Y. L. Shang, Concentration of rainbow k-connectivity of a multiplex random graph, Theor. Comput. Sci., 951 (2023), 113771. https://doi.org/10.1016/j.tcs.2023.113771

A. Appendix

$m v d$-colorings of minimal blocks with small order.

1 VERTEX 2 VERTEX 3 VERTEX 4 VERTEX 5 VERTEX
$\stackrel{\bullet}{1}$

6 VERTEX

7 VERTEX

$$
P(5 * 1)
$$

$P(2,2,1)$

$P(2,1,1,1)$

$P(3,2)$

$P(3,1,1)$

8 VERTEX

$$
P(2,4 * 1) \quad P(2,2,1,1)
$$

10 VERTEX

AIMS Press
© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

[^0]: ${ }^{*} P_{n_{1}}, \ldots, P_{n_{k}}$ are k disjoint paths with $\left|P_{n_{i}}\right|=n_{i}$. The first and the last vertices of p_{i} are denoted by $f\left(P_{n_{i}}\right)$ and $l\left(P_{n_{i}}\right) . P\left(n_{1}, \ldots, n_{k}\right)$ is the graph with the vertex set $\left\{\cup_{i \in[k]} V\left(P_{n_{i}}\right)\right\} \cup\{u, v\}$ and edge set $\cup_{i \in[k]}\left[E\left(P_{n_{i}}\right) \cup\left\{f\left(P_{n_{i}}\right) u, l\left(P_{n_{i}}\right) v\right\}\right]$, where $u, v \notin \cup_{i \in[k]} V\left(P_{n_{i}}\right)$. If $n_{i+1}=\cdots=n_{i+j}$, then $P\left(n_{1}, \ldots, n_{k}\right)=P\left(n_{1}, \ldots, n_{i}, j * n_{i+1}, n_{i+j+1}, \ldots, n_{k}\right)$.

