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Abstract 
 

Traffic signal control (TSC) is a challenging issue in managing an urban transportation system. A fixed time TSC is 

easy to implement but has drawbacks in such measures as flow rate, waiting time, and traffic density. The situation gets worse 

when the arrival rates of vehicles periodically change over time, which is usual in most urban cities. We propose adaptive 

reinforcement learning (RL) to manage TSC with varying vehicle arrival rates. Our objectives are to improve the averages of 

flow rate and waiting time and reduce the wasteful green light problem by considering the vehicle densities of the current lane 

and the downstream directions. Experiments were conducted by Simulation of Urban MObility (SUMO) under three traffic 

layouts and various vehicle arrival rates. The proposed method not only reduced on average traffic density, waiting time, and 

queue length, but also increased the average flow rate and average speed, relative to the other algorithms tested. 
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1. Introduction  
 

 According to a United Nations report released in 

2018, more than half of the world’s population lives in urban 

areas. This proportion may increase to 68% by 2050. 

Therefore, it is necessary to intelligently manage the traffic 

infrastructures to match the rapid population growth. The 

strategies of traffic control fall into 3 classes: fixed time, 

actuated, and adaptive (Feng, 2015).  Fixed time control is a 

conventional method that predefines the timing of signal 

periods based on either statistical traffic information or a 

certain time interval. However, if the traffic flow has 

unpredictable fluctuations, such system may not handle the 

situation well. On the other hand, an actuated strategy adjusts 

a simple traffic light control parameter such as cycle length, 

green light extension, or phase sequence in response to sensor 

information. However, these adjustments are still limited 

within a set of predefined parameters. Apart from the previous 

approaches, an adaptive strategy is more advanced in that it 

utilizes the information from the sensors, responding to the 

actual traffic demand by changes in the traffic signal timing. 

This strategy can handle a wider range of traffic fluctuations

 

than the actuated approach since the adjustments are applied 

to the traffic signal policy, not just being a temporary 

response. 

Research on TSC has grown rapidly. Some recent 

interesting works are discussed below. (Mousavi, Schukat, & 

Howley, 2017) developed dual adaptive agents (deep policy-

gradient and value-function) to predict the best traffic signal 

for an intersection. The first agent maps its observations to 

control signal policy while the second agent estimates values 

of control signals. (Liang, Du, Wang, & Han, 2019) applied 

deep RL to the data collected from various sensors and used a 

convolutional neural network to map states to rewards. Both 

approaches of (Mousavi et al., 2017) and (Liang et al., 2019) 

achieved promising results in the SUMO traffic simulator for 

one intersection. However, no simulations of multiple 

intersections are reported in their experiments. Another way 

for solving the TSC problem is to employ a heuristic-based 

strategy, as done in Araghi, Khosravi, Creighton, and 

Nahavandi (2017), Garcia-Nieto, Olivera, and Alba (2013), 

He, Head, and Ding (2011), and Zargari, Dehghani, and 

Mirzahossein (2018). Franco, Lindsay, Vallati, and 

McCluskey (2018) introduced a time-based highly informative 

heuristic for planning urban traffic control.  The heuristic 

estimates the distance from the goal state by considering the 

expected input/output traffic flows. Their experimental results 

in both the city of Manchester (UK) and in challenge 
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scenarios outperformed the state-of-the-art planning engine 

(Penna, Magazzeni, Mercorio, & Intrigila, 2009). Aside from 

centralized control approach, some studies have utilized a 

regional method to solve the TSC problem, e.g. Hiari and 

Nofal (2020), Jin and Ma (2017), Le, Kovacs, Walton, Vu, 

Andrew, and Hoogendoorn (2015), and Nilsson and Como 

(2018). A decentralized method (Wei et al., 2019) utilized 

multiple RL agents in many intersections. Tan et al., (2019) 

proposed a cooperative framework by decomposing the 

original RL task into subproblems with easier goals. A 

centralized global agent solves the original task by using the 

information gathered from multiple regional agents. 

According to their experimental results, the proposed 

framework reduce congestion by 30% in terms of the number 

of waiting vehicles in high traffic congestion. Wang et al., 

(2020) proposed Spatio-Temporal RL using multiple agents. 

A traffic light adjacency graph was constructed to represent 

the spatial structure among traffic lights. Then, the temporal 

traffic information was combined with traffic structure via a 

recurrent neural network. Their experimental results provide 

insights into the mechanisms associated with multi-

intersection traffic lights. Zang et al., (2020) introduced the 

MetaLight framework to improve their previous RL model by 

upgrading its structure and updating strategy. As a result, the 

framework adapts to new traffic scenarios more quickly and 

steadily. Recently, Joo, Ahmed, and Lim (2020) applied Q-

learning to boost the number of vehicles crossing a junction 

and balance the traffic signals among roads. However, their 

constant green light time may be wasteful when the density 

fluctuates. 

Among all the approaches mentioned above, none 

has completely addressed unpredictable changes in urban 

traffic conditions, such as sudden changes among multiple 

levels of vehicle arrival rate and temporally sparse congestion. 

Moreover, none has simultaneously sought to improve both 

flow rate and waiting time, which are likely the two main 

concerns of most drivers. To address these challenges, we 

propose a real-time RL approach that adapts to traffic 

incidents by collecting current traffic information from 

sensors and selecting the green light direction that maximizes 

the average flow rate and minimizes the average waiting time. 

It also automatically adjusts the green light duration based on 

the densities of the vehicles in the current and downstream 

lanes. The experimental results on various vehicle arrival rates 

and multi-intersections indicate that the proposed method 

outperforms both fixed time and state-of-the-art algorithms in 

all traffic layouts. The contributions of this paper are 

summarized as follows. First, the approach demonstrated 

concurrently improves the averages of flow rate and waiting 

time of vehicles in the system. This improvement addresses 

both the traffic measure in theory and the driver's needs in 

practice. Second, the approach automatically adjusts the green 

light time based on the densities of vehicles in the current and 

downstream lanes. In other words, it reduces the wasteful 

green light time problem when vehicles in a certain lane 

cannot proceed due to the traffic congestion ahead. Finally, it 

truly represents both flow rate and waiting time via the 

logistic sigmoid function with appropriate coefficients. As a 

result, its reward function can accurately distinguish the 

quality of states at high and low ranges of the averages flow 

rate and waiting time. 

 

2. Materials and Methods 
 

In this section, we provide fundamental background 

knowledge on reinforcement learning and important terms in 

traffic engineering. The components of the proposed method 

are explained thereafter. 

 

2.1 Reinforcement learning 
 

Reinforcement learning is an approach that maps 

situations to actions to maximize a numerical reward signal. 

Sutton and Barto (2018), typically over multiple actions as 

time progresses. The agent must discover which actions yield 

the most reward by trial-and-error search. Q-Learning 

algorithm trains the value of an action in a particular state by 

finding an optimal policy to maximize the expected total 

reward cumulated over all successive steps. We calculate the 

new Q value, Qnew (St, At), associated with the state St and 

action At pair by the following function.  
 

 
       , 

  

where Q(St, At) is the Q value for the current state S associated 

with action A at time t, α is the learning rate, Rt+1 is the 

observed reward for entering the next state at time t + 1, γ is 

the discount factor for determining the current importance of 

future rewards, and Q(St+1, a) is the maximum Q value 

for the next state associated with action a. 

 

2.2 Flow rate, speed, and density 
  

According to McDowall and Dampney (2006), the 

three primary measures of traffic stream characteristics are 

flow rate, speed, and density. Flow rate is the number of 

vehicles passing a point on a given lane or direction of a road 

in one hour. Speed is defined as a rate of motion in distance 

per unit of time. In a moving traffic stream, vehicles move at 

different speeds. Therefore, a proper way to analyze speed of 

the system is to average the speeds across of all vehicles. 

Density is defined as the number of vehicles occupying a 

given length of lane, normally expressed as vehicles per unit 

of length. The relationship between the three measures --flow 

rate (υ), speed (S), and density (D)-- for a given traffic stream 

is as follows. 

 

υ  = S * D 

 

Speed and density are measures that refer to a 

specific range or area, whereas flow rate is a point measure. 

Under stable flow conditions, where no queues are forming, 

the flow rate computed by the above equation can apply to 

any point within the range. In contrast, if a queue is forming 

the flow rate can only represent an average for all points 

within the range. 

 

2.3 Proposed method 
 

Since we employ the traditional RL algorithm by 

using a single agent scenario for all intersections with 
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individual state spaces, we define only terms which are 

customized for our approach. 

 

2.3.1 Traffic layout 
 

Figure 1(a) illustrates an intersection layout used in 

SUMO. Each road has two lanes in each direction with left-

hand traffic as the rule of the road. The vehicles in the left 

lane can either move straight or turn left (if applicable) while 

those in the right lane are forced to turn right. This kind of 

traffic layout conforms with (Joo et al., 2020). It tends to have 

more traffic congestion than other layouts when the vehicle 

arrival rate suddenly changes.  
 

 
 

Figure 1. Traffic layout, states, and actions 

 

2.3.2 States and actions 
 

Each 4-legged intersection has its own state space 

defined as {S1, S2, …, S8}, where Si is the state at the i-th 

lane in Figure 1(a). Suppose the current state is Si, vehicles in 

the i-th lane can move to the corresponding direction 

depending on the action selected by the RL algorithm which 

learns each intersection individually. The green light is 

assigned to the directions specified by arrows in the action. 

Three possible actions are Straight-Right (SR), Straight-

Straight (SS), and Right-Right (RR), as shown in Figure 1(b). 

An action of the current state determines a set of possible next 

states. For instance, a set of possible next states after 

performing the action SR at the state S1 is {S3, S4, S5, S6, 

S7, S8}. S1 and S2 are excluded from the set because vehicles 

in both states just move at the current time step. All possible 

state transitions in the Markov model are shown in Table 1. 

 

2.3.3 Reward function 
 

Since one of the objectives of this research is to 

simultaneously optimize both the averages of waiting time and 

flow rate, let us call it WTFR from now on. Our reward 

function is defined as follows. 
 

 
 

where  and  are normalized terms (between ) of 

averages of flow rate and waiting time, respectively. We 

normalize both values by using a logistic sigmoid function. 

Table 1. State transitions 

 

Current State Action Possible next states 

   

S1 SR {s3, s4, s5, s6, s7, s8} 

RR {s2, s3, s4, s6, s7, s8} 

s2 SR {s3, s4, s5, s6, s7, s8} 
SS {s1, s3, s4, s5, s7, s8} 

s3 SR {s1, s2, s5, s6, s7, s8} 

RR {s1, s2, s4, s5, s6, s8} 
s4 SR {s1, s2, s5, s6, s7, s8} 

SS {s1, s2, s3, s5, s6, s7} 

s5 SR {s1, s2, s3, s4, s7, s8} 

RR {s2, s3, s4, s6, s7, s8} 

s6 SR {s1, s2, s3, s4, s7, s8} 
SS {s1, s3, s4, s5, s7, s8} 

s7 SR {s1, s2, s3, s4, s5, s6} 

RR {s1, s2, s4, s5, s6, s8} 
s8 SR {s1, s2, s3, s4, s5, s6} 

SS {s1, s2, s3, s5, s6, s7} 
   

 

 
 

 
 

where FR is the average flow rate and WT is the average 

waiting time. To avoid the saturated values of lower and upper 

plateaus, we apply the approach of McDowall and Dampney 

(2006) to calculate appropriate coefficients β and γ for the 

sigmoid function. The general form of the logistic sigmoid 

function (Kent, Drane, Blumenstein, & Manning, 1972) of an 

input X is as follows. 

 

 
 

where α is the Y range (1 in our case), β is the gain coefficient, 

and γ is the midpoint of the X-axis. The value of γ can be 

either a half of the maximum flow rate or half of the 

maximum waiting time, depending on whether we are 

calculating (  or ). δ is the value of Y at the bottom 

plateau (0 in our case). Assume by default that the logistic 

sigmoid function saturates within 5% of the upper and lower 

plateaus, i.e., the saturated values of Y on both ends are 0.05 

and 0.95. A coefficient β can be calculated by the following 

equations. 

 

 
 

 
 

For example, given γ = 50 and , 

the logistic sigmoid function can be nicely normalized as 

shown in Figure 2. In practice, we need to estimate the 

maximum flow rate and the maximum waiting time to find the 

appropriate midpoint γ for them in the preliminary run. This 

logistic sigmoid function with an appropriate slope can 

produce distinct Y values when X values are large (or small) 



K. Jearanaitanakij et al. / Songklanakarin J. Sci. Technol. 44 (4), 914-922, 2022  917 

 

 
 

Figure 2. Logistic sigmoid function with appropriate slope 

 

since the Y range nicely scales within the range of 0.5 and 

0.95 without plateaus. As a result, WTFR can discern the 

reward values when the averages of flow rate and waiting time 

are large (or small). 

 

2.3.4 Adaptive green light time 
 

Another important factor that improves the 

adaptability of WTFR is the automatic adjusting of green light 

time (GT). GT of action varies directly with the vehicle 

density of the current state (Dense_C) and varies inversely to 

the average vehicle density of the downstream lanes (Dense_A 

and Dense_B).  

 

 
 

where Dense_A, Dense_B are densities of lanes downstream 

and Dense_C is the density of the current state, as shown in 

Figure 3(a). The fraction term determines whether to extend or 

reduce the default 40-second green light duration. To prevent 

the domination of a particular lane, the green light time 

calculated from the above equation is limited within the range 

between 20 and 60 seconds. This adaptive green light time 

significantly reduces the wasteful green light time problem 

when vehicles in a certain lane cannot proceed due to the 

traffic congestion ahead as shown in Figure 3(b). Although 

receiving the green light signal, vehicles in the north lane 

cannot turn right since the west lane has reached its capacity. 

In other words, the adaptive GT adjusts the green light 

duration in proportion to the traffic congestion levels of both 

the current (Dense_C) and downstream (Dense_A and 

Dense_B) lanes. As a result, this mechanism can reduce the 

chance of vehicle overflow as the length of the waiting 

vehicles is less than the distance between intersections. 

 

3. Results and Discussion 
 

To understand the adaptability of various TSC 

algorithms, we experiment under the condition where the 

vehicle arrival rate changes frequently. A total of 18,000 

vehicles are randomly fed into the system with different 

routes.  The arrival rate of 6 consecutive intervals is varied in 

the following chronological order: 4,500 – 6,000 – 4,500 – 

    

 

 
Figure 3. Densities of 3 lanes and the wasteful green time problem 

 

3,600 – 4,500 – 6,000 vehicles per hour. The last vehicle 

arrives at 13,000th second. This fluctuating arrival rate causes 

a severe problem to most TSC algorithms, as we will see in 

the simulation. Other experimental settings are listed in Table 

2. The maximum simulation hours for 4-way, 16-way, and 36-

way traffic layouts are 3, 4.5, and 6.1, respectively.  

 
Table 2. Experimental settings 

 

Setting Value 

  

Traffic Layout 
(No. of intersections / No. of ways) 

1 / 4-way 
4 / 16-way 

9 / 36-way 

Vehicle arrival rate (vehicles/hour) Variation of arrival rates 
in 6 intervals 

4,500 – 6,000 – 4,500 – 

3,600 – 4,500 – 6,000 
Road length between 2 intersections 2.5 km 

Vehicle length 4.7 m 

Min. gap between vehicles 1.3 m 
Learning rate 0.1 

Discount factor 0.9 
  

 

We compare the proposed method with the 

traditional fixed time approach and the recent state-of-the-art 

RL algorithm (Joo et al., 2020). Let us label the latter 

approach with QLTP since it focuses on optimizing queue 

lengths and throughput. For each leg of the intersection, the 

green light duration of the fixed time method for the Straight-

Right (SR) action is 60 seconds. We pick a 60-second green 

signal because its preliminary simulation showed the best 

result among tested durations. Similarly, QLTP employs a 

constant green light time. Its green light time is also 60 
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seconds for a fair comparison. To see the impact of the green 

light time variation, we split the proposed method (WTFR) 

into two versions, i.e., a fixed 60-second green light time 

(WTFR_F) and the varied green light time (WTFR_V). To 

solve unpredictable changes in vehicle arrival rate, all RL 

algorithms continuously learn the traffic environment until 

there is no vehicle left in the system. 

Six average measures of a 9-intersection traffic map 

(36-way) are shown in Figure 4. It is worth noting that each 

horizontal axis of Figures 4(a-e) is time in seconds while 

Figure 4(f) displays value against epoch. Averages of density 

and queue length in Figures 4(a-b) vary in similar patterns. 

They indicate the accumulation of successive vehicles with 

different arrival rates. Both measures rapidly increase until the 

traffic capacity has reached the critical point around 13,000th 

second as the last vehicle arrives. Cumulative vehicles during 

this moment form severe traffic congestion, as we noticed in 

SUMO that many vehicles cannot move forward despite 

receiving the green light signal. As a result, green light time in 

some directions is wasteful.  Figure 4(c) indicates that the 

average flow rates of all methods quickly rise to their near-

saturation points around the 4,000th second and begin to 

decrease due to the traffic congestion. Combining information 

from Figures 4(a-b), the severe traffic congestion occurs for 

4,000th – 13,000th seconds, which is long enough to evaluate 

the performance of TSC algorithms. According to the average 

vehicle speed in Figure 4(d), WTFR_V and WTFR_F allocate 

the top speed band up until the critical point, which causes the 

average speeds of the 4 methods to sharply drop. Interestingly, 

WTFR_V and WTFR_F are the first to clear all vehicles and 

terminate the simulation as their average speed reaches zero 

around 21,000th second. The average waiting time in Figure 

4(e) is another factor that influences reward in our method. 

WTFR_V and WTFR_F have a lower average waiting time 

than the other methods, while the fixed-time strategy cannot 

finish the simulation within 22,000 seconds. Figure 4(f) 

illustrates the variation of the average green light time by 

epoch. WTFR_V is the only method that takes advantage of 

varying the green light duration to reduce the wasteful green 

light problem. It is interesting that WTFR_V has an average 

green light time of around 33 seconds and never sets its green 

light time to 60 seconds. We will see how much of the 

average waiting time that WTFR_V can save in the 

experimental comparison. 

The comparisons of averages of 4 measures among 

the alternative RL strategies for various traffic layouts, 

namely 4-way (1 intersection), 16-way (2x2 = 4 intersections), 

and 36-way (3x3 = 9 intersections), are illustrated in Figures 

5(a-d), 5(e-h), and 5(i-l), respectively. The comparison of 

average speeds is not shown here because it is similar to that 

of the average flow rates. The three RL strategies 

outperformed the fixed time method in all measures. Although 

WTFR_V, WTFR_F, and QLTP look competitive, there are 

significant gaps among them. Figure 6 shows the percentage 

of improvement by the three RL algorithms over the baseline 

fixed time method in 4-way (Figures 6(a-d)), 16-way (Figures 

6(e-h)), and 36-way (Figures 6(i-l)) cases. In the density and 

queue length averages in Figures 6(a-b, e-f, i-j), the RL 

algorithms achieved improvements over the fixed time 

approach by approximately 46-55% in all traffic layouts. 

Moreover, WTFR_V had a better improvement than QLTP by 

approximately 5%. Figures 6(c-d, g-h, k-l) shows two further 

comparisons of terms that are crucial in calculating the reward 

of WTFR. The improvement of the average flow rate and 

waiting time of WTFR_V are better than those of QLTP by 

12% and 5-6%, respectively. These results support the first 

contribution in that WTFR_V improved the averages of flow 

rate and waiting time over the fixed time and the recent state-

of-the-art QLTP methods. Improving the waiting time is 

harder than improving the flow rate because SUMO counts 

the number of seconds the vehicle's velocity stays below 

0.1m/s as waiting time even though the vehicle moves slowly.

 

 
 

Figure 4. Measures of traffic stream characteristics in the 36-way layout 
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Figure 5. Comparison of the four methods in three traffic layouts 
 

 
 

Figure 6. Improvements over the fixed-time method 

 

The constant green light time strategy seems to be 

inefficient in controlling the traffic balance between routes 

having different densities, leading to a wasteful green light in 

some directions. Unfortunately, SUMO does not provide an 

API to measure wasteful green light time. Therefore, we will 

indirectly see the effect of varying the green light time via the 

improvement of average of flow rate. Figure 6 also compares 

the results between WTFR_V (our varied green light time 

version) and WTFR_F (our constant green light time version). 

Compared to WTFR_F, Figures 6(c, g, k) indicate that 
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WTFR_V has a further improvement of the average of flow 

rate by about 6%. This indirectly supports the second 

contribution in that it reduces the wasteful green light time 

problem by increasing the average flow rate. Comparing to 

QLTP in Figures 6(a-l), WTFR_F is still better in all 

measures, even though these employ the same constant green 

light time. The following discussion explains the reason for 

this result. 

To understand the advantage of using the logistic 

sigmoid function with appropriate coefficients, we created 

another version of WTFR_F called WTFR_F2 by simply 

substituting 1 for β and 0 for γ in the sigmoid function that 

took the following form.   

 

 
 

This simple form of the logistic sigmoid function 

has a saturation problem when the input is in the high or the 

low range. We prove this statement by comparing the 

improvements over the fixed time method by the three 

algorithms in Figure 7. According to all measures in Figures 

7(a-l), WTFR_F2 has a similar performance to QLTP that also 

employs the simple logistic sigmoid function to calculate the 

adaptive weighting factor based on the arrival of vehicles. 

When using appropriate coefficients of the logistic sigmoid 

function, Figures 7(c, g, k) indicates that WTFR_F produced a 

better average flow rate than WTFR_F2 and QLTP by 6%. A 

logistic sigmoid function with inappropriate coefficients 

saturates at high and low input ranges, resulting in inability to 

discern the rewards in these input ranges. This experimental 

result endorses the third contribution in that our reward 

function can accurately distinguish the quality of states at high 

and low ranges of average flow rate and waiting time, leading 

to improved traffic measures. 

Figure 8 describes the variations of reward in one 

intersection of the RL methods. The rewards of WTFR_V and 

WTFR_F are similar in pattern, while the reward of QLTP is 

much higher. The reason for the gap between QLTP and the 

other two algorithms is the difference in reward function. 

QLTP calculates reward by taking the logarithm (based 0 – 1) 

function to the input which is composed of the standard 

deviation of queue length and the decreasing exponential of 

throughput. During the high traffic period, the input of the 

logarithm function is small  resulting in  a  large reward value.  

 

 
 

Figure 8. Rewards of three methods

 

 
 

Figure 7. Advantage of having appropriate coefficients in the logistic sigmoid function 
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However, the larger reward does not reflect the higher 

performance since all alternative states in QLTP have high 

rewards as well. The learning epoch count of WTFR_V is 

longer than those of the other two approaches because its 

average green light time is shorter than a constant green light. 

Therefore, WTFR_V needs a relatively short time to simulate 

one cycle of all intersections. As a result, it consumes more 

epochs than the other two RL algorithms. 

 

4. Conclusions 
 

We have proposed an adaptive traffic light control 

system using the RL algorithm. The simulation results in 

SUMO endorse successful pursuit of our objectives. 

Compared to the other algorithms tested, the proposed method 

improved averages of important traffic measures, especially 

the flow rate and the waiting time. Moreover, it also reduced 

the wasteful green light problem by automatically adjusting 

the green light duration based on the densities of vehicles in 

the current and downstream lanes. A limitation of the 

proposed system is the requirement of sensors for flow rate, 

waiting time, and density of vehicles. Without those data, the 

proposed system cannot calculate the reward function and the 

green light time. Since WTFR uses a reinforcement learning 

scheme, it can lead to the exploitation-exploration tradeoff. 

Exploitation repeats existing actions to maximize the long-

term reward, but may not be optimal. In contrast, exploration 

randomly chooses a new action in the hope of achieving near-

optimal rewards. A suitable situation for deploying the 

proposed method is an environment with unpredictable 

changes in traffic conditions. Avoid applying it in a fix-green-

time environment since there will be no adaptivity benefit 

from the RL strategy. One possible future extension of this 

research is to apply hierarchical RL that combines reward 

tables from all intersections and optimizes the overall reward. 

This pyramid approach needs a proper design, as otherwise it 

will significantly increase the running time and cannot be 

applied to a real-time TSC system. 
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