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As an important mediator of information transfer between cells, exosomes play a

unique role in regulating tumor growth, supporting vascular proliferation, tumor

invasion, and metastasis. Exosomes are widely present in various body fluids, and

therefore they can be used as a potential tool for non-invasive liquid biopsy. The

present study reviews the role of exosomes in liquid biopsy, tumor

microenvironment formation, and epithelial-mesenchymal transition in non-

small cell lung cancer (NSCLC). By targeting epidermal growth factor receptor

(EGFR) therapy as a first-line treatment for patients with NSCLC, this study also

briefly describes the occurrence of EGRF+ exosomes and the role of exosomes

and their contents in non-invasive detection and potential therapeutic targets in

EGFR-mutated lung cancer.
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Introduction

Lung cancer is the main malignant tumor leading to human death in the world today

(1). According to the data of World Health Organization GLOBOCAN 2020, the statistical

data on the incidence and mortality of 36 kinds of cancers in 185 countries show that:

Although the incidence of female breast cancer (11.7%) is higher than that of lung cancer

(11.4%), lung cancer is still the leading cause of cancer mortality (18%), with about 1.8

million people dying from lung cancer every year (2). The five-year survival rate of early

lung cancer can reach 56%. Since early lung cancer has no obvious clinical symptoms, when

patients have clinical symptoms, the stage is often late. Most patients are found in the

middle and late stage, and only about 16% of patients can be found in the early stage (3). It

is morphologically classified into two main subtypes: small cell lung cancer (SCLC), which

accounts for approximately 15% of all lung cancers, and non-small cell lung cancer

(NSCLC), accounting for approximately 85%. The three major subtypes of NSCLC are

adenocarcinoma (~50% of all NSCLC), squamous cell carcinoma (~30%), and large cell
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undifferentiated carcinoma (~15%) (4). Smoking is the leading risk

factor for lung cancer. Other risk factors for lung cancer include a

poor diet, genetic changes, occupational exposure, and air pollution

(5). The availability of high-resolution computed tomography and

advances in immunotherapy and molecularly targeted therapies

have significantly improved the current state of lung cancer

treatment. However, the prognosis of NSCLC remains poor, with

a five-year survival rate of 10% (6).

It is crucial to master the biological mechanisms inherent to

tumor development and identify potential cancer biomarkers for

early diagnosis, targeted therapy, and drug development. Exosomes

are secreted by cells with small extracellular vesicles (sEVs) with

double membrane structures. Almost all cells can secrete exosomes;

however, tumor cells often secrete more exosomes than normal

cells. Exosomes are distributed in various human body fluids,

including blood plasma, saliva, breast milk, cerebrospinal fluid,

etc. (7, 8). Exosomes are membrane nanovesicles released from

extracellular luminal vesicles after the fusion of multivesicular

bodies with the plasma membrane. Recipient cells can take up

exosomes emitted by donor cells in an autocrine, paracrine, or

endocrine manner, thus demonstrating the critical role of exosomes

in intercellular communication (9). Transfer of functional exosomal

content to recipient cells can lead to pathological or physiological

effects (10). An increasing number of studies are being conducted

on the progression of exosomes as novel mediators of intercellular

communication in multiple types of cancers, including lung

carcinogenesis and the tumor microenvironment (TME). Thus,

exosomes are known for mediating intercellular communication

during tumor development (11–14). The current review provides an

overview of the role of exosomes in NSCLC growth, metastasis, and

immune response. In addition, the potential role of exosomes as

non-invasive biomarkers in EGFR-mutated NSCLC is discussed.
Effect of exoPD-L1 in NSCLC

PD-L1, also known as cluster of differentiation CD274 or B7

homolog B7-h1, is a type I transmembrane protein encoded by the

CD274 gene (15). In 1992, Tasuku Honjo and his colleagues at the

University of Tokyo identified PD-1 as a membrane protein

expressed on T cells associated with apoptosis and suggested that

the PD-1 product might have its own ligand (16, 17). Later, it was

found that PD-L1 is widely expressed not only on T cells but also on

a variety of cells, mainly on tumor cells, macrophages, monocytes,

natural killer (NK) cells, dendritic cells (DCs), but also in immune-

specific sites such as the brain, cornea and retina (18). Study found

that in human blood, PD-L1 exists in three main forms, one is

expressed on the plasma membrane PD-L1, the other is expressed

on the surface of secreted cell exosomes, or as circulating soluble

PD-L1 (sPD-L1).

Physiologically, the PD-1/PD-L1 pathway emerged because of

the need to control the degree of inflammation at the site of antigen

expression in order to protect normal tissues from damage. Almost

all activated T cells significantly express PD-1 protein on their

surface (19). When T cells recognize the Major Histocompatibility

Complex (MHC) antigen on target cells, inflammatory cytokines
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are produced to initiate the process of inflammation. Some

cytokines cause tissue cells to express PD-L1, which inhibits T

cell activation and leads to immune tolerance, causing the immune

system to lose control over the initiation of the inflammatory

response even in the presence of a viable antigen (20). In some

tumors, most notably in melanoma, this protective mechanism is

disrupted by overexpression of PD-L1. PD-1/PD-L1 inhibitors

pharmacologically block the PD-1/PD-L1 interaction, thereby

promoting an aggressive immune response to kill the tumor. It

was reported that compared to renal cell carcinoma and melanoma,

the expression level of PD-L1 in NSCLC levels were significantly

higher (21). High expression levels of PD-L1 were positively

correlated with Progression-Free Survival (PFS) and Overall

Survival (OS) after treatment with PD-1/PD-L1 inhibitors (22).

Study (21) found that in human blood, PD-L1 exists in three main

forms, one is expressed on the plasma membrane PD-L1, the other

is expressed on the surface of secreted cell exosomes (exoPD-L1), or

as circulating soluble PD-L1 (sPD-L1).

Tumor cell PD-L1 is clinically recognized as a predictor of

response to immunotherapy. PD-L1 is also the immune-related

biomarker of lung cancer with the highest level recommended by

the current guidelines and is the most widely used predictive marker

in clinical application. Although PD-L1 in tumor tissue is an

indicator authorized by United States Food and Drug

Administration (FDA), the expression pattern of PD-L1 on tumor

cells alone is not sufficient to accurately predict tumor response to

anti-PD-1/PD-L1 therapy. The use of membrane PD-L1 has

drawbacks such as invasive biopsy, heterogeneity of PD-L1

expression within tumors, inability to perform dynamic

observations, and limited sensitivity (21). Studies have shown

that, Circulating exoPD-L1 is emerging as a non-invasive and

readily available biomarker and is a more readily detectable and

reliable surrogate than sPD-L1 in tissue and plasma (23, 24).

Yang et al. (25) collected paired tissue samples and blood

samples from 51 patients with advanced NSCLC to detect the

dynamic changes of PD-L1 expression in blood of patients with

advanced NSCLC after 2 months of Immune Checkpoint Inhibitors

(ICIs) treatment, including the changes of PD-L1 mRNA, exoPD-

L1 protein and sPD-L1. Among 40 patients with advanced NSCLC,

patients with ≥2.04 fold change in PD-L1 mRNA had better PFS,

OS, and best overall response (BOR). In addition, in a group of 21

patients with advanced NSCLC, a fold change of ≥1.86 for exoPD-

L1 was found to be associated with better efficacy and OS, whereas

the dynamics of sPD-L1 were not. This suggests that increased PD-

L1 mRNA and/or exoPD-L1 expression in the early phase of ICIs

treatment may serve as a positive biomarker for efficacy and OS in

patients with advanced NSCLC. In addition, the combination of

PD-L1 mRNA and exoPD-L1 may allow better screening of patients

for the potential benefit of ICIs treatment. Further studies (25, 26)

suggested that miR-21 contained in PD-L1-positive exosomes may

be a biomarker to differentiate between NSCLC patients and healthy

controls. Yang et al. (27) detected the expression of miR-21

containing EGFR or PD-L1 exosomes and thyroid transcription

factor-1 (TTF-1) mRNA in human serum with immunochip, and

obtained the absolute sensitivity and specificity for distinguishing

normal controls from NSCLC patients. In A549 EGFR-positive
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exosomes, miR-21 and TTF-1 mRNA levels were 1.6-and 2.8-fold

higher, respectively, than in BEAS-2B cells. Meanwhile, PD-L1-

positive exosomes from A549 cells had 5.3-and 5.9-fold higher miR-

21 and TTF-1 mRNA levels, respectively, than BEAS-2B cells. These

results suggest that PD-L1-positive exosomes miR-21 and TTF-1

mRNA have better tumor recognition performance than EGFR-

positive exosomes. This suggests that EGFR-positive and PD-L1-

positive exosomes miR-21 and TTF-1 mRNA are effective serum

biomarkers to differentiate NSCLC patients from healthy controls.

In addition, Ricklefs et al. (28) screened 85 patients with newly

diagnosed NSCLC and 27 healthy subjects as the study subjects, and

analyzed the correlation between the immunohistochemical

characteristics of exoPD-L1, sPD-L1 and PD-L1 and the

clinicopathological characteristics. The results showed higher

levels of exoPD-L1 in patients with NSCLC, especially in

advanced stages, compared to healthy controls. In addition, in

NSCLC patients, high exoPD-L1 content was associated with

tumor size, positive lymph node status, distant metastasis, and

tumor-node-metastasis (TNM) stage. However, there was no

significant difference in serum sPD-L1 level between NSCLC

patients and healthy subjects, and there was no correlation

between serum sPD-L1 level and other clinicopathological

features except tumor size (> 2.5 cm) (P> 0.05). In summary,

exoPD-L1 was associated with NSCLC disease progression,

including tumor size, nodal status, metastasis, and TNM staging.

Those studies suggest that exoPD-L1 may be an effective

biomarker for the diagnosis and treatment of lung cancer.

However, it should be noted that the utility of exoPD-L1 as a

diagnostic biomarker needs to be further validated in large patient

cohorts, in patients with other lung cancer histologies (e.g.

squamous NSCLC, small cell lung cancer), and in patients with

early stages of disease (e.g. stage I).
Role of exosomes in NSCLC
liquid biopsy

The high mortality rate of lung cancer patients is mainly due to

the late diagnosis of the disease (29). Patients are usually admitted

with symptoms of chest tightness, hemoptysis, or systemic

involvement. The 5-year survival rate for lung cancer patients

with distant metastases is as low as 4% (30), and the overall 5-

year survival rate is only 24% (31). Therefore, elucidating the

mechanism underlying lung cancer metastasis is of great

significance to identify relevant biomarkers for early diagnosis

and precise treatment in patients with lung cancer.

“Liquid biopsy” is a non-invasive or minimally invasive disease

detection method based on molecular diagnostic techniques (32).

This technique has become a hot research topic in recent years. It is

different from the traditional surgical biopsy technique and

puncture biopsy technique, and mainly uses the body fluids of

cancer patients such as blood, urine, breast milk, and saliva to detect

circulating biomarkers of tumors, and to obtain relevant genetic

information of the disease (33). It provides new ideas and methods

for the early diagnosis and treatment of diseases. Liquid biopsy has
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numerous advantages, including easy to use, non-invasive (34), low

cost, low side effects (35), easy sample collection, repeatable

sampling, less harm to patients, and high level of patient

acceptability (36). It enables early detection of tumors than

imaging techniques and is suitable for the early diagnosis of

related diseases. It also provides a novel approach for early

diagnosis and adjuvant clinical treatment of lung cancer patients,

which can improve the prognosis and the quality of life and reduce

the mortality rate of lung cancer patients.

The use of exosomes as biomarkers in NSCLC is a promising

approach in the era of liquid biopsy. Several studies have recently

shown that exosomes are more stable and their contents have

greater similarity to parental cells because they are present in

most body fluids. Genetic material and information related to the

parental cells can be obtained by detecting and extracting the

contents of the exosomes (37). Exosomes in various body fluids

are abundant, specific, and uniform in size, and contain abundant

tumor-related genetic information such as specific biomarkers (e.g.,

RNAs, DNAs, lipids, and proteins) and other biomolecules, which

directly or indirectly regulate the expression of recipient cells and

play an important regulatory role in the development of tumors (see

Figure 1). A previous study found that the exosomal membrane

surface protein NY-ESO-1 from the plasma of patients with lung

cancer was significantly associated with poorer survival (38).

Exosomes secreted by tumors can be effectively detected in

almost all types of body fluids. The composition of exosomes is

extremely complex, containing many proteins, nucleic acids, etc.,

and varies greatly among diseases, individuals, and even disease

stages. Exosomes contain microRNAs (miRNAs), proteins, and

other biomolecules that are more stable than free miRNAs

and proteins, and can accurately reflect the physiological state

and pathological characteristics of secretory cells. As a marker for

liquid biopsy, exosomes have good biological prospects.
Exosomal protein markers

Exosomes contain various protein components such as surface

and intracellular proteins, which can contribute to the development

of lung cancer and are closely related to the early diagnosis and

prognosis of lung cancer (39). So far, multiple signature exosomal

membrane proteins — such as CD91, CD317 — can be used as

diagnostic biomarkers for lung cancer (40). Research shows that the

use of a mixture of biotin-conjugated CD151, CD171, and

tetraspanin8 antibodies to detect and capture exosomes has a

greater ability to isolate exosomes than traditional exosome

extraction methods (38). More importantly, the levels of

exosomal CD151, CD171, and tetraspanin8 were found to be

highly expressed in lung cancer patients, and their expression

levels were significantly higher than those in normal subjects,

suggesting that CD151, CD171, and tetraspanin8 are potentially

potent protein markers for early diagnosis of lung cancer. In

addition, exosomal membrane surface proteins such as EGFR,

placental alkaline phosphatase, epithelial cell adhesion molecule

(EpCAM), and Alix are significant predictors of long-term overall

survival in lung cancer patients and can be used as potential
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prognostic markers (41). It is worth mentioning that Koji et al.

found that the expression of CD91 in the exosome was significantly

increased, especially in the serum of patients with lung

adenocarcinoma, and suggested that the exosome with high level

of serum cd91 expression might initially be secreted by stromal cells

around lung cancer cells (40, 42). CD91 may be the lung

adenocarcinoma specific antigen on the exosome. In addition to

the surface signature exosomal membrane proteins, it has been

found that exosomal proteins can also be used as biomarkers for

early diagnosis of lung cancer. David et al. (43) analyzed 721

exosomal proteins using a quantitative proteomic approach and

identified several proliferation-related cell signaling molecules,

including SRC, EGFR, and other signal transduction-related

proteins, which are enriched in NSCLC exosomes and can

positively regulate tumor recipient cell proliferation. The study of

the NSCLC exosome proteome has helped to identify exosome-

enriched protein substances associated with lung cancer

progression, which may have potential clinical implications for

the discovery and development of NSCLC biomarkers. Niu et al.

(44) explored tumor-derived exosomal biomarkers in the sera of

125 NSCLC patients and 46 normal subjects to improve the

diagnostic value of NSCLC patients. The expression levels of

alpha-2-HS-glycoprotein (AHSG) and extracellular matrix protein

1 (ECM1) in the exosomes of NSCLC patients were significantly

higher than those of the healthy controls, indicating that AHSG and

ECM1 in serum exosomes of NSCLC patients have a potential

diagnostic value.
Exosomal nucleic acid markers

Exosomal RNA is an important component of its inclusions,

and the expression level of exosomal RNA in lung cancer patients is
Frontiers in Immunology 04
significantly higher than that of the normal population, which is

closely related to the biological characteristics of lung cancer such as

development, invasion, and metastasis (45). In recent years, a large

body of literature has reported that circulating exosomal miRNAs

can be used as potential diagnostic markers for lung cancer. Cazzoli

et al. (46) identified four miRNAs (miR-378a, miR-379, miR-139-

5p, and miR-200b-5p) from plasma exosomes of 30 subjects to

screen and distinguish lung cancer patients from healthy controls.

Similar to exosomal proteins, the expression level of exosomal

miRNA can also be used as an indicator to assess the prognosis

of lung cancer patients. Liu et al. (47) showed that high expression

levels of exosomal miRNAs (miR-23b3p, miR-10b-5p, and miR-21-

5p) were significantly associated with poor prognosis in lung cancer

patients, and the combined analysis of multiple miRNAs had higher

sensitivity and specificity. Cecilia et al. (48) found that increased

expression of miR-21 was associated with a worse prognosis in

NSCLC patients. Among the miRNAs of NSCLC-derived exosomes,

miR-10b-5p and miR-15b-5p were found to be specific for the

diagnosis of squamous carcinoma, while miR-181-5p, miR-30a-3p,

miR-30e-3p, and miR-361-5p were specific for the diagnosis of

adenocarcinoma (49). According to Zhang et al. (32), the expression

of exosomal miR500a-3p, miR-501-3p, and miR-502-3p was

significantly upregulated in lung cancer patients after surgery

(50), suggesting that the three miRNAs may be associated with

tumor progression and these changes may also be associated with a

persistent inflammatory response during tumor growth. Further

analysis revealed that the upregulation of miR-500a-3p, miR-501-

3p, and miR-502-3p was associated with improved overall survival

in lung cancer patients, and although the mechanisms underlying

the occurrence of the three miRNAs in lung cancer are unknown,

their tumor-promoting effects have been observed in other cancer

types. This suggests that exosomal miR-500a-3p, miR-501-3p, and

miR-502-3p have great potential as early diagnostic markers for
FIGURE 1

Diagnostic value of exosomal cargo in NSCLC.
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lung cancer. Therefore, the detection of differentially expressed

exosomal miRNAs using a non-invasive method (liquid biopsy) can

be used for the early diagnosis of lung cancer, providing a new

technical consideration and a solid theoretical basis for the early

diagnosis of lung cancer.
Role of exosomes in the
TME of NSCLC

Exosomes have long been thought of as waste products of

cellular metabolism. Accumulating studies have demonstrated

that exosomes are increasingly important in cel lular

communication (10, 51, 52), especially in regulating tumor

growth, supporting vascular proliferation, tumor invasion, and

metastasis (53, 54). Exosomes can promote the formation of the

TME (see Figure 2) (55). TME consists of the tumor vasculature,

extracellular matrix (ECM), and other supporting cells such as

stromal cells, fibroblasts, and inflammatory cells (56). Therefore,

therapeutic strategies targeting the TME may be a promising

approach for cancer (57–59).
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NSCLC releases a large number of extracellular vesicles, mainly

in the form of exosomes (60–62), Exosomes regulate immune

mechanisms by regulating antigen presentation, immune

activation, immune suppression, immune surveillance, and

intercellular communication (63–65). Exosome-stimulated-DCs of

lung cancer cell-associated antigens activate CD4+ T and CD8+ T

lymphocytes to induce antitumor immune responses (66). CD40

ligand-modified lung cancer cell exosomes effectively activate DCs,

inhibit lung cancer progression, and prolong survival in mice (67).

Rab-27a high expression of non-small cell lung cancer cell

exosomes also effectively stimulated the proliferation and

maturation of DCs, which subsequently significantly increased the

proliferation of CD4+ T cells, acting as an immunomodulatory

agent (68). DC vaccine-based immunotherapy is emerging as a new

cancer treatment strategy, however, the anti-tumor efficacy of DC

vaccines based on tumor cell lysates (TCL) remains unsatisfactory

due to the poor immunogenicity of tumor antigens. Recently, Wang

et al. found that tumor-derived exosomes more effectively promoted

DC maturation and enhanced MHC cross-presentation, which

directly contributed to a more potent tumor-specific cytotoxic T

lymphocyte (CTL) response. More importantly, exosomes reduced

PD-L1 expression in DCs, leading to downregulation of the Tregs
FIGURE 2

The effect of exosome from lung cancer cell on TME. (A) Exosomal miR-23a inhibits the tight junction protein ZO-1, increases vascular permeability,
and promotes cancer cell migration. (B) Tumor-derived exosomes reduce programmed death-ligand 1 expression in dendritic cells, leading to
downregulation of the population of regulatory T cells in vitro. (C) Lung epithelial cells sense tumor exosomal RNA via Toll-like receptor 3 and
promote the formation of pulmonary pre-metastatic niches. (D) Hypoxic lung cancer cells promote M2 macrophage polarization by secreting
excessive amounts of exosomal miR-21. (E) Exosomes induce early glycolytic reactions, thereby lowering the pH of the tumor microenvironment
and promoting macrophage activation. (F) Upregulation of exosomal miR-210 promotes human umbilical vein endothelial cells and leads to
increased tumor angiogenesis. (G) Exosomes promote the conversion of fibroblasts to tumor-associated fibroblasts, and exosomes from tumor-
associated fibroblasts induce the formation of pre-metastatic niches in the lungs of mice. (H) Exosomes acquired from the sera of patients with
advanced lung cancer have increased expression of vimentin and trigger epithelial-to-mesenchymal transition of lung cancer cells.
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population in vitro, and significantly inhibited lung cancer cell

growth and prolonged survival in vivo (69). Thus, tumor-derived

exosomes trigger stronger DC-mediated immune responses and

reduce Treg in the tumor microenvironment.

Hypoxia, a common phenomenon in the tumor microenvironment,

can alter tumor metabolism and thus affect cancer progression (70).

Thus, cells cultured under hypoxic conditions can mimic the in vivo

environment. There is growing evidence that hypoxia promotes cancer

development by promoting exosomes secreted by cancer cells (71).

Exosomal miR-23a targets prolyl hydroxylases 1 and 2 (PHD1 and 2)

and inhibits endothelial cell expression. Hypoxia-inducible factor-1a
(HIF-1a) accumulates in endothelial cells, thereby increasing

angiogenesis. In addition, exosomal miR-23a inhibits the tight junction

protein ZO-1, which is associated with vascular permeability and cancer

cell migration (72).

Tumor-associated macrophages (TAM) are one of the immune

cell populations of TME that usually lead to poor prognosis in

patients with malignancies (73). Macrophages are thought to be

divided into two major classes, classically activated macrophages

(M1) and selectively activated macrophages (M2).M1 macrophages

exhibit mainly pro-inflammatory activity, secreting a variety of pro-

inflammatory factors such as tumor necrosis factor (TNF), nitric

oxide, interleukin 1 (IL-1) and interleukin 12 (IL-12). On the other

hand, M2 macrophages exhibit potent anti-inflammatory activity,

countering the pro-inflammatory response of M1 by upregulating

IL-10 and downregulating IL-12 with markers including CD206,

CD163 and CD68 (74). Previously, it was reported that macrophage

M2 polarization is generated by the tumor microenvironment, and

then polarized M2 macrophages promote tumor cell proliferation,

invasion, and EMT (75–77). Researchers found that hypoxia

induced tumor-associated macrophage enrichment and M2

polarization via HIF. Downregulation of HIFs expression inhibits

glioma progression by reducing M2 polarization and TAM

infiltration (78), It was recently found that hypoxic lung cancer

cells promote macrophage M2 polarization by secreting excessive

amounts of the exosome miR-21. miR-21 targets the 3′ UTR of

interferon regulatory factor 1 (IRF1) and downregulates

macrophage IRF1 expression. Polarized M2 macrophages further

promote lung cancer cell proliferation (79). In addition to non-

coding RNAs, researchers found that hypoxic lung cancer cells

secrete large amounts of exosomal PKM3, which mediates the

AMPK/p38 pathway to induce M2 polarization in macrophages,

thereby promoting tumor progression (80).

Unlike normal cells, the metabolism of tumor cells may rely

primarily on glycolysis, and even under aerobic conditions, these

cells may produce relatively high amounts of lactate, thereby

lowering the pH of TME (81). Macrophage activation

significantly increases glycolysis-dependent ATP production,

while exosomes induce early glycolytic responses and promote

macrophage activation (82–84).

Exosomes can act not only on macrophages but also on other

cells in the TME, such as immune cells, endothelial cells, fibroblasts

and other cells that disrupt the host immune system and drive

tumor progression (85–87). Tumor cells producing p53 mutations
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secrete exosomes that mediate functional intercellular metastasis by

increasing Rab protein-dependent integrin recycling in other tumor

cells (88, 89). Tissue inhibitor matrix metalloproteinase-1 (both

exogenous and endogenous) leads to the upregulation of exosomal

miR-210 in the CD63/phosphoinositide 3-kinases (PI3K)/serine/

threonine kinase (AKT)/HIF-1-dependent pathway in lung

adenocarcinoma cells, promotes tube-forming activity in human

umbilical vein endothelial cells, and leads to increased tumor

angiogenesis (90).

Tumor-associated fibroblasts (CAFs) are the most predominant

component of tumor stromal cells in the TME. CAFs are in extensive

contact with tumor cells and can affect other components of the TME

(91–93). Contrary to normal fibroblasts, CAF can secrete a variety of

growth factors, cytokines, and ECM. These factors play a crucial role

in promoting tumorigenesis, proliferation, tumor angiogenesis,

invasion, and metastasis (94–96). It was previously found that miR-

210, an exosome secreted by lung cancer cells, acts on fibroblasts. The

ten-11 translocation 2 and JAK2/STAT3 signaling pathways of CAFs

are targets during angiogenesis, which promote the release of the

angiogenic factors vascular endothelial growth factor (VEGF), matrix

metalloproteinase-9, and fibroblast growth factor 2 (72). Exosomes

overexpressing miR-210 can activate the function of CAFs and

increase the expression of pro-angiogenic factors (97).

Overexpression of tissue inhibitor of metalloproteinases-1 also leads

to the accumulation of miR-210 in exosomes, which promotes

angiogenesis (98). CAFs also deliver the transcription factor Snail

homolog 1 (SNAI1) to lung cancer cells via exosomes and induce

EMT through cadherin-1 encoding epithelial-cadherin and vimentin

(VIM) encoding waveform proteins (99). In addition, exosome-

associated miR-142-3P promotes the conversion of lung fibroblasts

to CAFs through transforming growth factor-b (TGF-b)
signaling (100).

Natural killer cells (NK) are independent, non-specific immune

cells. They can kill tumor cells directly without MHC restriction to

the target (83, 101). However, tumor cells interfere with the normal

function of NK cells and attenuate the cytotoxicity of TME. The

degree of NK cell infiltration was positively correlated with the

survival rate in lung cancer patients (102). Recent studies have

shown that exosomes from NK cells also have antitumor properties.

In addition, these NK cell-derived exosomes have higher stability,

greater modification potential and less immunogenicity than NK

cells (103). Researchers isolated NK cells and circulating tumor cells

(CTCs) from a small cohort of patients with NSCLC and found that

NSCLC patients had higher numbers of NK and NK-exosomes

compared with healthy donors, and that these concentrations

tended to correlate positively and negatively, respectively, with the

number of blood-borne CTCs. It was further demonstrated that

NK-exosomes obtained from NK-cells had cytotoxic effects on

CTCs (103). DNAX accessory molecule-1 (DNAM1), is a key

receptor of NK cells. DNAM1 is expressed more in infiltrating

NK cells of primary lung tumors compared to the expression in

surrounding normal tissues. In recent study, Researchers found NK

cells have a cytolytic effect in lung tumors via exosomal DNAM1

receptor-ligand binding and endocytosis (104).
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Role of exosomes in
NSCLC metastasis
Tumor metastasis is a complex process that involves the

transformation of quiescent epithelial cells into motile cells and

the invasion of other organs, a phenomenon known as EMT. EMT

is a process in which polarized epithelial cells (mostly interacting

with the basement membrane through their basal surface) undergo

a variety of biochemical changes that result in a mesenchymal cell

phenotype, including increased migratory and invasive capacity,

increased resistance to apoptosis, and increased production of ECM

components (105–107). EMT is signaled by the degradation of the

underlying basement membrane and the formation of

mesenchymal cells, allowing migration of mesenchymal cells from

their origin to the upper cortex. EMT weakens the strong adhesion

between differentiated epithelial cells, allowing cancer cells to

achieve individual or collective motility, which makes EMT an

intuitive mechanism for tumor metastasis initiation (107–109).

Exosomes can be involved in the EMT effect of tumor cells

(110–112).

EMT is regulated by TGF-b (113). Previous studies

demonstrated that human umbilical cord mesenchymal stem cells

(MSCs) promoted EMT, invasion, and migration of A549 lung

cancer cells via MSC-derived exosomes (MSC-Exos). Inhibition of

TGF-b1 expression reversed the EMT-promoting effect and

enhanced the anti-growth effect of MSC-Exos on lung cancer

cells. MSC-Exo promotes EMT in A549 cells via mothers against

decapentaplegic homolog 2/3 (SMAD2/3), AKT/glycogen synthase

kinase-3b, mitogen-activated protein kinase, and nuclear factor

kappa B pathways. The inhibition of TGF-b1 expression in MSC

inactivates SMAD-dependent and non-dependent pathways

activated by MSC-Exos (114).

EMT transcription factors (EMT-TFs, including Snail1, Snail2/

Slug, etc.) contribute significantly to the development of EMT, and

EMT-TFs can induce the expression of mesenchymal genes (e.g.,

VIM, fibronectin 1, N-calcineurin (CDH2)); therefore, Snail and

VIM can be considered as mesenchymal-specific markers.

Exosomes derived from transplanted lung cancer cells induce the

expression of VIM and EMT in human bronchial epithelial cells. In

addition, it was shown that exosomes obtained from the sera of

patients with advanced lung cancer had increased expression of

VIM and induced a more metastatic phenotype in recipient cells,

suggesting that exosomes can trigger EMT of lung cancer cells (37).

Exosome-mediated transfer of miRNAs (including miR-193a-

3p, miR-210-3p, and miR-5100) from bone marrow mesenchymal

stem cells to epithelial cancer cells activates signal transducer and

activator of transcription 3 (STAT3) signaling and increases the

expression of mesenchymal-associated molecules (Snail and VIM),

induces EMT, and promotes invasion of lung cancer cells (115).

Lung cancer cells produced more exosomes under oxygen

deprivation conditions, where exosomal miR-23a is significantly

upregulated. This led to the accumulation of HIF-1a in endothelial

cells, which promoted angiogenesis and permeability, as well as

tumor migration (72).
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Exosomes from the sera of EGFR-mutant NSCLC patients mediate

the activation of mammalian targets of the PI3K/AKT/rapamycin

(mTOR) pathway and induce invasion through upregulation of

matrix metalloproteinase-9 in A549 cells. The expression of VIM

was significantly increased and epithelial features such as epithelial-

cadherin and EpCAM levels were unchanged. Moreover, the

expression of nuclear factor red lineage 2-related factor 2 and

placental (P)-cadherin increased, which are markers of mixed EMT.

Thus, exosomes from EGFR-mutant adenocarcinoma sera may be

potential mediators of mixed EMT and tumor invasion (64).

Tumor-secreted exosomes can also promote the formation of

pre-metastatic niches (PMNs). Exosomes secreted by tumor cells

form PMNs at distant metastatic sites (107, 116). The stromal

environment of PMNs consists mainly of fibroblasts, endothelial

cells, and ECM. Fibroblasts not only induce inflammation and

growth factors but also express fibronectin and matrix

metalloproteinases (117), promoting the degradation of the ECM.

Tumor-associated fibroblast-derived exosomes induced the

formation of PMNs in the lungs of mice and increased lung

metastasis of salivary gland cystic carcinoma (118). Liu et al.

(119) showed that lung epithelial cells sense tumor exosomal

RNA via Toll-like receptor 3, which is essential for initiating

neutrophil recruitment and formation of lung PMNs, providing

the right conditions for tumor metastasis.
Role of exosomes in EGFR-mutated
lung cancer

The understanding of cancer genomic alterations has enabled the

identification of potential diagnostic and therapeutic targets, one of

which is EGFR. EGFR mutations are predominant in lung

adenocarcinoma, ranging from 10% to 78%, and varying significantly

by race and geographic location (120, 121). Recent findings suggest that

cancers with EGFR mutations are associated with an increased

incidence of diffuse lung metastases (122). The development of

EGFR tyrosine kinase inhibitors (EGFR-TKIs) has revolutionized the

treatment of lung cancer. EGFR-TKIs are now recognized as the first-

line treatment of NSCLC patients harboring EGFR mutations (L858R

missense mutations in exon 19 and exon 21) (123).
Diagnostic value of EGFR+ exosomes

Current guidelines strongly recommend molecular testing for

screening lung cancer patients (124). However, tissue biopsy is

either inconclusive or unavailable in 20% of patients due to a lack

of sufficient tumor tissue or because it is not technically feasible

(125). Thus, liquid biopsy is the potential complementary/

alternative tool to conventional tissue biopsy for diagnosis and

prognosis (126). Exosomes can transport tumor molecules (DNA

and RNA), and the results of exosome nucleic acid analysis suggest

that exosomes are sensitive in identifying relevant mutations (43,

127). Exosome-derived EGFR may be a differential marker for
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diagnosing NSCLC and chronic inflammatory lung disease.

Previous studies found that approximately 80% of exosomes

obtained from NSCLC biopsies were EGFR-positive, compared

with only 2% of those from chronic inflammatory lung tissue

(128). Current studies on non-invasive tumor markers focus on

circulating tumor cells, circulating tumor DNA (CtDNA),

circulating free DNA (CfDNA), and other relevant biomarkers.

So far, the detection of EGFR is mainly based on nucleic acids of

ctDNA origin, which are currently being applied in clinical

practice (125). Cobas EGFR Mutation Test V2® (Roche

Diagnostics Inc.) was the first liquid biopsy test to be approved

by the United States Food and Drug Administration (FDA) (129).

This test allows the analysis of mutations present in cfDNA

fragments, such as exon 19 deletions or exon 21 (L858R)

substitution mutations in the EGFR gene. However, its ability to

detect EGFR-T790M has only 58% sensitivity and 80% specificity.

Thus, even by using the most sensitive analytical platform, the

nature of ctDNA and the methodological limitations of detection

complicate the liquid biopsy of cfDNA (130, 131). To address

these issues, recent studies have revealed the advantages of

combining identified exosomal nucleic acid (exoNA) mutations

with cfDNA for mutation detection (132–134). Moreover,

Fernando et al. (135) suggested that 93% of plasma cfDNA was

localized to exosomes. The value of exosomal RNA in identifying

tumor-derived somatic mutations has also been proven. A

previous study included a parallel screening of exosomal RNA

and cfDNA (stage IIIB, IV) from 84 EGFR-positive NSCLC

patients. It was found that the sensitivity for detection of

activating EGFR mutations and EGFR-T790M was 98% and

90% for exosomal RNA and 82% and 84% for CFDNA,

respectively (134). Exosomal RNA can be used as a biomarker

for EGFR mutations in lung cancer. However, the sample sizes of

the above studies were relatively small, and therefore these

findings should be validated using a larger cohort.
Frontiers in Immunology 08
Occurrence of EGFR+ exosome

EGFR-loaded exosomes are formed during EGFR endolysosomal

transport (see Figure 3) (136). Membrane-bound vacuoles formed by

the invagination of cell membranes containing activated EGFR is

called early endosome (137). After a series of changes, endosomes

mature into late endosomes, followed by the formation of membrane-

enclosed vesicles called intraluminal vesicles (ILVs) within the

endosomes by inward outgrowth of the endosomal membrane. ILVs

are the earliest stage of exosomes. Multiple inward outgrowth events

fill the intranucleosome with ILV; at this stage, the intranucleosome is

called the multivesicular body (MVB). The MVB showing specific

surface proteins (including EGFR) binds to lysosomes, leading to the

degradation of ILV contents. Other proteins shown on the MVB

include the GTPase RAS-associated protein RAB 7A, the HSP 70-HSP

90 histone protein (HOP) complex, and members of the membrane

fusion soluble N-ethylmaleimide-sensitive factor attachment protein

receptor (SNARE) complex, including vesicle-associated membrane

protein 7 (VAMP 7) and synaptic fusion proteins 7 and 8 (STX 7/8),

which label the MVB for lysosomal degradation (138–140). MVBS

required for exosome formation are translocated along microtubules

to the plasma membrane. Rabs, actin, and SNARE proteins mediate

the fusion of MVBS with the cell membrane and the subsequent

release of ILVs into the extracellular space. At this point, ILVs are

referred to as exosomes (141).
EGFR+ exosomes as
therapeutic targets

EGFR is involved in the biogenesis of specific extracellular

vesicle subpopulations. It signals as an active cargo and influences

the uptake of exosomes by receptor cells. EGFR regulates its
FIGURE 3

Occurrence of EGFR+ exosome: Invaginations of the cell membrane containing activated EGFR form membrane bound vacuoles known as early
endosomes. Following a series of changes, endosomes mature into late endosomes and subsequently, via the inward budding of the endosomal
membrane, membrane-enclosed vesicles called intra-luminal vesicles (ILVs) are formed within the endosome. Multiple inward budding events fill
endosomes with ILVs; at this stage endosomes become referred to as multivesicular bodies (MVBs).
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inclusion in exosomes during disease progression through a

feedback loop and in response to hypoxia (142), EMT (64, 143),

medications, etc. (136, 144). EGFR, its oncogenic mutants, and its

signaling network proteins are commonly expressed in lung cancer

exosomes of different origins, which leads to the activation of

translational signaling pathways and regulation of target gene

expression, such as VEGF, anti-apoptotic B-cell lymphoma-extra-

large, and cell cyclin-dependent kinase inhibitor P27 (145–147). It

has been previously demonstrated that EGFR can transfer to

endothelial cells via exosomes, activating mitogen-activated

protein kinase and AKT pathways and promoting VEGF

expression, thereby increasing the expression of anti-apoptotic

genes and non-anchored growth capacity (148). In addition to

promoting angiogenesis, EGFR-containing lung cancer exosomes

can also translocate to host macrophages, thereby suppressing

intrinsic antiviral immunity and enabling immune escape (149).

In addition to acting on macrophages, Exo-EGFR inhibits the

tumor immune function of DCs (150).

Resistance to EGFR-TKIs is also associated with exosomal

contents. Liu et al. (151) found that T790M-mutant cell exosomes

induce resistance to gefitinib in sensitive cells through activation of

the PI3K/Akt signaling pathway. Exosome transfer of wild-type

EGFR also confers resistance to osimertinib by activating the PI3K/

Akt pathway (152). However, Chen et al. (146) demonstrated that

exosomal miRNAs can play a role in reversing gefitinib resistance.

They found that exosomal miR-7 is resistant to gefitinib by

promoting phosphorylation of YAP, an effector of the HIPPO

pathway. Collectively, these studies suggest a mechanism of

resistance of NSCLC to EGFR-TKIs via exosomes.
Summary

As liquid biopsy takes the center stage as a tool for the diagnosis

and management of cancer, extracellular vesicles are increasingly

recognized as an attractive method to obtain non-genetic molecular

information about solid tumors through minimally invasive

approaches (153). In this context, the identification of subclasses of

extracellular vesicles derived from cancer cells andmicroenvironmental

components associated with well-defined pathological processes would

allow them to serve as complementary biomarkers of circulating

cfDNA and circulating tumor cells. In recent years, several studies

have demonstrated the value of exosomes as cancer biomarkers,

allowing longitudinal monitoring of tumor heterogeneity and early

identification of cancer subtypes (154, 155), as well as monitoring

microenvironmental subversion (156), tumor progression and

prognostic decisions (157), and response to therapy to tailor

therapeutic interventions (158, 159). Further developments in this

field will bring us closer to the most important goal of providing
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personalized cancer care. In terms of clinical applications, multiple

non-coding RNAs and proteins have been identified in exosomes,

which may be indispensable tools for the diagnosis and prediction of

lung cancer in the clinical setting. However, there is a lack of clinical

studies with large samples to provide evidence to support this. It is

particularly important to identify the precise components that play a

key role in tumor pathogenesis.

Current techniques for exosome extraction and isolation fail to

meet the requirements for highly sensitive extraction and isolation

of exosomes needed for liquid biopsies. EGFR and its signaling

network proteins are widely present in the exosomes of patients

with NSCLC and are potential biomarkers in oncology research and

clinical applications. Accelerating the discovery, validation,

regulatory approval, and ultimately rapid use of exosome

biomarkers in clinical practice is crucial to the rational

development of medical therapeutics. ExoNA measurements may

expand the utility of exosomes as a potential diagnostic and

prognostic tool for EGFR-mutated cancers, as they may provide a

more complete assessment of tumor progression and response to

targeted therapies. This may provide new scientific avenues for the

development of novel technologies for accurate early detection

and diagnosis, staging, precise treatment, and prognosis of

lung cancer.
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