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Oil is one of the main components in maize kernels. Increasing the total oil

content (TOC) is favorable to optimize feeding requirement by improving maize

quality. To better understand the genetic basis of TOC, quantitative trait loci

(QTL) in four double haploid (DH) populations were explored. TOC exhibited

continuously and approximately normal distribution in the four populations. The

moderate to high broad-sense heritability (67.00-86.60%) indicated that the

majority of TOC variations are controlled by genetic factors. A total of 16 QTLs

were identified across all chromosomes in a range of 3.49-30.84% in term of

phenotypic variation explained. Among them, six QTLs were identified as the

major QTLs that explained phenotypic variation larger than 10%. Especially, qOC-

1-3 and qOC-2-3 on chromosome 9 were recognized as the largest effect QTLs

with 30.84% and 21.74% of phenotypic variance, respectively. Seventeen well-

known genes involved in fatty acid metabolic pathway located within QTL

intervals. These QTLs will enhance our understanding of the genetic basis of

TOC in maize and offer prospective routes to clone candidate genes regulating

TOC for breeding program to cultivate maize varieties with the better

grain quality.

KEYWORDS
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1 Introduction

The modern maize (Zea mays L.) kernels are composed of approximately 72% starch,

10% protein, 4% oil, and 14% other constituents (Laurie et al., 2004; Ranum et al., 2014).

Oil predominantly accumulates in the embryo and is stored in the form of triacylglycerols,

which is composed of roughly 59% polyunsaturated, 24% monounsaturated and 13%

saturated fatty acid (Dupont et al., 1990; Lambert, 2001). The proper ratio of unsaturated to

saturated fatty acids in maize oil is considered as a character of high-quality oil for human
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health (Han et al., 1987; Benitez et al., 1999; Lambert et al., 2004). In

addition, the high energy and proportion of polyunsaturated fatty

acids is highly valued for animal feed, industrial applications and an

alternative to fossil fuels (Hou et al., 2022). Thus, the ability to

improve oil quantity and quality has been a key target for plant

breeding and biotechnology-assisted improvement (Yang et al.,

2012; Li et al., 2013).

High-oil maize hybrids (oil concentration > 6%) are considered

as an important crop with valued nutrient (Wei et al., 2009). A

series of genetic resources have been generated by long-term

artificial selection of high-oil maize populations (Fang et al.,

2021). The oil concentration of initial open-pollinated variety

Illinois High Oil (IHO) reached about 20% after 100 generations

of selection (Dudley and Lambert, 2004). A normal maize synthetic

Zhongzong No. 2, which was synthesized with 12 inbred lines of

Lancast heterotic group, was used to produce the Beijing High Oil

(BHO) with oil concentration increased from 4.71 to 15.55% after

18 selection cycles (Song and Chen, 2004). The inbred line By804

was derived from the high-oil population ‘Beinongda’ and its oil

concentration reached 11.22% (Zhang et al., 2008).

As the unique and precious resources, these high oil materials

provide an opportunity to understand the genetic architecture of oil

and fatty acid biosynthesis, which in turn increase the efficiency of

selection to improve oil concentration and quality (Wassom et al.,

2008a; Wassom et al., 2008b; Yang et al., 2010; Li et al., 2020).

Combined with map-based cloning, QTL mapping is the most

powerful and efficient strategy to identify the genomic region that

controls complex quantitative traits in plants (Goldman et al., 1994;

Lima et al., 2006; Messmer et al., 2009). The total oil content (TOC) is

a quantitative trait, and many quantitative trait loci (QTL) have been

demonstrated to control the seed oil accumulation in a randomly

mated F2:3 population IHO × ILO (Alrefai et al., 1995; Berke and

Rocheford, 1995; Laurie et al., 2004; Clark et al., 2006; Dudley, 2008).

These studies revealed that TOC was controlled by numerous genes

with individually small effects and mainly additive gene action (Yang

et al., 2010). In addition, using a recombinant inbred line (RIL)

population derived from B73 × By804, a relatively small number of

QTL were detected and accounted for a large percentage of the total

phenotypic variation (Song and Chen, 2004; Zhang et al., 2008; Yang

et al., 2010; Pan et al., 2012; Yang et al., 2012). These studies also

indicated that epistasis is a key factor affecting the genetic basis of oil

content in maize kernel (Wassom et al., 2008b; Yang et al., 2010).

Similar results were also obtained in two publicly available maize

genetic resources, NAM (the nested association mapping population)

and AMP508 (association mapping population) based on high-

resolution and high power QTL analysis (Lambert et al., 2004;

Cook et al., 2012). A high-oil QTL (qHO6) on chromosome 6 has

been cloned and the candidate gene encodes an acyl-CoA:

diacylglycerol acyltransferase (DGAT1-2), which catalyzes the final

step of oil synthesis (Zheng et al., 2008). The major QTL QTL-Pal9

explaining 42% of the phenotypic variation in palmitic acid content

was identified on maize chromosome 9 in a bi-parental segregating

population and the candidate gene Zmfatb encodes acyl-ACP

thioesterase (Li et al., 2011).

Distinct mapping populations were featured with advantages

and limitations, which results in significant impacts on QTL
Frontiers in Plant Science 02
outputs (Odell et al., 2022). DH segregating populations have

been commonly used in QTL analysis for several specific

advantages (Chaikam et al., 2019). Complete homozygosity of DH

lines allows accurate phenotyping over multiple locations and years

compared to families in early selfing generations (Foiada et al., 2015;

Yan et al., 2017). In this study, we utilized four DH populations

derived from the practical breeding program to further dissect the

genetic basis and QTLs controlling the phenotypic variation of TOC

in maize kernels. Our intention was to describe the genetic

architecture of oil variation in extensive scale and provide the

prospective targets to identify candidate genes for increasing oil

concentration in commercial maize germplasms.
2 Materials and methods

2.1 Plant materials and field experiments

Four DH populations (TOC1, TOC2, TOC3 and TOC4) were

constructed as previously method described (Chaikam et al., 2019;

Du et al., 2020). The eight inbred parental lines exhibiting the

variation in TOC (Table 1) were belonged to Maize Yufeng

Biotechnology LLC (Beijing, China) and selected as elite inbred

lines used for optimizing grain nutritional quality breeding

program. Parents of TOC1 and TOC2 belong to maize Lancaste

germplasm, and parents of TOC3 and TOC4 belong to Reid Yellow

Dent germplasm. The populations (TOC1, TOC2, TOC3 and

TOC4) including 123, 129, 281 and 160 lines, respectively

(Table 1). Each population with its parents were planted in 2021

at Liaoning province, China (LN, 40°`82′N, 123°56′E) with three

replication blocks. All lines were planted in a single row plot with

the length of 150 cm and 60 cm using a complete randomized block

design under natural field conditions. All plants were self-pollinated

and kernels from middle part of three well-grown ears were

harvested and dried for oil measurement. We declare that all the

collections of plant and seed specimens related to this study were

performed in accordance with the relevant guidelines and

regulations by Ministry of Agriculture (MOA) of the People’s

Republic of China.
2.2 Evaluation of oil content and statistical
analysis of phenotypic data

Near infrared reflectance (NIR) spectrometer (DA 7250, Perten

Instruments Inc., Sweden) was used to measure TOC in maize

kernels as previously described with a few modifications (Chen and

Hu, 2017). The reflectance spectra were collected in a range of 400

to 2500 nm with 10-nm intervals in the NIR region. A minimum of

50 kernels per sample was scanned three times and the average was

taken as final phenotypic value.

All statistical analyses were performed by using R Version 4.0.1

(www.R-project.org) as previously described (Zhang et al., 2021;

Zhang et al., 2022). The R ‘AOV’ function was used to estimate the

variances of TOC. The model for the variance analysis was as

following: y = m + ag + be + ϵ, where ag is the effect of the g
th line, be
frontiersin.org
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is the effect of the eth environment, and ϵ is the error. The effects in
the model were defined by random. The broad-sense heritability

(h2) analyzed in the populations was calculated according to Knapp

et al., 1985. The formula was h2 = sg2/(sg2 + sϵ2/e), where s2
g is the

genetic variance, s2
e is the residual error, and e is the number of

environments. The best linear unbiased predictor (BLUP) value of

each line was calculated as: yij = m + ei + fj + ϵij, where yij is the

phenotypic value of individual j in environment i, m is the grand

mean, ei is the effect of different environments, fj is the genetic effect,

and ϵij is the random error. The grand mean was fitted as a fixed

effect, and genotype and environment were considered random

effects (Wang et al., 2015). All of these variances were estimated

using the ‘LME4’ R package. The BLUP values were used for

phenotypic description statistics and QTL analysis.
2.3 Genotyping and constructing genetic
linkage map

The four DH populations with their parents were genotyped

using the GenoBaits Maize 1K marker panel (Mol Breeding

Biotechnology Co., Ltd., Shijiazhuang, China). A total of 4,589

SNP markers were identified on the basis of genotyping by target

sequencing platform (Guo et al., 2019). The minor allele frequency

(MAF) and missing rate were estimated in each population and the

SNPs with MAF < 0.1 or missing rate > 0.6 were filtered out. After

quality control, the polymorphic SNPs between two parental lines

were used to construct the genetic linkage maps using the R/qtl
Frontiers in Plant Science 03
package functions est.rf and est.map (Broman et al., 2003) with the

kosambi mapping method.
2.4 QTL mapping

Composite interval mapping (CIM) method followed by

multiple QTL mapping analysis was performed using Windows

QTL Cartographer 2.5 and R language (Wang et al., 2010a). The

whole genome was scanned at every 1.0 cM interval with a window

size of 10 cM. A forward and backward stepwise regression with five

controlling markers was conducted to control background from

flanking markers. The empirical logarithm of the odds (LOD)

threshold was calculated using 1,000 permutations at a

significance level of p = 0.05 (Churchill and Doerge, 1994). These

threshold LOD values were in a range of 2.76 to 3.06 in four DH

populations. QTLs with LOD value greater than the threshold were

considered for further analysis. With the 1.5-LOD support interval

method, the confidence interval for each QTL position was

estimated (Lander and Botstein, 1989). The additive × additive

epistatic interactions was performed by “IM-EPI” method in

IciMapping Version 4.2.
2.5 Gene annotation

QTLs were delimited to a single peak bin interval based on bin

map. The protein-coding genes within intervals were listed
TABLE 1 Phenotypic performance, variance, and broad-sense heritability of TOC in the four DH populations.

Trait a Populations

TOC1 TOC2 TOC3 TOC4

Parents

means ± SD (%)
KB717001 4.14 ± 0.17 KB717001 4.14 ± 0.17 AJ519002 4.30 ± 0.10 AJ519004 4.43 ± 0.02

KB519009 3.50 ± 0.15 KB719010 3.16 ± 0.05 AJ519001 4.90 ± 0.09 AJ519006 4.95 ± 0.09

p value b 0.008** 0.006** 0.002** 0.007**

DHs

Size 123 129 281 160

means ± SD (%) 4.57 ± 0.41 4.42 ± 0.40 4.50 ± 0.42 5.02 ± 0.41

Range (%) 3.64 - 5.58 3.59 - 5.48 3.10 - 5.42 4.06 - 6.13

sg2 c 0.205 0.183 0.186 0.168

se2 d 0.027 0.059 0.023 0.009

sϵ2 e 0.126 0.085 0.274 0.197

h2 (%) f 83.00% 86.60% 67.00% 71.80%
fro
aTOC;
bP value based on a t-test evaluating two parental lines;
cgenetic variance;
denvironmental variance;
eresidual variance;
fbroad-sense heritability (h2);
** p ≤ 0.01.
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according to MaizeGDB database (V2). Each of the corresponding

gene were annotated by performing BLASTP searches at the NCBI

(blast.ncbi.nlm.nih.gov/Blast.cgi).
3 Results

3.1 Phenotypic variation and heritability of
TOC in maize kernel

Four DH populations, TOC1-TOC4 were developed from eight

inbred lines (TOC with a range of 3.16-4.95%). Each population

contained 123-281 lines, respectively (Table 1). Within each DH

population, TOC exhibited a continuously and approximately

normal distribution, which is the typical characteristic of

quantitative trait (Figure 1 and Table 1). Analysis of variance

(ANOVA) revealed that the genotype variance was greater than

environmental variance in all populations (Table 1), indicating that

phenotypic variations were mainly controlled by genetic factors.

Broad-sense heritability estimates were calculated and showed high

for TOC1 and TOC2 populations (83.00-86.60%), and moderate for

TOC3 and TOC4 populations (67.00-71.80%) (Table 1). The

moderate to high heritability indicated that most of TOC

variations in these DH populations were genetically controlled

and suitable for further QTL mapping.
3.2 Genotyping and genetic linkage map

A GenoBaits Maize 1K SNP marker panel was used for

genotyping all DH lines in the four populations. After quality

control, a total of 1,217, 575, 1,022 and 1,039 polymorphic SNPs

were identified for TOC1-TOC4 populations, respectively. These

high-fidelity SNPs were used to construct the genetic linkage map

with the missing rate in most lines less than 2% (Figure S1). In total,

925.92, 684.23, 860.81 and 836.67 cM genetic distances spanned in

four linkage maps (Figure S2), and the average genetic distance

between every two adjacent markers was 0.77, 1.21, 0.85, and 0.81

cM in each DH population, respectively (Table S1).
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3.3 Identification of QTLs for TOC in four
DH populations

A total of 16 QTLs were identified with a LOD threshold of

above 3.00 at the 0.05 significance level (Table 2 and Figure 2).

Among them, 3, 4, 5 and 4 QTLs were detected in TOC1, TOC2,

TOC3 and TOC4, respectively. The average genetic intervals of

these QTLs was 82.69 cM in a range of 36.56-125.29 cM. The

average physical interval was 102.58 Mb in a range of 11.96-232.42

Mb. The contribution to phenotypic variation for each population

ranged from 40.99 (TOC3) to 62.05% (TOC2) with an average of

51.10%. The explained phenotypic variation were less than broad-

sense heritability (Tables 1, 2), suggesting that only part of QTLs

have been detected in these bi-parent populations.

In TOC1, three QTLs (qOC-1-1, qOC-1-2 and qOC-1-3)

distributed on chromosome 3, 5 and 9. The QTL, qOC-1-3, with

the largest effect (30.84% of the phenotypic variation) was located

on chromosome 9. The parental KB717001 allele at this locus had

an additive effect of 0.24% for increased oil content. The second

QTL qOC-1-2 was located on chromosome 5, and explained 11.64%

of phenotypic variance with an additive effect of 0.15%. qOC-1-1 on

chromosome 3 explained 7.50% of the phenotypic variance and

considered as a minor QTL. The parent KB717001 allele at all of

mapped loci had increasing effects for TOC.

In TOC2, four QTLs (qOC-2-1, qOC-2-2, qOC-2-3 and qOC-2-

4) were identified and accounted for 62.50% of the total phenotypic

variance. One major QTL qOC-2-3 located on chromosome 9 and

contributed to 21.74% of the explained phenotypic variance. The

second QTL qOC-2-2 on chromosome 2 explained 13.53% of

phenotypic variance with an additive effect of 0.15%. The qOC-2-

1 and qOC-2-4 explained 5.72% and 7.26% of the phenotypic

variance, respectively The parent KB717001 allele increased the

TOC for qOC-2-1, qOC-2-2 and qOC-2-3, but decreased the TOC

for qOC-2-4.

In TOC3, a total of five QTLs (qOC-3-1, qOC-3-2, qOC-3-3,

qOC-3-4 and qOC-3-5) were detected and explained 40.99% of the

total phenotypic variance. qOC-3-3 on chromosome 4 was the

major QTL explaining phenotypic variation of 12.99% with an

additive effect of 0.15%. The parent AJ519002 allele at qOC-3-2
FIGURE 1

Phenotypic variation in TOC in the four DH populations. The x-axis showed the TOC and the triangle color indicated the TOC in parents.
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increased the TOC, whereas the parent AJ519001 allele at other

QTLs increased the TOC.

In TOC4, a total of four QTLs were identified (qOC-4-1, qOC-4-

2, qOC-4-3 and qOC-4-4) and accounted for 45.54% of the total

phenotypic variance. qOC-4-2 on chromosome 6 and qOC-4-3 on

chromosome 8 were two major QTLs explaining the phenotypic

variation of 13.05% and 16.20%, respectively. qOC-4-1 and qOC-4-3

were two minor QTLs explaining 8.84% and 5.07% phenotypic

variation, respectively. The parent AJ519006 allele at all these QTLs

increased the TOC.
Frontiers in Plant Science 05
3.4 Genetic overlap of QTLs in the four DH
populations with other populations

Several overlapped QTLs regions were detected across the four

populations, including a 37.32 Mb overlap between qOC-1-1 and

qOC-3-2, and a 5.05 Mb overlap between qOC-3-4 and qOC-4-1

(Figure 3). Moreover, qOC-1-2 and qOC-2-3 located within qOC-3-

5 and qOC-1-3, respectively (Figure 3).

To investigate whether these newly-identified QTLs shared

across different genetic background, we compared their genomic
TABLE 2 Individual QTL for TOC in the four DH populations.

Populations QTL Chr.a G-Peak
(cM)b

P-Peak (Mb)
_V4c

G-
Range
(cM)d

P-Range (Mb)
_V4e LOD PVE

%f Add.g Parent
h+

PVE(%)
-ALLi

TOC1

qOC-
1-1

3 48.55 162.54
41.05-
52.23

112.37-169.00 4.68 7.50 0.12 KB717001

55.82
qOC-
1-2

5 53.92 193.53
50.84-
58.39

191.47-199.14 5.61 11.64 0.15 KB717001

qOC-
1-3

9 34.02 125.24
31.10-
41.66

113.85-143.02 12.24 30.84 0.24 KB717001

TOC2

qOC-
2-1

1 19.15 12.72
8.15-
29.13

12.72-26.18 4.17 7.26 0.11 KB717001

62.05

qOC-
2-2

2 20.42 30.39
13.01-
24.42

11.17-30.39 8.67 13.53 0.15 KB717001

qOC-
2-3

9 27.23 129.70
25.45-
28.83

122.00-130.80 12.80 21.74 0.20 KB717001

qOC-
2-4

10 23.05 55.99
23.05-
24.63

55.99-79.47 4.03 5.72 -0.10 KB719010

TOC3

qOC-
3-1

2 42.18 58.26
40.75-
42.18

46.13-58.26 3.49 3.49 -0.08 AJ519001

40.99

qOC-
3-2

3 37.82 22.64
29.65-
44.47

11.58-149.70 7.37 8.39 0.12 AJ519002

qOC-
3-3

4 47.22 232.42
43.03-
56.33

196.02-241.81 11.71 12.99 -0.15 AJ519001

qOC-
3-4

5 30.81 43.18
23.31-
38.99

15.74-85.58 5.33 5.41 -0.10 AJ519001

qOC-
3-5

5 65.51 202.27
58.23-
79.97

188.27-207.38 7.58 8.26 -0.12 AJ519001

TOC4

qOC-
4-1

5 24.43 11.96
15.65-
31.84

6.09-20.79 5.12 8.84 -0.13 AJ519006

45.54

qOC-
4-2

6 36.45 131.71
35.42-
45.25

129.11-140.52 6.83 13.05 -0.15 AJ519006

qOC-
4-3

7 54.69 165.51
54.69-
54.69

146.02-168.32 3.04 5.07 -0.10 AJ519006

qOC-
4-4

8 21.13 63.28
19.12-
22.76

10.65-65.48 8.82 16.20 -0.18 AJ519006
f

aChromosome;
bGenetic position in centimorgans (cM) of QTL with the highest LOD;
cPhysical position of QTL based on the B73 reference sequence (V4);
dGenetic position range in centimorgans (cM) of QTL with the highest LOD;
ePhysical position range of QTL based on the B73 reference sequence (V4);
fPercentage of the phenotypic variation explained by the additive effect of QTL;
gAdditive effect of QTL;
hwhich parental allele increased the TOC;
iPercentage of the phenotypic variation explained by the additive effect of all QTL.
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locations with QTLs related to oil traits from the other eight

previous studies (Mangolin et al., 2004; Wassom et al., 2008a;

Wassom et al., 2008b; Wang et al., 2010b; Cook et al., 2012; Yang

et al., 2012; Li et al., 2013; Yang et al., 2016; Karn et al., 2017; Fang

et al., 2020 and Fang et al., 2021). A total of 56 genomic regions

related to oil synthesis and accumulations were identified to be

overlapped with QTLs in our four DH populations (Figure 3). These

results indicated that although unique and specific QTLs were

detected in each population, some genetic loci may have common

effects on TOC among different types of populations.
Frontiers in Plant Science 06
4 Discussion

4.1 QTL mapping precision

The genetic architecture of a quantitative trait consists of a set of

parameters that explain the genetic component of trait variation

within or among populations (Laurie et al., 2004). These parameters

include the number of QTL affecting the trait, their locations in the

genome, the frequencies of alternative genotypes segregating at the

QTL, the pattern of linkage disequilibria among QTL, and the
A B

DC

FIGURE 2

The distribution of QTLs across the entire genome in the four DH populations. The upper of each picture displayed LOD score (y-axis) against the
physical position (x-axis) of markers, while the bottom of the picture displayed additive effect (y-axis) against the physical position (x-axis) of markers.
(A–D) designated TOC1, TOC2, TOC3 and TOC4, respectively.
FIGURE 3

Co-localization of TOC QTLs in maize kernels identified in the present and previous studies. The QTLs identified in this study were represented on
top. QTLs detected in previous studies were displayed in the form of references. The lower layer showed the number of detected QTLs.
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magnitudes of additive, dominance, and epistatic effects (Laurie

et al., 2004). Different types of populations used in QTL mapping

tend to vary with two main characteristics: (1) their ability to

capture genetic diversity, and (2) their power to detect QTL of small

effect (Odell et al., 2022). The advantages of DH populations are the

capability of removing any residual heterozygosity to ensure

genetically identical replicates and increasing selection response

by stabilizing heritability of various traits during perse and test cross

evaluation (Bordes et al., 2006; Gallais and Bordes, 2007; Mayor and

Bernardo, 2009; Odell et al., 2022).

SNP markers are the most frequent variations in genomes and

the application of SNP markers in plant breeding has guaranteed

the precision of QTL mapping and genetic analysis (Bhattramakki

et al., 2002; Mammadov et al., 2012; Flutre et al., 2022; Kaur et al.,

2022). By conditioning linked markers in the test, the sensitivity of

the test statistic to the position of individual QTLs is increased, and

the precision of QTL mapping can be improved (Zeng, 1994).

Subsequently, with the development of sequencing technology, an

increasing number of molecular markers have been applied to QTL

mapping, which greatly improves the accuracy of QTL mapping

(Schnable et al., 2009; Chia et al., 2012; Bukowski et al., 2018; Fang

et al., 2021). In this study, a total of 16 QTLs were found and

distributed across all ten chromosomes. 13 QTLs spanned physical

intervals of less than 50 Mb, and two span less than 10 Mb. Thus,

the resolution in this study is considerably improved because of the

large number of markers and the appropriate population type. The

resolution is probably on the order of 2-3 cM, since pairs of markers

any farther apart rarely have substantial levels of linkage

disequilibrium (Laurie et al., 2004).
4.2 Genetic basis of TOC in our
DH populations

Within the four DH populations, a broad range of phenotypic

variation with normal distribution was observed for TOC with

transgressive segregation, indicating quantitative genetic control

(Figure 1). The identification of loci controlling oil-related traits

should contribute to a better understanding of oil synthesis and

storage in maize kernels. The genetic analysis indicated TOC is

highly heritable and the heritability (67.00-86.60%) is fairly high in

all populations, indicating of superior genetic effect on TOC in DH

populations. The high heritability estimates are very favorable for

detecting marker-trait associations (Laurie et al., 2004). Among the

16 detected QTLs controlling TOC, 11 QTLs were identified as the

major QTLs with the explaining phenotypic variation larger than

10%. Especially qOC-1-3 with the largest effect (30.84% of the

phenotypic variance) and qOC-2-3 with the second largest effect

(21.74% of the phenotypic variance) were located on chromosome 9.

These region have been chosen as our primary QTL for further study

because of the higher contribution. The parent allele at this locus had

an additive effect of 0.20-0.24% for increased TOC. An additional

seven QTLs were identified on chromosomes 2, 4, 5, 6 and 8,

explaining between 11.64 and 16.20% of the phenotypic variation.

The other minor QTLs each explained 3.49-8.39% of the phenotypic

variance with moderate additive effects on TOC. In addition, except
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for environment variation, none of QTLs were shared by all DH

populations, reflecting the complexity of TOC regulation in diverse

maize populations. These results indicated that oil content is

controlled by a few large-effect QTLs, together with a large

number of minor-effect QTLs (Dudley, 1977; Laurie et al., 2004).

Results of QTL detection derived from different studies may

exhibit consistency to a certain degree across different germplasms

or genetic backgrounds and environments. For instance, the largest

and second effective QTL qOC-1-3 and qOC-2-3 was located in the

QTL m240 with a 29.17 Mb and 8.81 Mb overlap interval length,

respectively, which was related to maize TOC in RIL population

(Cook et al., 2012). qOC-3-4 co-localized with koc5b associated to

the kernel oil content in a F2:3 tropical maize population (Mangolin

et al., 2004). According to Li et al. (2013), the QTL qOC-2-1, qOC-3-

1, qOC-3-3, qOC-4-1 and qOC-4-1more or less co-localized with the

QTLs controlling protein and TOC simultaneously and might affect

protein and TOC in opposite directions (Li et al., 2013). These

results suggested that increases in grain TOC might be associated

with increases in grain protein content, both traits could be

improved simultaneously. Congruence in QTLs detected in this

study with previous reports indicates the robustness of our results.

Moreover, these QTLs definitely worth conducting further research

on this QTL via NILs, fine mapping, molecular marker-assisted

selection (MAS) and ultimate cloning.
4.3 Importance of QTLs relevant to TOC in
maize genetic and breeding

Oil in maize kernels mainly exists in the form of triacylglycerol

(TAG), which composed of fatty acids and glycerol (Du et al., 2016;

Zhang et al., 2019). Maize oil mainly accumulates in the embryo,

and the fatty acids are typically comprised of approximately 11%

palmitic acid (C16:0), 2% stearic acid (C18:0), 24% oleic acid

(C18:1), 62% linoleic acid (C18:2), and 1% linolenic acid (C18:3)

(Lambert, 2001). The quality and utilization of maize oil is

determined by their fatty acid composition (Du et al., 2016).

Saturated fatty acids, such as palmitic (C16:0) and stearic acids

(C18:0), are stable and tolerant to heat and oxidation (Hu et al.,

1997). Certain unsaturated fatty acids, such as oleic (C18:1), linoleic

(C18:2), and linolenic (C18:3) acids, are beneficial to human health

but susceptible to heat and oxidation (Hu et al., 1997). Biosynthesis

of storage oil in plant seeds is complex and involved in

multitudinous physiological and biochemical processes (Ohlrogge

and Browse, 1995; Liu et al., 2008; Zhang et al., 2009; Guo et al.,

2013; Dong et al., 2015; Glowinski and Flint-Garcia, 2018; Zhang

et al., 2018). The co-location analysis of candidate genes underlying

QTLs associated with related trait could provide information about

functional relationships between gene expression and some QTLs of

the complex biosynthesis pathway (Prioul et al., 1997; Thévenot

et al., 2005). In our study, of 189 genes involved in the fatty acid

biochemical processes, including 17 well-known genes encoding

key enzymes in maize lipid synthesis and metabolism, were located

within QTL intervals (Figure 4 and Table S2).

The genes related to the TAG synthesis pathway are key

regulatory factors in the accumulation process of TOC in corn
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(Zhang et al., 2019). Comparison of the positions of candidate genes

and QTL was a suitable strategy to investigate the molecular basis of

quantitative traits. Additionally, the positioned candidate genes can

be used to develop functional markers for increasing selection

efficiency by marker-assisted selection in plant breeding

(Andersen and Lübberstedt, 2003). Five KCS genes encoding b-
ketoacyl CoA synthase isozymes in qOC-1-3, qOC-2-1, qOC-3-4 and

qOC-4-4 are mainly involved in the process of elongation of the

C16:0- and C18:0-CoAs into very-long-chain fatty acids (VLCFAs)

(Gonzales-Vigil et al., 2017). The maize isozymes reflected

differences in the enzymatic capability to elongate fatty acids

(Stenback et al., 2022). The FAD genes in qOC-1-3 and qOC-2-2

were identified as fatty acid desaturase-coding and are responsible

for the production of trienoic fatty acids by unsaturation at the w-3
position and the cDNAs corresponding to the loci have been

isolated (Ohlrogge and Browse, 1995; Gao et al., 2015; Zhao et al.,

2019). Stearoyl-acyl carrier protein desaturases (SACD) encoded by

the genes in qOC-1-1, qOC-2-4 and qOC-3-4 are the key enzymes

that converts stearic acid to oleic acid by introducing the first double

bond into stearoyl-ACP between carbons 9 and 10 (Asamizu et al.,

1998; Liu et al., 2009). These enzymes are significantly more

abundant in expression in high-oil maize than in normal maize,

not only at the mRNA and protein levels, but also at the product

level (Liu et al., 2009). LACS2 in qOC-3-3 encoded the long-chain

acyl-CoA synthetase (LACS), which plays key roles in activating

fatty acids to fatty acyl-CoA thioesters and then further involved in

lipid synthesis and fatty acid catabolism (Lü et al., 2009; Zhao et al.,

2010; Jessen et al., 2011 and Jessen et al., 2015). TAG biosynthesis

involves three consequential acylation steps of a glycerol backbone

via the Kennedy pathway (Ohlrogge and Browse, 1995; Iskandarov

et al., 2017; Müller and Ischebeck, 2018). The process starts with the

acylation of glycerol-3-phosphate (G3P) by glycerol-3-phosphate

acyltransferase (GPAT) and lysophosphatidic acid acyltransferase

(LPAAT), and finalized by diacylglycerol acyltransferase (DGAT),

which catalyzes the last acylation step of the pathway (Ohlrogge and
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Browse, 1995). The high-oil QTL (qHO6) affecting maize seed oil

and oleic-acid contents encodes DGAT1-2 (Zheng et al., 2008; Yang

et al., 2010; Hao et al., 2014). The gene GPAT12 in our study was

also detected on chromosome 6 and showed 96% identities with

DGAT1-2 (Zm00001d036982), which indicated that GPAT12 may

be one of DGAT isozymes. The seed oils are packaged in spherical

intracellular oil bodies, which have a TAG matrix surrounded by a

layer of phospholipids embedded with unique and abundant

proteins termed oleosins (Lee and Huang, 1994). Oleosins

interact with the surface phospholipids and matrix triacylglycerols

to form a stable amphipathic layer on the surface of the oil body and

possibly act as recognition signals for the binding of lipase during

germination (Lee and Huang, 1994; Lee et al., 1995; Ting et al.,

1996). It suggested that OLE1 in qOC-2-2 was an important gene

that would facilitate lipase action during germination. The above

analysis suggested that the QTLs in this study were related to a

series of genes encoding key enzymes relevant to oil content and

lipid metabolism. Especially, qOC-4-2 contained a DGAT1-2

homologous protein coding gene and had no common region

with qHO6 which was the major oil content QTL (Cook et al.,

2012). Therefore, these QTLs will pave a path to explore molecular

markers and offer prospective routes to improve maize oil content

through molecular marker-assisted selection in maize

breeding program.
5 Conclusion

In this study, four DH populations were constructed for genetic

analysis of kernel TOC and the TOC exhibited continuously and

approximately normal distribution in all populations. Six major and

ten minor effect QTLs were identified based on the genetic linkage

map with LOD threshold of 3.00 and accounted for 3.49-30.84% of

oil variation. The result was consistent with Yang et al., 2010 that

OC in maize kernel is a complex quantitative trait and controlled by
FIGURE 4

Association of candidate genes with kernel oil QTLs. The QTLs identified in four DH populations are represented as vertical rectangles of different
colors next to each chromosome. The horizontal light blue bars on each chromosome show the positions of the 189 identified genes. The left labels
denote known genes that co-localized with the QTLs.
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a few large-effect QTLs and numerous minor QTLs. Besides, 17

well-known genes involved in fatty acid synthesis and metabolic

pathway were located within QTL intervals. This information

provides insight that will help to further understanding of genetic

variation in TOC in maize kernels and will thus enhance the

feasibility of cloning QTL, lay the foundation to explore candidate

genes associated with maize kernel TOC.
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