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Background:On-pump coronary artery bypass grafting (CABG) is associated with

a high risk of neurological complications in patients with severe carotid stenosis.

Moreover, early postoperative cognitive dysfunction (POCD) incidence remains

high in patients undergoing simultaneous coronary and carotid surgery. Recent

studies have shown that even moderate carotid stenosis (≥50%) is associated

with postoperative cognitive decline after CABG. Data on brain health in the

postoperative period of simultaneous coronary and carotid surgery are limited.

Objectives: This study aimed to analyze early postoperative changes in the

cognitive function and patterns of brain electrical activity in patients after

simultaneous coronary and carotid artery revascularization.

Materials andmethods: Between January 2017 and December 2020, consecutive

patients were assigned to on-pumpCABGwith or without carotid endarterectomy

(CEA) according to clinical indications. An extended neuropsychological and

electroencephalographic (EEG) assessment was performed before surgery and at

7–10 days after CABG or CABG + CEA.

Results: A total of 100 patients were included [median age 59 (55; 65), 95% men,

MMSE 27 (26; 28)], and among these, 46 underwent CEA. POCD was diagnosed

in 29 (63.0%) patients with CABG + CEA and in 32 (59.0%) patients with isolated

CABG. All patients presented with a postoperative theta power increase. However,

patients with CABG + right-sided CEA demonstrated the most pronounced theta

power increase compared to patients with isolated CABG.

Conclusion: The findings of our study show that patients with CABG + CEA and

isolated CABG have comparable POCD incidence; however, patients with CABG

+ right-sided CEA presented with lower brain activity.

KEYWORDS

simultaneous revascularization, coronary artery bypass grafting, carotid endarterectomy,

postoperative cognitive dysfunction, brain electrical activity
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1. Introduction

Patients with high-grade carotid stenosis or occlusion have a

high risk of neurological complications during on-pump coronary

artery bypass surgery (CABG) (Sahni and Dalton, 2016; Tarasov

et al., 2017; Campbell et al., 2021). A possible approach that has

been recognized in some cases as an effective treatment modality is

CABG and simultaneous carotid endarterectomy (CEA) (Tarasov

et al., 2017; Aboyans et al., 2018; Silverman, 2019). The risk of

ischemic brain injury increases due to global or local ischemia

and the factors associated with simultaneous coronary and carotid

surgery. Although this procedure is not always complicated by

traumatic brain injury (stroke), it may cause a less pronounced,

diffuse lesion that later leads to cognitive decline (Weimar et al.,

2017; Maleva et al., 2020). Previous studies have shown that

patients undergoing simultaneous coronary and carotid artery

surgery present with a high incidence of postoperative cognitive

dysfunction (POCD) in the early postoperative period (Maleva

et al., 2019, 2020).

Data on the influence of the laterality of CA revascularization

on adverse neurological outcomes are limited (Bossema et al., 2007;

Baracchini et al., 2012; Heyer et al., 2015). The study by Bossema

et al. (2007) demonstrated that cognitive changes, measured by

neuropsychological tests sensitive to hemispheric specialization, are

irrespective of the side of intervention. Baracchini et al. (2012)

also found no impact of the CEA side on any of the indicators

of cognitive performance. Heyer et al. (2015) investigated the

relationship between the laterality of CEA and fine hand deficits

using the Grooved Pegboard test. The authors demonstrated

greater subtle deficits of hand coordination in the non-dominant

hand compared to the dominant hand in patients undergoing CEA

of the opposite carotid artery.

Thus, the issue of selecting the optimal strategy in the

surgical treatment of coronary and carotid atherosclerosis and

early diagnosis of brain ischemia during simultaneous coronary

and carotid artery surgery is far from being solved and

necessitates the implementation of highly informative techniques.

Electroencephalography (EEG) may be a promising method for

obtaining data on specific changes in the brain electrical activity

in cardiac surgery patients due to high temporal and moderate

spatial resolution. The study of spontaneous electrical activity

in the brain in various pathological conditions revealed that

neuronal oscillatory systems are widely involved and that such

changes are the earliest evidence of subsequent impairment of

cognitive functions (Bonanni et al., 2015; Engels et al., 2016;

Tarasova et al., 2021). The brain’s electrical activity is affected

by temperature management during cardiopulmonary bypass, the

depth of anesthesia, metabolic disorders, in particular hypo- or

hyperglycemia, and impaired cerebral autoregulation (Howard

et al., 2012; Sutter et al., 2013). A number of studies have

demonstrated a high diagnostic value of EEG parameters in patients

undergoing CABG (Tarasova et al., 2021; Trubnikova et al., 2021).

EEG theta band activity is one of the most sensitive indicators

associated with perioperative brain injury. According to other

studies, evenmoderate and small stenosis (≥50%) is associated with

pronounced theta activity changes in the early postoperative period

of CABG (Trubnikova et al., 2014).

Researchers have become interested in the topographic features

of brain lesions after cardiac surgery. Cerebral hypoperfusion

during on-pump cardiac surgery can contribute to the development

of mild, multiple lesions in the frontal and parietal brain lobes, the

so-called “watershed areas,” in the terminal branches of adjacent

large cerebral arteries (Safan et al., 2022). At the same time, it was

found that cerebral blood flow alterations in the frontal and parietal

lobes are associated with a decrease in attention and executive

control (Hshieh et al., 2017; Wang et al., 2022).

Data on the brain electrical activity in the postoperative period

of simultaneous interventions on coronary and carotid stenosis

are quite limited. Other authors have shown that patients with

CABG+ left-sided CEA had a localized postoperative theta activity

increase at 7–10 days after surgery compared to baseline. At the

same time, patients with isolated CABG or CABG + right-sided

CEA demonstrated a more diffuse theta activity increase (Tarasova

et al., 2019).

The aim of our study was to investigate early postoperative

changes in cognitive functions and patterns of brain electrical

activity in patients undergoing simultaneous coronary and carotid

surgery. Moreover, we aimed to determine the significance of

the laterality of the CA revascularization side in simultaneous

interventions (CABG+ CEA) for regional EEG power changes.

2. Materials and methods

2.1. Patients

This prospective and observational study involved 100 patients

with indications for simultaneous coronary and carotid artery

surgery or isolated CABG selected from a cohort of cardiac patients

admitted to the clinic of the Research Institute of Complex Issues of

Cardiovascular Diseases. Data collection was performed between

January 2017 and December 2020, and consecutive patients were

assigned to on-pump CABG with or without simultaneous carotid

endarterectomy (CEA) according to clinical indications. This study

was performed in compliance with the ethical principles of the

Declaration of Helsinki. The study protocol received approval from

the Institutional Review Board (study protocol No 2/02072019). All

patients included in the study signed an informed consent form

(Figure 1).

The inclusion criteria were as follows: patients who were aged

between 45 and 80 years, patients with simultaneous coronary and

carotid artery revascularization or isolated CABG, and patients who

were right-handed (to exclude any influence of the laterality on

cognitive function).

The exclusion criteria were as follows:

• Life-threatening arrhythmias (at baseline);

• Functional class IV heart failure according to the New York

Heart Association (FC NYHA IV) guidelines;

• Chronic obstructive pulmonary disease with persistent

breathing difficulty;

• Malignant pathology;

• Diseases of the central nervous system, including stroke;
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FIGURE 1

Design of the study.

• Depressive symptoms [Beck Depression Inventory (BDI-II)

score ≥ 8];

• Mini-Mental State Examination (MMSE) score <24; Frontal

Assessment Battery (FAB) score < 11; and

• Drugs and alcohol addiction.

The patients underwent standard physical, instrumental, and

neurological examinations. The clinicians were blind to patients’

study participation.

A total of 46 patients had hemodynamically significant CA

stenosis (NASCET criteria) confirmed by digital angiography. The

patients with simultaneous coronary and carotid surgery were

divided into groups depending on the CEA side: the CABG +

left-sided CEA group included 25 patients and the CABG + right-

sided CEA group included 21 patients. The group of patients with

isolated CABG included 54 patients.

As seen in Table 1, clinical and anamnestic characteristics of

patients before surgery were comparable for most indicators. It

should be noted that patients with CABG + right-sided CEA

were older and had lower MMSE scores. Moreover, the parameters

of the intraoperative period such as the mean cardiopulmonary

bypass (CPB) time and aorta cross-clamping time were higher

in the isolated CABG group compared to the simultaneous

intervention groups.

2.2. Neurophysiological assessment

Cognitive screening tests were performed once at baseline (1–3

days before surgery) in all patients using modified Russian versions

of the MMSE and FAB scales. The extended neuropsychological

testing and EEG recording were conducted at baseline (1–3 days

before surgery) and 7–10 days after surgery.

2.2.1. The neuropsychological test battery
The extended neuropsychological test battery from

psychophysiological software ≪Status PF≫ (Ivanov et al.,

2001) was used to assess three domains of cognitive function

(psychomotor speed and executive function, attention, and

short-term memory). Psychomotor speed and executive

functions were evaluated using the complex visual-motor

response time test, neural responses to feedback, and brain

responses to feedback assessments. Bourdon’s test was used to

assess attention. The visual short-term memory assessment

consisted of tasks requiring participants to memorize 10

words, 10 numbers, and 10 non-sense syllables. A detailed

description of the neuropsychological test battery is presented

in Table 2 (Trubnikova et al., 2021). Alternative versions of the

neuropsychological tests were used in repeated measurements

to minimize practice effects. Postoperative changes in cognitive

function were assessed individually in each patient. The percentage

of change in indicators was calculated using the formula: [(baseline

value–postoperative value)/baseline value] × 100%. A 20%

decline in postoperative parameters compared to baseline in

20% of the test battery indicates POCD (Trubnikova et al.,

2021).

2.2.2. EEG recording and processing
EEGs were recorded via a 62-channel Quik-cap (Neuroscan,

El Paso, TX); scalp electrode locations were based on the

Frontiers inHumanNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnhum.2023.996359
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Tarasova et al. 10.3389/fnhum.2023.996359

TABLE 1 Clinical and anamnestic characteristics of the groups of the patients before cardiac surgery.

Variable Isolated CABG
n = 54

CABG +

left-sided CEA
n = 25

CABG +

right-sided CEA
n = 21

p-value

1 2 3

Age, years, Me (Q25; Q75) 58.5 (51.5;60.5) 58.5 (56.0;65.0) 69.0 (62.0;74.0) p1–3 ≤ 0.0001

Mini–mental state, scores, Me (Q25; Q75) 28.0 (27.0;28.0) 27.0 (26.0;28.0) 26.0 (25.0;27.0) p1–3= 0.01

Frontal assessment battery, scores, Me (Q25; Q75) 16.0 (16.0;17.0) 16 (16.0;17.0) 15.0 (14.0;17.0) n/s

BDI–II, scores, Me (Q25; Q75) 2.5 (2.0;4.0) 2.0 (1;4.0) 3.0 (2.0;8.0) n/s

Educational attainment, years, n (%)

8–14 37 (69) 19 (76) 18 (85) n/s

≥15 17 (31) 6 (24) 3 (15)

Functional class of angina, n (%)

I–II 28 (52) 21 (84) 17 (81) p1–2= 0.025

III 26 (48) 4 (16) 4 (19) p1–3= 0.1

Functional class NYHA, n (%)

I–II 46 (85) 23 (92) 20 (95) n/s

III 8 (15) 2 (8) 1 (5)

History of myocardial infarction, n (%) 46 (85) 17 (68) 16 (76) n/s

LVEF, %, Me (Q25; Q75) 56.0 (52.0; 62.0) 57.0 (46.0; 67.0) 65.0 (60.0; 68.0) n/s

Type 2 of diabetes mellitus, n (%) 14 (26) 9 (36) 9 (43) n/s

History of hypertension, n (%) 52 (96) 24 (96) 20 (95) n/s

Hyperlipidaemia, n (%) 38 (70) 24 (96) 17 (81) n/s

Degree of operated CS, % - 80.0 (55.0; 99.0) 80.5 (57.0; 99.0) n/s

Patients with significant contralateral CS, n (%) - 17 (68) 16 (76) n/s

Cardiopulmonary bypass time, min, Me (Q25; Q75) 106.0 (100.0; 111.0) 79.0 (51.0; 137.0) 86.0 (52.0; 146.0) p1–2= 0.01

p1–3= 0.02

Aorta cross-clamping time, min, Me (Q25; Q75) 58.0 (50.0; 66.0) 50.0 (28.0; 75.0) 51.0 (27.0; 80.0) p1–2= 0.02

p1–3= 0.03

CEA time - 25.0 (20.0; 25.0) 26.0 (21.0; 30.0) n/s

Total surgery/anesthesia time 162.0 (140.0; 190.0) 90.0 (60.0; 170.0) 90.0 (62.0; 161.0) p1–2= 0.01

p1–3= 0.01

BDI-II, Beck Depression Inventory; NYHA, heart failure by the New York Heart Association; LVEF, left ventricle ejection fraction; CS, carotid stenosis; CEA, carotid endarterectomy.

modified 10/10 system; and a nose bridge electrode was used

as a reference. Bipolar eye movement electrodes were applied to

the canthus and cheekbone to monitor eye movement artifacts.

Electrode impedances were <20 kΩ for all electrodes. The EEGs

were recorded using a NEUVO-64 system (NeuroScan, El Paso,

TX) in the eyes-closed condition, in a dimly lit, soundproof,

electrically shielded room. The EEG recording length was 5min.

The amplifier bandwidths were 1.0 to 50.0Hz, and EEGs were

digitized at 1,000Hz. Each EEG record was plotted and visually

examined and then edited to remove artifacts using the NeuroScan

4.5 software program (Compumedics, TX, USA). Artifact-free

EEG fragments were divided into 2s epochs and underwent

Fourier transformations. For each subject, EEG power values

were averaged within the theta1 (4–6Hz) range, taking into

account the results of previous studies indicating the diagnostic

significance of low-frequency rhythm changes in the detection

of postoperative ischemic brain injury (Tarasova et al., 2019,

2021). The next step was the clustering of data recorded in

56 leads into five electrode zones symmetrically in the left and

right hemispheres: frontal (F) (Fp1/2, AF3/4, F1/2, Fp3/4, Fp5/6,

F7/8), central (C) (FC1/2, FC3/4, FC5/6, C1/2, C3/4, and C5/6),

temporal (T) (FT7/8, T7/8, and TP7/8), parietal (P) (CP1/2,

CP3/4, CP5/6, P1/2, P3/4, P5/6, P7/8), and occipital (O) (PO3/4,

PO5/6, PO7/8, O1/2). In the present study, the frontal and

parietal zones were considered as the regions of interest (ROI)

(Figure 2).
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TABLE 2 Cognitive test battery for assessing cognitive function in cardiac surgery patients.

Cognitive tests and
indicators

Description of the procedure

Mini-mental state examination

(MMSE)

Scores

30-point questionnaire for cognitive impairment and dementia screening.

Frontal assessment battery (FAB)

Scores

18-point questionnaire for frontal lobes dementia screening.

Complex visual-motor reaction

Reaction time, ms

Errors, n

Reaction latencies of the right and left hands to stimuli (different colors of rectangles) when the subject should choose one of

the three presented signals (the number of signals in the test is 30).

Level of functional mobility of nervous

processes responses to feedback

Reaction time, ms

Errors, n

Missed signals, n

The previous test is conducted in the feedback mode. The duration of the exposure to the test signal (see above) is changed

automatically; the exposure of the next signal is shortened by 20ms with each correct answer and extended by 20ms, if the

answer is wrong (the number of signals in the test is 120). No response to the appearance of the test signal indicates missed

signals.

Performance of the brain responses to

feedback

Reaction time, ms

Errors, n

Missed signals, n

The previous test is conducted in the feedback mode for a fixed period of time (5min). It is necessary to process the maximum

number of signals presented with a given exposure.

The Bourdon’s test

Processed letters per 1th min, n

Processed letters per 4th min, n

The subject is provided with the alphabetic version of the Bourdon’s test to highlight certain letters for the time of 4 mins.

10 words memorizing test, n To remember as many of 10 words presented one after another as possible.

10 numbers memorizing test, n To remember as many of 10 numbers presented one after another as possible.

10 nonsense syllable memorizing

test, n

To remember as many of 10 nonsense syllables presented one after another as possible.

2.3. Statistical analysis

The data were analyzed using STATISTICA 10.0 software

(StatSoft, Tulsa, OK, USA). The Shapiro–Wilk test was used to test

the normality of data. Most of the data (clinical parameters and

cognitive indicators) were non-normal; thus, the Mann–Whitney

test was used to analyze it. Log-transforming EEG power

spectral data were performed in order to normalize the data.

Further analysis of the EEG data was done by performing a

repeated measure ANOVA. Planned comparisons were used to

compare every two tests, a p-value of <0.05 was considered

statistically significant.

3. Results

3.1. Neuropsychological functioning

3.1.1. Before cardiac surgery
Executive functions and psychomotor speed, attention, and

short-term memory were analyzed, and significant intergroup

differences at baseline were noted in the indicators of psychomotor

speed and executive function. Increased psychomotor speed was

noted in the CABG group, whereas in the CABG+CEA group, this

indicator was lower, see Table 3. Moreover, CABG + CEA patients

made fewer errors in the executive function test.

3.1.2. After cardiac surgery
Adverse cardiovascular events (myocardial infarction,

stroke, death, and repeated unplanned revascularization)

were not observed in the examined patients in the early

post-operative period simultaneous with CABG + CEA or

isolated CABG.

In our cohort, POCD occurred in 29 (63.0%) patients with

CABG + CEA and in 32 (59.0%) patients with isolated CABG

(OR= 1.17, 95 % CI = 0.52–2.63, p = 0.7). Thus, the incidence

of postoperative cognitive deficit was comparable in simultaneous

and isolated cardiac surgery.

Postoperative indicators of psychomotor speed and executive

function, attention, and short-term memory were analyzed.

Significant intergroup differences were detected in the indicators of

psychomotor speed and executive function compared to baseline.

At 7–10 days after surgery, psychomotor speed was higher in

the CABG group compared to the CABG + CEA group in the

executive function tests, see Table 4. The isolated CABG patients

also presented with higher indicators of executive control function

at 7–10 days after surgery compared to patients with CABG

+ CEA.

3.2. EEG data

For the next stage of the analysis, patients who underwent

simultaneous CABG + CEA were divided into two groups
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FIGURE 2

Location of the electrodes of EEG recording. Shaded red circles indicate the regions of interest (ROI).

depending on the laterality of CA revascularization. The

repeated measure ANOVA with a between-subject factor of

GROUP (3 levels: CABG + left-sided CEA/CABG + right-

sided CEA/isolated CABG), and within-subject factors of

EXAMINATION TIME (2 levels: before/after surgery), ROI

(2 levels: frontal and parietal), and LATERALITY (2 levels:

left/right hemisphere) was performed for the indicators of theta1

rhythm power.

The repeated measure ANOVA revealed the significance of

the factor EXAMINATION TIME—F(2,97) = 61.9, p ≤ 0.0001,

η
2
= 0.38. Theta1 power increase was noted at postoperative

7–10 days compared to baseline in both groups. As seen in

Figure 3, the CABG + right-sided CEA group also differed

from the isolated CABG group at 7–10 days after surgery

(p= 0.04).

The interaction of factors GROUP × LATERALITY

[F(2,97) = 3.13, p = 0.047, η
2

= 0.06] was deemed to be

significant. The CABG + left-sided CEA group showed the

least difference regarding the laterality of CEA‘s impact on

theta1 power. Patients in the isolated CABG and the CABG +

right-sided CEA groups had higher theta1 power values in the

left hemisphere compared to the right hemisphere. This effect

was more pronounced in the CABG + right-sided CEA patients

(Figure 4).

The topography and severity of post-operative changes in

the theta1 power rhythm differed in patients depending on the

type of cardiac surgery. Thus, another significant interaction was

revealed between the factors GROUP × EXAMINATION TIME

× AREA × LATERALITY [F(2,97) = 5.12, p = 0.008, η
2
=

0.1]. The most pronounced theta1 power difference was found

between the patients with isolated CABG and CABG + right-

sided CEA. The CABG + right-sided CEA group had higher

theta1 power values in the left frontal zone compared to patients

with isolated CABG before and after surgery (Figure 5). After

surgery, the CABG + right-sided CEA group also had higher

theta1 power values in the left parietal zone and the right

frontal zone compared to patients with isolated CABG, as seen in

Figure 5.

4. Discussion

One of the main findings of this study was the lower

cognitive performance (in terms of psychomotor speed and

executive control) in patients with simultaneous intervention

(CABG + CEA). It was noted before surgery and then it

kept worsening in the early postoperative period at 7–10

postoperative days.

As stated in the review by Piegza et al. (2021), recent

studies have highlighted the impact of impaired circulation due

to high-grade carotid stenosis on cognitive deterioration. The

study hypothesized that cerebral blood flow impairment could

be an independent and potentially reversible factor determining

cognitive decline in patients with severe stenosis (Lattanzi

et al., 2018). Recent studies have also shown that aortic arch

atheroembolism may play a critical role in brain injury and carotid
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TABLE 3 Cognitive indicators in the patients before cardiac surgery.

Cognitive tests and
indicators

Isolated CABG
n = 54

CABG+CEA
n = 46

F p (Mann–Whitney U
test)

Complex visual-motor reaction

Reaction time, ms 564.0 [526.0; 620.0] 621.0 [575.0; 736.0] −3.37 0.0008

Errors, n 2.0 [1.0; 3.0] 2.0 [1.0; 3.0] 0.08 0.93

Level of functional mobility of nervous processes responses to feedback

Reaction time, ms 453.0 [424.0; 482.0] 492.5 [453.5; 527.5] −2.73 0.006

Errors, n 25.0 [22; 27] 25 [19; 28] 0.46 0.65

Missed signals, n 17 [11; 21] 25 [19; 28] −1.32 0.19

Performance of the brain responses to feedback

Reaction time, ms 430.0 [401.0; 460] 454.0 [422.0; 486.0] −1.96 0.049

Errors, n 119.0 [111.0; 137.0] 103.0 [89.0; 121.0] 2.75 0.006

Missed signals, n 57.0 [40.0; 80.0] 72.0 [45.0; 109.0] −1.24 0.21

The Bourdon’s test

Processed letters per 1 th min,

n

68.0 [52.0; 83.0] 71.0 [53.0; 89.0] −0.39 0.70

Processed letters per 4 th min,

n

88.0 [79.0; 119.0] 94.0 [77.0; 107.0] −0.04 0.97

Memory

10 numbers memorizing test,

n

5.0 [4.0; 5.0] 4.0 [3.0; 5.0] 1.12 0.26

10 words memorizing test, n 4.0 [4.0; 5.0] 4.0[3.0; 5.0] 1.76 0.08

10 nonsense syllable

memorizing test, n

2.0 [2.0;4.0] 3.0 [2.0;4.0] −1.51 0.13

disease and can serve as a marker of arch atherosclerosis, thus,

increasing the risk of cardioembolism in CPB (Naylor et al.,

2002).

Despite the fact that CABG + CEA patients had worse

cognitive performance at baseline, the incidence of POCD was

comparable in both simultaneous and isolated cardiac surgery

groups. This can be explained by the prolonged CPB and

operation time in isolated CABG patients. Another reason

could be the recovery of cerebral circulation following carotid

revascularization (Crespo Pimentel et al., 2022). In the study

by Relander et al. (2022), CABG patients more frequently

presented with short-term postoperative cognitive dysfunction

compared to CEA patients. According to the authors, POCD is

deemed to be a heterogeneous condition. It should also be noted

that the incidence of POCD was estimated based on relative

differences between the baseline and postoperative cognitive

indicators. Thus, comparable POCD incidence in simultaneous

and isolated cardiac surgery patients could be a manifestation

of the ceiling effect that occurs when an independent factor

(cardiac surgery) no longer has an effect on a dependent variable

(cognitive performance).

The results of the EEG study have shown that the theta

power increased in all patients in the early postoperative

period compared to baseline regardless of the type of cardiac

surgery. The increase in theta activity in resting-state EEG

indicates cerebral dysfunction and may be a predictor of

long-term cognitive impairment, meaning it is important for

diagnostic purposes (Tarasova et al., 2018, 2019). In cardiac

surgery patients, an increase in theta activity can be associated

with cerebral ischemia during CPB. Cerebral atherosclerosis

leads to endothelial dysfunction, perivascular nerve damage,

arterial stiffness, and cerebrovascular insufficiency (de la Torre,

2017; Frey et al., 2018). Together, these adverse factors cause

neuronal dysfunction, tissue atrophy, and damage in neural

networks, resulting in cortical suppression by subcortical regions

and the domination of low-frequency brain activity (Daulatzai,

2017).

Frontal and parieto-occipital brain zones are particularly

vulnerable to cerebral hypoperfusion and microemboli associated

with on-pump cardiac surgery (Pierik et al., 2019). The frontal

and parietal zones are known as “cerebral watershed areas,”

and they are perfused by the most distal branches of two

major cerebral arteries (Momjian-Mayor and Baron, 2005;

Amano et al., 2020). Furthermore, frontal brain zones play a

key role in cognitive control and executive function (Widge

et al., 2019; Friedman and Robbins, 2022). The results of our

study showed significant intergroup differences in the theta

power in the left and right frontal zones, in particular, worse

executive function was noted in patients with simultaneous

intervention and isolated CABG. Moreover, patients who
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TABLE 4 Cognitive indicators in the patients after cardiac surgery.

Cognitive tests and
indicators

Isolated CABG
n = 54

CABG+CEA
n = 46

F p (Mann–Whitney U
test)

Complex visual-motor reaction

Reaction time, ms 511.5 [489.0; 557.5] 624.0 [566.0; 679.0] −4.39 ≤0.00001

Errors, n 2.0 [1.0; 3.0] 2.0 [1.0; 3.0] 0.05 0.96

Level of functional mobility of nervous processes responses to feedback

Reaction time, ms 438.5 [410.0; 461.5] 499.0 [457.5; 516.5] −3.84 0.00006

Errors, n 26.0 [24.0; 30.0] 25.0 [19.5; 28.0] 1.43 0.15

Missed signals, n 12.0 [7.5; 16.5] 25.0 [13.5; 28.0] −3.03 0.002

Performance of the brain responses to feedback

Reaction time, ms 422.0 [403.0; 451.5] 479.0 [430.0; 515.0] −3.65 0.0003

Errors, n 132.0 [113.0; 147.0] 94.0 [76.0; 121.0] 3.27 0.001

Missed signals, n 45.0 [20.0; 90.0] 66.0 [50.0;106] −1.62 0.11

The Bourdon’s test

Processed letters per 1 th min,

n

70.0 [55.0; 91.0] 69.5 [61.5; 92.0] −0.37 0.97

Processed letters per 4 th min,

n

98.0 [74.0;111.0] 80.0 [74.0; 100.5] 1.17 0.24

Memory

10 numbers memorizing test,

n

5.0 [4.0; 6.0] 4.0 [3.0; 5.0] 1.69 0.09

10 words memorizing test, n 4.0 [3.0; 5.0] 4.0 [3.0; 5.0] −1.59 0.11

10 nonsense syllable

memorizing test, n

3.0 [2.0; 3.0] 4.0 [2.0; 4.0] 0.81 0.42

FIGURE 3

Postoperative theta1 rhythm power changes in the patients undergoing isolated CABG and simultaneous intervention (CABG + CEA). Solid red

lines—the preoperative indicators, and dashed blue lines—the postoperative indicators. * indicates the significance level p ≤ 0.05 in the postoperative

indicators of the right-sided CEA + CABG group in comparison to the CABG group.
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underwent CABG + right-sided CEA demonstrated more

pronounced theta power changes compared to patients with

isolated CABG.

It has been recently reported that severe carotid stenosis

can disturb the hemodynamic balance, illustrated by blood flow

laterality (Zarrinkoob et al., 2021). In the study by Hedberg and

Engström (2013), the authors showed that stroke occurs more

frequently in the right hemisphere compared to the left hemisphere

in the early postoperative period of cardiac surgery. As shown by

the results of our study, contralateral stenosis of CA was observed

in 76% of patients undergoing CABG + right-sided CEA. Thus,

worse brain function in patients after CABG + right-sided CEA

may be due to both surgical techniques focusing on right or left

carotid arteries and cerebral blood flow impairment.

Summarizing the abovementioned points, the results of

the study allow us to conclude that cardiac surgery with

FIGURE 4

Lateral di�erences of theta1 power in the patients undergoing

isolated CABG and simultaneous intervention (CABG + CEA). Blue

columns—the power values in the left hemisphere, and red

columns—the power values in the right hemisphere.

CPB is traumatic for the brain regardless of its features.

Therefore, the search for diagnostic markers of the prediction

of the impact of CABG and simultaneous intervention on

brain function, and the implementation of the mandatory

assessment of cognitive performance before surgery would

be of great assistance to researchers. Further studies are

necessary to identify the group of patients who will benefit

the most from simultaneous revascularization. Moreover, we

need more sensitive and specific neuropsychological tests that

can assign each symptom to certain brain regions, as well as

modern brain imaging techniques for diagnosis. For example,

the sLORETA algorithm has been used to identify brain

electrical patterns associated with various cognitive impairments in

resting-state EEG.

5. Limitations

It is important to mention some of the limitations of

this study. One limitation is a lack of data regarding cerebral

blood flow laterality and the degree of the recruitment

of collaterals. Another limitation of the study is the

small sample of patients with simultaneous interventions.

Moreover, the surgical procedure (anesthesia) time differed

between the isolated CABG and the CABG + CEA

group. Further research should be conducted to address

these issues.

6. Conclusion

Thus, both CABG and simultaneous CEA and isolated CABG

show comparable POCD incidence. It is important to note

that all types of cardiac surgery resulted in the theta power

increase in the early postoperative period compared to baseline.

The CABG + right-sided CEA group is characterized by the

most pronounced theta rhythm changes compared to patients

undergoing isolated CABG and CABG + left-sided CEA due to

a higher incidence of bilateral carotid artery stenosis and severe

brain ischemia.

FIGURE 5

Topography of the postoperative theta1 rhythm power changes in the patients undergoing isolated CABG and simultaneous intervention (CABG +

CEA). (A)—Left hemisphere, (B)—right hemisphere; green columns—isolated CABG, blue columns—left-sided CEA + CABG group, red

columns—right-sided CEA+CABG group. + indicates the significance level p ≤ 0.05 in between-group di�erences.
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