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To maximize the performance and energy e�ciency of Spiking Neural Network

(SNN) processing on resource-constrained embedded systems, specialized

hardware accelerators/chips are employed. However, these SNN chips may su�er

from permanent faults which can a�ect the functionality of weight memory and

neuron behavior, thereby causing potentially significant accuracy degradation and

system malfunctioning. Such permanent faults may come from manufacturing

defects during the fabrication process, and/or from device/transistor damages

(e.g., due to wear out) during the run-time operation. However, the impact of

permanent faults in SNN chips and the respective mitigation techniques have

not been thoroughly investigated yet. Toward this, we propose RescueSNN,

a novel methodology to mitigate permanent faults in the compute engine of

SNN chips without requiring additional retraining, thereby significantly cutting

down the design time and retraining costs, while maintaining the throughput

and quality. The key ideas of our RescueSNN methodology are (1) analyzing

the characteristics of SNN under permanent faults; (2) leveraging this analysis to

improve the SNN fault-tolerance through e�ective fault-aware mapping (FAM);

and (3) devising lightweight hardware enhancements to support FAM. Our FAM

technique leverages the fault map of SNN compute engine for (i) minimizing

weight corruption when mapping weight bits on the faulty memory cells, and

(ii) selectively employing faulty neurons that do not cause significant accuracy

degradation to maintain accuracy and throughput, while considering the SNN

operations and processing dataflow. The experimental results show that our

RescueSNN improves accuracy by up to 80% while maintaining the throughput

reduction below 25% in high fault rate (e.g., 0.5 of the potential fault locations), as

compared to running SNNs on the faulty chip without mitigation. In this manner,

the embedded systems that employ RescueSNN-enhanced chips can e�ciently

ensure reliable executions against permanent faults during their operational

lifetime.
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1. Introduction

In recent years, SNNs have shown a potential for achieving

high accuracy with ultra-low power/energy consumption due

to their sparse spike-based operations (Putra and Shafique,

2020). Moreover, SNNs can perform unsupervised learning

with unlabeled data using spike-timing-dependent plasticity

(STDP), which is highly desired for real-world applications

(e.g., autonomous agents like UAVs and robotics), especially

due to two reasons: these systems are typically subjected to

unforeseen scenarios (Putra and Shafique, 2021b, 2022a); and

gathering unlabeled data is cheaper than labeled ones (Rathi et al.,

2019). An SNN architecture supporting unsupervised learning is

shown in Figure 1A. To maximize the performance and energy

efficiency of SNN processing, specialized SNN accelerators/chips

are employed (Painkras et al., 2013; Akopyan et al., 2015; Davies

et al., 2018; Frenkel et al., 2019). However, these SNN chips may

suffer from permanent faults, which can occur during: (1) chip

fabrication process due to manufacturing defects, as fabricating an

SNN chip with millions-to-billions of nano-scale transistors with

100% correct functionality is difficult, and even worsen due to

the aggressive technology scaling (Hanif et al., 2018, 2021; Zhang

et al., 2018); and (2) run time operation due to device/transistor

wear out and damages, that are caused by Hot Carrier Injection

(HCI), Bias Temperature Instability (BTI), electromigration, or

Time Dependent Dielectric Breakdown (TDDB) (Radetzki et al.,

2013; Werner et al., 2016; Hanif et al., 2018, 2021; Baloch et al.,

2019; Mercier et al., 2020).

Permanent faults can affect the functionality of the compute

engine of SNN accelerators/chips, including the local weight

memory/registers and neurons, by corrupting the weight values

and neuron behavior (i.e., membrane potential dynamics and

spike generation), thereby degrading the accuracy, as shown in

Figure 2. For instance, permanent faults can change the weight

values through stuck-at 0 and 1, as shown in Figure 1B. Simply

stopping the executions on faulty chips at run time will lead

to a short operational lifetime, while discarding the faulty chips

at design time will lead to low yield and increase the per-unit

cost of the non-faulty chip. Therefore, alternate low-cost solutions

for mitigating permanent faults in the SNN compute engine1 are

required. These solutions will prolong the operational lifetime of

SNN chips. Moreover, such solutions also increase the applicability

of wafer-scale chips for SNNs where embracing permanent faults is

important to maintain the yield.

Targeted Problem: How can we efficiently mitigate permanent

faults in the SNN compute engine (i.e., the local weight registers

and neurons) on the accuracy, thereby improving the SNN fault

tolerance and maintaining the throughput. The efficient solution to

this problem will enable reliable SNN executions on faulty chips

without the need for retraining for energy-constrained embedded

systems, such as IoT-Edge devices and autonomous agents.

1 For conciseness, we use “SNN compute engine” or “compute

engine” interchangeably to represent the compute engine of an SNN

accelerator/chip.

1.1. State-of-the-art and their limitations

Besides discarding the faulty chips, the standard VLSI

fault tolerance techniques like Dual Modular Redundancy

(DMR) (Vadlamani et al., 2010), Triple Modular Redundancy

(TMR) (Lyons and Vanderkulk, 1962), and Error Correction

Code (ECC) (Sze, 2000), may be used for mitigating permanent

faults. However, they require extra (redundant) hardware

and/or executions which incur huge area and energy overheads.

State-of-the-art works have studied different design aspects for

understanding faults in SNNs and devising mitigation techniques,

as follows.

• SNN fault modeling: Possible faults that can affect an SNN

have been identified in Vatajelu et al. (2019). In the analog

domain, fault modeling for analog neuron hardware and its

fault tolerance strategies have been investigated in El-Sayed

et al. (2020) and Spyrou et al. (2021), which are out of the

scope of this work as we target SNN implementation in the

digital domain.

• SNN fault tolerance: Previous works studied the impact of

faults on SNN weights without considering the underlying

hardware architectures and processing dataflows (Schuman

et al., 2020; Rastogi et al., 2021) and each discussing a specific

fault, like bit-flip or synapse removal. Recent works devised

mitigation techniques for faults in the weight memories of an

SNN hardware (Putra et al., 2021a,b, 2022a), while work of

Putra et al. (2022b) aimed at addressing transient faults.

In summary, the state-of-the-art works still focus on permanent

fault modeling and injection only on the weight memories of

SNN hardware. Hence, the impact of permanent faults in the SNN

compute engine (i.e., synapses and neurons) and the respective

fault mitigation techniques, especially with a focus on avoiding

retraining costs, are still unexplored. To study the challenges of

mitigating permanent faults, we perform an experimental case

study in Section 1.2.

1.2. Case study and research challenges

In this case study, we consider an SNN accelerator architecture

in Figure 2A. We assume all neurons are not faulty, and inject

permanent faults (i.e., stuck-at 0 or 1) on the weight registers

with random distribution and different rates of faulty memory

cells to see the significance of faulty registers on accuracy. Details

on the experimental setup are discussed in Section 4. From the

experimental results in Figure 2B, we make the following key

observations.

• Classification accuracy decreases as the rate of faulty memory

cells increases for both stuck-at 0 and stuck-at 1 scenarios,

thereby showing the negative impact of permanent faults in

the synapses.

• In the stuck-at 0 case, the stored weight value will either

stay the same or decrease from the original value. In the

case of decreased weight value, the corresponding neuron
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FIGURE 1

(A) An SNN architecture that achieves high accuracy in unsupervised learning scenarios, i.e., a single-layer fully-connected (FC) network (Putra and

Shafique, 2020). (B) Permanent faults in the weight memory of the SNN compute engine may exist in form of stuck-at 0 and stuck-at 1 faults.

FIGURE 2

(A) The typical SNN accelerator architecture employs crossbar-based synaptic connections (Basu et al., 2022). Synapses and neurons can be a�ected

by permanent faults, whose detailed discussion is provided in Section 2.2. (B) The stuck-at faults in the local weight memory (synaptic weight

registers) can decrease accuracy.

will require more stimulus (input spikes) to increase its

membrane potential and reach the threshold potential for

generating a spike, which represents recognition of a specific

class. However, in an SNN model, multiple neurons may

be responsible to recognize the same class. Therefore, if the

neuron with faulty weight bits cannot recognize the input

class, then other neurons may recognize it. As consequence,

the accuracy degradation caused by stuck-at 0 in memory cells

is relatively small and negligible in some cases.

• In the stuck-at 1 case, the stored weight value will either stay

the same or increase from the original value. In the case of

increased weight value, the corresponding neuron will require

less stimulus (input spikes) to increase its membrane potential

and reach the threshold potential for generating a spike,

which represents recognition of a specific class. Therefore, this

neuron may become more active to generate more spikes for

any input classes, which leads to more misclassification. As

consequence, the accuracy degradation caused by stuck-at 1 in
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memory cells is more significant/noticeable than the stuck-at

0 case.

• Combinations of fault types and fault rates lead to different

accuracy, which represents different fault patterns in real-

world chips, rendering it unpredictable at design time.

Based on these observations, we outline the following research

challenges to devise an efficient solution for the targeted problem.

• The mitigation technique should not employ retraining, as

retraining needs huge compute/memory costs, processing

time, and a training dataset that may not be available in certain

cases due to the restriction policies. Moreover, retraining

is not a scalable approach considering the large number

of fabricated chips, as it needs to consider a unique fault

map from each chip thereby retraining per chip. Note, the

fault map information can be obtained through the standard

wafer/chip test procedure after fabrication, hence this test does

not introduce new cost and only incurs a typical cost for chip

test (Xu et al., 2020; Fan et al., 2022).

• The mitigation should have minimal performance/energy

overhead at run time as compared to that of the baseline

design without fault mitigation technique, thereby making it

applicable for energy-constrained embedded systems.

• The technique should not avoid the use of faulty SNN

components (i.e., synapses and neurons), as it means omitting

the entire computations in the respective columns of the SNN

compute engine, which leads to throughput reduction.

• SNNs require a specialized permanent fault mitigation

technique as compared to other neural network computation

models (e.g., deep neural networks), since SNNs have different

operations and dataflows.

1.3. Our novel contributions

To address the above challenges, we propose RescueSNN,

a novel methodology that enables reliable executions on SNN

accelerators under permanent faults. To the best of our knowledge,

this work is the first effort that mitigates permanent faults

in the SNN accelerators/chips. Following are the key steps

of the RescueSNN methodology (the overview is shown in

Figure 3).

• Analyzing the SNN fault tolerance to understand the impact

of faulty components (i.e., synapses and neurons) on accuracy

considering the given fault rates.

• Employing the fault-aware mapping (FAM) techniques

to safely map SNN weights and neuron operations on

faulty compute engine, thereby maintaining accuracy and

throughput. Our FAM techniques leverage the fault map of the

compute engine to perform the following key mechanisms.

1. Mapping the significant weight bits on the non-faulty

memory cells of the synapses (weight registers) to

minimally pollute/change the weight values.

2. Selectively employing faulty neurons that do not cause

significant accuracy degradation at inference, based on the

behavior of their membrane potential dynamics and spike

generation.

• Devising simple hardware enhancements to enable efficient

FAM techniques. Our enhancements shuffle the weight bits

from the synapses by employing simple combinational logic

units, such as multiplexers, so that these weight bits can be

used for SNN computations.

Key Results: We evaluate our RescueSNN methodology using

Python-based simulations (Hazan et al., 2018) on a multi-GPU

machine. The experimental results show that our RescueSNN

improves the SNN accuracy without retraining by up to 80% and

47% on the MNIST and the Fashion MNIST respectively, from the

SNN processing without fault mitigation.

2. Backgrounds

2.1. Spiking neural networks

Overview: SNNs are the brain-inspired computational

models that employ action potentials (spikes) to encode the

information (Maass, 1997; Putra and Shafique, 2022b). In an

SNN model, neurons and synapses are connected in a specific

architecture (Mozafari et al., 2019; Tavanaei et al., 2019). In

this work, we consider a fully-connected (FC)-based network

architecture as shown in Figure 1A, since it has demonstrated

a high accuracy when employing bio-plausible learning rules,

e.g., the spike-timing-dependent plasticity (STDP). This network

architecture connects each data of the input (e.g., a pixel of

an image) to all excitatory neurons for generating spikes. Each

spike is used for inhibiting the excitatory neurons except the one

from which the spike is generated. Such bio-plausible learning

rules offer efficient learning mechanisms as they perform local

learning in each synapse by leveraging spike events without

any global loss function, thereby enabling unsupervised and

online learning capabilities, which are especially beneficial for

autonomous agents (Pfeiffer and Pfeil, 2018; Putra and Shafique,

2022a). In this work, we employ the pair-based weight-dependent

STDP and bound each weight value (wgh) within the defined

range, i.e., wgh = [0, 1], because this approach has been widely

used by previous works (Diehl and Cook, 2015; Srinivasan

et al., 2017; Hazan et al., 2019). Here, the pair-wise weight-

dependent STDP learning rule is used, as it defines the maximum

allowed weights, which is suitable for fixed-point format (see

Eq. 1).

1wgh =

{

−ηpre · xpost · wgh
µ on presynaptic spike

ηpost · xpre · (wghm − wgh)µ on postsynaptic spike
(1)

1wgh denotes the weight update, ηpre and ηpost denote the

learning rate for pre- and post-synaptic spike, while xpre and

xpost denote the pre- and post-synaptic traces, respectively.

wghm denotes the maximum allowed weight, wgh denotes the

current weight, and µ denotes the weight dependence factor.
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FIGURE 3

Overview of our novel contributions.

We consider the Leaky Integrate-and-Fire (LIF) neuron model,

as it has low computational complexity with high bio-plausible

behavior (Izhikevich, 2004). Meanwhile, the synapse is modeled by

weight value (wgh) which represents the strength of the synaptic

connection between the corresponding neurons. Furthermore, an

SNN model typically employs a specific spike coding scheme

to encode/decode data information into/from spikes. In this

work, we consider the rate coding scheme which employs the

frequency of spikes to proportionally represent the data, i.e.,

a higher data value is represented by a higher number of

spikes. The reason is that, the rate coding scheme achieves

high accuracy using bio-plausible STDP-based learning rules,

which perform efficient learning mechanisms under unsupervised

settings, thereby enabling energy-efficient and smart computing

systems (Diehl and Cook, 2015; Rathi et al., 2019; Putra and

Shafique, 2020).

SNN Accelerator Architecture: We consider the typical

SNN accelerator and compute engine architectures shown in

Figures 2A, 4 respectively, which are adapted from the design in

Frenkel et al. (2019). We focus on the compute engine, as it is

responsible for generating spikes which determine the accuracy.

The compute engine has a synapse crossbar, and each synapse

has a register that stores a weight value. We use 8-bit weight

precision as it has a good trade-off for accuracy-memory (Putra

and Shafique, 2020, 2021a). Each bit is stored in a weight memory

cell. To optimize the chip area, each synapse adds its weight

with an accumulated value from the previous synapse in the

same column, and stores the cumulative value in a 32-bit register.

In this manner, only a single connection is required between a

neuron and the connected synapses. Furthermore, each column

of the compute engine has a single LIF neuron. If a spike comes

to a neuron, the membrane potential (Vmem) increases by the

respective weight (wgh), otherwise, the Vmem decreases/leaks. If the

Vmem reaches the threshold potential (Vth), a spike is generated,

and then Vmem goes back to the reset potential (Vreset). Hence,

a LIF neuron has four main operations: (1) Vmem increase, (2)

Vmem leak, (3) Vmem reset, and (4) spike generation, as shown

in Figure 2A. Neuron operations (1)–(3) define the membrane

potential dynamics.

2.2. Permanent fault modeling

2.2.1. Overview
An SNN compute engine consists of two main components,

i.e., synapses and neurons, which have different hardware circuitry.

Therefore, we need to define a fault model for each component to

achieve fast design space exploration.

1. Synapses: Each synapse hardware uses a register to store a

weight value. Therefore, each permanent fault in a synapse can

affect a single weight bit in the form of either a stuck-at 0 or a

stuck-at 1 fault.

2. Neurons: Each neuron hardware depends on the neuron

model to facilitate its operations. Therefore, permanent faults

can manifest in different forms depending upon the type of

operation being executed on the (digital) neuron hardware, as

discussed in the following (see an overview in Figure 5).

• Faults in the ‘Vmem increase’ operation make the neuron

unable to increase its membrane potential. As a result,

this neuron cannot generate any spikes (i.e., a dormant

neuron).

• Faults in the ‘Vmem leak’ operationmake the neuron unable

to decrease its membrane potential. Hence, this neuron acts

like the Integrate-and-Fire (IF) neuron model.

• Faults in the ‘Vmem reset’ operationmake the neuron unable

to reset its membrane potential. As a result, this neuron will

continuously generate spikes.

• Faults in the ‘spike generation’ make the neuron unable to

generate spikes (i.e., dormant neuron).

2.2.2. Fault generation and distribution
Previous studies have shown that permanent faults occur in

random locations of a chip, hence leading to a certain fault

map (Stanisavljević et al., 2011; Radetzki et al., 2013; Werner et al.,

2016; Zhang et al., 2018; Mercier et al., 2020). Following are the

key steps to generate and distribute permanent faults on the SNN

compute engine, as shown in Figure 6.
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FIGURE 4

The architecture of the compute engine of SNN accelerators.

FIGURE 5

Overview of di�erent faulty LIF neuron operations: (a) faulty ‘Vmem increase’, (b) faulty ‘Vmem leak’, (c) faulty ‘Vmem reset’, and (d) faulty ‘spike

generation’.

1. We consider a weight memory cell and a neuron operation as

the potential fault locations.

2. We generate permanent faults based on the given fault

rate and distribute them randomly across the potential

fault locations. The fault rate represents the ratio between

the total number of faulty weight memory cells and

neuron operations to the total number of potential fault

locations (i.e., the total number of weight memory cells and

neuron operations).

3. If a fault occurs in a local weight memory cell, then we

randomly select the type of stuck-at fault (i.e., either stuck-

at 0 or stuck-at 1). Meanwhile, if a fault occurs in a neuron

operation, then we randomly select the type of permanent

faulty operation.

3. RescueSNN methodology

The overview of our RescueSNN methodology is shown

in Figure 7, and its key steps are discussed in the following

subsections.

3.1. SNN fault tolerance analysis under
permanent faults

SNN fault tolerance analysis is important to understand

how a given SNN model will behave considering a specific

operating condition (e.g., a combination of certain fault

rate, type of stuck-at fault, architecture of the compute
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FIGURE 6

The key steps of permanent fault generation and distribution on the SNN compute engine.

FIGURE 7

Overview of our RescueSNN methodology and its key steps for mitigating permanent faults in the SNN compute engine.

engine, etc.). This analysis provides information which

can be leveraged for devising an efficient fault mitigation

technique. Therefore, our RescueSNN methodology investigates

the interaction between the faulty components (i.e., synapses and

neurons) and the obtained accuracy. To do this, we perform

the following experimental case studies, while considering a

400-neuron network with fully-connected architecture like

in Figure 1A.

• We study the accuracy under faulty weight registers, by

injecting a specific stuck-at fault (i.e., either stuck-at 0 or

stuck-at 1) in the weight registers, while considering fault-

free neurons. Experimental results are shown in Figure 2B.We

observe that both stuck-at 0 and stuck-at 1 faults can degrade

accuracy. Therefore, the mitigation technique should address

both stuck-at faults.

• We study the accuracy under faulty neuron operations, by

injecting faults on the neuron operations, while considering

fault-free weight registers. Experimental results are shown in

Figure 8, from which we make the following observations.

1. Faulty ‘spike generation’, ‘Vmem increase’, and ‘Vmem leak’

operations have tolerable accuracy, since their faulty

behavior does not dominate the spiking activity, and/or

the function of the corresponding faulty neurons for

classification may be substituted by other neurons that

recognize the same class. Therefore, these neurons can still

be used for SNN processing.

2. Faulty ‘Vmem reset’ operations cause significant accuracy

degradation, as these operations make the corresponding

neurons dominate classification. Therefore, these neurons

should not be used for SNN processing.

Frontiers inNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2023.1159440
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Putra et al. 10.3389/fnins.2023.1159440

Note, complex SNN models with multiple layers and different

computational architectures (e.g., convolutional and fully-

connected) may have different observation results as compared

to results in Figure 8. However, previous work has observed

similar trends to our study, i.e., neurons with faulty ‘Vmem reset’

operations continuously generate spikes (so-called saturated

neurons) and cause the most significant accuracy degradation than

other types of faulty neuron operations (Spyrou et al., 2021). It also

identified that, saturated neurons affect classification accuracy at

any layer of SNN models, as these faulty neurons always dominate

the classification activity which results in a significant accuracy

degradation. This finding is consistent with the insights provided

by our study. However, it is still challenging to achieve high

accuracy when employing STDP-based learning on complex SNN

models (Rathi et al., 2023), thereby hindering their applicability

for diverse applications, such as systems with online training and

unsupervised learning requirements (e.g., autonomous mobile

agents). Therefore, in this work, we consider the FC-based SNNs

shown in Figure 1A to enable multiple advantages, such as high

accuracy, unsupervised learning capabilities, and efficient online

training.

3.2. The proposed fault-aware mapping

Permanent faults in SNN chips can be identified at the design

time and at the run time. The post-fabrication test can be employed

to find a set of locations of faults (due to manufacturing defects) in

the SNN compute engine (i.e., fault map) at the design time (Zhang

et al., 2018; Putra et al., 2021a). Meanwhile, the online test strategy

like the Built-In Self-Test (BIST) techniques can be employed to

obtain the fault map (due to device wear out or physical damages)

at the run time (Baloch et al., 2019; Wang et al., 2019; Mercier et al.,

2022).Our RescueSNNmethodology leverages this fault map to safely

map the SNN weights and operations on the compute engine, thereby

minimizing the negative impact of permanent faults. To do this, the

RescueSNN employs Fault-Aware Mapping (FAM) techniques that

mitigate the faults in synapses and neurons through the following

key mechanisms.

1. FAM for Synapses: The significant weight bits are placed on the

non-faulty weight memory cells, while the insignificant bits are

placed on the faulty ones, by performing a simple bit-shuffling

technique. The significance of weight bits can be identified

by experiments that observe the accuracy after modifying a

specific bit (Putra et al., 2021a). In general, previous studies have

observed that the significance of a weight bit is proportional

to its bit location. For instance, in 8-bit fixed-point precision,

bit-7 has the highest significance than other bits. Furthermore,

a synapse may have a single faulty bit or multiple faulty bits.

Therefore, we propose a mapping strategy that can address both

cases using the following steps (see an overview in Figure 9).

• We identify the faulty weight bits (e.g., through the post-

fabrication testing) to obtain information of the fault map

and fault rate in each synapse hardware.

• We identify the maximum fault rate in each synapse

hardware for safely storing a weight. In this work, we

consider a maximum of 2 faulty bits from an 8-bit weight,

based on the fault rates that offer tolerable accuracy from

analysis in Section 3.1.

• We identify the segment in each synapse with the highest

number of subsequent non-faulty memory cells. This

information is leveraged for maximizing the possibility of

storing the significant bits in the non-faulty cells. Hence,

we also examine the corner case (i.e., the right-most and

left-most cells) as possible subsequent non-faulty memory

cells; see the third row of Figure 9B with data-3.

• We perform a circular-shift technique for each data word

to efficiently implement bit-shuffling.

2. FAM for Neurons: The use of neurons should be avoided if they

have faulty ‘Vmem reset’ operations, as these faulty operations

cause significant accuracy degradation. Meanwhile, neurons

with other types of faults can still be used for SNN processing,

as their faulty behavior does not dominate the spiking activity.

Different SNN operations that aim at recognizing the same input

class are mapped on both the faulty and fault-free neurons

for maintaining throughput, while compensating the loss from

the faulty ‘Vmem increase’, ‘Vmem leak’, and ‘spike generation’

operations.

Afterward, we leverage these mechanisms for devising three

mapping strategies, as the variants of our FAM technique (i.e., FAM1,

FAM2, and FAM3), which provide trade-offs between accuracy and

mapping complexity, as discussed in the following.

• FAM1: It avoids mapping the SNN weights and operations

on the columns of compute engine that have faulty neurons,

as shown in Figure 10a, as faulty neurons can reduce the

accuracy more than faulty registers, especially in the case of

faulty ‘Vmem reset’. However, FAM1 does not mitigate the

negative impact of faults in the registers, hence the accuracy

improvement is sub-optimal. The benefit of FAM1 is due to

its simple mechanism which enables a low-complexity control

mechanism.

• FAM2: It maps the SNN weights and operations on the

columns of compute engine that have fault-free neurons (just

like FAM1) and employs a bit-shuffling technique to map

the significant weight bits on the non-faulty memory cells,

as shown in Figure 10b. Therefore, FAM2 can improve the

SNN fault tolerance at the cost of a more complex control

mechanism than FAM1.

• FAM3: It selectively maps the SNN weights and operations on

the columns of compute engine that do not have faulty ‘Vmem

reset’ operations, as well as maps the significant weight bits on

the non-faulty memory cells using a bit-shuffling technique, as

shown in Figure 10c. Therefore, FAM3 can enhance the SNN

fault tolerance as compared to FAM1 at the cost of a more

complex control mechanism, and can improve the throughput

as compared to FAM1 and FAM2.

Information regarding how to map the SNN weights and

operations on the compute engine is provided through software

program (e.g., firmware), thereby enabling the applicability and

flexibility of the proposed FAM technique (e.g., FAM1, FAM2, or
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FIGURE 8

Impact of faulty neuron operations on accuracy. Di�erent faulty neuron operations have a di�erent impact on accuracy. Notable accuracy

degradation happens when faulty ‘Vmem reset’ operations are employed.

FIGURE 9

(A) Illustration of possible fault locations (fault map) in faulty weight registers. (B) The proposed circular-shift bit-shu	ing technique for the

corresponding fault map.

FAM3) for different possible fault maps on the compute engine.

The meta data of this information is stored in the on-chip buffer,

which can be accessed for operations in the compute engine.

3.3. Our hardware enhancements for FAM

Our FAM2 and FAM3 strategies may make the weight bits

stored in a shuffled form. Therefore, an additional mechanism

is required for converting these weight bits into the original

order, so that they can be used for SNN executions. Toward this,

we propose lightweight hardware enhancements to support the re-

shuffling mechanism to undo the data transformation, i.e., through

a simple 8-bit barrel shifter. The key idea is to re-shuffle the order

of output wires from each synapse into the original order, so

that the corresponding weights can be used directly for neuron

operations. To optimize the overheads (e.g., area), we share a

hardware enhancement block (HEB) with all synapses in the same

column of compute engine, and different synapses will access

the enhancement block at a different time; see Figure 11. In this

manner, the number of HEBs is equal to the number of columns in

the SNN compute engine. Furthermore, to control the functionality

of HEBs, we employ an enhancement control unit (ECU). This ECU

stores the bit-shifting information and uses it for controlling the

barrel shifter in HEBs. For each column of the compute engine,

the ECU employs (1) a dedicated selector signal sel to determine

which weight should be processed in the HEB at a time, and (2) a

set of registers that stores bit-shifting information shuffle[2:0] for

all weights in the same column.

4. Evaluation methodology

For evaluating the RescueSNN methodology, we employ the

experimental setup shown in Figure 12. We use the fully-connected

network shown in Figure 1A with a different number of neurons,

to evaluate the generality of our RescueSNN methodology. For

conciseness, we represent a network with i-number of neurons as

Ni. We use the MNIST and Fashion MNIST as the workloads,

and adopt the same test conditions as used widely by the SNN

community (Diehl and Cook, 2015). For comparison, we consider

the SNN without fault mitigation as the baseline.

Fault Generation and Injection: Permanent faults are

generated based on the fault modeling in Section 2.2 of the

revised manuscript. To do this, we first generate binary values

(i.e., 0 and 1) based on the given fault rate while considering the

potential fault locations (shown in Figure 13). Here, “0” represents

a non-faulty memory cell in synapses or a non-faulty operation

in neurons; while “1” represents a faulty memory cell in synapses

or a faulty operation in neurons. These binary values are then

randomly distributed into an array that represents the potential

fault locations, so that each value corresponds to a specific weight

memory cell or a specific neuron operation. Figure 13 shows the
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FIGURE 10

Our FAM strategies: (a) FAM1, (b) FAM2, and (c) FAM3.

potential locations/components that can be affected by permanent

faults to cause faulty memory cells as well as faulty ‘Vmem increase’,

‘Vmem leak’, ‘Vmem reset’, and ‘spike generation’ operations. For

each fault in the weight memory cells (synapses), we randomly

determine the type of fault, i.e., either stuck-at 0 or stuck-at 1. In

stuck-at 0 case, value 0 is injected to the corresponding memory

cell; while in stuck-at 1 case, value 1 is injected. Meanwhile,

each fault in neurons corresponds to either faulty ‘Vmem increase’,

‘Vmem leak’, ‘Vmem reset’, or ‘spike generation’ operation (as

shown in Figure 5). Each faulty behavior in the corresponding

neuron is realized through different approaches as described in

the following.

• Faulty ‘Vmem increase’ operation: It is mainly caused by faulty

addition in the ‘Vmem increase’ part, hence Vmem is not

increased despite there are incoming spikes.

• Faulty ‘Vmem leak’ operation: It is mainly caused by faulty

subtraction in ‘Vmem leak’ part, hence Vmem is not decreased

despite there are no incoming spikes.

• Faulty ‘Vmem reset’ operation: It is mainly caused by faulty

comparison in ‘Vmem reset’ part, hence the spike generator is

activated to continuously generate spikes.

• Faulty ‘spike generation’: It is mainly caused by faulty

multiplexing in ‘spike generation’ part, hence the spike

generator is always deactivated and no output spikes are

produced.

Accuracy Evaluation: We use the Python-based

simulations (Hazan et al., 2018), which run on Nvidia RTX

2080 Ti GPUs, while considering SNN accelerator architecture

shown in Figures 2A, 4.
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FIGURE 11

The architecture of the proposed enhancements, including the hardware enhancement blocks (HEBs) and the enhancement control unit (ECU), for

accommodating FAM strategies.

Hardware Evaluation: We evaluate the area, energy

consumption, and throughput of both the original compute

engine (without enhancements) and the enhanced compute

engine using our RescueSNN methodology. To do this, we

design RTL codes for both (original and enhanced) compute

engines, then synthesize them using the Cadence Genus tool

considering a 65nm CMOS technology to obtain their area,

power consumption, and timing (i.e., a clock cycle latency for

SNN processing on the compute engine). Afterward, we calculate

the required number of cycles and computation latency for

processing an input sample (i.e., latency-per-sample), considering

the timing from synthesis and the mapping strategy on active

synapses and neurons in the compute engine. Then, we estimate

the throughput by computing the number of samples that can be

processed within 1 s of SNN inference based on the information

of latency-per-sample. Furthermore, we also estimate the energy

consumption by leveraging the information of power consumption

from synthesis and latency-per-sample for SNN inference.

The estimation of throughput and energy consumption is also

performed using the Python-based simulation framework (Hazan

et al., 2018).

5. Results and discussion

We evaluate different design aspects including accuracy,

throughput, energy consumption, and area as discussed in

the following.

5.1. Maintaining accuracy

Figure 14 presents the experimental results for the accuracy of

different fault mitigation techniques, i.e., the baseline and our FAM-

based strategies including FAM1, FAM2, and FAM3. We observe

that the baseline suffers from a significant accuracy degradation

as shown by ❶, because it does not mitigate faults in synapses

and neurons, thereby leading to unreliable SNN executions. The

significant accuracy degradation is mainly due to the fault model

for faulty ‘Vmem reset’ operation that makes the corresponding

neuron generate spikes continuously once its membrane potential

Vmem reaches the threshold potential Vth, thereby dominating the

classification activity and leading to high misclassification. We also

observe that FAM1 significantly improves the SNN fault tolerance

as compared to the baseline, because FAM1 avoids the use of faulty

neurons, especially for faulty ‘Vmem reset’ operations, as shown

by ❷. Our FAM2 improves the SNN fault tolerance even more as

compared to FAM1, since FAM2 also mitigates faults in the weight

registers in addition to avoiding the use of faulty neurons, as shown

by ❸. Meanwhile, our FAM3 also significantly improves the SNN

fault tolerance from baseline and FAM1, and obtains comparable

accuracy to FAM2, since FAM3 mitigates faults in weight registers

and selectively uses faulty neurons. It achieves up to 80% accuracy

improvement compared to the baseline on the MNIST dataset,

as shown by ❹. We also observe that the same reasons are also

applicable to different workloads, thereby leading the accuracy

profiles for Fashion MNIST to have similar trends to the accuracy

profiles for MNIST. These results show that our FAM strategies

(FAM1, FAM2, and FAM3) are effective for mitigating permanent
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FIGURE 12

Overview of the experimental setup and tools flow.

FIGURE 13

The potential locations/components that can be a�ected by permanent faults to cause faulty memory cells as well as faulty ‘Vmem increase’, ‘Vmem

leak’, ‘Vmem reset’, and ‘spike generation’ operations.
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FIGURE 14

Accuracy profiles for di�erent mitigation techniques (i.e., baseline, FAM1, FAM2, and FAM3), di�erent model sizes (i.e., N400, N900, N1600, N2500,

and N3600), di�erent fault rates, and di�erent workloads: (A) MNIST and (B) Fashion MNIST.

faults in the compute engine without retraining, across different

model sizes, fault rates, and workloads.

5.2. Maintaining throughput

Figure 15A presents the experimental results on the throughput

of different mitigation techniques, i.e., the baseline and our FAM

strategies (FAM1, FAM2, and FAM3). We observe that the baseline

has the highest throughput across different model sizes and fault

rates, as it uses all synapses and neurons for performing SNN

executions, as shown by ❶. Meanwhile, FAM1 and FAM2 may

suffer from throughput reduction because they avoid the use of

faulty neurons, thereby omitting the corresponding columns of

the SNN compute engine. For instance, FAM1 and FAM2 may

suffer from 30% throughput reduction for N1600 with 0.1 fault

rate, as shown by ❷. Meanwhile, our FAM3 can maintain the

throughput close to the baseline (e.g., keeping the throughput

reduction below 25% in a 0.5 fault rate), thereby improving the

throughput significantly as compared to FAM1 and FAM2. The

reason is that, FAM3 omits the columns of compute engine only if

the corresponding neurons have faulty ‘Vmem reset’ operations. For

instance, FAM3 has less than 15% throughput reduction for N1600,

as indicated by ❸. These results show that our FAM3 is effective for

maintaining the throughput across different model sizes, fault rates,

and workloads.

5.3. Energy consumption and area
overheads

Figure 15B shows the experimental results on the energy

consumption of different mitigation techniques, i.e., the baseline

and our FAM strategies (FAM1, FAM2, and FAM3). We observe

that different techniques have comparable energy for small fault

rates, as shown by label-❹. The reason is that small fault rates have

a low probability of faulty neurons, hence the resource utilization

for different techniques is similar. For large fault rates, FAM1

and FAM2 have higher energy consumption than the baseline and

FAM3, as shown by label-❺. The reason is that large fault rates have

a high probability of faulty neurons, hence the resource utilization

for different techniques is different, i.e., FAM1 and FAM2 avoid the

use of faulty neurons, thereby incurring higher compute latency

and energy consumption. The baseline and FAM3 have comparable

energy since FAM3 employs simple hardware enhancements: (1)

multiplexing operations in each HEB which are shared for all

synapses in the same column of compute engine, and (2) registers

Frontiers inNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fnins.2023.1159440
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Putra et al. 10.3389/fnins.2023.1159440

FIGURE 15

(A) Throughput across di�erent mitigation techniques, di�erent model sizes, and di�erent fault rates for both MNIST and Fashion MNIST, as they have

a similar number of SNN weights and operations. (B) Energy consumption across di�erent mitigation techniques, di�erent model sizes, and di�erent

fault rates for both MNIST and Fashion MNIST, as they have a similar number of SNN weights and operations.

accesses in ECU, thereby minimizing the energy consumption

overhead for FAM3 (i.e., within 30%). For area footprint, the

original compute engine consumes around 6.27mm2 of area, while

the one with proposed enhancements consumes around 8.56 mm2

of area. Therefore, the proposed enhancements incur about 36.5%

of area overhead, which encompasses about 36.2% of ECU and

about 0.3% of HEBs. The area of ECU dominates the total area

of enhancements since it mainly employs a set of 3-bit registers

(i.e., 256x256 registers), which incurs a larger area as compared to

HEBs (i.e., 256x25 multiplexers). These results show that our FAM3

achieves minimum overheads in terms of energy consumption and

area across different model sizes, fault rates, and workloads.

In summary, the above discussions show that our RescueSNN

methodology can effectively mitigate permanent faults in the
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SNN chips without retraining. Since our RescueSNN addresses

permanent faults during both the design time and the run time,

it increases the yield of SNN chips, as well as enables efficient

and reliable SNN executions during their operational lifetime.

Furthermore, our RescueSNN also avoids carbon emission as it

does not need any retraining, thereby offering an environment-

friendly solution (Strubell et al., 2019, 2020).

5.4. Further discussion

In general, we observe that a faulty ‘Vmem reset’ operation can

cause significant accuracy degradation as it deteriorates the neuron

from the expected behavior. The reason is that, the generated

(faulty) spikes will affect how the SNN model understands the

information, since an SNN model typically employs a certain spike

coding scheme, i.e., rate coding in this work. Therefore, a neuron

with faulty ‘Vmem reset’ operation will generate a high number

of spikes and dominate the classification activity, thereby leading

to high misclassification and significant accuracy degradation.

We also observe that, a higher number of spikes generated by

faulty ‘Vmem reset’ operation also indicates that the SNN model

performs more frequent neuron operations that correspond to

spike generation. This condition leads to higher power/energy

consumption for SNN processing, which has been observed and

studied in previous works (Krithivasan et al., 2019; Park et al., 2020;

Putra and Shafique, 2023).

Comparisons with Retraining Technique: In a standard

chip fabrication process, manufactured chips are evaluated in a

wafer/chip test procedure (i.e., wafer acceptance test and chip

probing test). This test procedure aims at evaluating the quality of

each chip, including any faults in the chip (Xu et al., 2020; Fan et al.,

2022). In this step, the permanent faults and the corresponding

fault map information from manufacturing defects are identified.

Therefore, this step does not introduce new cost, and only requires

a typical cost for a standard wafer/chip test procedure (Xu et al.,

2020; Fan et al., 2022). In the retraining technique, the fault

map information is then incorporated in the retraining process

considering how the weights and neuron operations are mapped on

the SNN compute engine, i.e., so-called fault-aware training (FAT).

In this manner, the SNNmodel is expected to adapt to the presence

of faults, hence maintaining high accuracy. This indicates that, the

retraining technique requires (1) fault map information from the

chip test procedure, and (2) a full training dataset, which may be

unavailable due to restriction policy. Furthermore, each chip has a

unique fault map which requires its own retraining process, thereby

incurring huge time and energy costs. Otherwise, the retraining

technique will not be effective. Meanwhile, our proposed FAM

technique in RescueSNN methodology leverages the fault map

information to safely map the weights and neuron operations on

the SNN compute engine. It ensures that the SNN processing is not

negatively affected by permanent faults, thereby maintaining high

accuracy. Although each chip has a unique fault mapwhich requires

a specific mapping, the cost for devising the mapping strategy is

significantly lower than the cost of retraining. Furthermore, our

FAM technique does not require any training dataset, hence it is

highly applicable to a wide range of SNN applications.

Benefits and Limitations of Pruning: Neurons in the fully-

connected (FC)-based SNN architecture shown in Figure 1A can

be pruned while keeping the accuracy close to that of the original

network, considering that a high rate of faulty ‘Vmem increase’

operations does not significantly degrade accuracy. The benefits

of pruning in FC-based architecture have been demonstrated in

previous work (Rathi et al., 2019), including reduction of memory

footprint and energy consumption. The pruning technique is

suitable if we rely on offline training, i.e., an SNN model is

trained offline with the training dataset, and the knowledge learnt

from the training phase is kept unchanged during inference at

run time. However, the pruning technique is not suitable if we

consider SNN-based systems that need to update their knowledge

regularly at run time to adapt to different operational environments

(i.e., so-called dynamic environments) such as autonomous mobile

agents, e.g., unmanned ground vehicles (UGVs). The reason is

that, SNN-based systems may encounter new input features in

different environments and the offline-trained knowledge may not

be representative for recognizing the corresponding classes, thereby

leading to low accuracy at run time and requiring online training

to update their knowledge (Putra and Shafique, 2021b, 2022a).

Therefore, SNN models with unpruned neurons and unsupervised

learning capabilities are beneficial for learning and recognizing

new features in (unlabeled) data samples from the operational

environments during online training. In summary, users can

select which SNN model to employ depending on the design

requirements. An alternative is employing the FC-based SNNs

shown in Figure 1A with/without pruning since they can enable

multiple benefits, such as high accuracy when employing STDP-

based learning under unsupervised settings, and efficient online

training capabilities.

6. Conclusion

We propose RescueSNN, a novel methodology for mitigating

permanent faults in SNN chips. RescueSNN leverages the fault

map of compute engine to perform fault-aware mapping for

SNN weights and operations, and employs efficient hardware

enhancements for the proposed mapping technique. The results

show that RescueSNN improves the SNN fault tolerance without

retraining. As a result, faulty SNN chips can be rescued and used

for reliable SNN processing during their operational lifetime.
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