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Heterocyclic compounds have played significant roles in achieving high
performance as hole transport materials (HTMs) for perovskite solar cell (PSC)
applications. Various studies have focused on the development of fused
heterocyclic conjugated structures for hole transport materials. In this report,
three novel π-extended conjugated materials (M1-M3), based on thieno[3,2-b]
thiophene (TT) and 4,4′-dimethoxytriphenylamine [TPA(OMe)2], were designed
and successfully synthesized via Palladium (0) catalyzed Suzuki coupling
reaction. Their optical, electrochemical, and thermal properties were
investigated by UV-Vis, fluorescence, cyclic voltammetry, and thermal
analysis. The materials were utilized as hole transport materials in p-i-n
architecture perovskite solar cells, which displayed performances of open-
circuit voltage (Voc) as high as 1,050 mV, a maximum short-circuit current
(Jsc) of 16,9 mA/cm2, a maximum fill factor (FF) of 29.3%, and a power
conversion efficiency (PCE) of 5.20%. This work demonstrated that thieno
[3,2-b]thiophene and TPA(OMe)2-based structures are promising cores for
high-performance hole transport materials in perovskite solar cell architecture.
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1 Introduction

Organic perovskites have received significant attention over the past two decades due to
the utility of solar energy (Peak et al., 2016; Liu et al., 2017; Zhang et al., 2017). Regarding
their performances, perovskite solar cells (PSCs) highly depend on hole-transporting
materials (HTMs), which play a crucial role in hole extracting and transferring (Lv
et al., 2015; Wu et al., 2018; Sharma et al., 2021). As a general approach, current is
generated in PSCs through the flow of photogenerated electrons (e−) from the perovskite
layer to the electron transport layer (ETL) and holes (h+), and to the hole transport layer
(HTL) (Xu et al., 2020; Afanasyev et al., 2021).

Organic hole conductors essentially include two categories: (i) small molecular and (ii)
polymeric materials (Turksoy et al., 2003; Ertas et al., 2004; Akman et al., 2020; Chen et al.,
2021; Farokhi et al., 2022). Small molecular HTMs have some advantages over polymers such
as defined molecular structure, definite molecular weight, easy purification, and good batch-
to-batch reproducibility (Lin et al., 2020; Pan et al., 2020; Tavasli et al., 2022; Yildiz et al.,
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2017; M’Baye et al., 2007). Among them, TAA-based compounds
are the most widely used HTMs in PSCs due to their excellent charge
transport capabilities (Isci et al., 2020a; Isci, 2020b; Isci, 2021a; Isci,
2022a). Furthermore, the presence of phenylamines in the molecular
structure of organic polymers confers unique mechanical features
(Wang et al., 2016; Isci et al., 2022b; Farokhi et al., 2022; Quezada-
Borja et al., 2022). Thienothiophenes have been attractive small,
conjugated compounds for synthesizing semiconducting polymers
and are widely used as building blocks for organic materials as they
have electron-rich, flat, rigid, and good electron delocalized skeleton,
prolonged molecular conjugation, intermolecular S. . .S interactions,
and chemical stability (Ozturk et al., 1995; Saygili et al., 2001; Osken
et al., 2012; Cinar et al., 2015; Isci et al., 2021b; 2022d). Thieno[3,2-b]
thiophene, in particular, is the most conjugated and stable isomer of
TTs, having interesting electronic and optical properties. It has been
examined and used in various energy-based organic electronic
applications by our group such as OLED (Isci et al., 2020a;
2022a), OFET (Amna et al., 2022), electrocatalyst (Isci et al.,
2022d), capacitor (Topal et al., 2021), and memory (Gunturkun
et al., 2022).

In this study, we report the synthesis and characterization of
three novel 4,4′-dimethoxytriphenylamine [TPA(OMe)2] and
thieno[3,2-b]thiophene (TT)-based conjugated materials,
having different electronic substituents such as C6H13, 4-
PhOMe, and Ph. Their photophysical and electrochemical
properties were investigated by UV-Vis spectroscopy,
emission spectroscopy, and cyclic voltammetry. Moreover,
they were used as small molecules in hole transport materials
(HTMs). M1-M3 displayed remarkable properties such as mega
Stokes shift of 5,067 cm−1, optic band gaps changing between
2.80 and 2.67 eV, and theoretical band gaps around 2.35 eV,
which are consistent with the experimental results. The

maximum fill factor reached 32.4% and the maximum Voc
was measured to be 1,050 mV in device fabrications. This
work demonstrated that the introduction of a TT core is a
promising strategy for achieving high performance of HTMs
toward PSCs.

2 Materials and methods

All the reagents purchased from Sigma-Aldrich and Acros
Organics were used without further purification, and the solvents
used in the syntheses were of technical grade. Column
chromatography was performed with ≤0.063 μm silica gel for
purification. 1H and 13C NMR spectra were recorded on Varian
500 and 126 MHz spectrometers, respectively. Proton and carbon
chemical shifts were reported in parts per million downfield from
tetramethylsilane (TMS). FTO glasses, cut in 2.5 cm2 × 2.5 cm2

(OPV-FTO22-15, 14Ω/□), were purchased from OPV Tech.
Hydrochloric acid (37%), 4-tert-butylpyridine (TBP, 98.0%),
isopropyl alcohol (HPLC Grade, 99.9%), acetonitrile (ACN,
technical grade, 99.8%), chlorobenzene (anhydrous, 99.8%),
titanium isopropoxide {Ti[OCH(CH3)2]4, 97%}, and cesium
iodide (CsI, 99.999%) were acquired from Merck. Lead iodide
(PbI2, 99.99%) was purchased from Tokyo Chemical Industries.
Methylammonium bromide (MABr, >99.5%), lead bromide
(PbBr2 99.999%), and formamidinium iodide (FAI, >99.5%)
were obtained from Lumtec. Bis(trifluoromethane)sulfonimide
lithium salt (Li-TFSI, 99.0%) and DMF (anhydrous, >99.5%)
were purchased from Acros Organics. DMSO (>99.7) and
Spiro-OMeTAD {2,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)
amino]-9,9′-spirobifluorene} were bought from Merck and
Borun New Material Technology, respectively.

SCHEME 1
Synthetic route of the materials M1-M3.
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TABLE 1 Optical and electronic data of M1-M3.

Molecules UVmax
a

(nm)
UVonset
(nm)

UVmax
b

(nm)
Flmax

a

(nm)
Stokes

shift (nm)
Δνc

(cm−1)
Eopticd

(eV)
Eonse

(V)
HOMOf

(V)
LUMOg

(V)

M1 401 458 429 492 91 4,612 2.71 0.65 −5.05 −2.34

M2 389 445 394 477 88 4,742 2.80 0.68 −5.08 −2.28

M3 404 464 468 508 104 5,067 2.67 0.61 −5.01 −2.34

aAbsorption and emission maxima in THF.
bAbsorption maxima on ITO.
cΔν = 1/λabs, max-1/λemission.
dEopt from the onset of absorption spectra in THF.
eOxidation onset potential from CV.
fHOMO = −(4.40 + E(onset)ox) eV.
gLUMO = (HOMO + Eoptic) eV.

FIGURE 1
(A) UV-vis absorption spectra and (B) emission spectra of M1-M3 in THF.

FIGURE 2
Optimized geometries (in THF) and HOMO (below) and LUMO (above) frontier orbitals of (A) M1, (B) M2, and (C) M3 molecules.
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3 Result and discussion

3.1 Design and synthesis

The monoketones (3-5), TTs (6-8), some of the dibrominated
TTs (9, 11), and 4,4′-dimethoxytriphenylamine [TPA(OMe)2] were
synthesized following our previous reports (Isci et al., 2020a; Isci,
2021a). Initially, the synthesis of the core units, thieno[3,2-b]
thiophenes 3-5, was conducted starting from 3-bromothiophene
(1). The monoketones, 3-5, were constructed in a one-pot three-step
reaction: (i) lithiation of 3-bromothiophene (1) with n-butyllithium
at −78°C, (ii) additions of elemental sulfur, and then (iii) α-
haloketones. The yields were calculated to be 55%, 90%, and
85%, respectively. Their ring closure reactions were conducted in
the presence of polyphosphoric acid (PPA) in refluxing
chlorobenzene to give 6-8 in 87%, 85%, and 80% yields,
respectively. The dibrominated TTs 9-11 were obtained through

selective dibromination of 6-8 using NBS at −10°C in DMF in 85%,
80%, and 90% yields, respectively. Their Suzuki coupling reactions
with boronated 4,4′-dimethoxytriphenylamine produced the target
functionalized thienothiophenes M1-M3 in 55%, 60%, and 65%
yields, respectively (Scheme 1).

3.2 Optical properties

Photophysical properties (UV-Vis absorption and emission
spectra) of the compounds were investigated in THF at room
temperature (Table 1; Figure 1A). The maximum π-π* absorption
wavelengths (λmax) of the compounds M1-M3 were measured to be
401, 389, and 404 nm, respectively. The absorbances of the TTs
showed increasing bathochromic shift from hexyl (-C6H13) to
dimethoxytriphenylamine para substituents, indicating that high
electron donating dimethoxytriphenylamine substituted
M3 exhibited the higher bathochromic shifts of π-π* transitions,
compared to weak electron-donating hexyl (-C6H13)-substituted
M2. M1, having 4-MeOPh, which is a weaker electron donor
than dimethoxytriphenylamine but a stronger donor than hexyl,
had absorbance between M2 and M3. From the absorption spectra,
the onset maximums of 458, 445, and 464 nmwere observed forM1-
M3, respectively. Then, the optical band gaps of the polymers were
determined to be 2.71 (M1), 2.80 (M2), and 2.66 eV (M3).

The fluorescence measurements of the materials were
performed in THF (Table 1; Figure 1B). They displayed
emission maxima of 492 (M1), 477 (M2), and 508 nm (M3). A
similar trend, i.e., the longest emission with M3 (540 nm), was
observed, which could be due to the presence of more electron-
donating units compared to the others, providing the system with a
more efficient charge-transfer property. The Stokes shifts ranged
from 88 (M2) to 104 (M3) nm. Mega Stokes shift (>100 nm) of
M3 indicated a fast relaxation from the excited state to the ground
state owing to intramolecular charge transfer between TT and 4,4′-
dimethoxytriphenylamine groups.

In addition to the measurements in solution, absorption
properties of the materials spin-coated on ITO were investigated.
Solid-state UVmaximums were measured to be 429 (M1), 394 (M2),
and 468 nm (M3) (Supplementary Figure S1; Table 1). As expected,
solid-state absorptions had red shifts compared to their absorptions
in THF, signifying an enhancement of π-conjugation and good π-
stacking in their film forms.

3.3 Electrochemical properties

Regarding potential applications of the materials as organic
electronics, their electrochemical properties have significant as

TABLE 2 The calculated energies of the frontier orbitals, HOMO-LUMO energy gap (Δ), λmax, λonset, and optical band gap values (in THF) for the studied molecules.

Molecules HOMO (eV) LUMO (eV) Δ (eV) λmax (nm) λonset (nm) Eoptic (eV)

M1 −4.88 −1.36 3.52 424 516 2.40

M2 −4.88 −1.41 3.47 431 527 2.35

M3 −4.89 −1.45 3.44 434 532 2.33

TABLE 3 HTM performances of M1-M3.

Materials JSC (mA.cm-2) Voc (mV) FF (%) PCE (%)

M1 12.4 980 32.4 3.94

M2 4.53 630 25.5 0.73

M3 16.9 1,050 29.3 5.20

Spiro-OMeTAD 19.5 870 42.0 7.14

FIGURE 3
Current (J)–voltage (V) curves of the solar cells with HTM 1-3
(M1-M3) and Spiro-OMeTAD.
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well as optical features. The HOMO and LUMO levels play
important roles in charge injection and charge transport of
active materials in device fabrications. The electrochemical
features were conducted by cyclic voltammetry (CV)
measurement in a mixture of dichloromethane/acetonitrile (1:
1) in the presence of tetrabutylammonium hexafluorophosphate
(TBAPF6) as an electrolyte at a scan rate of 100 mV·s−1, using Pt
wires as counter and working electrodes and Ag wire as a
reference electrode (Supplementary Figure S2). The oxidation
onset potentials (Eonset) were observed to be 0.65, 0.68,
and −0.61 V for M1-M3, respectively. On the basis of the
oxidation onset potentials and optical band gaps, the HOMO/

LUMO energies of the materials were calculated to be −5.05/
−2.34, −5.08/−2.28, and −5.01/−2.34 eV, respectively, using the
equations of HOMO = −(Eonset + 4.40) (eV) and LUMO =
(HOMO + Eoptic) eV (Table 1). With the highest HOMO
energy level, M3 with three TPA(OMe)2 substituents
confirmed the presence of the best electron-donating moieties.
A higher HOMO level presents increased donor ability. While
M2 with weak electron-donating alkyl substituent had the lowest
HOMO level, M1 remained between M2 and M3. The results
were in good agreement with both theoretically predicted energy
gaps and experimental optic band gaps (Table 1).

3.4 Computational chemistry

The structures of the molecules were modeled by using density
functional theory (DFT). Geometry optimizations were conducted
at B3LYP/6-31G (d, p) level of theory in the implicit THF medium
(ε = 7.4257), applying conductor-like polarizable continuum solvent
model (CPCM) (Cossi et al., 2003). All computations were
performed using the Gaussian’16 program package (Frisch et al.,
2016). The optimized geometries and the related frontier orbitals are
given in Figure 2.

The HOMO orbital was found to be delocalized over the
main skeleton of the molecule, while the LUMO orbital was
mainly located on the TT unit and the adjacent rings. Time-
dependent DFT (TD-DFT) calculations were performed at the
PBE0 level of theory in the same basis set in solvent media to
compute the theoretical band gaps and characteristic
wavelengths. The optical band gaps were predicted and
calculated from the λonset of the UV curves (Table 2).
Theoretically predicted optical band gaps were found to be
consistent with the corresponding experimental data.

FIGURE 4
The energy level diagram of PSC.

FIGURE 5
TGA diagram of the materials M1-M3.
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3.5 Device fabrications

J-V curves were obtained using a solar simulator equipped with
a Keithley 2400 source meter without any prior conditioning. A
light source with an AM1.5G filter was used, and 100 mW/cm2

intensity of light was maintained during all J-V measurements.
Before each measurement, the light power was confirmed using a
calibrated silicon reference solar cell with a 4 cm2 area. The voltage
scan was realized with a fixed rate of 10 mV·s−1 for collecting
photovoltaic parameters, and the voltage sweep was set to start
from negative to positive during all J-V measurements. The
average photovoltaic parameters for the cells were calculated
from data collected from four devices for each batch of
materials. Jsc values were measured as 12.4, 4.53, and
16.9 mA·cm−2 for M1-M3, respectively. The higher Jsc value of
M3 compared to other HTMs was attributed to a better
intramolecular charge transfer between TT and 4,4′-
dimethoxytriphenylamine moieties. Considering that M3 had a
better intramolecular charge transfer, it was expected to collect
photo-induced free charge carriers generated in the perovskite
layer more efficiently than M1 and M2 with minimum
recombination losses through metal contacts.

Methoxy (-OCH3) functional groups on the HTMs are
responsible for the molecular arrangement as well as
intermolecular charge transfer via alignment of the HOMO
energy level of the HTM molecules. Although the methoxy group
has an electron-withdrawing inductive effect, it can also exhibit
electron-donating behaviors depending on the substitution of ortho,
para, and meta positions to the phenyl functional group under
resonance stabilization which is called the mesomeric effect (Jeon
et al., 2014). Voc values were measured as 980, 630, and 1,050 mV for
M1, M2, and M3, respectively, which were found to be consistent
with Jsc and PCE values, indicating that charge recombination ratios
at the perovskite/HTM interface are lower with M3. The
recombination rate is strongly effective on the Jsc values as well
as Voc and FF. Parallel resistance (Rp) is much larger in the case
where M3 HTM is used compared to M1 and M2, where the
recombination ratio is minimized (Figures 3, 4). Attributing the
Voc directly to the difference in HOMO energy levels of the HTMs is
thought to be misleading as the distinction between both
experimental and calculated HOMO energy levels of the
molecules are very close to each other.

Functionalizing the main core of TT with methoxybenzene and
4,4′-dimethoxytriphenylamine moieties was found to be a
promising strategy for adjusting HOMO energy levels to be
compatible with the HOMO energy level of the perovskite
material for extracting holes efficiently (Wu et al., 2018). Also,
high LUMO energy levels of HTMs can efficiently act as an electron
blocker and prevent short-circuit. Finally, this molecular design
strategy is found to be promising for obtaining high Jsc values due to
better intramolecular charge transfer.

The current-voltage curves of the devices, fabricated with the
given novel hole transport materials, exhibited relatively low fill
factors of 32.4%, 25.5%, and 29.3% for M1-M3, respectively, which
could be due to high levels of series resistance. This is known to
occur with first and higher orders of recombination. The first order
of recombination, being surface type and trap-assisted
recombinations, is thought to be the primary reason for the

relatively low fill factor, given the fact of apparent morphological
inconsistencies on the surface of the coated HTM (Wolff et al.,
2021). Low parallel resistance is also evident, as it is thought to be
due to the defects in the interface of the p-n junction, where the
charges are ineffectively separated, which is the interface between
the absorber perovskite and the HTM. This causes local short
circuits within the device.

As a result of relatively good Jsc and Voc values, PCE values of
3.94, 0.73, and 5.2, corresponding to M1-M3 were obtained,
respectively (Table 3). Comparable device parameters indicate
that these novel HTMs can pave the way for forthcoming TT-
based molecules as promising candidates for a typical perovskite
solar cell architecture.

3.6 Thermal properties

The thermal properties of the M1-M3 were investigated by
thermal gravimetric analysis (TGA) at 800°C at a heating rate of
10°C min−1 under an N2 atmosphere. Although all materials showed
high thermal stability with similar degradation profiles, different
para substituents on the TT cores led to different thermal behaviors.
While the first decomposition temperatures (Td, corresponding to
5% weight loss) of M1 and M2 were measured to be at around 185°C
and 167°C, respectively, M3 had a decomposition temperature of
261°C (Figure 5). M3 had relatively better thermal stability
compared to M1 and M2, indicating that -TPA(OMe)2
substituent on the M3 skeleton provided higher thermal
resistance, possibly, due to having more aromatic units compared
to -PhOMe and -C6H13 functional groups on M2 and M3,
respectively.

4 Conclusion

In summary, three novel thienothiophene (TT) and 4,4′-
dimethoxytriphenylamine [TPA(OMe)2]-based conjugated
molecules (M1-M3) were successfully synthesized using the
Suzuki coupling method. Their photophysical and
electrochemical properties were investigated both experimentally
and theoretically. M1-M3 were applied as hole transporting
materials (HTMs), reaching overall conversion efficiency of 5.2%
in p-i-n architecture perovskite solar cells. Additionally, molecular
structures, electronic HOMO−LUMO levels, optic band gaps, and
device performances were compared with each other. Moreover,
experimental optoelectronic analyses were supported by theoretical
studies based on density functional theory (DFT) calculations. This
study offers a facile approach for developing new HTMs that could
boost the PSC performance via molecular engineering using
thienothiophene and triphenylamine units (Topal et al., 2022, Isci
et al., 2022c).
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