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Central refractive index dip is a common phenomenon in the fibers fabricated by
the modified chemical vapor deposition (MCVD) technology, which is the main
fabrication technique for high-power laser fibers. In this paper, we present a
numerical analysis of the dip effect on high-power-related parameters for the first
time, to the best of our knowledge. Three aspects includingmode field parameter,
beam quality, and bending performance are studied under different dip
parameters and bending radii. It is found that the dip is possible to increase
the effective mode area and the bending loss, which offers a flexible way to
suppress the non-linear effects and filter the higher-order modes by optimizing
the dip parameters. Besides, different from themode area and bending loss, beam
quality exhibits an interesting trend when the dip radius increases. The results
could facilitate a comprehensive understanding of the dip fiber properties, which
also offer guidance to evaluate and design the fiber with central refractive index
dip for high-power applications.
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1 Introduction

Light can be guided in optical fibers through the total reflection principle, which is
related to the refractive index (RI) difference between the core and cladding of the fiber [1].
Since the profile of RI directly determines how the fiber guides light, it plays a major role in
fiber design and fabrication. The simplest RI profile can be found in the common Step-index
fiber (SIF), whose core and cladding have constant RI respectively [2]. This kind of fiber has
been widely used in optical communication [3], sensing [4], as well as high-power lasers
[5–15]. On the other hand, more complex RI profiles such as parabolic [16], pedestal [17],
W-type [18], M-type [19, 20], single trench [21], modified single trench [22], multi trench
[23], Bragg [24], chirally-coupled core [25], and photonic crystal fibers [26] have also been
developed for different applications.

To fabricate fibers with different RI profiles, the MCVD technique [27] is adopted in
most cases. One potential problem usually during the fabrication process is the volatilization
of the dopant (e.g., Ge or P) from the innermost layers during the collapsing stage, which will
result in the RI dip at the center of the fiber cores. This dip has been observed not only in the
passive fibers for low-power applications [28–31] but also in the active fibers for high-power
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applications [32–35]. To mitigate this phenomenon, some
approaches such as etching the innermost layers [36], modifying
the doping concentration [37], and controlling the temperature [38]
have been proposed and verified in recent years. Although the
phenomenon can be alleviated, it can hardly be eliminated,
which makes a detailed analysis of how the dip affects the fiber
performances extremely necessary.

Actually, the effect of the central RI dip on fiber properties has been
studied since the late 1970s [39, 40].We call the fiber with central RI dip
“central dip fiber (CDF)” to distinguish it from the standard SIF. In the
past few decades, various analytical and numerical methods have been
proposed to investigate CDFs, such as series expansion analysis [39],
perturbation approximation theory [40], WKB simulation technique
[41], hypergeometric function transformation [42], power-law profiles
model [43], and multiple-beam Fizeau fringe approach [44].
Correspondingly, the mode cut-off frequencies, group velocities, and
chromatic dispersion of CDFs are studied detailedly through these
methods [39–44]. The results of these studies can guide fiber
applications such as flat-top beam generation and Raman gain
modulation. Recently, Qiang Qiu et al. [45] carried out a numerical
analysis and found that CDFs with confine-doped structure have better
noise performance than common SIFs in erbium-doped fiber
amplifiers [45].

Although the above reports have investigated CDFs from various
aspects, a systematic analysis of the behavior of CDFs aiming at high-
power fiber applications has been lacking to date. It is known that one of
the main factors limiting the power-scaling of high-power fiber lasers is
the non-linear effects, which will transfer laser energy to unwanted
wavelength. To avoid the detrimental non-linear effects, a
straightforward choice is to increase the core diameter of fiber to
enlarge the mode area of fundamental mode (FM). However, the
increased core diameter leads to multimode operation [6]. The
emerging higher-order mode (HOM) may result in the decrease of
the transverse mode instability (TMI) threshold [46–54]. TMI is a
phenomenon that the quality and stability of the beam emitted by the
fiber laser system are suddenly reduced once that a certain power
(i.e., threshold) has been reached. Therefore, TMI is another dominant
factor limiting the power scaling of high-power fiber lasers. Therefore,
the detailed analysis on the mode area of FM and the suppression of
HOM in CDFs is important for high-power applications, which is
absent in the previous work. Besides, the relationship between the dip
parameter and the beam quality also remains unanswered at present.

In this paper, the influence of the dip parameters on the high-
power-related properties of CDF is comprehensively studied for the first
time. The mode field parameter, beam quality factor, and bending loss
are evaluated under different dip radii and depths. The calculated results
will help reveal the relationships between the dip parameter and mode
area of FM, beam quality, or the suppression of HOM, respectively, thus
providing guidance for high-power applications. Furthermore, the fiber
with a central raised RI profile is also briefly discussed in the final part of
this paper.

2 Dip modeling and concerning
parameters

The RI profile of SIF and CDF is illustrated in Figures 1A, B,
respectively. The core of these two kinds of fibers is supposed to be

doped with rare-earth ions. Gambling et al. have proposed a general
RI distribution model for CDFs with different RI expression
formulas in the dip regions [38]. In this work, we suppose the RI
of CDF varies linearly in the central dip region. To fit this variation,
two dip parameters including the dip radius denoted by rd and dip
depth denoted by Dn are defined respectively, as shown in Figure 1B.

Then the RI profile of CDF can be mathematically expressed as

n r( ) �
Dn/rd( ) · r + DN + n2 − Dn, r≤ rd
DN + n2, rd < r≤ rc
n2, r> rc

⎧⎪⎨⎪⎩ (1)

where DN is the maximum RI difference between cladding and core,
n2 is the RI of cladding, and rc is the radius of core. The RI profile
displayed in Eq. 1 is consistent with the linear-variation case of
Gambling’s general dip model [39]. This simple model can simulate
the different dip profiles by only changing the dip radius and dip
depth, so it is effective to explore the relationship between the fiber
properties and dip distributions.

As introduced, for high-power fiber applications, three
concerning aspects including mode field parameter, beam quality,
and bending-induced effects are of great importance.

When evaluating the mode field distribution of CDFs, two
parameters of mode field are often considered. The first one is
the mode field area (MFA), which is related to the overall
distribution of the field and it can be expressed as

MFA �
∫2π

0
∫rclad

0
�E r,φ( )∣∣∣∣ ∣∣∣∣2rdrdφ( )2

∫2π

0
∫rclad

0
�E r,φ( )∣∣∣∣ ∣∣∣∣4rdrdφ (2)

where rclad is the radius of fiber cladding, while E is the field of the
FM or the HOM calculated by the full-vector finite element method
(FEM) [21–23]. The HOM investigated in this paper refers to the
LP11 mode since it normally has the lowest bending loss among all
HOMs [55] and it is the main filtering target to get single-mode
output while the FM refers to the LP01 mode. Generally, a larger
MFA can provide better suppression of some non-linearities such as
stimulated Raman scattering (SRS) and stimulated Brillouin
scattering (SBS), which is beneficial to enhancing the threshold of

FIGURE 1
Illustration of RI profile of (A) SIF and (B) CDF. The radius of the
core and dip region is rc and rd respectively. DN is the RI difference
between the core (n1) and the cladding (n2) while Dn is the maximum
RI difference in the dip region.
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these non-linearities in high-power fiber lasers and amplifiers [6].
Another parameter is the power filling factor (PFF) which can be
calculated as

PFF � ∫2π

0
∫rdoped

0
�E r, φ( )∣∣∣∣ ∣∣∣∣2rdrdφ∫2π

0
∫rclad

0
�E r,φ( )∣∣∣∣ ∣∣∣∣2rdrdφ (3)

where rdoped denotes the radius of the doped area. The PFF indicates
whether the mode can extract enough gain or not in the small-signal
regime. That is, a larger value of PFF corresponds to a stronger gain
of the target mode when the modes do not experience saturation.
Therefore, a small PFF of HOM might be helpful to suppress the
gain of HOM in fibers. It should be noted that besides the PFF, the
gain of the mode is also related to the doping profiles. For example,
the doping level is relatively small in the dip region of CDF, which
might influence the gain of the FM.

In addition to the above two mode field parameters, the beam
quality factor M2 [56–61] is also important for CDF since it indicates
the beam propagation property. Generally, the value of M2 factor is
1 for ideal fundamental Gaussian beams while more than 1 for any
other practical beams. In high-power fiber lasers and amplifiers, the
output M2 of the fundamental beam profile is expected to be as small
as possible. In this paper, for the first time, the M2 factor of CDF is
calculated under different dip parameters.

Bending-induced effect of CDF was also ignored in the
previous works [39–45]. However, it is essential for high-
power applications since the fibers are usually coiled on the
water-cooling plate to ensure compact size and suppress HOM
in the experiments. Due to the curvature of CDF, both the mode
field distortion and the mode loss should be considered. To
analyze the bent fiber, the RI profile can be described by the
conformal mapping technique [21].

n2eq r,φ( ) � n2 r( )* 1 + 2r
ρR

cosφ( ) (4)

where n(r) is the RI profile of the straight fiber, R is the bending
radius and ρ is the correction factor of the elastic-optic effect. Here ρ
is fixed to 1.25, as suggested by previous reports [21, 22]. The
bending loss of the modes can be calculated based on the
propagation constant ß provided by FEM modeling [22].

α dB/m( ) � 20
ln 10

Im β( ) ≈ 8.686Im β( ) (5)

In the following parts, the numerical results of the above-
mentioned three aspects will be displayed and discussed
concretely. Noticed that the Yb-doped fibers [33–36, 62, 63] with
core diameter of 20 μm or 30 μm have been widely adopted in high
power applications, so the CDF is supposed to work at 1,064 nm
wavelength and rc is set as 10 μm or 15 μm in this work. Besides, Yb-
doped fibers [33–36, 62, 63] usually adopt pure silica as the cladding
and the typical numerical aperture (NA) of core is 0.06, so n2 and
DN are set to 1.45 and 0.0012 respectively. The discussion will
concentrate on the high-power-related properties of the fiber itself,
rather than the fiber laser system. That is, the concrete value of the
TMI threshold and SRS threshold of the CDF-based laser system will
not be calculated, but the related fiber properties will be detailly
analyzed and the results can indicate the impact of the dip
parameters on high-power applications.

3 Results and discussion

3.1 Mode field parameters

Two mode field parameters, i.e., the MFA and PFF, are
calculated based on Eqs 2, 3 in the dip-radius-fixed or the dip-
depth-fixed case respectively. For the first case, rd is set to 5 μm,
which occupies 50% of rc. As illustrated in Figure 2A, the MFA of
both FM and HOM tend to increase gradually when Dn increases.
Concretely, when Dn increases from 0.0001 to 0.0011, the MFA of
FM increases by 23% while the MFA of HOM increases by 3%.
Different from theMFA, PFF of FM andHOMdepicted in Figure 2B
decreases by 4% and 2% respectively when Dn is raised.

Then Dn is set as 0.0006, which is also 50% of DN. When rd
increases, as shown in Figures 2C, D, the MFA exhibits an upward
tendency while the PFF shows a downward tendency, which is
similar to the dip-radius-fixed case. In this case, when rd increases
from 1 μm to 9 μm, the MFA of FM and HOM increases by 27% and
14% while the PFF of FM and HOM decreases by 5% and 9%,
respectively.

Further investigations of MFA and PFF are carried out for
simultaneous varieties of Dn and rd, and the results are
illustrated in Figures 3A–D. It can be seen that the general trend
is that as the dip parameter increases, the MFA of both the FM and
the HOM increases, while the corresponding PFF decreases. As
shown in Figure 3A, the MFA of FM is below 280 μm2 without RI
dip (Dn = 0). However, it can exceed 420 μm2 by expanding the dip,
which is beneficial for suppressing non-linear effects. On the other
hand, as shown in Figure 3D, the PFF of HOM can be reduced from
near 0.78 to near 0.64, whichmight help reduce the gain of the HOM
in small signal regime.

Another phenomenon that can be found in Figure 3 is that the
small dip has a relatively slighter effect on HOM when compared to
FM. Taking the MFA in the dashed rectangle region shown in
Figure 3A and Figure 3B as an example, it can be noticed that the

FIGURE 2
The relation between the mode field parameter and the dip
parameter. (A) MFA as a function of dip depth; (B) PFF as a function of
dip depth; (C) MFA as a function of dip radius; (D) PFF as a function of
dip radius.
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MFA of FM varies from 260 μm2 to 320 μm2 while theMFA of HOM
varies from 440 μm2 to 460 μm2. The little effect of the small-dip on
the mode field parameter of HOM might be attributed to the field
distribution of HOM, which is relatively far away from the center of
fiber when compared to FM.

When we increase rc to 15 μm, the MFA of FM and the PFF of
HOM under different dip depths and radii exhibits a similar
variation trend to Figure 3. In this case, when the dip is
expanded, the MFA of FM will increase from 490 μm2 to
820 μm2 while the PFF of HOM will decrease from 0.93 to 0.84.
Therefore, dip can also help suppress the non-linear effects and
reduce the gain of the HOM for the fiber with a core diameter of
30 μm.

Above results show that a dip will increase the MFA of FM,
which will be helpful to suppress the non-linear effects. Besides,

small dip has little effect on HOM, and it will mainly influence the
properties of FM.

3.2 Beam quality analysis

To evaluate the influence of central dip on the output beam
quality, we further calculate the M2 factor of FM based on the second
moment of the simulated beam intensity profile at different
locations using the free-space transfer function [59, 64]. The
theoretical M2 as a function of Dn is shown in Figure 4A, where
rd is set as 5 μm. It is clear that M2 increases gradually from 1.04 to
1.11 with the increase of Dn, which is probably determined by the
mode field distribution variation. As shown in the insets of
Figure 4A, the two-dimensional (2D) field distribution

FIGURE 3
The MFA of (A) FM and (B) HOM under different dip depths and radii; and the PFF of (C) FM and (D) HOM under different dip depths and radii.

FIGURE 4
(A) Theoretical calculated beam quality M2 under different dip depths. Insets show the 2D field intensity distribution. (B) Evolution of field distribution
under different dip depths. (C) Magnified field distribution in fiber core under different dip depths.
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transforms from Gaussian to annular shape for larger Dn. To see the
evolution tendency clearly, one-dimensional (1D) field profiles and
their magnified details for different Dn are depicted in Figures 4B, C
respectively. It is evident that the field distribution spreads outward
from the Gaussian shape, and the center intensity becomes weaker.
During the transition from the Gaussian to Annular distribution, an
interesting flat-field intensity profile can be observed in Figure 4C
when Dn equals to 0.0005. This indicates that CDF can be probably
utilized to generate flat-top beams.

Figure 5 showsM2 of the CDFwhen rd varies from 1 μm to 9 μm.
In this case, Dn is fixed as 0.0006, which occupies 50% of DN, and
M2 exhibits a different variation compared to the former results.
From Figure 5A, we can find that M2 increases when rd increases
from 1 to 7 μmand then decreases with the further growth of rd. This
interesting phenomenon might also be related to the mode field
distribution evolution. As can be seen in Figures 5B, C, when rd
increases from 1 μm to 5 μm, the mode field distribution gradually
spreads outward from the Gaussian. However, when rd further
increases, no obvious field expansion is observed, and the field
tends to shrink, which can be seen from the 1D distribution of the
blue and cyan lines in Figure 5C. The possible reason for this
phenomenon is that as rd increases, the slope of the dip

calculated by Dn/rd gradually becomes smaller. Imagine that
when rd is infinite, the dip slope tends to be close to 0, and then
the CDF will become a SIF with lower NA, whose mode field will be
close to the Gaussian distribution again. Therefore, in the process of
increasing rd, it is reasonable for the mode field to first deviate from
the Gaussian distribution and then approach the Gaussian
distribution. As a result, M2 will first rise and then drop when rd
increases.

To further examine the evolution of M2 with different dip radii
and depths, we calculated M2 when Dn varies from 0 to 0.0012 while
rd varies from 1 μm to 9 μm, and the result is shown in Figure 6A.
The trends are consistent with the previous analysis, and it can be
seen that as the dip depth increases, M2 shows an increasing trend,
while with the increase of the dip radius, M2 shows a trend of
increasing first and then decreasing. This phenomenon is not
restricted to the case where rc equals to 10 μm. When we
increase rc to 15 μm, a similar variation of M2 can be seen, as
illustrated in Figure 6B.

Besides the variation trend, the absolute value of M2 is also an
important factor that needs to be considered. As shown in Figure 6A,
the largest M2 reaches about 1.18 when the fiber has a core diameter
of 20 μm. However, when the fiber has a core diameter of 30 μm, the

FIGURE 5
(A) Theoretical calculated beam quality M2 under different dip radii. Insets show the 2D field intensity distribution. (B) Evolution of field distribution
under different dip radii. (C) Magnified field distribution in fiber core under different dip radii.

FIGURE 6
Theoretical calculated beam quality M2 under different dip radii and depths for fibers with a core radius of (A) 10 μm; (B) 15 μm.

Frontiers in Physics frontiersin.org05

An et al. 10.3389/fphy.2023.1177371

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1177371


largest M2 exceeds 1.5, as shown in Figure 6B. Of course, the worst
beam quality only appears in extremely large dip, which is hardly
seen in practical case.

It should also be pointed out that the M2 obtained in this section
is the optimal value of the theoretical results for the investigated dip
parameters since only the FM is considered. In practical
experiments, the content of HOM and the relative phase between
HOM and FM will lead to M2 deterioration. To suppress the HOM,
bending is usually adopted, the next part will investigate how
bending influence the performance of CDFs.

3.3 Bending performances

Active fibers are often coiled in a water-cooling plate for
compact configuration and HOM suppression in high-power
fiber lasers and amplifiers. This behavior will result in two kinds
of impact including bending-induced distortion and bending loss.

3.3.1 Bending-induced distortion
When fiber is coiled to suppress HOMs, the mode profile of FM

will also be distorted. Figure 7 shows the 2D mode profile of FM in a
CDF with Dn = 0.0006 and rd = 5 μm at different bending radii.
Besides, the corresponding value ofMFA and PFF are also illustrated
by the red line and blue line respectively. It can be seen that the MFA
will decrease from 310 μm2 to 289 μm2 while the PFF will decrease
from 0.903 to 0.882 when R is reduced from 15 cm to 5 cm,
indicating that bending distortion is more severe for small
bending radii.

To statistically analyze the bending-induced distortion, both the
standard deviation and the average of the mode field parameter at
bending radius ranging from 5 cm to 15 cm are calculated. We
divide the standard deviation by the average and define the
corresponding quotient as the distortion factor (DF), as
expressed in Eq. 6

DF �

����������
1
n ∑n
i�1

xi − �x( )2
√

�x
, �x � 1

n
∑n
i�1
xi (6)

where xi is the MFA or the PFF at different bending radii and‾x is
the averaged value for these two mode field parameters.

When the dip radius is fixed as 5 μm, the DF of the MFA and the
PFF in different Dn cases are shown in Table 1. It can be noted that
the DF has the smallest value when Dn = 0, which is also the
calculated result of common SIF. As Dn increases, the DF of the
MFA increases from 0.85% to 3.6% while the PFF increases from
0.45% to 0.95%, showing larger bending-induced distortion.

Table 2 shows the calculated DF as a function of rd when Dn =
0.0006. Similarly, the DF of the PFF increases from 0.46% to 1.49%
when rd increases from 1 μm to 9 μm. However, the DF of the MFA
increases first from 0.93% to 2.61% and then decreases to 2.08% with
the increase of rd. The corresponding DF is the largest at rd = 7 μm,
showing a similar trend to M2. The possible reason might be
consistent with that for the variation of M2. That is, the mode
field has undergone a process of deviating firstly from the Gaussian
distribution and then varying towards the Gaussian distribution.

When we increase rc to 15 μm, the DF under different dip depths
and radii exhibits a similar variation trend to Tables 1, 2. However,
in this case, fiber will show heavier bending-induced distortion due
to a larger core size. Taking the DF of MFA as an example, it will
increase from 7.01% to 13.6% with the increase of Dn when rd is set
to 50% of rc. Moreover, when Dn is set to 50% of DN, the DF ofMFA
rises first from 5.97% to 13.2% and then drops to 12.9% with the
increase of rd. The value of dip radius corresponding to the largest
DF of MFA is 12 μm. Therefore, CDF with a core diameter of 30 μm
will suffer more severe bending distortions.

3.3.2 Bending loss
In general, the bending loss of HOM in high-power fiber lasers is

expected to be large enough to achieve effective single-mode (ESM)
output. A criterion of loss that the FM lower than 0.1 dB/m and
HOM larger than 10 dB/m is generally considered as an ESM
condition as proposed in [65]; Figure 8 shows the bending loss
of FM and HOM as a function of Dn and rd when the bending radius
R is fixed as 5 cm, 7.5 cm, and 10 cm, respectively. Here the HOM

FIGURE 7
MFA (red line) and PFF (blue line) as a function of bending radius.
Insets show mode field distribution under different bending radii.

TABLE 1 DF under different dip depths.

Dn 0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006

MFA 0.85% 1.04% 1.25% 1.46% 1.69% 1.92% 2.17%

PFF 0.45% 0.48% 0.52% 0.55% 0.59% 0.63% 0.67%

Dn 0.0007 0.0008 0.0009 0.0010 0.0011 0.0012

MFA 2.41% 2.65% 2.9% 3.14% 3.38% 3.60%

PFF 0.71% 0.75% 0.80% 0.84% 0.89% 0.95%
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refers to the least lossy HOM [21], which has the smallest bending
loss among all HOMs. A general trend can be found that the loss of
both the FM and HOM will increase by increasing the dip
parameters and decrease by increasing the bending radius. As a
result, small dip parameters can meet the ESM condition at a small
bending radius while large dip parameters satisfy the ESM condition
at a large bending radius. When R equals to 5 cm, as shown in

Figure 8A, the bending loss of FM is smaller than 0.1 dB/m for
relatively small dip parameters (e.g., Dn < 0.0005 and rd<4 μm) and
will increase to as large as over 5 dB/m for greater dip parameters
(e.g., Dn > 0.0008 and rd>7 μm). Meanwhile, the bending loss of
HOM shown in Figure 8B is larger than 100 dB/m for all dip
parameters. In this case, both the common SIF and the CDF with
relatively small dip parameters can satisfy the ESM condition but their
MFA and PFF of FM are the smallest due to the relatively severe
bending distortion at a small bending radius. To balance the ESM
condition and the mode field distortion, R can be enlarged to 7.5 cm.
Although common SIF cannot provide an ESM condition at this
bending radius, CDF can adjust the loss of FM and HOM by
changing the depth and radius of the dip, which brings more
flexibility to control the modal content. As shown in Figures 8C, D,
the bending loss of FM is smaller than 0.1 dB/m for most of the dip
parameters and the bending loss of HOM is larger than 10 dB/m in
relatively larger dip parameters. Concretely, CDF with some special dip
parameters such as Dn = 0.0006–0.0007 and rd = 7–8 μmcan satisfy the
ESM condition.When R further increases to 10 cm, as shown in Figures
8E, F, FM loss is smaller than 0.1 dB/m in all dip parameters while the
HOM loss is larger than 10 dB/m only for extremely large dip
parameters (e.g., Dn > 0.0010 and rd>9 μm). Although these
extremely large dip parameters can also satisfy the ESM condition,
the correspondingM2 and the DF are larger than that of the smaller dip
parameters. Therefore, a CDF with Dn = 0.0006–0.0007 and rd =
7–8 μm that coiled at 7.5 cm might be proper for balancing the mode
field distortion, ESM condition, and beam quality.

It should be pointed out that the CDF cannot satisfy the ESM
condition when rc is enhanced to 15 μm, which is attributed to the
relatively small HOM loss. Taking the case when R equals to 5 cm
as an example, HOM loss is larger than 10 dB/m only for those
extremely large dip parameters (e.g., Dn > 0.0010 and rd>13 μm),
but the corresponding FM loss is larger than 2 dB/m.

FIGURE 8
Bending loss under different bending radii. (A) FM loss and (B)HOM loss when R = 5 cm; (C) FM loss and (D) HOM loss when R = 7.5 cm; (E) FM loss
and (F) HOM loss when R = 10 cm.

TABLE 2 DF under different dip depths.

rd (μm) 0 1 2 3 4

MFA 0.85% 0.93% 1.13% 1.44% 1.80%

PFF 0.45% 0.46% 0.48% 0.53% 0.59%

rd (μm) 5 6 7 8 9

MFA 2.17% 2.46% 2.61% 2.41% 2.08%

PFF 0.67% 0.77% 0.91% 1.20% 1.49%

FIGURE 9
Schematics of the RI profile of (A) CDF and (B) CRF.
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Above results show that CDF with a core diameter of 20 μm can
achieve strong HOM suppression by optimizing the dip parameters.
However, CDF with a core diameter of 30 μm seems hard to
effectively suppress HOM through dip optimization.

3.4 Comparison to the raised RI profile

Besides the common RI dip phenomenon, a raised RI profile in
the center of fiber cores sometimes will also be observed in
experiment [35]. We call this kind of fiber as central raised fiber
(CRF). Due to the opposite RI profile, the CRF might have the
contrary performance compared to the CDF. The typical RI profiles
of the CDF and CRF are depicted in Figures 9A, B respectively.

Here we consider a typical case that rd occupies 50% of rc while
Dn equals to 50% of DN for both fibers. We set rc as 10 μm and
15 μm respectively, then the mode field parameter, beam quality
factor, and bending-induced performance for CDF, SIF, and CRF
are evaluated respectively and compared in Table 3. To evaluate the
bend performance, DF is calculated with R ranging from 5 cm to
15 cm while bending loss is calculated with R of 5 cm. We can find
from Table 3 that the raised RI profile can reduce theMFA of the FM
obviously and enhance the PFF of HOM slightly. Furthermore, the
bending loss of HOM will decrease in CRFs. As a result, it is more
difficult for CRFs to suppress non-linearities and filter HOMs when
compared to CDFs or even common SIFs. However, on the other
hand, CRFs can achieve better beam quality with smaller M2 factor,
and exhibit stronger bending-resistant ability with smaller DF for
both MFA and PFF.

4 Conclusion

Three aspects, i.e., mode field parameters, beam quality, and
bending performances, which are concerned in high-power
applications are investigated in CDFs. Numerical simulations
demonstrate that the effective mode area of FM and bending loss
of HOM in CDFs are larger than those in common SIFs, which is
beneficial to suppressing the non-linearities and filtering the HOM
simultaneously. The results show that the dip of the fiber is not
always destructive for power scaling, and might even help high-
power application, which depends on the parameters of the dip. If

the dip parameter is kept in a certain range, the complex approaches
to eliminate the dip can be skipped, which will simplify the laser fiber
fabrication. Besides, proper dip parameters and bending radius can
balance the mode field parameter, beam quality, bend distortion and
ESM condition, which brings more flexibility to designing CDFs for
high-power applications.
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TABLE 3 Calculated results for three kinds of fibers.

Core radius (μm) Fiber type MFA of FM(μm2) PFF of HOM M2 factor Bending-induced
DF of

Bending loss of HOM (dB/m)

MFA (%) PFF (%)

10 CDF 314 0.756 1.070 2.17 0.67 108.6

SIF 270 0.773 1.035 0.85 0.45 102.3

CRF 220 0.791 1.024 0.01 0.27 28.33

15 CDF 619 0.920 1.193 11.7 0.82 0.522

SIF 491 0.929 1.063 5.74 0.61 0.236

CRF 323 0.939 1.032 0.80 0.30 0.164
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