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The emerging role of estrogen’s
non-nuclear signaling in the
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Sexual dimorphism exists in the epidemiology of cardiovascular disease (CVD),
which indicates the involvement of sexual hormones in the pathophysiology of
CVD. In particular, ample evidence has demonstrated estrogen’s protective
effect on the cardiovascular system. While estrogen receptors, bound to
estrogen, act as a transcription factor which regulates gene expressions by
binding to the specific DNA sequence, a subpopulation of estrogen receptors
localized at the plasma membrane induces activation of intracellular signaling,
called “non-nuclear signaling” or “membrane-initiated steroid signaling of
estrogen”. Although the precise molecular mechanism of non-nuclear signaling
as well as its physiological impact was unclear for a long time, recent
development of genetically modified animal models and pathway-selective
estrogen receptor stimulant bring new insights into this pathway. We review the
published experimental studies on non-nuclear signaling of estrogen, and
summarize its role in cardiovascular system, especially focusing on: (1) the
molecular mechanism of non-nuclear signaling; (2) the design of genetically
modified animals and pathway-selective stimulant of estrogen receptor.
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1. Introduction

Cardiovascular disease (CVD) is the leading cause of death in many countries, and its

total burden is increasing dramatically (1–3). Sexual dimorphism has been observed in

various CVDs. Women are less susceptible to coronary artery disease than men; however,

their morbidity increases after menopause, reaching male levels (4, 5). Furthermore,

menopause is associated with an increased prevalence of metabolic syndrome, a CVD risk

factor (6, 7). These findings suggest a cardiovascular protective role of female sex

hormones, especially estrogen, which have been consistently reported in basic research.

Although hormone replacement therapy (HRT) was expected to decrease CVDs in

postmenopausal women, a randomized controlled trial (RCT) by the Women’s Health

Initiative failed to demonstrate an improvement in CVD morbidity and was terminated

early owing to adverse events including breast cancer (8). However, subanalysis of the

RCT revealed conjugated equine estrogens had a tendency to lower CVD morbidity in

relatively early postmenopausal women (9). Additionally, oral estradiol administration

suppressed carotid artery atherosclerosis when treatment was initiated within six years,

but not ten or more years after menopause (10). These reports indicate that HRT can

induce cardiovascular benefits with careful application and encourage further research on

the molecular mechanisms of estrogen signaling.
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Estrogen receptors (ERs) regulate gene expression as

transcription factors in the nucleus, known as nuclear signaling.

However, a subpopulation of ERs is present at the plasma

membrane and initiates intracellular signaling, referred to as

“non-nuclear signaling” or “membrane-initiated steroid

signaling”. Despite their relatively small numbers compared to

nuclear ERs (11, 12), an increasing body of evidence suggests the

essential role of non-nuclear signaling in various physiological

functions, including cardiovascular effects (13, 14). Additionally,

G-protein-coupled estrogen receptor (GPER), a distinct subtype

of ER, has been identified as another mediator of non-nuclear

signaling.

In this article, we first describe the characteristics of ERs and

the molecular mechanism of non-nuclear signaling. Next, the

role of non-nuclear signaling in cardiovascular systems is

discussed through studies using genetically modified animals and

pathway-selective stimulators. A concise review of GPER is also

provided.
2. Structure and ligand of estrogen
receptors

Endogenous estrogens exert physiological effects by binding to

their receptors (ERs). Two subtypes of ERs, ERα and ERβ, belong

to the nuclear hormone receptor superfamily and share common

structural characteristics (15–17). ER consists of six distinct

domains (A to F domains) (18). The N-terminal A/B domains

contain a transcriptional activation domain (AF1), which

facilitates the transcriptional function of ER. The C domain is a

DNA-binding domain (DBD) that interacts with a specific DNA

sequence called estrogen response elements (EREs) located in the

transcriptional regulatory region of estrogen-responsive genes.

The D domain is a flexible hinge region between domains C and

E, and contains a nuclear localization signal (NLS) and a nuclear

export signal (NES). The E domain corresponds to the ligand-

binding domain (LBD), which harbors another transcriptional

activation domain (AF2). The C-terminal of ER is the F domain.

Although ERα and ERβ are encoded by two genes, their C and E

domains are highly homologous (19), while the other domains

are relatively divergent (20). In addition, splicing variants of ERα

and ERβ have distinct physiological functions (18).

Upon binding to their ligands, ERs undergo a conformational

change and form a stable dimer (21–23), which then enter the

nucleus guided by NLS (24–26). ERs regulate gene expression

with associated coregulators (27–30), and phosphorylation of ER

also enhances their transcriptional activity in a ligand-

independent manner (31–33).

Estradiol (E2) is the most potent endogenous estrogen in pre-

menopause women, whereas estrone (E1) plays a larger role after

menopause, and estriol (E3) shows a greater importance during

pregnancy (34). Estetrol (E4) is synthesized during pregnancy by

fetal liver enzymes (35). Additionally, various natural and

synthetic exogenous compounds act as ER ligands (36). A group

of synthesized estrogenic compounds, known as selective

estrogen receptor modulators (SERMs), exhibit dual functionality
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as both agonist and antagonist of ER in different organs due to

tissue- or cell-specific difference in the recruitment of cofactors

(36, 37). It has been reported that E4 exhibits the activity of an

natural SERM (38).

Some oxysterols, which are oxygenated derivatives of

cholesterol, function as ER ligands. 27-hydroxycholesterol (27HC)

inhibits E2-induced nitric oxide synthase expression and re-

endothelialization of murine carotid artery (39). In contrast,

27HC promotes breast cancer progression in an ER-dependent

manner (40, 41), suggesting its characteristic as an endogenous

SERM (42). 27HC also regulates bone homeostasis, partially

mediated by ERs (43, 44). Similarly, 25-hydroxycholesterol

exhibits ERα-mediated breast and ovarian cancer cell proliferation

and prevents hypoxia-induced cardiomyocyte apoptosis (45).
3. Non-nuclear signaling of ERs

3.1. Mechanism of plasma membrane
localization

In addition to their role in nuclear signaling, ERs also mediate

rapid intracellular signaling. In 1967, Szego and Davis showed that

estrogen increased cyclic adenosine monophosphate (cAMP)

concentration in the rat uterus within minutes (46). Following

studies documented rapid calcium uptake of endometrial cells

after E2 administration and E2 binding to the cell membrane

(47, 48). Further research has identified the existence of

membrane-bound ERα and ERβ (11, 49, 50), which are

responsible for rapid signaling, such as the activation of

extracellular signal-regulated kinase (ERK), protein kinase B

(PKB, also known as Akt), and endothelial nitric oxide synthase

(eNOS) (51–54). This signaling is referred to as “non-nuclear

signaling” or “membrane-initiated steroid signaling”. However, it

should be noted that this signaling can also induces the

transcriptional response subsequently (55, 56).

Palmitoylation, a posttranslational modification of ER plays

an essential role in trafficking to the plasma membrane (57–60).

A conserved amino acid motif in the E domain of ERα and ERβ

is responsible for palmitoylation (61) by DHHC-7 and −21 (62).

Caveolin-1, the main component of caveolae (63), is colocalized

with ERα (64) and the amino acid substitution of S522A in ERα

impairs the interaction with caveolin-1 and plasma membrane

localization (65). Striatin, a scaffold protein, is another

component of the signaling complex of membrane-bound

ERα (66).
3.2. Signaling complex of
membrane-localized ER

On the plasma membrane, ERs form functional modules with

associated proteins (Figure 1), including G-protein. In human

umbilical vein endothelial cells, membrane ERα interacts with

Gα13, which activates the RhoA/Rho Kinase/Moesin pathway and

induces cell migration (67). Furthermore, E2-bound membrane
frontiersin.org
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FIGURE 1

Overview of intracellular signaling of estrogen receptor α. Classically, E2-bound ERα dimerizes and translocate to the nucleus. ERα directly binds to
estrogen response elements of the target genes with coactivators and modulates gene expressions. ERα also binds to DNA indirectly in association
with other transcription factors. Phosphorylation of ERα also enhances transcriptional activity. A subpopulation of ERα is localized to the caveolae of
the plasma membrane through the interaction with caveolin-1 and striatin. ERα on the plasma membrane assembles a functional complex with
associated proteins such as G proteins, Src and PI3K, resulting in the rapid activation of multiple intracellular signaling. Abbreviations; Akt, protein
kinase B; Cav-1, caveolin-1; cGMP, cyclic guanosine monophosphate; eNOS, endothelial nitric oxide synthase; E2, estradiol; ERK, extracellular signal-
regulated kinase; ERα, estrogen receptor α; GTP, guanosine triphosphate; HPIP, hematopoietic PBX-interacting protein; PELP1, proline-, glutamic
acid- and leucine-rich protein 1; pGC, particulate guanylate cyclase; PI3K, phosphatidylinositol-3 kinase; PKG, cGMP-dependent protein kinase;
PRMT1, protein arginine methyltransferase 1; P, phosphorylation; Shc, src homology and collagen; STAT, signal transducer and activator of
transcription; TF, transcription factor.
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ERα links to Gαi-2/3 and stimulate particulate guanylate cyclase-A,

which causes the generation of cyclic guanosine monophosphate

(cGMP). In consequence, activated cGMP-dependent protein

kinase (PKG)-I stimulates cystathionine γ-lyase in endothelial

cells, resulting the rapid release of hydrogen sulfide, which acts

as a vasodilator (68). Human ERα binds to Gαi and Gβγ at

amino acids of 251–260 and 271–595 of ERα respectively.

Disruption of the interaction of ERα with Gαi or Gβγ inhibits

E2-induced Src and ERK phosphorylation (69). Point mutations

in the Gαi-binding domain of ERα diminish E2-stimulated

activation of ERK and eNOS (70).

Src, a proto-oncogene, plays a critical role in Ras/ERK

activation by E2-bound ERα (71). Src phosphorylates human ERα

at Tyrosine 537 (72), and the SH2 domain of Src subsequently

binds to ERα, modulating Src activity (73). A similar mechanism

is observed with ERβ (73). Disruption of the ERα/Src association

inhibits E2-induced proliferation of MCF-7 cell, which is an

estrogen-responsive tumor cell (74). Src homology and collagen

(Shc) is also contribute to ERK1/2 activation, with Src acting as

an upstream regulator of Shc (75). Additionally, Proline-,

glutamic acid- and leucine-rich protein 1 and hematopoietic

PBX-interacting protein assist in the complex formation of ERα,

Src and p85α subunit of phosphatidylinositol-3-OH kinase (PI3K)

(76, 77). Protein arginine methyltransferase 1 is also involved in

this process, mediating the methylation of ERα arginine 260 (78).
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Nitric oxide production by eNOS is a vital function of

endothelial cells (79). E2-bound ERα on the plasma membrane

binds to the p85α subunit of PI3K and rapidly stimulates eNOS

via the PI3K-Akt pathway (52, 80), primarily in caveolae (81).

Gαi and heat shock protein 90 are also involved in E2-induced

eNOS activation (82, 83).

While studies on non-nuclear ERβ signaling are limited, it

has been reported that ERβ activates eNOS in endothelial cell

caveolae (84). Additionally, both ERα and ERβ activate ERK1/2

and Akt in a subtype-specific manner (85).
4. Genetically modified animal models
for ER non-nuclear signaling

Several genetically modified mouse models have been

generated to investigate the role of non-nuclear signaling of ERα

function (Table 1). Although the specific method of inhibiting

non-nuclear signaling differ in each mouse model, these mice

consistently exhibit a lack of rapid activation of eNOS by E2,

which is known to play a pleiotropic role in maintaining

cardiovascular homeostasis (107).

The C451A-ERα mouse model, which is characterized by the

inhibition of palmitoylation and translocation of ERα to the

plasma membrane by the substitution of cysteine 451 with
frontiersin.org
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alanine, exhibits a complete absence of membrane-localized ERα

(86, 95), leading to the abrogation of non-nuclear signaling.

Based on the importance of human ERα amino acids 251–260

in non-nuclear signaling (69, 70), the R264A-ERα mouse model

was generated by replacing arginine 264 of murine ERα with

alanine, which corresponds to arginine 260 of human ERα (87).

While the C451A-ERα female mouse exhibits infertility and

impaired reproductive organ development (86), the R264A-ERα

female mice remain fertile with intact reproductive organs, which

suggests a difference in the degree of non-nuclear signaling

inhibition between the two models.

Another mouse model of non-nuclear signaling inhibition was

produced by disrupting the interaction between ERα and striatin,

which is facilitated by amino acids 183–253 of human ERα and

is crucial for the membrane localization of ERα (66). The

disrupting peptide mouse (DPM) was generated through

transgenic overexpression of a peptide containing the amino acid

sequence of ERα 176–253, which disrupts the interaction

between ERα and striatin. DPM mice exhibit a lack of rapid E2-

induced phosphorylation of Akt or ERK in endothelial cells,

resulting in the failure to activate eNOS (88).

By developing the concept of DPM mice, it was discovered the

substitution of lysine 231, arginine 233 and 234 into alanine (KRR

to AAA) of human ERα inhibits its interaction with striatin (108).

In a human endothelial cell line with modified ERα, the rapid

activation of ERK, Akt, and eNOS by E2 administration is

abrogated, while the direct genomic reaction is preserved. To

investigate the effects of this modification in vivo, a mouse model

was established in which the endogenous ERα was replaced with

the modified ERα (KRR knock-in: KRRKI mice) (104).

Recently, a novel mouse model called ERαKI/KITie2Cre mice was

established. In this mouse model, ERα non-nuclear signaling is

inactivated by disrupting its binding to the p85α subunit of PI3K

through an arginine 263 to alanine mutation in a tissue-specific

manner under the Cre-loxP system (90).

In this section, we summarize the findings obtained from these

models and compare them with the mouse model with inactivated

nuclear signaling, specifically with regards to the cardiovascular

and metabolic systems.
4.1. Protection against vascular injury

Estrogen accelerates re-endothelialization and suppresses

neointimal hyperplasia after vascular injury, with ERα playing an

essential role (109, 110). Neither the C451A-ERα, R264A-ERα

nor ERαKI/KITie2Cre mice exhibits E2-induced acceleration of re-

endothelialization after electric perivascular injury (87, 90, 95).

Similarly, E2 administration does not improve neointimal

hyperplasia after mechanical wire injury in DPM or ERαKI/

KITie2Cre mice (88, 90). In contrast, the mouse models with

inactivated nuclear signaling by ERα AF1 or AF2 domain

deletion (ERαAF10, ERαAF20) have demonstrated preserved E2

acceleration of carotid artery re-endothelialization after electric

injury (91, 92, 95).
Frontiers in Cardiovascular Medicine 05
These findings suggest that ERα non-nuclear signaling plays

the predominant role in the vascular protection by estrogen. This

idea is supported by previous research demonstrating that E2

suppresses the proliferation of vascular smooth muscle cells

(VSMCs), an underlying mechanism of neointimal hyperplasia

(111). This effect is mediated through the formation of a

complex of membrane ERα and striatin and protein phosphatase

2A (PP2A), leading to subsequent kinase inactivation (112). In

VSMCs derived from DPM mice, the estrogen-induced complex

formation and anti-proliferative effect is abrogated.

However, it is worth noting that E2-induced suppression of

neointimal hyperplasia after mechanical wire injury is abolished

in ERαAF10 mice (97). This result suggests that ERα nuclear

signaling may also contribute to vascular protection or that there

may be differences in the underlying biological mechanism of

each vascular injury model.

The mouse models with genetic modification within D-domain

provide valuable insight into the function of non-nuclear signaling

in vascular protection. Amino acid substitution in the hinge region

and NES of ERα D-domain alter the pattern of intracellular

distribution of ERα. While wildtype ERα predominantly is

localized in the nucleus, ERα with modifications in the putative

NLS of the hinge region and NES (H2 + NES ERα) is exclusively

localized in the cytoplasm. This altered localization is assumed to

be caused by enhanced NES function, which is partially restored

by leptomycin B, a nuclear export inhibitor. H2 + NES ERα

exhibits impaired transcriptional activity but maintains a non-

nuclear response of ERK1/2 phosphorylation after E2

administration (113, 114). The mouse model with mutated ERα

(H2NESKI) exhibits an interesting cardiovascular phenotype

where the degree of carotid artery re-endothelialization after

electric injury is similar to that of E2-treated wild-type female

mice, even in the absence of estrogen by ovariectomy. This

observation suggests an intrinsically enhanced non-nuclear ERα

signaling in H2NESKI mice (93).
4.2. Atherosclerosis prevention

Estrogen reduces the development of atherosclerotic lesion

through ERα in mouse models of atherosclerosis with

apolipoprotein E-deficient (Apoe−/−) or low-density lipoprotein

receptor-deficient (Ldlr−/−) (115–118). While ERα non-nuclear

signaling appears to play a critical role in protecting against

vascular injury, ERα nuclear signaling is essential for preventing

atherosclerosis by estrogen. This effect is preserved in C451A-

ERα (98) and R264A-ERα mice (87), but abolished in ERαAF20

mice (92) that are crossed with Ldlr−/− mice. Notably, the AF1

domain of ERα appears to be dispensable for atherosclerosis

prevention (91), suggesting the individual function of each domain.
4.3. Effect on metabolic homeostasis

Estrogen has been shown to suppress metabolic disorders,

which are a common risk factor of CVDs. Female mice with
frontiersin.org
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whole-body ERα knockout exhibit several metabolic disorders,

including glucose intolerance, body weight gain and visceral fat

accumulation (96). Both nuclear and non-nuclear signaling of

ERα appear to play a substantial role in these metabolic effects.

KRRKI mice also exhibits these dysfunctions, which are due to

the disruption of the signal complex of membrane ERα, striatin,

and PP2A in the hypothalamus, resulting in lower levels of

physical activity and energy expenditure (104). In contrast,

C451A-ERα mice only exhibit partial abnormalities (103),

indicating that the mechanism of non-nuclear signaling

inhibition may be relevant to the metabolic phenotype.

Regarding nuclear signaling, deletion of ERαAF2 induces

similar abnormalities, with the disappearance of estrogen-

regulated metabolic gene expression response to estrogen in the

liver and adipose tissue. In contrast, deletion of ERαAF1 causes

only mild hyperglycemia in the glucose tolerance test, suggesting

a minor contribution of the AF1 domain (96).
4.4. Cardiac phenotype

E2 administration attenuates pressure overload-induced

cardiac hypertrophy in female mice (119), as well as inhibits

angiotensin II or endothelin-1-induced hypertrophy of neonatal

rat cardiomyocytes (120). While ERβ seems to play the

predominant role in mediating estrogen’s protective effect against

hypertrophy (121–124), ERα also contributes to this effect (125).

The KRRKI mouse model has shed light on the role of ERα

non-nuclear signaling in pressure overload-induced heart failure

(89, 126). Phosphodiesterase 5 (PDE5) inhibitors prevent cardiac

remodeling in mice by myocardial PKG activation (127).

Interestingly, the efficacy of PDE5 inhibitors in female is

dependent on estrogen, which stimulates cGMP synthesis via the

eNOS/soluble guanylate cyclase pathway (128). Notably, in

female KRRKI mice, PDE5 inhibitors failed to activate PKG and

provide cardiac protection against pressure overload-induced

heart failure, even in the presence of estrogen (89).

Other mouse models with genetic modification within the

DBD (129, 130), LBD (131), and a transgenic mouse expressing

only a functional E domain of ERα at the plasma membrane

(132) also provide meaningful insights into intracellular estrogen

signaling. However, the effect of these genetic modifications on

the cardiovascular system have not been determined.
5. Selective stimulator of non-nuclear
ER signaling

Estrogenic compounds and estrogen derivatives that selectively

stimulate a subpopulation of ERs also offer important insights into

non-nuclear signaling. Estradiol-bovine serum albumin conjugate

(E2-BSA), estrogen-dendrimer conjugate (EDC), and pathway-

preferential estrogens (PaPEs) have been developed as selective

stimulator of non-nuclear signaling and widely used in various

studies, including cardiovascular research.
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5.1. Estradiol-bovine serum albumin
conjugate

17β-estradiol conjugated to bovine serum albumin (E2-BSA) is

membrane impermeable and therefore selectively stimulates

cell-surface ERs. The exposure to E2-BSA leads to an increase

in intracellular calcium and NO release in human artery

endothelial cells, which is presumed to be mediated by non-

nuclear signaling (133).

However, it should be noted that some criticisms have been

raised regarding the suitability of E2-BSA as a tool to evaluate

membrane-bound ER function: (1) E2-BSA solution contains

some free E2 by cleaving from BSA, which may activate nuclear

signaling; (2) the pattern of E2-BSA binding to ERs is influenced

by the BSA linking site, which leads to different biological

responses (134, 135).
5.2. Estrogen-dendrimer conjugate

A novel conjugate of estrogen and a polyamidoamine

dendrimer was developed, in which the estrogens were linked

to the dendrimer through a hydrolytically stable bond (136).

This conjugate, known as estrogen-dendrimer conjugate

(EDC), selectively stimulates ERs localized to the plasma

membrane and cytoplasm since its positive charge and large

size prevent it from entering the nucleus. EDC rapidly

induces phosphorylation of ERK, Shc, and Src in MCF-7 cells,

with limited impact on the expression of estrogen-responsive

genes.

In bovine artery endothelial cells, EDC activates eNOS and

promotes cell proliferation and migration. Moreover, EDC

accelerates re-endothelialization of carotid artery after electric

injury (137), which is consistent with the results of studies

conducted on genetically modified mice.

In an ischemia/reperfusion model, E2 decreases cardiomyocyte

apoptosis and infarct size (138, 139). Pretreatment with EDC

similarly reduces infarct size and mitigates the decline in left

ventricular function (140). This effect is accompanied by S-

nitrosylation,of myocardial proteins, which plays an important

role in cardioprotection (141).

It is noteworthy that continuous administration of EDC did

not activate ER-mediated gene transcription in vivo, as

evidenced by the bioluminescence assay using ERE-luciferase

reporter mouse and real-time PCR (137). This finding not only

confirms the high selectivity of EDC in stimulating non-

nuclear signaling but also demonstrates the chemical stability

of E2-dendrimer bound in EDC, which prevents the release of

free E2.
5.3. Pathway-preferential estrogens

A novel estrogen compound that preferentially activates a

subset of ERs has been developed through a distinct mechanism
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from EDC (142). Typically, an initial signal triggered by transient

ER-ligand binding is sufficient to activate non-nuclear signaling,

in which subsequent kinase cascades play a predominant role. In

contrast, activation of nuclear signaling often requires sustained

ER-ligand binding to induce a series of subcellular processes.

Therefore, it is anticipated that the modified estrogen, which

possesses appropriately reduced affinity to ERs, will activate non-

nuclear signaling effectively while avoiding the stimulation of

nuclear signaling.

Pathway-preferential estrogens (PaPEs) are synthesized from

estradiol by altering its steroid structure and adding

modifications. PaPE-1 binds to ERα and ERβ 50,000 times less

effectively than E2, while still retaining essential chemical

features. PaPE-1 rapidly stimulates kinase phosphorylation in

MCF-7 cells without directly activating genomic target genes.

Additionally, PaPE-1 accelerated re-endothelialization of murine

carotid arteries after electric injury (142).

In contrast to E2, neither PaPE-1 nor EDC prevents plaque

formation in Ldlr−/− female mice fed a hypercholesterolemic diet

(98). This result confirms the pivotal role of ER nuclear signaling

in the atheroprotective effect of E2, as demonstrated by ERαAF20

mice (98).
6. Function of G-protein-coupled
estrogen receptor (GPER)

GPER, called as GPR30 previously, constitutes a significant

part of non-nuclear signaling of estrogen. GPER is a seven

transmembrane G protein-coupled receptor (GPCR) of estrogen,

identified in 1997 (143). GPER induces rapid activation of

protein kinase A (PKA) as well as multiple signaling pathways

that are also downstream of ERα (144–150).

Interestingly, GPER is not localized only at plasma membrane

but also in intracellular compartments including endoplasmic

reticulum and Golgi apparatus (151–99). The cellular distribution

of GPER varies depending on the types of tissue and cells

(151–154), and dynamically changes through intracellular

trafficking (155, 156).

GPER mediates multiple physiological effects of estrogen on

various organs, including the cardiovascular system. In contrast,

it has been reported that GPER is dispensable for estrogenic

effects in the reproductive system (94). Here, we outline the role

of GPER in the cardiovascular system. For the detailed function

and regulation of GPER, please refer to excellent comprehensive

reviews elsewhere (157–159).
6.1. Vascular phenotype

G-1, a selective agonist of GPER (160), induces acute eNOS

activation in rat aorta and cultured aortic endothelial cells (161).

G-1 also activates protein kinase A in vascular smooth muscle

cells, phosphorylating myosin light chain kinase (MLCK), while

increasing intracellular calcium concentration, resulting in the
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relaxation of smooth muscle cells and thus vasodilatation

(162–164). GPER-deletion in mice abrogates vasodilatory

response to G-1 (105) and results in greater arterial constriction

after vasoconstrictor exposure (165, 166) and development of

high blood pressure with age (106).

GPER also mediates vasculo-protective effects of estrogen

against atherosclerosis. In ovary-intact female mice fed on

atherogenic diet, GPER deletion reduces vascular NO

bioavailability and aggravates aortic inflammation and

atherosclerosis (99), which contrasts with the dispensable role of

ERα non-nuclear signaling in atherosclerosis (87, 98). G-1

induces differentiation of smooth muscle cell and suppresses

proliferation (167), which could lead to the amelioration of

atherosclerosis given the major pathogenic role of

dedifferentiated smooth muscle cells (168).
6.2. Cardiac phenotype

GPER stimulation also confers cardiac protection in a PI3K-

dependent mechanism. The pretreatment with G-1 attenuates

contractile dysfunction and reduces infract size following

ischemia/reperfusion injury (169), which is also accompanied by

the suppression of proinflammatory cytokines in myocardium

(170) and the inhibition of calcium-induced mitochondria

permeability transition pore opening (171). Consistently, GPER-

deficient male mice lose the protective effect of E2 against

ischemia/reperfusion injury (100).

G-1 inhibits angiotensin II-induced cardiomyocyte

hypertrophy (172). Studies using genetic models support the role

of GPER in the heart. Over-expression of GPER using adeno-

associated virus with G-1 stimulation ameliorates cardiac

remodeling from chronic pressure-overload (173). Consistently,

cardiomyocyte-specific GPER knockout induces cardiac

dysfunction with increased cardiac oxidative stress and collagen

deposition in female mice (101, 102).
6.3. Metabolic phenotype

GPER-deficient female mice lack estrogenic response to insulin,

exhibiting hyperglycemia and glucose intolerance (106). Another

line of GPER-null animals shows obese phenotype with visceral

fat accumulation (105).
7. Conclusion

The series of studies focusing on non-nuclear signaling brought

a new perspective on intracellular signaling and expanded our

understanding of estrogen function. Further research advance

would lead to a therapeutic approach that effectively distinguish

cardiovascular protective effects from unfavorable ones such as

cancer-progression and thrombosis.
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