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Introduction: Urinary incontinence (UI) is a common side effect of prostate cancer

treatment, but in clinical practice, it is difficult to predict. Machine learning (ML)

models have shown promising results in predicting outcomes, yet the lack of

transparency in complex models known as “black-box” has made clinicians wary of

relying on them in sensitive decisions. Therefore, finding a balance between

accuracy and explainability is crucial for the implementation of ML models. The

aim of this study was to employ three different ML classifiers to predict the

probability of experiencing UI in men with localized prostate cancer 1-year and

2-year after treatment and compare their accuracy and explainability.

Methods: We used the ProZIB dataset from the Netherlands Comprehensive

Cancer Organization (Integraal Kankercentrum Nederland; IKNL) which

contained clinical, demographic, and PROM data of 964 patients from 65

Dutch hospitals. Logistic Regression (LR), Random Forest (RF), and Support

Vector Machine (SVM) algorithms were applied to predict (in)continence after

prostate cancer treatment.

Results: All models have been externally validated according to the TRIPOD Type

3 guidelines and their performance was assessed by accuracy, sensitivity,

specificity, and AUC. While all three models demonstrated similar

performance, LR showed slightly better accuracy than RF and SVM in

predicting the risk of UI one year after prostate cancer treatment, achieving an

accuracy of 0.75, a sensitivity of 0.82, and an AUC of 0.79. All models for the 2-

year outcome performed poorly in the validation set, with an accuracy of 0.6 for

LR, 0.65 for RF, and 0.54 for SVM.
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Conclusion: Theoutcomesofourstudydemonstratethepromiseofusingnon-black

boxmodels, suchasLR, toassistclinicians inrecognizinghigh-riskpatientsandmaking

informedtreatmentchoices.Thecoefficientsof theLRmodelshowthe importanceof

eachfeatureinpredictingresults,andthegeneratednomogramprovidesanaccessible

illustration of how each feature impacts the predicted outcome. Additionally, the

model’s simplicity and interpretability make it a more appropriate option in scenarios

where comprehending themodel’s predictions is essential.
KEYWORDS

prostate cancer, personalized medicine, machine learning (ML), PROMs = patient-
reported outcome measures, urinary in continence, prediction modeling, shared
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Introduction

Oncology is transitioning to more personalized and patient-

centered care through interventions like data-driven prediction

modeling and shared decision-making (SDM) (1). Of particular

interest are patients for whom the possible treatment options are

not superior to each other, and thus consideration of patients’

preferences and values plays an important role (2). This is the case

for many patients with localized prostate cancer. Prostate cancer is

one of the most common cancers among men with an incidence of

1,414,000 worldwide and 14,580 in the Netherlands in 2020 (3).

Quality of life (QoL) of patients with prostate cancer can be adversely

affected in a number of ways, such as through sexual, urinary, and

bowel problems in the shorter or longer term (4). As a result, patients

newly diagnosed with localized prostate cancer and their doctors face

the challenge of choosing the appropriate treatment option from the

main options including radical prostatectomy (RP), brachytherapy

(BT), external beam radiotherapy (EBRT), and active surveillance

(AS) (5). Though their choice will not negatively affect their survival

(6), it is still a challenging decision due to the trade-off between harms

and benefits associated with their decision i.e. risk of side effects such

as urinary incontinence (UI) (7).

To reduce uncertainty around treatment decision-making,

providing data-driven insights into outcomes such as UI is crucial.

Therefore, machine learning (ML) algorithms can be applied to datasets

to predict an individual’s risk, ultimately assisting patients and

clinicians in treatment decision-making (8). In healthcare, logistic

regression is referred to as an explainable model because of its

formulaic nature (9). However, some research questions require more

complex algorithms to achieve desired accuracy levels, but may suffer

from a lack of transparency, and therefore a lack of clinical adoption

(10). Maintaining a balance between accuracy and explainability in

machine learning models is crucial, but previous studies have

hypothesized that higher accuracy may lead to a reduced level of

explainability, which is referred to as black-box algorithms (11). Few

studies used ML methods to predict the development of UI after

treatment, which makes it difficult to conclude whether there is an

association between the accuracy and explainability of models on the

outcome. For example, Park et al. (12) compared a series of models and
02
found that the black box models were superior compared to the logistic

regression model. The primary objective of the current study was to

develop models to predict the risk of developing UI 1-year and 2-years

post-diagnosis in men with localized prostate cancer and identify the

important predictors. The secondary aim of our study was to evaluate

the potential of three different ML algorithms for predicting UI risk in

this patient population. Comparing performance of these models

provides insights into the potential benefits of using simpler models

in scenarios like predicting UI risk, where transparency and

interpretability are important, and where error is costly.
Methods

Study population

In this study we used a subset of the Prostaatkanker Zorg in

Beeld (ProZIB) dataset. The ProZIB data collection was embedded

in the framework of the Netherlands Cancer Registry held by the

Netherlands Comprehensive Cancer Organisation (IKNL). All

clinical data was retrieved by well-trained data managers of

IKNL. PROMs data were collected by several questionnaires,

including the EPIC-26 questionnaire (13).

The subset of ProZIB used for the current study included 964

patients with T1-T3a prostate cancer diagnosed and treated in one

or more of 65 Dutch hospitals with data available on a wide range of

demographic, clinical, and PROMs variables at diagnosis and 1 year

and 2 years after diagnosis. The details of this ProZIB subset and the

population’s characteristics were previously described (14).
Data cleaning and analysis

Data cleaning was performed similarly to our previous study that

examined erectile dysfunction (15). Briefly, the outcome was based on

a dichotomous transformation of the answers to question 1 in the

EPIC-26 questionnaire (13). In this question patients were asked to

respond to the following: “Over the past 4 weeks, how often have you

leaked urine?” On a scale of 1 to 5, patients assessed their condition.
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While 5 represented “rarely or never” experiencing UI

problems, 1 to 4 indicated the presence of UI problems ranging

from severe to mild. In this binary transformation patients who

answered 5 (rarely or never) were grouped in one group and other

answers (1-4 were) in the other group.

To predict patient outcomes, clinical factors and baseline

PROMs were analyzed alongside the chosen treatment category

for each patient. Missing data were dealt with by excluding variables

with high rates of missing data and by removing patients with

excessive missing values (i.e., above the 95th percentile). The 2-year

time point contained a greater number of missing values due to loss

of follow-up, so one dataset for each outcome time point was

created: a 1-year dataset and a 2-year dataset. Datasets for the

first and second years contained 848 and 670 patients, respectively.

A detailed explanation of the pre-processing steps can be found in

Hasannejadasl et al. (15). To perform TRIPOD (Transparent

reporting of a multivariable prediction model for individual

prognosis or diagnosis) Type 3 validation, it is necessary to

externally validate data from a different location or time. For the

purpose of external validation in this study, we divided the data by

hospital, so that the dataset from each hospital was either used to

train or validate (614 train data for 1-year and 479 for 2-year).

Our preliminary findings revealed that our dataset exhibited class

imbalance following the data preprocessing procedures outlined in (15).

To address this issue, we performed upsampling of the minority class to

resolve the imbalance in the number of samples between the two classes

using Synthetic Minority Oversampling Technique (SMOTE) (16).

SMOTE is an upsampling method that mathematically generates

synthetic data samples based on the data distribution of the real data.

The SMOTE algorithm generated 214 and 175 synthetic data training

samples for the 1-year and 2-year respectively, resulting in a total of 828

and 654 samples for each dataset respectively.
Machine learning

We used three ML algorithms - Logistic Regression (LR), Random

Forest (RF), and Support Vector Machines (SVM) - for both time points.

We conducted recursive feature selection on all 36 variables, and then

evaluated each feature’s relationship with the outcome to choose themost

pertinent features. For LR and SVM models, we applied bootstrapping

using the “glmnet” (17) and “caret” (18) packages, respectively, while for

RF models, we utilized cross-validation in R version 3.6.3.

After developing the prediction models, we generated Receiver

Operating Curves (ROCs) using the “pROC” package (19) in R and

calculated the sensitivity, specificity, and overall accuracy. We used

the variance inflation factor (VIF) to assess the degree of

multicollinearity among the predictors in the LR model (20). To

assess the agreement between predicted probabilities and observed

frequencies in the test set, calibration plots were employed using the

tidyverse package (21) in R. We utilized the coefficients from LR

models to demonstrate the significance of each predictor, and

performed feature importance analysis on the predictors of RF

and SVM models using the Permutation Importance principle.

Finally, to provide a visual representation of the 1-year LR model,

we created a nomogram using the “rms” package in R (22).
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Results

Population characteristics

The characteristics of the patient population in our cohort

were described previously (15). Briefly, N0 stage was registered in

57.9% of patients; the remainder was defined as NX (lymph nodes

were not investigated for the presence of cancer cells). The

median age of participants was 68 years, while the majority of

them (73%) were in the 60-75 age group. 41.3% of patients in the

1-year dataset and 40.3% of patients in the 2-year dataset received

no active therapy, and the number of patients who underwent

EBRT was relatively small (6.1% and 6.3% for the two time points

respectively). The variables used as input for the prediction

models for both years are shown in details in Supplementary

Table 1. The degree of multicollinearity among the predictors was

evaluated using the VIF, which revealed that all predictor values

were re lat ive ly low. As a resul t , we concluded that

multicollinearity did not pose a significant problem in our

analysis (see Supplementary Table 2 in the Supplementary

Material for details).

In addition, the distribution of the UI outcome revealed that

83% of patients rarely or never experienced UI at diagnosis and only

3% reported the most severe type, which is reported in the EPIC-26

questionnaire as “More than once a day”. However, as

demonstrated in Figure 1, the severe type of UI was more

frequent after treatment. The proportion of patients without UI

decreased to 65% one year after diagnosis and to 63% after two

years. This distribution of the UI outcome is imbalanced, with a

larger proportion of patients having a negative outcome (no UI) and

a smaller proportion having a positive outcome (UI).The

association between a treatment and a UI outcome at each time

point is provided in Supplementary Table 3.

In addition, univariate analysis found that the treatment choice

is significantly associated (P<0.001) with UI. The majority of

patients opting for active surveillance rarely or never experienced

UI (79% and 74%), while those undergoing RP were more likely to

experience UI (62% and 58%).
Training and validation of models

Figure 2 summarizes the performance of the models in

predicting risk of UI on an test dataset. The LR model performed

better in external validation than other models with an accuracy of

0.75, a sensitivity of 0.82, and an AUC of 0.79 (95% CI) for the first-

year outcome. RF achieved the best performance with an accuracy

of 0.65, an AUC of 0.67, and a sensitivity of 0.74 for the 2-year

outcome. The accuracy of 2-year models varies from 0.65 for RF, 0.6

for LR to 0.54 for SVM, the ROC curves (Figure 3) indicate that the

accuracy of different algorithms was approximately similar. SVM

performed the best as reflected by its specificity (0.42 for LR vs. 0.5

for RF and 0.66 for SVM). Positive predictive value (PPV) and

negative predictive value (NPV) of all models are presented in

Supplementary Table 4. In addition we performed calibration of
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the original models for the 1-year and 2-year models

(Supplementary Figure 1).
Model explainability

In our study, we compared the interpretability of LR, RF, and

SVM models with interaction terms. The LR models provided us
Frontiers in Oncology 04
with coefficients that indicate the relative importance of each feature

in making predictions, making themmore interpretable than the RF

and SVM models which do not provide coefficients that are easy to

interpret (Supplementary Table 5). Additionally, we generated a

nomogram from the LR model which graphically represents how

the model makes predictions. The nomogram allows us to easily

visualize the impact of each feature on the predicted outcome.

Nomogram was constructed to estimate the likelihood of
FIGURE 1

Distribution of the UI answers given by patients at diagnosis, 1-year and 2-year. The numbers displayed inside each bar are the percentages of the
total number of patients for each individual time point. Green, yellow, and red bars represent patients with the least, moderate, and most severe
forms of UI problems, respectively.
A B

FIGURE 2

A comparison between observed and predicted UI derived from three ML algorithms in external validation. (A) first year, (B) second year.
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A B

FIGURE 3

Receiver operating characteristic curves (ROC) of the models predicting UI at (A) first year, (B) second year.
A B

FIGURE 4

An overview of the most important variables selected by different algorithms, as well as their influence levels. Each color represents predictors of a
particular algorithm, i.e. dark blue for LR, green for RF, and purple for SVM for (A) 1-year; (B) 2-year follow-up. Treatment. IFBM, Increased frequency
of bowel movement; PSA, prostate-specific antigen; sCT, Tumor T stage; sCN, Tumor N stage; CVD, cardiovascular disease; UBM, urgency of have
bowel movement; UF, urinate frequently.
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developing UI based on the LR model for a one-year follow-up

(Supplementary Figure 2).
Important predictors

Feature selection was performed prior to training with selected

algorithms and nine variables were identified as important

predictors of experiencing UI after treatment for each model

except for the RF first-year model. Although the RF and SVM

models are not inherently interpretable, feature importance metric

can be used to gain some understanding of how the model makes

predictions. Based on the influence of each feature across the six

models, we can see the extent of influence each feature has on the

models (Figure 4). Treatment group had the most impact on SVM

and RF models and the second most for the LR at 1-year outcome.

Figure 4 shows the extent of influence each feature has on

the models.

As demonstrated in Figure 5 most of the variables selected as

predictors by LR, RF, and SVM are different from each other. Four

baseline variables were found by all three algorithms for the 1-year

follow-up: leaking urine (EPIC-26 question 4), urinary control

(EPIC-26 question 2), treatment group (RB, EBRT, BT or AS),

and urine loss (EPIC-26 question 1). For both time points, RF

and SVM models had more predictors in common. Furthermore,

the majority of predictors selected by algorithms were from

PROMs, indicating the importance of pre-treatment conditions

rather than clinical parameters in predicting treatment outcomes

(Supplementary Table 2).
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Discussion

This study aimed to predict UI post-treatment in patients with

localized prostate cancer using clinical, demographic, and

pretreatment features. To this end, we developed and validated

six different ML models according to TRIPOD type 3, to predict UI

at 1-year and 2-year follow-up for men with localized prostate

cancer. The external validation results indicated that the LR model

performed best with an accuracy of 75%, a sensitivity of 82% and an

AUC (CI:95%) of 79% in identifying patients at risk of developing

UI 12 months after treatment. However, in terms of specificity SVM

showed the best performance (76%). The performance of the RF

model was lower compared to LR and only in terms of sensitivity

was higher than SVM (75% vs. 70%). In contrast, none of the

algorithms was successful in externally validating the 2-year

outcome. The accuracy varied from 0.65 for RF, 0.6 for LR to

0.54 for SVM, and LR had the lowest specificity (0.42).

A few studies have investigated the possibility of predicting

pre-treatment decisions related to UI. In the study conducted by

Park et al., recovery from UI three months post-surgery was

examined on retrospective data using five algorithms including k-

nearest neighbor, decision tree, SVM, RF and LR. They used

clinical, demographic and imaging data of 166 patients and the

SVM algorithm yielded the best performance with an AUC of

0.65 (12). In comparison with our study, their sample size was

smaller and they were, therefore, unable to perform an external

validation according to TRIPOD type 3. While imaging data

played a major role in their research, we focused on evaluating

patients’ quality of life before and after treatment using PROMs
FIGURE 5

Venn diagram that illustrates overlap of predictors between generated models. Each circle represents the predictors of a specific model. Those
predictors that are common between all three models are placed in the center overlap area. IFBM, Increased frequency of bowel movement; PSA,
prostate-specific antigen; sCT, Tumor T stage; sCN, Tumor N stage; CVD, cardiovascular disease; UBM, urgency of have bowel movement; UF,
urinate frequently.
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data. As a result, there was no overlap among predictors. In

another study, Laviana et al. developed a tool that predicted QoL

outcomes six months to five years after treatments using

demographics, PROMs, and clinical data of 2563 men with

localized prostate cancer who received AS, EBRT, or RP. Their

model achieved bias-corrected R-squared values of 0.232 for UI

and found age, treatment, and baseline scores as the most

important predictors. Compared to our dataset, their study

included more patients for longer periods of time. However,

their model was only internally validated (23). In the study

conducted by Pinkhasov et al., the probability of experiencing

UI was evaluated after the robot-assisted radical prostatectomy.

Their dataset includes clinical and demographic data of 680 men

and their LR model achieved AUCs between 0.64 and 0.80 across

24 months. No overlap in predictors was found and the study

lacked external validation (24).

The predictors found in our study are clinically relevant, such as

pretreatment (in)continence status, the type of treatment, and

hormone therapy as an adjuvant treatment. For example, we found

that men who undergo prostatectomy have a higher risk of

experiencing UI compared to those patients who choose other

options (25, 26). In addition, UI before the start of treatment was

also selected as a predictor in our models in concordance with

existing literature (27). Furthermore, hormone therapy (28) and the

presence of diabetes and cardiovascular disease were also selected by

the models in concordance with existing literature (29). Despite the

role of obesity in the development of UI in prostate cancer patients,

we were unable to explore whether this was the case in our study. This

was due to the high proportion of missing values; we did not have

sufficient data to explore BMI as a predictor. However, we were able

to include diabetes as a comorbidity, which is known to be correlated

with the incidence of obesity (30–32). While age was statistically

significant in the 1-year model (p=3e-4), it was not indicated as a

predictor for UI in our study. This was most likely due to the fact that

the 60-75 age group dominated the dataset (n=618, 73%).

The importance of predictors in developing accurate predictive

models for urinary incontinence cannot be overstated. Our study

compared LR, RF, and SVM models and found that RF and SVM

models showed more overlap in their performance than LR. While

the accuracy of the three models was similar, interpretability is a

crucial factor in clinical implementation (33). These three models

have varying levels of explainability as simpler models like LR are

often easier to interpret than more complex models like R (34) F. This

makes LR advantageous in some applications such as healthcare

where understanding how the model makes predictions is a priority

(10). The coefficients provided by the LR model indicate the relative

importance of each feature in making predictions, and the nomogram

generated from the LR model allows for easy visualization of the

impact of each feature on the predicted outcome. This interpretability

can be particularly valuable in guiding treatment decisions, such as

when considering alternative treatment modalities like radiotherapy

(external/brachy), where surgery carries a higher risk of side effects

On the other hand, RF and SVM models do not provide a

straightforward way to visualize how the features impact the

predicted outcome, which makes them less interpretable. Improving

model interpretability was not the primary objective of our study;
Frontiers in Oncology 07
therefore we did not explore methods such as partial dependence

plots or surrogate models to enhance interpretability (35).

Our study had some limitations. First, Our study was limited by

the dataset size, which may have affected the comparison of ML

algorithms, particularly RF and SVM, as they may require a larger

number of samples to generate reliable predictions. Larger and

more diverse datasets are needed to validate our results and provide

more conclusive evidence. Secondly, while the second-year model

achieved good accuracy in training, it had lower performance in the

validation set. The lower number of data available for the 2-year

models compared to the 1-year models, coupled with the longer

time interval between predictors and outcomes, heightens the

probability of intervening factors influencing the outcome beyond

the baseline that were not assessed. For instance, certain patients

who were at high risk of urinary incontinence might have received

treatment for their condition, leading to potential bias in our data.

This lack of accurate independent validation is a clear indicator that

this model is not ready yet for clinical use. We suggest further

investigations with a larger sample size and improved data quality

control measures, such as reducing missing data or incorporating

external data sources to mitigate potential bias. In addition,

although UI is a less common side effect of radiation therapy

(RT), it’s important to note that a significant proportion of

patients with localized prostate cancer in our dataset underwent

RP or AS, which may have resulted in less accurate predictions for

the RT and BT treatment groups. Therefore, we suggest that others

validate our model using their own RT or BT data to confirm its

accuracy in these groups. Another limitation arose from the fact

that the dataset was imbalanced toward the outcome. To solve this

we trained data by performing upsampling. Finally, the current

model was developed and validated using data from the Dutch

population, so our results may not be generalizable to other

populations outside the Netherlands.
Conclusion

Our study aimed to develop prediction models for UI in men

with localized prostate cancer using three different classifiers. The

results showed that the LR algorithm outperformed the RF and

SVM classifiers in predicting UI for a 1-year follow-up in an

external dataset. These findings suggest that transparent and

interpretable models can provide high performance to both

patients and clinicians while meeting the transparency

requirements for AI adoption. Consequently, we integrated the

LR-based 1-year model into a prototype patient decision aid (PDA)

to support SDM.
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