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The recent advent and widespread application of CRISPR-based genome editing
tools have revolutionized biomedical research and beyond. Taking advantage of
high perturbation efficiency and scalability, CRISPR screening has been regarded
as one of the most powerful technologies in functional genomics which allows
investigation of different genetic subjects at a large scale in parallel. Significant
progress has beenmade using various CRISPR screening tools especially in cancer
research, however, fewer attempts and less success are reported in other
contexts. In this mini-review, we discuss how CRISPR screening has been
implemented in studies on cardiovascular research and related metabolic
disorders, highlight the scientific progress utilizing CRISPR screening, and
further envision how to fully unleash the power of this technique to expedite
scientific discoveries in these fields.
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1 Introduction

Cardiovascular diseases and related metabolic disorders have been major threats for
human health in modern societies (Zhao et al., 2015; Zhao et al., 2019). To develop effective
therapeutics in a rational and efficient way, significant efforts are devoted to decoding the
genetic basis and molecular mechanisms behind these pathological processes. Traditional
genetic perturbation tools such as gene targeting by homologous recombination,
overexpression of complementary DNA (cDNA) and RNA interference (RNAi) are
widely employed to investigate gene functions. Particularly, high-throughput genetic
screening using RNAi technology in either individually array-based or pooled format
has led to expedited discovery of functional genes in cardiovascular research such as
cholesterol transport, vascular physiology and heart development (Bartz et al., 2009;
Neely et al., 2010; Chu et al., 2015; Kraehling et al., 2016; Xu et al., 2018). However, the
efficiency and applicability of RNAi are not always satisfactory especially for those hard-to-
transfect primary cells and advanced animal models in cardiovascular research. Such
limitation has been largely resolved as the introduction and application of clustered
regularly interspaced short palindromic repeats (CRISPR)-based genome editing tools
(Wang and Doudna, 2023). The simplicity, high efficiency, and scalability of CRISPR
techniques have revolutionized many areas of biomedical research including cardiovascular
field (Strong and Musunuru, 2017; Musunuru, 2022; Nishiga et al., 2022). This mini-review
aims to summarize how CRISPR screening is applied in cardiovascular research and outlook
its future directions.
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2 CRISPR technology and high-
throughput screening

The natural CRISPR-Cas systems are present in most bacteria and
provide acquired immunity against invaded viruses or pathogens.
Leveraging its capability to destroy or interfere with genetic materials,
scientists have adapted CRISPR-Cas systems into powerful genome
editing tools (Wang&Doudna, 2023). The typical CRISPR-Cas9 system
comprises two basic components: a DNA-cutting nuclease protein
Cas9 and a single stretch of RNA molecule called single guide RNA
(sgRNA). The sgRNA is a concatemer of a 17–20 nucleotide target
DNA-matching CRISPR RNA (crRNA) and a trans-activating CRISPR
RNA (tracrRNA) which provides binding scaffold for Cas nuclease.
Once the sgRNA locates its targeted DNA sequence, the associated
Cas9 nuclease produces a double-stranded DNA break (DSB) at specific
position adjacent to protospacer adjacent motif (PAM). Non-
homologous end-joining (NHEJ)-mediated DNA repair may generate
indels at targeted loci which will likely disrupt normal protein coding if
the indels are within the open reading frame. Such CRISPR-mediated
gene knockout is highly efficient as a loss-of-function method for a
protein-coding gene. When provided with a DNA repair template
containing an intended editing sequence, precise genome editing can
be achieved via the homology-directed repair (HDR) mechanism (Hsu
et al., 2014). In addition to Cas9, other CRISPR effectors have been
continuously discovered and repurposed as DNA or RNA editing tools
such as Cas12a and Cas13 (Zetsche et al., 2015; Abudayyeh et al., 2017).
Another important category of CRISPR-based genome editing tool is
base editor which usually employs a Cas9 nickase (nCas9) fused to a
nucleobase deamination enzyme and allows precise single nucleotide
correction without inducing DSB and requirement of a repair template
(Rees & Liu, 2018). Such precision editing is advantageous in correcting
pathologic single-nucleotide variant (SNV) and holds great potential for
treating human genetic disorders in clinics. Recently, another CRISPR-

based precision editing tool called prime editor has also been developed
which is composed of a nCas9 fusion with a reverse transcriptase (RT)
and a prime editing gRNA (pegRNA) simultaneously specifying target
site and template with the desired edit (Anzalone et al., 2019). Although
prime editing enables virtually any base substitution and small insertion/
deletion without introducing DSB, further optimization is essentially
required to increase its editing efficiency and lower the unwanted edits.
In addition to genome editing, the CRISPR-Cas systems are also adapted
to control gene expression with tools such as CRISPR interference
(CRISPRi) and CRISPR activation (CRISPRa) or to monitor specific
molecules by imaging techniques (Dominguez et al., 2016) (Figure 1A).

The engagement of above CRISPR-based tools significantly boosts the
capacity of genetic perturbations, especially when combining with high
throughput screening platforms (Bock et al., 2022). The ease of
synthesizing and cloning massive sgRNA oligos enables researchers to
performCRISPR-based genetic screens in either arrayed or pooled format
on targeted cells or model systems. For a typical pooled CRISPR screen,
designed sgRNA oligos are firstly synthesized in a chip and then
collectively cloned into a lentiviral expressing vector to construct a
plasmid library. These sgRNA-expressing cassettes are introduced into
targeted cells via lentiviral infection. The samples are collected before and
after the infliction of selection pressure associated with the process of
interest by either direct collection of viable cells or flow cytometry-based
sorting of specific cells. The genomic DNA is then extracted to amplify
integrated sgRNA element followed by quantification with high
throughput sequencing. The identity of targeted genetic subject
producing significant perturbation effect can be retrieved by the
statistic changes of corresponding sgRNA abundance (Figure 1B). Such
CRISPR screens have been widely applied in diverse scenarios especially
cancer research and exhibit magnificent power to pinpoint key genetic
players or dissect genetic interactions for investigated processes (Bock et al.,
2022). The implementation of CRISPR screens in cardiovascular research
is just beginning and has already led to several important findings.

FIGURE 1
Overview of CRISPR technology. (A) Major modules of CRISPR toolbox. (B) Workflow of typical CRISPR screening experiments.
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3 CRISPR screening in cardiovascular
research

3.1 Cholesterol metabolism and
atherosclerosis

Hypercholesterolemia is a major risk factor for atherosclerotic
cardiovascular diseases and fine-tuning of cholesterol level in the
blood represents one of the mainstream preventive and therapeutic
interventions. Unraveling the molecular mechanisms behind
cholesterol homeostasis has been the central question in this
field. To systematically investigate the key gene regulators that
control cellular uptake of circulating low-density lipoprotein
(LDL) cholesterol, Emmer et al. performed a genome-wide
CRISPR knockout screen in human liver-derived cell line Huh7
(Emmer et al., 2021). Fluorescently labeled LDL was used to
represent LDL cholesterol and gene-edited cells with significantly
high or low fluorescent LDL uptake were sorted by flow cytometry.
In addition to known regulators such as LDLR, SCAP andMBTPS1,
they identified tens of genes that can either enhance or decrease LDL
uptake. By performing CRISPR screen in LDLR-depleted cells using
a focused library, they further pinpointed several genes with LDLR-
independent roles during LDL uptake. Furthermore, they also found
tens of genes that regulate total or cell surface level of LDLR by
sorting LDLR-stained cells in a focused CRISPR screen (Emmer
et al., 2021). One of screening hit RAB10, a small GTPase, was later
shown in a follow-up study to promote LDLR recycling from
RAB11-positive endosomes to the plasma, thereby providing a
mechanistic explanation on its role in LDL cholesterol uptake
(Khan et al., 2022). Interestingly, the function of RAB10 on LDL
cholesterol regulation was further confirmed by another recent
study in which several CRISPR screens were conducted with
different focused libraries in human liver HepG2 cells to identify
genes affecting LDL cholesterol uptake. Similar readout and cell
sorting strategy were employed, however, this study mainly focused
on those genes adjacent to variants associated with serum LDL
cholesterol from human Genome-Wide Association Study (GWAS)
data, and CRISPRa screen was also employed as an orthogonal
approach. In this way, they found that 21 genes with human genetic
evidence may regulate LDL cholesterol uptake including RAB10 and
OTX2 (Hamilton et al., 2023). Another group performed similar
CRISPR screen in HepG2 cells at whole genome scale to explore
genes whose loss-of-function compromises LDL cholesterol uptake,
and determined transgelin (encoded by TAGLN) as a novel hit
which acts by disrupting actin-dependent clathrin-mediated
endocytosis of LDL (Lucero et al., 2022). Despite similar readout
and targeted cells, these studies adopted different but orthogonal
gene perturbation approaches (e.g., CRISPR knockout, CRISPRa
and CRISPRi) with varied screening libraries. These efforts are
complementary to each other and collectively provide a wealth of
resources for understanding the molecular basis of cholesterol
transport.

CRISPRi-based genome-scale screen was also implemented to
study gene regulators of cell surface LDLR level in HepG2 cells. Cold
shock domain-containing protein E1 (encoded by CSDE1) was
shown to be an interesting hit with therapeutic potential against
hypercholesterolemia by negatively regulating LDLR mRNA
stability in a post-transcriptional manner (Smith et al., 2022). In

addition to LDLR itself, genome-wide CRISPR knockout screen was
also performed to identify genes that affect PCSK9, a well-known
negative regulator of LDLR and therapeutic target to lower LDL
cholesterol. Using intracellular accumulation of PCSK9 as a readout
in cell sorting-based screening system, an endoplasmic reticulum
(ER) cargo receptor called SURF4 was proved to be essential for
efficient cellular secretion of PCSK9 in HEK293T cells (Emmer et al.,
2018). HMG-CoA reductase (HMGCR), the rate-limiting enzyme of
the cholesterol biosynthesis, also stands central in maintaining
cholesterol homeostasis. CRISPR knockout screen in HeLa cells
engineered to express a sterol-responsive HMGCR-fluorophore
fusion protein led to identification of genes that regulate
HMGCR protein stability. A novel E3 ligase RNF145 was shown
to mediate HMGCR degradation in concert with gp78 and
Hrd1 E3 ligase (Menzies et al., 2018). Furthermore, Xiao et al.
carried out a cell survival-based CRISPR knockout screen to identify
key regulators of cholesterol homeostasis and revealed a previously
uncharacterized protein POST1(encoded by C12ORF49) as an
important factor to control SREBP signaling and S1P maturation
(Xiao et al., 2021).

Cholesterol transport between endosome, lysosome, ER, lipid
droplet and plasma membrane within the cell must undergo delicate
regulation for proper cholesterol and lipid homeostasis. Several
groups have applied CRISPR screen to elucidate regulators
during these processes. Using an engineered SREBP2-dependent
cholesterol reporter line of HeLa cells, hundreds of genes were
catalogued by a genome-wide CRISPR knockout screen for
orchestrating cholesterol transport, and the trimeric Mon1-Ccz1-
C18orf8 guanidine exchange factor for Rab7 was shown to control
NPC1-dependent lysosomal cholesterol export (van den Boomen
et al., 2020). Using a membrane-anchored LDLR level as readout,
another genome-scale CRISPR knockout screen performed in
human fibroblast SV589 cells identified PTDSS1, an enzyme that
synthesizes a phospholipid component of plasma membrane called
phosphatidylserine, as a critical factor for cholesterol trafficking
between lysosome, ER and plasma membrane (Trinh et al., 2020).
PTDSS1 was also independently discovered in another CRISPR
knockout screen aiming to identify endolysosomal cholesterol
regulators and this study further characterized the roles and
mechanisms of ER-localized SNX13 as a negative regulator of
lysosomal cholesterol export (Lu et al., 2022).

3.2 Screening in blood and vascular cells

Many researchers have applied CRISPR screening in immune
cells to investigate questions in tumor immunology (reviewed
elsewhere) (Li & Fei, 2020; Shi et al., 2022), but very few studies
are linked to cardiovascular diseases. Inflammation plays a
prominent role in the development of cardiovascular diseases
such as atherosclerosis which involves inflammation-induced
endothelial dysfunction and interplay between blood vessel cells
and inflammation-related immune cells (e.g., monocytes and
macrophages) (Henein et al., 2022). Using immortalized murine
macrophages and Nlrp3-dependent cell death as a readout, Schmid-
Burgk et al. described a genome-scale CRISPR screen, and
pinpointed NEK7 as a critical player for NLRP3 inflammasome
activation which underlies many metabolic diseases including
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atherosclerosis (Schmid-Burgk et al., 2016). Jimenez-Duran et al.
performed a genome-wide CRISPR knockout screen in human
monocytic cell line THP-1 to identify key genes that regulate
CD14 expression and macrophage differentiation. Using
CD14 expression level as cell sorting criteria, this screen
uncovered several genes to be involved in the above processes
and they validated an inhibitor of screening target MAP2K3 for
effectively preventing inflammatory cytokine production from
activated primary macrophages (Jimenez-Duran et al., 2020).
Another study employed a murine immortalized myeloid
precursor cell line ER-Hoxb8 for a genome-scale CRISPR
knockout screen to explore the regulators for proinflammatory
alarmins S100A8 and S100A9. They found a critical role of
transcription factor C/EBPδ to control S100A8/A9 expression in
murine monocytes (Jauch-Speer et al., 2022). Given the importance
of inflammation in cardiovascular diseases, these efforts are of

particular interests and demonstrate the power of CRISPR screen
to study such complex diseases.

As key components of vascular system, blood endothelial cells
(ECs) and their related processes have been closely associated with
cardiovascular diseases. Using an immortalized microvascular blood
EC line cultured in a 3Dmicrocarrier-based system, He et al. carried
out a kinome-wide CRISPR knockout screen to uncover kinase
regulators that modulate EC response to anti-angiogenic therapy -
bevacizumab, a neutralizing monoclonal antibody against vascular
endothelial growth factor A (VEGFA). This cell viability-based
screen revealed important functions of the bromodomain and
extra-terminal domain (BET) family of proteins BRD2/3/4 in
regulating EC survival and response to VEGFA blockade (He
et al., 2021). Another study applied genome-wide CRISPR
knockout screen in an immortalized mouse aortic endothelial cell
line to investigate the molecular underpinnings of EC cells in

TABLE 1 List of pioneer studies performing CRISPR screen in cardiovascular research.

CRISPR
module

Target cell Screen
mode

Screen aim Reference

knockout Huh7 in vitro cellular uptake of circulating LDL cholesterol Emmer et al. (2021)

knockout/
activation

HepG2 in vitro LDL cholesterol uptake Hamilton et al. (2023)

knockout HepG2 in vitro LDL cholesterol uptake Lucero et al. (2022)

interference HepG2 in vitro cell surface LDLR level Smith et al. (2022)

knockout HEK293T in vitro cellular secretion of PCSK9 Emmer et al. (2018)

knockout HeLa in vitro post-translational regulation of HMGCR Menzies et al. (2018)

knockout HeLa in vitro cellular cholesterol homeostasis Xiao et al. (2021)

knockout HeLa in vitro cholesterol homeostasis and transport van den Boomen et al.
(2020)

knockout SV589 in vitro cholesterol trafficking Trinh et al. (2020)

knockout K562 in vitro level of lysosomal cholesterol or
bis(monoacylglycero)phosphate

Lu et al. (2022)

knockout immortalized murine macrophage in vitro NLRP3 inflammasome activation Schmid-Burgk et al.
(2016)

knockout THP-1 in vitro CD14 expression and macrophage differentiation Jimenez-Duran et al.
(2020)

knockout ER-Hoxb8 in vitro regulators for proinflammatory alarmins
S100A8 and S100A9

Jauch-Speer et al. (2022)

knockout immortalized human microvascular blood
endothelial cell

3D in vitro endothelial cell response to anti-angiogenic
bevacizumab

He et al. (2021)

knockout immortalized mouse aortic endothelial cell in vitro endothelial cell response to laminar shear stress from
the bloodstream

Coon et al. (2022)

knockout mouse cardiac fibroblast in vitro reprogramming efficiency of murine cardiac
fibroblast into cardiac progenitors

Yu et al. (2019)

knockout human embryonic stem cell line ES03 in vitro cardiac progenitor formation Xu et al. (2020)

knockout mouse cardiomyocytes in vivo cardiomyocyte maturation VanDusen et al. (2021)

knockout human iPSC in vitro cardiomyocyte replication and polyploidization Pettinato et al. (2021)

knockout human iPSC in vitro doxorubicin-induced cardiotoxicity Sapp et al. (2021)

knockout zebrafish embryo in vivo cardiac development and function Parvez et al. (2021)
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response to laminar shear stress (LSS) from blood stream. Using
LSS-induced key transcription factor KLF2 as screening readout, this
study revealed a mitochondria-involved MEKK2/3-MEK5-
ERK5 regulatory axis that underlies LSS induction of KLF2
(Coon et al., 2022).

3.3 Heart development and regeneration

A genome-wide CRISPR knockout screen was initially deployed
to identify genetic regulators that determine the reprogramming
efficiency of murine cardiac fibroblast into cardiac progenitors by a
chemically induced approach. Loss of DNA methyltransferase 1-
associated protein 1 (Damp1) was shown to enhance Nkx2-5-
positive cardiac progenitor conversion and affect further
differentiation of these progenitor cells (Yu et al., 2019). Another
study created CRISPR-mediated mutant library for more than
6,000 genes in human embryonic stem cells and allow these cells
to differentiate into MESP1-positive cardiac mesoderm or ISL1-
positive cardiac progenitor cells. A total of 15 candidate genes
including ZIC2 were identified to control these cell fate
transitions (Xu et al., 2020). VanDusen et al. further designed an
in vivo CRISPR knockout screening system in newborn mice to
study cardiomyocyte maturation by adeno-associated virus (AAV)-
mediated introduction of sgRNA library into the myocardium and
flow cytometry-based marker gene selection. Among more than
2,000 tested genes, they discovered several transcriptional regulators
such as RNF20 and RNF40 to be pivotal players during
cardiomyocyte maturation (VanDusen et al., 2021). Pettinato
et al. introduced a CRISPR knockout library into an engineered
human induced pluripotent stem cell (iPSC) line with cyclin B1
(CCNB1) as a reporter to study human cardiomyocyte replication
and polyploidization in iPSC-derived cardiomyocytes. They
uncovered p53 as a driver of cardiomyocyte polyploidization by
inhibition of CCNB1 (Pettinato et al., 2021). Genome-wide CRISPR
knockout screen has also been performed in human iPSCs and their
derived cardiomyocytes to determine gene mediators of drug
cardiotoxicity. Using cell viability as screening readout, Sapp
et al. identified human-specific transporters SLCO1A2 and
SLCO1B3 whose loss-of-function protects against doxorubicin-
induced cardiotoxicity (Sapp et al., 2021). Furthermore, Parvez
et al. developed a droplet microfluidics-based platform to allow
in vivo CRISPR screening in zebrafish at embryo or animal level.
Using this system, they identified several hits out of 188 poorly
characterized genes which are important for cardiac development
and function (Parvez et al., 2021) (Table 1).

4 Discussion

The application of CRISPR technology in cardiovascular
research has greatly facilitated the study of molecular basis,
disease model establishment and even the development of
therapeutic strategies through direct correction of pathological
gene elements. CRISPR screening fully releases the power of
CRISPR toolkits by allowing comprehensive analysis of massively
genetic perturbation at cell, tissue, organ and even the whole animal
levels. The studies we discuss here represent pioneering efforts to

apply CRISPR screen in cardiovascular research, which significantly
accelerate the deciphering of molecular basis underlying cholesterol
homeostasis, vascular physiology, inflammation, heart development
and regeneration. More importantly, some of the gene hits from
these CRISPR screens may serve as actionable targets for developing
drugs or therapeutics against corresponding cardiovascular diseases.
The CRISPR toolkits are still quickly expanding to offer more
powerful and diverse modules for gene manipulation. More
efficient delivery methods of these CRISPR apparatus into hard-
to-transfect models are highly demanded to broaden the application
scope of CRISPR screening in cardiovascular research. The
combinatorial use of CRISPR screening and single cell spatial
omics in future may help to resolve more complexed questions
with advanced in vivo models, which is technically unachievable
previously but particularly important for cardiovascular research.
Given the delicate design of screening readout, appropriate choice of
testing tools and models, it is foreseeable that CRISPR screening will
play more important roles in cardiovascular research.
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