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This study is numerically driven to ascertain the flowof two-dimensional heat transfer
of an incompressible electrically conducting non-Newtonian fluid over a continuous
power-law stretching curved surface. The flow model considers rheological fluid
viscosity using curvilinear (r −, s −) coordinates. The energy equation for the curved
mechanism is examined in two streams: the prescribed surface temperature and the
prescribed heat flux. Surface frictional heating is influenced by thermal radiation and
viscous dissipation. Similarity transformations are executed to reduce partial
differential equations into ordinary differential equations. The Keller–Box shooting
method with the Jacobi iterative techniques is numerically computed for the
degenerated nonlinear system of the boundary value problem. The associated
boundary-layer thickness and flow fields- velocity and temperature are analyzed
against characterizing parameters. Significant results are obtained and discussed with
graphical plots showing that fluid velocity can be controlled by virtue of fluid
parameters and stretching power index. These results are useful in polymer
dynamics involving the melting and manufacturing of stretchable sheets.
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1 Introduction

The heat transfer analysis for non-Newtonian fluid flow driven by a nonlinear boundary
surface has received great attention for decades. Most fluids found in science, engineering, and
manufacturing industry, such as biological fluids, foodstuff, cosmetics and toiletries, particulate
slurries, multi-phase fluid mixtures, synthetic lubricants, paints, and numerous polymeric
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fluids, display characteristics that do not obey classical Newton’s law
of viscosity. In other words, the complex behavior of these fluids is
evidenced by normal stresses, viscosity, and time-dependent elastic
effect, which can be traced to being a non-Newtonian fluid. Without a
unique general model to exhibit all the properties of various non-
Newtonian fluids, many rheology viscous models have been proposed
to capture the dynamic phenomena for the completeness of flow
studies in fluid mechanics. The simplest non-Newtonian fluid model
is documented as Ostwald–de Waele fluid (known as power-law
fluid), which explains the occurrence of a real non-Newtonian fluid. It
classifies non-Newtonian fluids as shear thinning (n < 1) and shear
thickening (n > 1) with the limitation of not being able to predict the
stress relaxation time and elasticity performance of viscoelastic fluids.
The second-, third-, and fourth-grade fluids are subclasses of
differential-type materials that can predict normal stress, shear
thinning, and shear thickening but do not capture time-dependent
relaxation. A linear viscoelastic (Maxwell fluid)model is characterized
by relaxation time and explains the properties of polymeric fluids but
fails in cognizance of the shear thinning and thickening properties of
the fluids. Other non-Newtonian fluids, including Jeffrey fluid,
Williamson fluid, Casson fluid, Reiner–Philipoff fluid, Ellis fluid,
Eyring viscous fluid, Power–Eyring fluid, Prandtl–Erying fluid,
Sisco fluid, Carreau fluid, Nanofluid, and Meter, are characterized
by shearing stress, implicit and explicit expression of strain rate, and
composite function of strain rate [1–8]. The study of non-Newtonian
fluids and heat transfer has numerous applications in engineering
productions and the polymer industry. It enhances the quality of the
finished product through heating and cooling processes. Some recent
studies in this direction include a stagnation stretching sheet for a flow
of Maxwell fluid in the presence of radiative heat flux analyzed by [9].
Jawadi et al. [10] investigated the asymptotic power-law fluid flow
with a numerical technique for the unsteady scenario. The
Rayleigh–Stokes problem with the energy balance of a Maxwell
fluid is studied by [11]. Hayat et al. [12] analyzed the flow of
MHD Cross fluid with heat transfer over a stretching sheet
through numerical computations. Ijaz et al. [13] considered the
numerical simulation of MHD Cross fluid flow over a point-
stagnation stretched sheet with heat transfer. Manzur et al. [14]
examined the flow of Cross fluid influenced by thermal radiation
with mixed convective boundary conditions and buoyancy effects.
Khan et al. [15] presented an axisymmetric flow of Cross fluid over a
radially varying stretching plate in the presence of heat transfer
phenomena. For more studies, readers can visit [16–22]; [23].
Recently, the non-Newtonian viscous model given by Sutterby [24]
has attracted the keen interest of researchers to capture some
limitations witnessed in non-Newtonian fluids. For example, the
power-law (Ostwald–de Waele) model, which cannot describe zero
and high viscous shear rates (i.e., η0 and η∞, respectively), only applies
to the intermediate shear rate. The Ellis model covers the zero shear
rate η0 and cannot account for the infinite shear rate η∞. The
Power–Erying and Seely models need to be amended to fit
viscosity data on the entire range of shear rates. Furthermore, the
Meter and Ellis models may not have reproduced Newtonian fluid in
the limit case without meeting certain conditions. However, the
Sutterby fluid model returns to the Newtonian fluid when m = 0,
reduces to Erying fluid if η∞ = 0, and Erying–Power fluid as η∞ ≠ 0
with significant flexibility of curve fitting parameters. It is noted that
the infinite shear rate is not seen as a limitation due to rare practical

occurrences in an industrial situation. Gangadhar et al. [25]
considered the numerical Keller–Box simulation of thermo-
diffusion effects on the MHD flow of Casson fluid past a non-
flatness stretching surface. The Sutterby fluid flow over a helical
channel is documented by [26]. Hayat et al. [27] examined the
heat transfer of a Sutterby fluid flow using a rotating disc with
chemically reactive species. A numerical solution of the point
stagnation flow of the Sutterby fluid in the presence of the
Cattaneo–Christov heat flux model is discussed by [28]. Other
relevant studies can be found [29–32]. In the last decade, attention
has been given to boundary-driven flow by a curved stretching sheet.
Starting from the fundamental studies in [33], [34], where viscous
fluid over curved stretching sheets is investigated, these studies
showed that the pressure distribution inside the boundary-layer
region could not be neglected compared to the flat sheet. For more
related and recent studies, readers should visit [35–39], Hayat et al.
[40], and [41,42]. In the aforementioned literature, to the best of our
knowledge, no consideration has been given to the heat transfer
analysis of the Sutterby fluid over a curved stretching sheet. The prime
motive of this work is to fill this gap for the completeness of fluid flow
and examine the non-Newtonian fluid using curvilinear geometry.
However, the Sutterby fluid viscosity is a generalized model that yields
shear thinning fluid form < 0, shear thickening fluid form > 0, and a
Newtonian fluid when m = 0. Therefore, the heat transfer of a
magnetohydrodynamic Sutterby fluid past a continuous curved
stretched moving surface is investigated in this study. The features
of the heat flow are parameterized to prescribe surface temperature,
PST, heat flux, and PHF. The flow situations are induced by radiation,
viscous dissipation, and frictional heating from the surface
mechanism. Evidence of the Keller–Box method enhanced with
the Jacobi iterative techniques is numerically implemented. Error
analysis is provided to ascertain the convergence of the scheme (see
Supplementary Appendix SA1). The velocity field results show that
fluid flow can be controlled by virtue of fluid parameters and
stretching power index. These observations have profound
applications for the flow of the polymer solution and polymer
dynamics involving melting and manufacturing of stretchable
mechanisms.

2 Basic model

The fundamental equation of the viscosity model is considered
as follows [24]:

S � η∞ + η0 − η∞( ) sinh−1 αΔ( )
αΔ[ ]m

A1, (1)

where m, α, Δ, η0, η∞, and A1 represent the constant index,
characteristic time, dynamic viscosity, zero and infinite viscous
limit, and first Rivlin–Erickson tensor, respectively. It is worth
stating that practically, η does not approach infinity in the form
(η∞) but at an extremely high shear rate. In neglecting this, Eq. 1
reduces to

S � η0
sinh−1 αΔ( )

αΔ[ ]m

A1, (2)
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such that Δ �
�����������
trace(A1)2/2

√
is the symmetry rate of deformation

taking in curvilinear geometry (r-,s-). Using Navier–Stokes equation
given by

ρ
D�v

Dt
� −�∇P + �∇.S( ) + �F, (3)

where D/Dt defines the time derivative, ρ is the density of the
Sutterby fluid, P represents the pressure, �F gives the body force, and
�∇ � êrzr + λêszs for which êr and ês are orthogonal radial and axial
unit vectors. Using Eqs 2, 3, the steady flow momentum equations
can be expressed as

vzrv + λzsv − λ

R
u2 � −1

ρ
zrP + 2Srr + Ssr( )zr η0

2
sinh−1 αΔ( )

αΔ[ ]m( ),
+ sinh−1 αΔ( )

αΔ[ ]m

zrSrr + λSrr
R

+ λzsSsr − λSss
R

( ),
+ �F

(4)

vzru + λzsu + λ

R
uv � −λ

ρ
zsP + Srs + 2Sss( )λzs η0

2
sinh−1 αΔ( )

αΔ[ ]m( ),
+ sinh−1 αΔ( )

αΔ[ ]m

λzrSrs + λSrs
r + R

+ λ2zsSss + λSsr
r + R

( ),
+ �F

(5)

where η0 is the viscosity of the Sutterby fluid, and stress components
are given as Srr = zrv, Srs � Ssr � zru + λzsv − λ

R u, Sss � λzru + λ
R v,

and λ � R
r+R.

3 Problem description

Consider the steady flow of an electrically conducting
Sutterby fluid past a power-law boundary-driven curved
surface of radius R. The applied magnetic field �B(r) � RB0

r+Rêr
acts upwardly perpendicular to the direction of the fluid flow.
The current density J � σ(V × �B), and neglecting the electric
field effect (E ≈ 0), the Lorentz force �F � J × �B can be
expressed as

�F � −σ RB0

r + R
u, 0, 0( ), (6)

such that σ is the electrical conductivity of the fluid and B0 is the
strength of the applied magnetic field. The velocity vector V = (v, u,
0) gives corresponding velocities v and u in the r − and s − directions.
The physical flow geometry is shown in Figure 1.Eqs 4, 5, 6 and the
continuity equation yield the following:

Rzsu

r + R
+ v

r + R
+ zrv � 0, (7)

vzrv + Rzsv

r + R
− u2

r + R
� −zrP

ρ
,

− N1 4Srrzrrv + 2Srs zrru + Rzrsv

r + R
− Rzsv

r + R( )2( )[ ],
− N1 4Sss

Rzrsu

r + R
− Rzsu

r + R( )2 +
zrv

r + R
− v

r + R( )2( )[ ],
+ N1 2Srs

zru

r + R
− u

r + R( )2( )[ ],
− N2 4

Rzrvzrsv

r + R
+ 2

RSrszs Srs( )
r + R

+ 4
RSsszs Sss( )

r + R
[ ],

+ η0N3

ρ

zr r + R( )Srr[ ]
r + R

+ RzsSrs
r + R

− Sss
r + R

[ ],
(8)

vzru + Rzsu

r + R
+ uv

r + R
� − RzsP

ρ r + R( ),

− N2 4Srrzrrv + 2Srs zrru + Rzrsv

r + R
− Rzsv

r + R( )2( )[ ],
− N2 4Sss

Rzrsu

r + R
− Rzsu

r + R( )2 +
zrv

r + R
− v

r + R( )2( )[ ],
+ N2 2Srs

zru

r + R
− u

r + R( )2( )[ ] − σR2B2
0u

ρ r + R( )2,

− N2 4
Rzrvzrsv

r + R
+ 2

RSrszs Srs( )
r + R

+ 4
RSsszs Srs( )

r + R
[ ],

+ η0N3

ρ

zr r + R( )Ssr[ ]
r + R

+ RzsSss
r + R

+ Ssr
r + R

[ ],
(9)

where N1 � mη0α
2Srr

6ρ , N2 � mη0α
2Srs

6ρ , and N3 � (2S2rr + S2rs + 2S2ss)(1 −
mα2

6 ).
Impose boundary conditions relevant to this problem as

FIGURE 1
Geometry of the physical problem.
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uw|r�0 � bsn, vw|r�0 � 0, (10)
u|r→∞ � 0, zru|r→∞ � 0, (11)

such that b (t−1l1−n) is a constant and uw and vw are velocities at
the surface of the curved sheet. By preserving the flow properties
with appropriate scaling, the non-dimensional variables are
defined as

�u � u

U∞
, �v � vl

U∞δ
, �s � s

l
, �r � r

δ
, �R � R

δ
, �P � P

ρu2
w

, η1 �
η0U∞lmα2

6δ2
.

(12)
After using Eq. 12, Eqs 7–9 reduce to the boundary-layer

equations:
R

r + R
u2 � zrP, (13)

vzru + R

r + R
zsu + uv

r + R
� − R

r + R
zsP,

+ N4 3zrru − zru

r + R
+ u

r + R( )2( ),
+ η0

ρ
zrru + zru

r + R
− u

r + R( )2( ),
− σR2B2

0u

ρ r + R( )2,
(14)

where N4 � η1(zru − u
r+R)2

and the continuity equation is
identically satisfied.

The similarity variables are introduced in the following form:

η � r

δ
, ξ � R

δ
, uw � bsnf′ η( ), P � b2s2P*, (15)

δ � s

�����
]

bs n+1( )

√
, H0 �

�����
σB2

0b
2

η0

√
, Re

1
2
s �

�����
bs n+1( )

]

√
, (16)

v � − bRs
n

r + R

������
]

bs n+1( )

√
n + 1
2

( )df
dη

+ η
n − 1
2

( )df
dη

[ ], (17)

where f(η) represents the stream function, whereas the primes
denote the derivative with respect to η. Using Eqs 15–17 in Eqs
13, 14, one can get the following:

1
η + ξ

df

dη
( )2

� dP* η( )
dη

, (18)
2nξ
η + ξ

P* + ηξ

η + ξ

n − 1
2

( ) dP* η( )
dη

− d3 f

dη3
− 1

η + ξ( ) d2f

dη2
+ 1

η + ξ( )2 df

dη
,

� ξ

η + ξ

n + 1
2

( )fd2f

dη2
− n

df

dη
( )2[ ] − H2

0ξ
2

η + ξ( )2 df

dη
,

− mβ0
d2f

dη2
− 1

η + ξ( ) dfdη( )2

3
df3

dη3
− 1

η + ξ( ) df2

dη2
+ 1

η + ξ( )2 df

dη
( ),

+ ξ

η + ξ( )2 n + 1
2

( )fdf

dη
+ η

n − 1
2

( ) df

dη
( )2[ ],

(19)

such that H0 and β0 � mb4α2

6 represent the Hartmann number and
Sutterby fluid parameter, respectively. Equation 19 in limiting
scenario as ξ → ∞ and P* = 0 yields a generalized Sutterby fluid
model over a flat surface:

mβ0
d2f

dη2
( )2

d3f

dη3
� d3f

dη3
+ n + 1

2
( )fd2f

dη2
− n

df

dη
( )2

−H2
0

df

dη
. (20)

This equation confirms the present physical models. Numerical
solutions have been provided for the Newtonian fluid case, β0 = 0,
and the non-Newtonian case, β0 > 0, over a flat stretching sheet [1,5].

Removing the pressure term, after incorporating Eq. 18, Eq. 19 gives

d4f

dη4
+ 2

η + ξ( ) d3f

dη3
+ 1

η + ξ( )3 dfdη + ξ

η + ξ

n + 1
2

( )fd3f

dη3
− 3n − 1

2
( ) df

dη

d2f

dη2
[ ],

− 1

η + ξ( )2 d2f

dη2
+ ξ

η + ξ( )2 n + 1
2

( )fd2f

dη2
− 3n − 1

2
( ) df

dη
( )2[ ],

− N5 3
d2f

dη2
d4f

dη4
− 3
η + ξ

df

dη

d4f

dη4
− 2
η + ξ

d2f

dη2
d3f

dη3
+ 2

η + ξ( )2 df

dη

d3f

dη3
[ ],

− N5 3
d3f

dη3
( )2

+ 2

η + ξ( )2 d2f

dη2
( )2

+ 3

η + ξ( )4 df

dη
( )2[ ],

+ 4N5

η + ξ( )3 df

dη

d2f

dη2
− ξ

η + ξ( )3 n + 1
2

( )fdf

dη
− H2

0ξ
2

η + ξ( )2 d2f

dη2
− 1
η + ξ

df

dη
( ),

� 0,

(21)
subject to

f η( )|η�0 � 0,
df

dη
|η�0 � 1,

df

dη
|η�∞ � 0,

d2f

dη2
|η�∞ � 0, (22)

where N5 � mβ0(d2f
dη2 − 1

η+ξ
df
dη).

Validating the present model, the second tier over curved
stretching mechanism occurs when β0 = 0, Ho = 0, and n ≥ 1 give

d4f

dη4
+ 2
η + ξ

d3f

dη3
− 1

η + ξ( )2 d2f

dη2
+ 1

η + ξ( )3 dfdη ,
+ ξ

η + ξ

n + 1
2

( )fd3f

dη3
− 3n − 1

2
( )df

dη

d2f

dη2
[ ],

+ ξ

η + ξ( )2 n + 1
2

( )fd2f

dη2
− 3n − 1

2
( ) df

dη
( )2[ ],

� ξ

η + ξ( )3 n + 1
2

( )fdf

dη
.

(23)

It is worth mentioning that numerical solutions and homotopy analysis
solutions have been presented so far in response to Eq. 23, see ref. [33]

4 Heat transfer analysis

Energy equation incorporating radiation, viscous dissipation,
and surface frictional heating can be expressed as

ρCp
DT

Dt
( ) − ∇ K0∇T( ) � η0

sinh−1 αΔ( )
αΔ[ ]m

2S2rr + 2S2rs + 2S2ss( ),
− zrQ0 − σB2

0R
2

r + R( )2u
2,

(24)
such that T = Tw represents the surface temperature; T → T∞, the
ambient temperature; K0, the thermal conductivity of the Sutterby fluid;
Cp, the specific heat of the fluid at constant pressure; andQ0, the heat flux.
The last term in Eq. 24 contributes surface frictional heating effect. Taking
the curvilinear coordinate expansion, this equation can be expressed as

vzrT + Ru

r + R
zsT � K0

ρCp
zrrT + RzrT

r + R
+ R2zssT

r + R( )2( ),
+ η0 S2rr + S2rs + S2ss( )

ρCp
1 − mα2

6
2S2rr + S2rs + 2S2ss( )[ ],

− zrQ0

ρCp
+ σB2

0R
2

ρCp r + R( )2u
2,

(25)
with the condition specify as
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PST: T � Tw|r�0 � 0, T|r→∞ → T∞, (26)
PHF: −K0

zT

zr
|r�0 � B

s

l
( )2

, T|r→∞ → T∞. (27)
Imposing the Rosseland approximation for heat flux,

Q0 � 4σ*
3k*

zT4

zr
, (28)

but the linear radiative flux in Eq. 28 about T∞ gives

zQ0

zr
� − z

zr

4σ*
3k*

zr 4T3
∞T − 3T4

∞[ ]( ). (29)

Using Eq. 29 in Eq. 25, one can get

vzrT + Ru

r + R
zsT � K0

ρCp
1 + 16σ*T2

∞
3k*K0

( )zrrT + K0

ρCp

zrT

r + R
+ R2zssT

r + R( )2( ),
+ η0
ρCp

zru − u

r + R
( )2

1 − mα2

6
zru − u

r + R
( )2[ ],

+ σB2
0R

2

ρCp r + R( )2u
2.

(30)

Define similarity transitions of the form

PST: θ η( ) � T − T∞
Tw − T∞

, (31)

PHF: − K0 T − T∞( ) � D
s

l
( )2

����
]

bsn+1

√
θ η( ). (32)

Applying Eqs 15-17 and Eqs 31, 32 in Eq. 25, one can get

1 + Rd( ) d
2 θ

dη2
+ 1
η + ξ

dθ

dη
+ Prξ
η + ξ

n + 1
2

( )fdθ

dη
+ η

n − 1
2

( ) dθ
dη

df

dη
[ ],

+ Br
d2f

dη2
− 1
η + ξ

df

dη
( )2

1 −mβ0
d2f

dη2
− 1
η + ξ

df

dη
( )2[ ],

� − τξ2

η + ξ( )2 df

dη
( )2

,

(33)
where Pr � η0Cp

K0
is the Prandtl number, Ec � u2w

Cp(Tw−T∞) the Eckert

number, Rd � 16σ*T3
∞

3k*K0
the radiation parameter, τ � σuB2

0U
2∞

nρCp(Tw−T∞) the

frictional heating parameter, and Br = PrEc the Brinkman
number. It should be noted that, for PHF analysis, θ(η)
becomes ϑ(η) in Eq. 33.

The corresponding boundary conditions become

PST: θ 0( )|η�0 � 1, θ ∞( )|η�∞ � 0, (34)
PHF:

dϑ 0( )
dη

|η�0 � −1, ϑ ∞( )|η�∞ � 0. (35)

In view of engineering and industrial interest, the physical
quantities, such as skin friction coefficient Cf, Nusselt number
Nu, and local Nusselt Nu*, are calculated as follows:

Cf � τrs|r�0
1
2 ρu

2
w

,Nu � sQ0

K0 T − Tw( ), Nu* � sQ0

D s
l( )2, (36)

using τrs � η0A1[sinh−1(αΔ)αΔ ]m(zru − u
r+R)|r�0, Q0 = −K0zrT|r=0, and

uw = bsn,and these yield

−R1
2
esCf � d2 f 0( )

dη2
− 1
ξ

( ) 1 − β0
d2f 0( )
dη2

− 1
ξ

( )2[ ], (37)

R−1
2

es Nu � −dθ 0( )
dη

, R−1
2

es Nu* � ϑ 0( ). (38)

Eq. 38 gives the surface rate of the heat transfer for PST and
PHF, respectively.

5 Numerical computations

The numerical technique to solve the higher order nonlinear
coupled differential Eqs 21, 33 subjected to Eqs 22, 34, 35 is
considered in this section. Initialize the boundary value problem
(BVP) into the initial value problem (IVP) using the variables

f,
df

dη
,
d2f

dη2
,
d3f

dη3
, θ,

dθ

dη
, ϑ,

dϑ

dη
( )T

� y, y1, y2, y3, y4, y5( )T. (39)

Linearizing into the system of first-order equations can be
expressed as

y′
y1′
y2′
y3′
y4′
y5′

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

y1

y2

y3

−2λy3 + λ2y2 − λ3y1 − λξ
m + 1
2

( )yy3 − 3m − 1
2

( )y1y2[ ]
+ξλ3 m + 1

2
( )yy2 − λ2ξ

m + 1
2

( )yy2 − 3m − 1
2

( )y2
1[ ]

+mβ y2 − λy1( ) 3y2y3′ + 3λy1y3′ − 2λy2y3 + 2λ2y1y3 + 2λ3y2
3( )

+mβ y2 − λy1( )3λ4y2
2 + 3y2

3 − 4λ3y1y2 −H2
0y

2ξ2 y2 − λy1( )
y5

− 1
1 + Rd

λy6 + λξPr
m + 1
2

( )yy5 + η
m − 1
2

( )y1y5[ ] + τξ2λ2y2
1( )

− Br

1 + Rd
y2 − λy1( )2 1 − β y2 − λy1( )[ ]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(40)
subject to the boundary conditions

y1 0( )
y2 0( )
y3 0( )
y4 0( )
y5 0( )
y6 0( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

0
1
c1
c2
1
c3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (41)

where λ � 1
η+ξ and c1, c2, and c3 are missing initial conditions. It is worth

noting that θ and ϑ are interchanged to obtain the solution of the PHFcase.
Implementing the standard Keller–Box shooting method and

the Jacobi iterative technique [18], let

w′ � w1, w1′ � w2, w2′ � w3, . . . , wn−1′ � H ξ, w1, w2, w3, . . . , wn−1( ),
(42)

wn+1
i − wn

i−1
δh

� w1( )ni−1/2,
w1( )n+1i − w1( )ni−1

δh
� w2( )ni−1/2,

. . . ,

wn−1( )n+1i − wn−1( )ni−1
δh

� H2 ξni−1/2, w
n
i−1/2, w1( )ni−1/2, . . . , wn−1( )ni−1/2( ).

(43)
Equation 43 is explicitly implemented into Eq. 40 subject to

conditions Eq. 41 as follows:

Frontiers in Physics frontiersin.org05

Sanni et al. 10.3389/fphy.2023.1126003

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1126003


FIGURE 2
Effects of ξ on f(η).

FIGURE 3
Effects of Ho on f(η).

FIGURE 4
Effects of β0 on f(η).

FIGURE 5
Effects of m on f(η).

FIGURE 6
Effects of n on f(η).

FIGURE 7
Effects of ξ on f′(η).
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yn+1
i − yn

i−1
δh

+ y1( )ni + y1( )ni−1
2

� 0, (44)

yn+1
0 � 0, (45)

y1( )n+1i − y1( )ni−1
δh

+ y2( )ni + y2( )ni−1
2

� 0, (46)
y1( )n+10 � 1, (47)

y2( )n+1i − y2( )ni−1
δh

+ y3( )ni + y3( )ni−1
2

� 0, (48)
y2( )n+10 � c1, (49)

y3( )n+1i

δh
� y3( )ni−1

δh
− y3( )i + y3( )i−1

η + ξ
− N5 y1( )i + y1( )i−1( ) y2( )i + y2( )i−1( )

η + ξ( )3
− n + 1( ) yi + yi−1( ) y3( )i + y3( )i−1( )ξ

8 η + ξ( ) − y1( )i + y1( )i−1
2 η + ξ( )3

+ 3n − 1( ) y1( )i + y1( )i−1( ) y2( )i + y2( )i−1( )ξ
8 η + ξ( ) + y2( )i + y2( )i−1

2 η + ξ( )2
− n + 1( ) yi + yi−1( ) y2( )i + y2( )i−1( )ξ

8 η + ξ( )2 + 3n − 1( ) y1( )i + y1( )i−1( )2ξ
8 η + ξ( )2

+ n + 1( ) yi + yi−1( ) y1( )i + y1( )i−1( )ξ
8 η + ξ( )3 + H2

0ξ
2 y2( )i + y2( )i−1
2 η + ξ( )2

+ 3N5 y2( )i + y2( )i−1( ) y3( )n+1i − y3( )ni−1( )
4δh

+ 3N5 y3( )i + y3( )i−1( )2
4

− 3N5 y1( )i + y1( )i−1( ) y3( )n+1i − y3( )ni−1( )
4δh η + ξ( ) + N5 y2( )i + y2( )i−1( )2

2 η + ξ( )2
− N5 y2( )i + y2( )i−1( ) y3( )i + y3( )i−1( )

2 η + ξ( ) + 3N5 y1( )i + y1( )i−1( )2
4 η + ξ( )4

+ N5 y1( )i + y1( )i−1( ) y3( )i + y3( )i−1( )
2 η + ξ( )2 − H2

0ξ
2 y1( )i + y1( )i−1
2 η + ξ( )3 ,

(50)
y3( )n+10 � c2, (51)

y4( )n+1i − y4( )ni−1
δh

+ y5( )1( )n
i
+ y5( )1( )n

i−1
2

� 0, (52)
y4( )n+10 � 1, (53)

FIGURE 8
Effects of Ho on f′(η).

FIGURE 11
Effects of n on f′(η).

FIGURE 9
Effects of β0 on f′(η).

FIGURE 10
Effects of m on f′(η).
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FIGURE 12
Effects of Pr on temperature.

FIGURE 13
Effects of Br on temperature.

FIGURE 14
Effects of Ho on temperature.

FIGURE 15
Effects of Rd on temperature.

FIGURE 16
Effects of τ on temperature.

FIGURE 17
Effects of ξ on temperature.
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y5( )n+1i − y5( )ni−1
δh

� − y5( )i + y5( )i−1
2 1 + Rd( ) η + ξ( ) − τξ2 y1( )i + y1( )i−1( )

2 η + ξ( )2
− n + 1( ) yi + yi−1( ) y5( )i + y5( )i−1( )Prξ

8 η + ξ( )
− η n − 1( ) y1( )i + y1( )i−1( ) y5( )i + y5( )i−1( )Prξ

8 η + ξ( )
− BrN2

5

m2β2
+ BrN4

5

m3β3
,

(54)
y5( )n+10 � c3, (55)

where c1, c2, and c3 are initial guesses obtained through MATLAB
fsolve. The accuracy of the initial guesses is checked against endpoint
ηmax. Otherwise, the values are updated, and iterations continue. A
step size, δh = 10–2, is used until the solution is obtained, which

satisfies the endpoint initially at infinity and is subject to the
stopping criterion given as

|‖w n+1( )‖2 − ‖wn‖2|< ϵ, (56)
such that ϵ remains the fixed tolerance value of 10–8 to ascertain the
numerical results. The algorithm is implemented through the
ode45 built-in MATLAB command.

6 Results and graphical analysis

The behaviors of the field quantities, velocity, and temperature
against various flow parameters are presented in this section. Fluid
parameters characterized in this problem include the radius of
curvature, ξ, magnetic parameter, Ho, Sutterby fluid parameters

FIGURE 18
Effects of Ho on P(η).

FIGURE 19
Effects of n on P(η).

FIGURE 20
Effects of β0 on P(η).

FIGURE 21
Effects of ξ on P(η).
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m and β0, and stretching power index n. The behavior of
temperature distribution is examined against Prandtl number Pr,
Brinkman number Br, magnetic parameter Ho, radiation parameter

Rd, and surface frictional heating parameter τ. Flow stream function
is plotted in Figures 2–6 against the radius of curvature, Lorentz
force, Sutterby fluid parameters, and stretching power index,

TABLE 1 Comparison of numerical results ξ → ∞ with published results.

Hammad [9] G and S [12] Khan et al. [29] Ijaz et al. [30] Result

−d2f(0)
dξ2

- - 1.000000 1.000000 1.000001

Pr −dθ(0)
dξ −dθ(0)

dξ −dθ(0)
dξ −dθ(0)

dξ
Result

0.07 0.065600 0.065600 0.035526 0.130816 0.130810

0.2 0.139100 0.139100 0.164037 0.196550 0.196552

0.7 0.453900 0.453900 0.418299 0.454446 0.454448

20 3.353900 3.353900 3.256030 3.359500 3.353902

70 6.462200 6.462200 6.366620 6.462290 6.462293

TABLE 2 Numerical values of the surface rate of heat transfer for various ξ, β0, Ho, Pr, Br, Rd, and τ when m =0.2.

ξ β0 Ho Pr Br Rd τ −d2f(0)
dξ2

PST ( − dθ(0)
dξ ) PHF ( − dϑ(0)

dξ )
5 0.1 - 2.0 0.4 0.9 0.5 1.12841 0.27076 2.28220

- 0.2 - - - - - 1.13894 0.27135 2.28272

- 0.3 - - - - - 1.14994 0.27193 2.28326

- 0.4 - - - - - 1.16146 0.27251 2.28385

- 0.3 0 - - - - 1.03011 0.30275 2.19509

- - 0.3 - - - - 1.07421 0.29209 2.22596

- - 0.5 - - - - 1.14994 0.27193 2.28326

- - 0.7 - - - - 1.25793 0.23908 2.37471

10 - 0.5 1.0 - - - 1.14148 0.11253 3.26471

- - - 1.5 - - - - 0.20778 2.64037

- - - 2.0 - - - - 0.30261 2.21633

- - - 2.5 - - - - 0.39434 1.91669

- - - 2.0 0 - - - 0.39243 2.05967

- - - - 0.5 - - - 0.28016 2.25549

- - - - 1.0 - - - 0.16788 2.45131

- - - - 1.5 - - - 0.05560 2.64713

20 - - - 0.4 0.3 - 1.14257 0.45791 1.72664

- - - - - 0.5 - - 0.39987 1.88689

- - - - - 0.7 - - 0.35346 2.04021

- - - - - 0.9 - - 0.31571 2.18627

- - - - - 0.9 0.1 - 0.46263 1.93157

- - - - - - 0.2 - 0.42590 1.99525

- - - - - - 0.3 - 0.38917 2.05892

- - - - - - 0.4 - 0.35244 2.12260
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respectively. In these graphs, the enhancement of any flow
parameter decreases the flow trajectories. Physically, this can be
seen as a means of controlling the flow field and boundary-layer
region. Figures 7, 8 show that the velocity decreases for increasing ξ
and Ho and consequently reduces the boundary-layer thickness.
Thus, the flow field and flow trajectories can be significantly
controlled via the size of these parameters. The impacts of
Sutterby fluid parameters, β0 and m, on the velocity profile are
shown in Figures 9, 10, respectively. The graphs infer that velocity
profiles decrease for optimizing the fluid parameters. Physically, this
observation shows that increasing fluid parameters enhances the
viscous resistance (shear-thickening) property of the fluid and
invariably controls the flow velocity and associated boundary-
layer thickness.

Figure 11 explains the effect of stretching power n on the
velocity distribution. The graph shows a decrease in velocity for
large n. Thus, it confirms that nonlinear stretching velocity for the
boundary-driven flow could serve as a means of controlling the
flow field. This observation is significant and can play a vital role in
flow past stretchable materials. The effect of thermal kinetics
parameters Pr, Br, Ho, Rn, τ, and ξ on both PST, θ(η), and
PHF, ϑ(η) scenarios are presented in Figures 12–17. Figure 12
shows the impact of the Prandtl number Pr on the temperature
distribution, revealing that the temperature region with the
thermal boundary-layer thickness decay significantly. In other
words, it is caused by the increased thermal conductivity of the
Sutterby fluid. Furthermore, this observation is prominently seen
in PHF, meaning that heat flow can be enhanced by virtue of the
prescribed heat flux than surface temperature. Figure 13 elucidates
the effect of the Brinkman number Br on the temperature
distribution. In this graph, the temperature region is expanded
by increasing Br in the PST and PHF cases. However, it infers that
large Br weakens the fluid’s viscous bond and generates additional
heat from the fluid. Furthermore, it is noted that the heat
occurrence is more intense in the PHF than in the PST region.
An increase in the temperature distribution and the thermal
boundary-layer thickness for higher magnetic number Ho is
witnessed in Figure 14. The reason is that quantum heat is
produced as the flow velocity is disrupted by the opposing large
Lorentz force and then enlarges the temperature region. Figure 15
presents an optimizing effect of increasing the radiation parameter
Rd on the temperature profile. This observation agrees with the
usual and existing fact that radiation serves as an additional source
of heat generation. Thus, the increase is more rapid for the PHF
scenario compared to the PST region. Increasing the surface
frictional heating parameter, τ optimizes the temperature profile
in both heat situations, as shown in Figure 16. This impact is
caused by surface induction and adding more heat from the solid
surface to the fluid. However, a further effect is displayed in the
PHF than in the PST profile. The impact of the dimensionless
radius of curvature on the temperature profile is given in Figure 17.
The temperature distribution with associated thermal boundary-
layer thickness is enhanced to increase the curvature (reducing the
radius of curvature). This observation concludes that heat travels
faster over a curved surface compared to a flat surface and is more
profound in the PHF than in the PST cases. It shows an important
result and a substantial contribution to this study.

The behavior of pressure is significant to the flow field over the
curved structure; therefore, pressure variations need to be discussed.
Figures 18–21 depict the pressure variations due to the Lorentz
force, stretching the power index, Sutterby fluid parameter, and
radius of curvature. Clearly, Figure 18 elucidates a diminished
pressure profile for a large Lorentz force. This observation
confirms the earlier behavior of flow trajectory and velocity field
(see Figures 3, 8). The gradual decrease in pressure profiles is shown
in Figures 18–21. These observations support the graphs in Figures
8, 9, 11 and further accentuate flow behaviors over the curved
stretching mechanism. In other words, fluid flow can be regulated
and controlled by means of the stretching power index. Likewise,
Figure 20 elucidates a slight decrease in the flow pressure for a large
fluid parameter, which shows a powerful influence of the fluid
parameter for regulating flow velocity. It further substantiates the
observations made in Figures 4, 9. Figure 21 is plotted to
authenticate the present model; see Eq. 21. In validation of the
present investigation, we set the pressure to zero, P(η) = 0 and the
large dimensionless radius of curvature, ξ → ∞ (surface becomes
flat). A valuable known result for fluid flow over the flat stretching
surface is achieved [23–25]. Table 1 shows an excellent agreement of
the computational values for surface drags compared to the
published studies. Table 2 is provided in the remark of the
surface rate of heat transfer for the PST and PHF cases. It also
presents the impact of the magnetic field on skin friction coefficient
and rate of heat transfer for PST and PHF cases.

7 Concluding remark

The magnetohydrodynamic flow of the non-Newtonian
Sutterby fluid driven by nonlinear power-law velocity over a
continuous stretching curved mechanism has been addressed.
The analysis is presented in a radially varying magnetic field
acting perpendicular to the flow direction. Viscous dissipation,
surface frictional heating, and radiation serve as the additional
source of heat for prescribed surface temperature, PST, and
prescribed heat flux, PHF. Governing models are theoretically
formulated under desirable physical phenomena to ensure
realistic flow behaviors. Computation is performed using the
standard Keller–Box method and the Jacobi iterative scheme. The
following results were plausibly recorded and summarized.

1. The velocity field decreases to increase Sutterby fluid parameters
and stretch the nonlinear power index, whereas the opposite
effect occurs to enhance the magnetic field parameter and
dimensionless radius of curvature.

2. The temperature distribution increases for large Brinkman
number, radiation, and surface frictional heating parameters.

3. Increasing magnetic field generates a large Lorenz force, which
enhances the temperature profile.

4. Additional heat is transferred over the curved surface compared
to the flat surface, and it is more significant in the PHF than in the
PST regions.

5. Heat transfer through the prescribed heat flux is more important
to enhance heat flow due to the additional heat generated from
the solid surface to the fluid.

Frontiers in Physics frontiersin.org11

Sanni et al. 10.3389/fphy.2023.1126003

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1126003


6. The results are validated by comparing the surface drags with the
published work, authenticating our numerical method and
concluding by presenting numerical values for the heat
transfer rate in the PST and PHF cases.
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