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Hesperetin is a natural flavonoid with many biological activities. In view of
hyperuricemia treatment, the effects of hesperetin in vivo and in vitro, and the
underlying mechanisms, were explored. Hyperuricemia models induced by
yeast extract (YE) or potassium oxonate (PO) in mice were created, as were
models based on hypoxanthine and xanthine oxidase (XOD) in L-O2 cells and
sodium urate in HEK293T cells. Serum level of uric acid (UA), creatinine (CRE),
and urea nitrogen (BUN) were reduced significantly after hesperetin treatment
in vivo. Hesperetin provided hepatoprotective effects and inhibited xanthine
oxidase activity markedly, altered the level of malondialdehyde (MDA),
glutathione peroxidase (GSH-PX) and catalase (CAT), downregulated the
XOD protein expression, toll-like receptor (TLR)4, nucleotide binding
oligomerization domain-like receptor family pyrin domain-containing 3
(NLRP3) inflammasome, interleukin-18 (IL-18), upregulated forkhead box
O3a (FOXO3a), manganese superoxide dismutase (MnSOD) in a uric acid-
synthesis model in mice. Protein expression of organic anion transporter 1
(OAT1), OAT3, organic cationic transporter 1 (OCT1), and OCT2 was
upregulated by hesperetin intervention in a uric acid excretion model in
mice. Our results proposal that hesperetin exerts a uric acid-lowering effect
through inhibiting xanthine oxidase activity and protein expression, intervening
in the TLR4-NLRP3 inflammasome signaling pathway, and up-regulating
expression of FOXO3a, MnSOD, OAT1, OAT3, OCT1, and OCT2 proteins.
Thus, hesperetin could be a promising therapeutic agent against
hyperuricemia.
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1 Introduction

Hyperuricemia is a metabolic disorder caused by an imbalance
in the production and excretion of uric acid (UA), and is considered
to be a risk factor for gout, obesity, chronic kidney disease, and
diabetes mellitus (Bakan et al., 2015; Gromadzinski et al., 2015; Ali
et al., 2018). Studies have demonstrated that lowering the prevalence
of hyperuricemia can reduce the risk of other metabolic diseases
(Borghi et al., 2020; Huang et al., 2020; Xie et al., 2020; Yen et al.,
2020).

According to the mechanism of action, the current prevention
and treatment strategy against hyperuricemia is reducing uric acid
production and/or enhancing urate excretion to lower the levels of
serum uric acid. Xanthine oxidase (XOD) catalyzes the oxidation of
hypoxanthine or xanthine to uric acid in the liver (Chen et al., 2016;
Qin et al., 2018), which is considered to be a promising therapeutic
target for hyperuricemia caused by overproduction of uric acid
(Richette and Bardin, 2010). Allopurinol and febuxostat inhibit uric
acid production by ablating xanthine oxidase activity, but they are
suitable only for patients with early hyperuricemia and not for
people with renal disease/insufficiency (Kai et al., 2013).

Considerable evidence supports that uric acid transporters are
critical for uric acid metabolism in the kidneys (Jalal et al., 2013;
Tan et al., 2016). Organic cationic transporters (OCTs) and organic
anion transporters (OATs) have been reported to mainly promote
urate excretion (Wang et al., 2019). Benzbromarone and probenecid
lower the level of uric acid by regulating expression of uric acid
transporters in the kidney, but their use is associated with renal
damage and hepatotoxicity (Zhang et al., 2006; Theilmann and
Ormiston, 2019). Some dual-target drugs can interfere with the
synthesis and metabolism of uric acid, such as RLBN1001 (Chen,
2017). Clinical application of drugs for hyperuricemia treatment is
limited due to the high prevalence of adverse reactions. Bioactive
compounds of plant origin have strong potential to treat a variety of
disease, including hyperuricemia (Mehmood et al., 2019a;
Mehmood et al., 2019b; Serrano et al., 2020).

For now, the hyperuricemia cell model has become a new
research direction due to its high screening efficiency. Uric acid
is synthesized in the liver, and the metabolic process is roughly
adenine ribonucleotide-adenosine-inosine-hypoxanthine-xanthine-
uric acid. Increasing uric acid or its precursors can lead to increased
blood uric acid levels (Adachi et al., 2017). Previous Studies reported
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that L-O2 cells can be successfully induced as a hyperuricemia cell
model under the co-induction of hypoxanthine (the direct precursor
of uric acid production) and xanthine oxidase (An et al., 2021; Sun
et al., 2021). Additionally, uric acid-induced renal epithelial cells
(HEK293T cells or HK-2 cells) model are commonly used to study
the effects of compounds on uric acid uptake or transport (Bao et al.,
2019; Feng et al., 2019). Therefore, both models were selected to
evaluate the uric acid-lowering effect of hesperetin.

The NLRP3 inflammasome, as part of the innate immune
system, recognizes numerous pathogen types and has attracted
the attention of researchers. Studies demonstrate that uric acid
promote activation of the nucleotide binding oligomerization
domain-like receptor family pyrin domain-containing 3
(NLRP3) inflammasome, and lead to release of the
downstream pro-inflammatory factor interleukin (IL)-18 (Ives
et al., 2015; Chen et al., 2018). Thereby, inhibition of the
NLRP3 inflammasome is a practicable strategy to alleviate side
effects of hyperuricemia.

Hesperetin (Figure 1A) is a flavonoid derived mainly from the
citrus fruit of the Rutaceae family, such as grapes, lemons, tangerines,
and oranges (Garg et al., 2001; Wolfram et al., 2016; Chen et al., 2017).
Hesperetin has various biological activities, such as anti-inflammatory
(Wang et al., 2016; Bai et al., 2017; Lin et al., 2020), antioxidant (Gong
et al., 2017), anti-fibrosis (Wang B. et al., 2017;WangH.W. et al., 2017)
and neuroprotective (Choi and Ahn, 2008; Shagirtha et al., 2017;

Kheradmand et al., 2018) activities. Studies have shown that diets
containing hesperetin provide cardioprotective effects, and reduce the
morbidity and mortality of coronary heart disease by lowering plasma
levels of low-density lipoprotein-cholesterol (Bawazeer et al., 2016).
Drinking orange juice can help reduce hyperuricemia (Haidari et al.,
2012), and it has been demonstrated that hesperetin has an inhibitory
effect on xanthine oxidase (Haidari et al., 2009). Though, the
mechanism of action of hesperetin on uric acid metabolism is not
known. The aim of this study was to investigate the effect of hesperetin
on uric acid metabolism and to explore its mechanism of action in vitro
and in vivo.

2 Materials and methods

2.1 Reagents

Hesperetin (95%–99%; Chemical Abstracts Service (CAS) number:
520-33–2) was purchased from Chengdu Purifa Technology
Development (Chengdu, China). Xanthine oxidase (XOD),
allopurinol, uric acid, sodium urate (SU) (BCCB4889); xanthine
(CAS-69-89–6), and yeast extract (YE) (2340951-02) were obtained
from Sigma-Aldrich (Saint Louis, MO, United States). Potassium
oxonate (PO) (01045378) was from Damas-beta (Shanghai, China).
Hypoxanthine (H108384) was purchased from Aladdin (Shanghai,

FIGURE 1
Chemical structure of hesperetin (HSE) (A) and its dose-response curve on xanthine oxidase (XOD) activity (D) and scavenging of superoxide anions
(E) in vitro. Data are the mean ± SEM (n = 3) and representative of three independent experiments. The effect of allopurinol on XOD activity (B) and
scavenging of superoxide anions (C) are shown. HSE, hesperetin; XOD, xanthine oxidase.
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China). XOD kit and UA kits were procured from Nanjing Jiancheng
Bioengineering Institute (Nanjing, China). 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) was from Solarbio (Beijing,
China). WST-1 (W201) was purchased from Dongren Chemicals
(Shanghai, China). Anti-XOD antibody [EPR4605] (ab109235), anti-
NLRP3 antibody [EPR20425] (ab210491), and anti-IL-18 antibody
[EPR19956] raised against mice were purchased from Abcam
(Cambridge, UK). Anti-OAT1 (1F2): sc-293323, anti-OAT3 (3C11):
sc-293264, anti-OCT1 (12F11): sc-8024 and toll-like receptor (TLR)4:
sc-293072 antibodies raised against mice were purchased from Santa
Cruz Biotechnology (Santa Cruz, CA, United States). Anti-OCT2 (H-3):
sc-377476 and NF-κB p65 (C22B4) antibodies were obtained from Cell
Signaling Technology (Beverly, MA, United States). Anti-β-tubulin
(66240-1-Ig) was purchased from Proteintech (Rosemont, IL,
United States). Horseradish peroxidase (HRP)-conjugated goat anti-
mouse IgG or anti-rabbit IgG were obtained from R&D Systems
(Minneapolis, MN, United States).

2.2 Animals

Animal studies (animal ethics approval code number:
YUAN2019LLWYH003-2) were undertaken according to
recommendations set in Guide for the Care and Use of
Laboratory Animals [United States National Institutes of Health
(Bethesda, MD, United States)]. Male specific pathogen-free (SPF)
Institute of Cancer Research (ICR) mice (20–22 g) were purchased
from Kunming Medical University (license number: SCXK 2015-
0004). In order to adapt to the environment, animals were housed in
an SPF-grade laboratory (license number: SYXK 2018-0005) with a
12-h light-dark cycle (20°C–25°C, 60% ± 10% humidity) in the

animal house. Free food and water were supplied for 1 week before
performing any procedure.

2.3 Assay of xanthine oxidase activity in vitro

Uric acid (which has maximum optical density at 295 nm (OD295))
works as an indicator of xanthine oxidase activity. According to the
literature (Qin et al., 2018), a 100-μL reaction system comprising
xanthine oxidase (40 U/L), xanthine (250 mmol/L), WST-1
(100 μmol/L), and test compounds at various concentrations in
reaction buffer (0.1 mol/L sodium paraphosphate, 0.3 mmol/L
ethylenediamine tetraacetic acid, pH 8.3). The OD295 of the reaction
system was monitored dynamically for 20 min at 25°C with a
microplate reader (SpectraMax M3; Molecular Devices, Sunnyvale,
CA, United States). The slope of the OD295-time curve reflects
xanthine oxidase activity. The slope of the OD450-time curve
represents the O2- level. The dose-response curve was obtained and
the half-maximal inhibitory concentration (IC50) value of each
compound was calculated.

2.4 Dose regimen

Hesperetin and allopurinol were prepared in saline solution
containing 1% Tween-80 immediately before the use to obtain a
uniform suspension and the administrated volume was 10 mL/kg.
Previous studies have shown that intraperitoneal administration of
20 mg/kg HSE can prevent ototoxicity by increasing antioxidant
enzymes and reducing oxidation parameters, as well as prevent
apoptosis caused by cochlear implant cell proliferation (Kara et al.,

FIGURE 2
The flowchart of animal experiments induced by yeast extract (A) and potassium oxonate (B) hyperuricemia. i. g., intragastric administration; i. p.,
intraperitoneal injection; HSE, Hesperetin; vehicle, saline solution contain 1% Tween-80.
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2016), and the experimental dose adjustment in this study is based
on this.

2.5 Uric acid-lowering effect of hesperetin
on yeast extract-induced hyperuricemia in
mice

Refer to the previousmethods (An et al., 2021) and dosage regimens
(He et al., 2020), mice were randomly assigned into five groups: normal;
model; positive-treated (allopurinol, 10 mg/kg); hesperetin (10 mg/kg)-
treated; hesperetin (5 mg/kg)-treated. Mice in the normal group
underwent intragastric administration with saline solution contain
1% Tween-80 (vehicle) at 10 mL/kg for successive 13 days. Instead,
mice in other groups were orally administrated with yeast extract
(15 g/kg). After 6 h, hesperetin group was given the corresponding
dose (10 and 5 mg/kg), the positive-treated and the normal group
accepted the administration of same volume of vehicle. After 13 days,
mice were fasted for 10 h, and then the positive allopurinol was
intragastrically administered once according to the report of Niu
et al. (2018), and the other groups were administered by
intraperitoneal injection of the corresponding articles. After 30 min,
blood was collected via the orbital vein. Serum samples were obtained
by centrifuging whole-blood samples at 4,000 × g for 10 min at 4°C.
Serum levels of uric acid, creatinine, and urea nitrogen were determined
using an automatic biochemistry analyzer (AU680; Beckman Coulter,
Fullerton, CA, United States). Hepatic xanthine oxidase activity was
measured using the xanthine oxidase kit. The study flowchart was
shown in Figure 2A.

2.6 Evaluation of factors related to oxidase
stress in livers induced by yeast extract

The levels of malondialdehyde (MDA), glutathione peroxidase
(GSH-PX), catalase (CAT) activity in the livers of mice induced by
yeast extract were determined using kits (Nanjing Jiancheng
Bioengineering Institute, Nanjing, China).

2.7 Histopathology in yeast extract-induced
hyperuricemia

Left upper-lobe liver tissues were embedded in paraffin, cut into
5 μm thick slices, and stained with hematoxylin and eosin staining.
We evaluated the general morphology under light microscopy, as
reported previously (Xiong et al., 2017).

2.8 Uric acid-lowering effect of hesperetin
on potassium oxonate-induced
hyperuricemia in mice

Mice were randomly assigned into five groups: normal; model;
allopurinol (10 mg/kg)-treated; hesperetin (10 mg/kg)-treated;
hesperetin (5 mg/kg)-treated. Mice in the hesperetin group were
injected once a day for consecutive 6 days. The normal, model group
and positive group received the vehicle in the same manner. On the

seventh day, HSE group mice, fasted for 10 h, were injected
subcutaneously to avoid mutual interference with the modeling
reagent. The positive control received one gavage of allopurinol
(10 mg/kg). 30 min after administration, all groups were
administered potassium oxonate (450 mg/kg, i. p.) except that the
normal control group was injected with an equal volume of vehicle.
The study flowchart was shown in Figure 2B.

Blood was drawn from the inner canthus after modeling for
1.5 h. After killing, the kidney was frozen in liquid nitrogen and
stored at −80°C for later use. Serum samples were obtained by
centrifuging blood samples at 4,000 × g for 10 min 4°C. Serum
levels of uric acid, creatinine, and urea nitrogen were determined
using an automatic biochemistry analyzer (AU680; Beckman
Coulter).

2.9 Cell culture and MTT assay

L-O2 cells purchased from Shanghai Meixuan Biotechnology
(Shanghai, China) and HEK293T cells (American Type Culture
Collection, Manassas, VA, United States) were cultured in
Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% fetal bovine serum and 1% penicillin–streptomycin in
an atmosphere of 5% CO2 at 37°C.

L-O2 cells were seeded in 96-well plates at 5 × 104 cells per well to
determine the effect of hesperetin on L-O2 cells. The cells were treated
with hesperetin (25, 50, 100, 200, or 400 μmol/L) for 24 h. Then, 20 μL
of 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) was added to the 96-well plates, and incubation for 4 h in
the dark allowed. Dimethyl sulfoxide (200 μL) was added to dissolve the
remaining formazan crystals of MTT, and agitation for 15 min carried
out. Cell viability was measured at 492 nm using a multimode
microplate reader (Flexstation™ 3; Molecular Devices).

The same method was used to determine the effect of hesperetin
on HEK293T cells. Cells were seeded in 96-well plates at 1.5 × 104

cells per well and treated with hesperetin (25, 50, or 100 μmol/L) for
24 h. Then, cell viability was measured as described above.

2.10 Measurement of uric acid levels in L-O2
cells

L-O2 cells were incubated with hesperetin (i.e., 25, 50, or
100 μmol/L) or allopurinol (100 μmol/L) for 24 h. Then, cells
were washed gently with phosphate-buffered saline (PBS). After
incubated with hypoxanthine (800 μmol/L) for 24 h, xanthine
oxidase (4 μL/well) was added at a final concentration of 0.3 U/g,
and incubation for 1 h in the dark permitted, followed by extraction
of the supernatant or protein. Experiments were repeated at least
thrice. The uric acid content of cell supernatants was measured using
the uric acid kit.

2.11 Determination of uric acid levels in
HEK293T cells

As reported by W. D. Chen and Y. L. Zhao (Chen et al., 2020),
HEK293T cells were resuspended with DMEM and adjusted to
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1.5 × 104 cells per well seeded in 96-well plates. Then, the cell
supernatants of each well were discarded and hesperetin (6.25, 12.5,
25, or 50 μmol/L) added to the hesperetin group after inoculation for
24 h. The supernatant of each well was discarded 24 h after dosing.
Sodium urate (SU) (8 mg/dL) was added to cells. The uric acid
content of the supernatants and broken cells was detected after
incubation for 24 h in a 37°C incubator. Experiments were repeated
at least thrice. The uric acid content of cell supernatants was
measured using the uric acid kit.

2.12 Western blotting

After pretreatment of cells, they were rinsed with pre-cooled PBS,
and lysed in high-efficiency radioimmunoprecipitation (RIPA) tissue/
cell lysate (lysate: phenylmethylsulfonyl fluoride (PMSF) = 100:1) on ice
for 20 min. After scraping, the cell lysate was centrifuged at 15,000 g for
10 min at 4°C with the supernatant collected. Protein from liver tissues
and kidney tissues was extracted using RIPA tissue/cell lysate,
homogenized for 2 min, and centrifuged at 1,036 g for 10 min at
4°C. The supernatant fractions from cells and tissues were collected
using 1.5-mL centrifuge tubes. The supernatant with equal amount of
protein was mixed with SDS-PAGE loading buffer and immediately
heated at 100°C for 10 min. Protein samples were separated by sodium

dodecyl sulfate-polyacrylamide gel electrophoresis using 8%–12%
polyacrylamide gels, and transferred to polyvinylidene fluoride
(PVDF) membrane. After blocked non-binding sites with 5%
skimmed milk for 1 h, the membrane was incubated overnight
with specific antibodies in PBS: XOD (1:1,000), NLRP3 (1:1,000),
IL-18 (1:200), TLR4 (1:200), NF-κB p65 (1:1,000), OAT1 (1:
1,000), OAT3 (1:1,000), OCT1 (1:1,000), OCT2 (1:1,000),
FOXO3a (1:1,000), MnSOD (1:1,000) or β-tubulin (1:1,000).
Then, the blots washed thrice with tris-buffered saline with
0.1% Tween-20 (TBST) for 5-min each, and incubated with
HRP-conjugated goat anti-rabbit IgG (1:5,000) or anti-mouse
IgG (1:5,000) diluted with TBST for 1 h at room temperature.
After three 5-min washes with TBST, images were acquired using
a Pro-light HRP Chemiluminescence Kit (Tiangen Biotech,
Beijing, China) on a FluorChem E System (Protein Simple,
Santa Clara, CA, United States).

2.13 Statistical analyses

Statistical analyses were undertaken with Prism 5 (GraphPad, La
Jolla, CA, United States), using mean ± standard error of the mean.
Dunnett’s tests were used for post-hoc evaluations and p < 0.05 was
considered statistically significant.

FIGURE 3
Effects of hesperetin (HSE) on serum parameters and hepatic xanthine oxidase (XOD) activity in mice with hyperuricemia induced by yeast extract.
(A) Uric acid (UA) (B) Blood urea nitrogen (BUN) (C) Serum creatinine (CRE) (D) Hepatic xanthine oxidase (XOD) activity. The dose of allopurinol was
10 mg/kg in vivo experiments. Data are the mean ± SEM (n = 10). ##p < 0.01 versus the normal group; *p < 0.05 and **p < 0.01 versus the model
group. HSE, hesperetin; UA, uric acid; BUN, blood urea nitrogen; CRE, serum creatinine; XOD, xanthine oxidase.
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3 Results

3.1 Hesperetin exhibited potent xanthine
oxidase inhibition in vitro

Allopurinol inhibited xanthine oxidase activity in a dose-
dependent manner with an IC50 of 6.044 μmol/L, whereas the
IC50 of the O

2- level was 11.2 μmol/L (Figures 1B,C). Hesperetin
inhibited xanthine oxidase activity with an IC50 of 110.4 μmol/L,
whereas the IC50 of the O2- level was 317.6 μmol/L (Figures
1D,E). The inhibitory activity on xanthine oxidase elicited by
hesperetin is consistent with the literature, though the IC50 of
hesperetin was higher than that of allopurinol (Haidari et al.,

2009). Hesperetin appeared to be a potent inhibitor of xanthine
oxidase activity.

3.2 Hesperetin reduced the serum
parameters and hepatic xanthine oxidase
activity in yeast extract-induced
hyperuricemia in mice

Compared with normal mice, mice in which hyperuricemia had
been induced using yeast extract showed markedly increased serum
levels of uric acid, urea nitrogen, and creatinine and hepatic
xanthine oxidase activity, indicating mild damage to kidney

FIGURE 4
Effects of hesperetin (HSE) on protein levels in mice liver with hyperuricemia induced by yeast extract. Protein expression of XOD (B), TLR4 (C), NF-
κB p65 (D), NLRP3 (E), IL-18 (F) and β-tubulin were determined byWestern blotting quantified using ImageJ. The dose of allopurinol was 10 mg/kg in vivo
experiments. Data are themean ± SEM (n = 10). #p < 0.05 and ##p < 0.01 versus the normal group; *p < 0.05, **p < 0.01 and ***p < 0.001 versus themodel
group. HSE, hesperetin; XOD, xanthine oxidase; TLR 4: Toll-like receptor 4; NF-κB p65: nuclear factor-κB p65; NLRP3: nucleotide binding
oligomerization domain-like receptor family pyrin domain-containing 3; IL-18: interleukin-18.
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function (Figure 3). Serum levels of uric acid, urea nitrogen, and
creatinine and hepatic xanthine oxidase activity were reduced
markedly after hesperetin treatment (10 and 5 mg/kg) (p < 0.05/
0.01), and the effect was similar to that of allopurinol. These results
suggested that hesperetin not only reduced the serum uric acid level
and hepatic xanthine oxidase activity but also protected the kidneys
from damage caused by high-purine diets.

3.3 Hesperetin suppressed expression of
xanthine oxidase protein and
downregulated activation of the
NLRP3 inflammasome in mice suffering
from yeast extract-induced hyperuricemia

Expression of XOD (Figures 4A, B) and proteins associated with
NLRP3 inflammasome signaling, such as TLR4 (Figure 4C), NF-κB
(Figure 4D), NLRP3 (Figure 4E) and IL-18 (Figure 4F), was
increased in the liver tissues of mice suffering from
hyperuricemia induced by yeast extract compared with those in
the normal group. Expression of all of these moieties was
downregulated after hesperetin treatment for 14 successive days
compared with that in the model group (p < 0.05). Similar results
were observed in the allopurinol group, of them, the downregulation
of IL-18 inflammatory signaling protein was inferior to that of
hesperetin.

3.4 Effect of hesperetin on oxidative stress
parameters and proteins in liver

The model group showed elevated MDA in mice liver compared
to the normal group, which was significantly reduced (p < 0.01)
(Figure 5A) by HSE administration. Next, we further analyzed the
endogenous antioxidant levels in liver. Compare the normal group,
the model group remarkably diminished the levels of GSH-PX and
CAT activities. Interestingly, 10 mg/kg of HSE obviously increased
the GSH-PX (p < 0.01) (Figure 5B) and CAT activities (p < 0.01)
(Figure 5C) compared to the model group. As expected, this data
suggests that HSE treatment significantly reversed the oxidative
stress parameters in the liver and prevented the development of its
conditions. In addition, compared with the model group, HSE could
significantly upregulate the protein levels of FOXO3a and MnSOD,
which further indicated that HSE could improve the level of
oxidative stress caused by yeast extract.

3.5 Hesperetin improved changes in liver
histopathology

Hematoxylin and eosin staining of liver sections (Figure 6) from the
yeast extract-induced hyperuricemia group showed obvious pathologic
changes: unclear structure of hepatic lobules, degeneration of
hepatocyte vacuoles, and inflammatory-cell infiltration. These

FIGURE 5
Effects of hesperetin (HSE) on oxidative stress inmice liver with hyperuricemia induced by yeast extract. (A)MDA activity (B)GSH-PX (C)CAT activity.
Protein expression of FOXO3a (E), MnSOD (F), and β-tubulin were determined via Western blotting quantified with ImageJ. The dose of allopurinol was
10 mg/kg in vivo experiments. These data were from three separate experiments and expressed as the mean ± SEM. #p < 0.05, ##p < 0.01 and ###p <
0.001 versus the normal group; *p < 0.05, **p < 0.01 and ***p < 0.001 versus the model group. HSE, hesperetin; MDA, malondialdehyde; CAT,
catalase; GSH-PX, glutathione peroxidase; FOXO3a, forkhead box O3a; MnSOD, manganese superoxide dismutase.
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pathologic changes could be alleviated by treatment with hesperetin
(10 and 5 mg/kg) (Figure 6). The positive allopurinol group showed
similar improvements in inflammatory cell infiltration and hepatocyte
vacuolation in liver tissue. These results demonstrated that hesperetin
exerted a hepatoprotective effect in mice with yeast extract-induced
hyperuricemia.

3.6 Hesperetin reduced the serum
parameters and enhanced expression of uric
acid-excreting transporters in mice with
potassium oxonate-induced hyperuricemia

Single injection with potassium oxonate significantly increased
serum levels of uric acid in mice with hyperuricemia compared with
that in normal mice (Figure 7), a result which is consistent with data
from Tung Y. T (Tung et al., 2015). Hesperetin (10 and 5 mg/kg)
could reduce serum uric acid levels and improve renal injury in mice
with hyperuricemia 7 days after intraperitoneal injection (Figures
7A–C). Moreover, hesperetin (10 mg/kg) could upregulate
expression of OAT1 (Figure 7E), OAT3 (Figure 7F), OCT1
(Figure 7G), and OCT2 (Figure 7H) proteins. Interestingly,
allopurinol reduced serum levels of uric acid and improved renal
injury, but weakly regulated expression of uric acid-excretion
proteins compared with that of hesperetin at 10 mg/kg. These
results indicated that hesperetin could reduce serum uric acid
levels markedly through upregulation of expression of OAT1/
OAT3/OCT1/OCT2 proteins to promote excretion of uric acid.

3.7 Hesperetin reduced uric acid levels in
L-O2 cells

Uric acid is produced in the liver. A model of high uric acid in L-O2
hepatocytes was induced by a combination of hypoxanthine and
xanthine oxidase. The level of uric acid in the model group was
obviously more than that in the control group, so the hyperuricemia
model had been established (Figure 8A). Then, the MTT assay was used
to evaluate the action of hesperetin against hyperuricemia in L-O2 cells
(Figure 8B). Interestingly, hesperetin exerted no obvious inhibition at
200 μmol/L (Figure 8B), but the uric acid level was decreased by 34% at
100 μmol/L of hesperetin (p < 0.001) (Figure 8C). Furthermore,
hesperetin reduced expression of XOD protein compared with that in
the model group (p < 0.05) (Figures 8D, E). These results indicated that
hesperetin could reduce uric acid levels by inhibiting expression of XOD
protein in a hyperuricemia model.

3.8 Hesperetin promoted the transport of
uric acid from inside to outside of
HEK293T cells induced by sodium urate

Wewished to assess the effect of hesperetin on uric acid excretion.
Hence, we used a sodium urate-induced model of hyperuricemia in
HEK293T cells to detect changes in intracellular and extracellular uric
acid levels. Hesperetin (25, 50, or 100 μmol/L) had hardly effect on the
survival of HEK293T cells (p > 0.05) (Figure 9A). Compared with the
control group, the intracellular uric acid content of the model group

FIGURE 6
Hepatoprotective effects of hesperetin (HSE) on liver morphology in mice with hyperuricemia induced by yeast extract. Liver sections subjected to
hematoxylin and eosin staining (n = 10) are presented at a magnification of ×400. Scale bar, 50 μm. Hesperetin (HSE) (5 and 10 mg/kg) and allopurinol
(10 mg/kg) were administered, respectively, to mice in addition to yeast extract treatment. HSE, hesperetin. Inflammatory cell infiltration was point out
with red arrows.
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was remarkably increased (p < 0.001) (Figure 9B), showing that the
model could be used in experimental studies. The intracellular uric
acid level decreased gradually as the hesperetin concentration
increased (p < 0.001) (Figure 9B), whereas the extracellular uric

acid level increased gradually (p < 0.001) (Figure 9C) compared
with that in the model group. These results showed that hesperetin
could promote uric acid excretion from inside to outside of
HEK293T cells.

FIGURE 7
Effects of hesperetin (HSE) on serum parameters and protein levels in mice with hyperuricemia induced by potassium oxonate. (A) Uric acid (UA) (B)
Blood urea nitrogen (BUN) (C) Serum creatinine (CRE). Protein expression of OAT1 (E), OAT3 (F), OCT1 (G), OCT2 (H), and β-tubulin were determined via
Western blotting quantified with ImageJ. The dose of allopurinol was 10 mg/kg in vivo experiments. These data were from three separate experiments
and expressed as the mean ± SEM. #p < 0.05 and ##p < 0.01 versus the normal group; *p < 0.05 and **p < 0.01 versus the model group. HSE,
hesperetin; UA, uric acid; BUN, blood urea nitrogen; CRE, serum creatinine; PO, potassium oxonate; XOD, xanthine oxidase; OAT1, organic anion
transporter 1; OAT3, organic anion transporter 3; OCT1, organic cationic transporters 1; OCT2, organic cationic transporters 2.
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4 Discussion

Many edible plants have medicinal values for promoting
human health, and hesperetin is an important bioactive agent
from edible plants (Luo et al., 2020). This study is the first to
explore the mechanism of action of hesperetin on uric acid
metabolism. Xanthine oxidase catalyzes xanthine to produce
uric acid as well as superoxide anions (Lu et al., 2013).
Excessive production of superoxide anions in the body can
cause oxidative stress, which increases the risk of
complications of hyperuricemia (Enroth et al., 2000; Ives
et al., 2015). Therefore, antioxidant or anti-inflammatory
activities of compounds may have value in delaying the
development of these diseases. Hyperuricemia due to increased
synthesis of uric acid is caused by increased xanthine oxidase
activity, mainly due to excessive intake of purine-rich foods or
uric acid precursors.

Mouse models of hyperuricemia have been widely used to
provide valuable insights into uric-acid-lowering drugs. These

models are highly diverse and can be duplicated by diet or
pharmaceutical induction. Dietary Modification is widely used to
induce elevated serum urate concentrations in mice. By increasing
the precursors of uric acid synthesis, such as yeast, which are rich in
proteins, nucleic acids, etc., can be completely hydrolyzed into
organic bases (including purines and pyrimidines) and
phosphoric acid in vivo. Therefore, when there are more yeasts
in the body, the normal purine metabolism is disturbed by the
increase of xanthine oxidase activity and the acceleration of uric acid
production, resulting in a large amount of uric acid (Chen et al.,
2006). This model resembles human hyperuricemia induced by a
high-protein diet. Therefore, a hyperuricemia mice model using
yeast extract was created, and the effect of hesperetin on uric acid
synthesis studied.

We showed that serum levels of uric acid, creatinine, urea
nitrogen, and hepatic xanthine oxidase activity were decreased
significantly and expression of XOD protein downregulated after
hesperetin treatment. Studies have shown that increased serum
levels of uric acid are accompanied by activation of

FIGURE 8
Hesperetin (HSE) inhibited the production of uric acid (UA) in vitro. Establishment of a high uric acid (UA) model in cells (A) and effects of hesperetin
(HSE) on the viability of L-O2 cells (B); Uric acid (UA) level (C); the band of XOD protein (D) and quantitative analysis (E). L-O2 cells were seeded in six-well
plates overnight, incubated with 2 mL of hesperetin (HSE) (25, 50, or 100 μmol/L) or allopurinol (100 μmol/L) for 24 h, followed by incubation with
hypoxanthine (800 μmol/L) for 24 h and addition of xanthine oxidase (4 μL/well). Data are the mean ± SEM (n = 3) and representative of three
independent experiments. #p < 0.05 and ###p < 0.001 versus the control group; *p < 0.05, **p < 0.01 and ***p < 0.001 versus the model group. HSE,
hesperetin; UA, uric acid; XOD, xanthine oxidase.
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inflammasome even in the absence of gout (Ghaemi-Oskouie and
Shi, 2011; Grainger et al., 2013). The increase of uric acid is
accompanied by the generation of oxidative stress, and
meanwhile, the damaged inflammatory cells release more reactive
oxygen species, which further leads to the increase of oxidative stress
level (Liu et al., 2021). MDA is regarded as a biomarker of oxidative
damage, and its excessive production will accelerate oxidative stress.
GSH as a cellular antioxidant marker; CAT removes hydrogen
peroxide from the body and is one of the key enzymes in
biological defense systems (Li et al., 2019; Wang et al., 2022).
FOXO3a can regulate the expression of related proteins in the
cellular defense mechanism against oxidative stress, promote the
scavenging of reactive oxygen species and malondialdehyde (MDA),
and increase the activity of the antioxidant enzyme MnSOD to
reduce oxidative stress (Zhang et al., 2022; Kang et al., 2023).
Interestingly, hesperetin exerts a hepatoprotective effect in our
hyperuric acid model by reducing oxidative stress (CAT, GSH,
MDA parameters, FOXO3a-MnSOD signaling pathway) and
down-regulating the TLR4-NLRP3 inflammatory pathway, data
which are consistent with findings from the study (Wan et al.,
2020). Next, a hyperuricemia cell model was created by
hypoxanthine and xanthine oxidase to explore the effect of
hesperetin on uric acid synthesis. We showed that the uric acid
level and protein expression of XOD were downregulated after
hesperetin treatment, which is consistent with the role of
hyperuricemia induced by yeast extract in animals. These
data indicated that HSE inhibited XOD activity in vitro and
in vivo, slow down its catalytic rate of hypoxanthine to uric
acid, and reduce the production of uric acid and reactive oxygen
species.

Uricase is an enzyme that converts uric acid to allantoin which
is much more soluble than uric acid. Given that the gene encoding
uricase is inactivated in humans but not in mice. Administration of
a uricase inhibitor——oxonic acid or potassium oxonate, a
selectively competitive uricase inhibitor, blocks the effect of
uricase, is a commonly used method to induce mild
hyperuricemia in mice. Different from yeast extract-induced
hyperuricemia model, its target tissue is kidney, and the
research focus is uric acid transporter and uric acid-related
metabolic diseases (Feng et al., 2022). Thus, a hyperuricemia
model was created using a single injection of potassium oxonate
to study the effect of hesperetin on uric acid excretion. It has been
reported that an increase in uric acid level is due to dysfunction of
uric acid transporters, which are responsible for the reabsorption
or excretion of uric acid (Xu et al., 2017). In recent years, the
OAT1, URAT1, ABCG2, and GLUT9 have become potential
targets for hyperuricemia treatment (Xu et al., 2017; Wu et al.,
2020). In present research, hesperetin could significantly reduce
uric acid levels by upregulating protein expression of OAT1,
OAT3, OCT1, and OCT2. Uric acid is excreted mainly in the
kidneys. Suboptimal excretion of uric acid would increase the
burden of kidneys and renal injury. We measured the serum
level of creatinine and urea nitrogen and the effect of hesperetin
administration. However, histopathologic changes in the kidneys
were not revealed using hematoxylin and eosin (data not shown).
Subsequently, we measured the uric acid levels inside and outside
of HEK293T cells induced by sodium urate. We found that the
intracellular uric acid level decreased and extracellular uric acid
level increased after hesperetin treatment, which further verified
that hesperetin could promote uric acid excretion.

FIGURE 9
Hesperetin (HSE) promoted uric acid (UA) excretion in vitro. Effects of hesperetin (HSE) on the viability of HEK293T cells (A) and intracellular uric acid
(UA) level (B), and extracellular uric acid (UA) level (C). Data are the mean ± SEM (n = 3) and representative of three independent experiments. ###p <
0.001 versus the control group; ***p < 0.001 versus the model group. HSE, hesperetin; UA, uric acid.
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5 Conclusion

Hesperetin could significantly reduce the uric acid level and
protect against hyperuricemia-associated liver damage. The
mechanism of action of hesperetin was associated with inhibition
of xanthine oxidase activity and protein expression, alteration of the
MDA, GSH-PX and CAT content, downregulation of the TLR4-
NLRP3 inflammasome signaling pathway, and upregulation of
expression of FOXO3a, MnSOD, OAT1, OAT3, OCT1, and
OCT2 proteins. This study validates the efficacy of hesperetin in
hyperuricemia treatment and provides valuable insights into its
potential biological mechanisms.

Based on the results of this study, we will investigate the effect of
hesperetin on the complications of hyperuricemia (e.g., gout,
nephritic syndrome) in future studies. Moreover, a natural
product based on hesperetin used in lowering uric acid levels is
worth developing.
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