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We propose a co-simulation framework comprising biomechanical human body
models and wearable inertial sensor models to analyse gait events dynamically,
depending on inertial sensor type, sensor positioning, and processing algorithms.
A total of 960 inertial sensors were virtually attached to the lower extremities of a
validated biomechanical model and shoe model. Walking of hemiparetic patients
was simulated using motion capture data (kinematic simulation). Accelerations
and angular velocities were synthesised according to the inertial sensor models. A
comprehensive error analysis of detected gait events versus reference gait events
of each simulated sensor position across all segments was performed. For gait
event detection, we considered 1-, 2-, and 4-phase gait models. Results of
hemiparetic patients showed superior gait event estimation performance for a
sensor fusion of angular velocity and acceleration data with lower nMAEs (9%)
across all sensor positions compared to error estimation with acceleration data
only. Depending on algorithm choice and parameterisation, gait event detection
performance increased up to 65%. Our results suggest that user personalisation of
IMU placement should be pursued as a first priority for gait phase detection, while
sensor position variation may be a secondary adaptation target. When comparing
rotatory and translatory error components per body segment, larger interquartile
ranges of rotatory errors were observed for all phasemodels i.e., repositioning the
sensor around the body segment axis was more harmful than along the limb axis
for gait phase detection. The proposed co-simulation framework is suitable for
evaluating different sensor modalities, as well as gait event detection algorithms
for different gait phase models. The results of our analysis open a new path for
utilising biomechanical human digital twins in wearable system design and
performance estimation before physical device prototypes are deployed.
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1 Introduction

Wearable inertial measurement units (IMUs), among other measuring methods, enable
researchers in biomechanics and rehabilitation to measure human kinematics and therefore
expand our understanding of natural human movement (Derungs and Amft, 2020; Al Borno
et al., 2022). In medicine, movement applications range from analysing walking performance
(Balasubramanian et al., 2009), detecting functional impairment in patients after a stroke
(Balaban and Tok, 2014), regaining walking autonomy (Canning et al., 2006), to monitoring
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fall risk in older adults and patients (Tulipani et al., 2020). Yet
another application area of IMUs are assistive devices, including the
control of orthoses, exoskeletons, and prostheses (Sánchez
Manchola et al., 2019). Practical deployment of wearable motion
analysis often involves iterative physical testing to optimise and
correct sensor positioning (Förster et al., 2009; Niswander et al.,
2020), which is tedious due to repeated measurements and prone to
error due to, e.g., variance in motion execution, fatigue, loss of
motivation, and examiner-dependent errors (Pacini Panebianco
et al., 2018; Nilsson et al., 2022). Furthermore, iterative analyses
imply, in addition to the considerable time required for study
participants/patients and involved experts, that only certain
sensor configurations can be evaluated at a time. Simulation-
based analyses may offer an excellent tool to systematically
address various challenges related to finding suitable sensor
configurations and signal interpretation methods from the
extensive design space and parametrisation options of wearable
IMU systems. Additionally, inter-individual characteristics and
coping strategies substantially influence wearable system design
and performance of sensor-based movement interpretation
(Altini et al., 2015; Derungs and Amft, 2020). For a given
wearable application, error effects related to sensor type, body
positioning, parametrisation of signal interpretation algorithms,
etc., are to date solely available as expert knowledge, if at all.
Modeling and simulation methods could enable researchers and
practitioners to virtually select, augment, and exchange sensor
devices, body positions, as well as to test different modalities and
signal interpretation algorithms without patient involvement.
Derungs and Amft (2020) performed a first quantitative analysis

of gait performance estimation from acceleration signals synthesised
in a co-simulation of human body and sensor models. While the
work demonstrated that simulation can reveal the full potential of
wearable motion sensors and increase their application in clinical
practice, the work only focused on dynamic acceleration of the
patient’s upper leg and did not cover gait phase events.

Gait phase assessment is used clinically to evaluate and diagnose
gait disorders, thus helping clinicians to determine and provide
optimal care and treatment for patients with walking impairments
(Derungs et al., 2018; Han et al., 2019; Sánchez Manchola et al.,
2019). Gait phases can be described during a gait cycle from one
initial contact to the next initial contact of the same leg (Perry and
Bunfield, 2010). One gait cycle consists of two main phases,
i.e., stance and swing phase that can be partitioned into eight
subphases (Perry and Bunfield, 2010): Initial Contact (IC),
Loading Response (LR), Mid Stance (MSt), Terminal Stance
(TSt), Pre Swing/Toe off (PSw/TO), Initial Swing (ISw), Mid
Swing (MSw), and Terminal Swing (TSw), as shown in Figure 1.
A widespread approach to describe gait relies on a 4-phase model
(Sánchez Manchola et al., 2019), although events that determine gait
phases differ across literature. A variety of published detection
algorithms and experimental studies estimated and analysed gait
phases, considering various IMU sensors and body positions.
Nevertheless, gait detection algorithms were limited to process
data derived from a specific body position, preventing
performance comparison depending on placement (see also
Section 2.3). Furthermore, synthesised sensor data is often used
for model training in data augmentation tasks (see also Section 2.1),
but the potential of synthesised data for performance analysis of

FIGURE 1
Illustrations of human gait phases. (A) Gait cycle division into 1,2,4-phase models. Adapted from (Perry and Bunfield, 2010). (B) Visualisation of the
four gait events IC, MSt, TO, and MSw aligned with ground reaction force (GRF) data and synthesised accelerometer and gyroscope data of hemiparentic
patients from our co-simulation framework.
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different algorithms, as shown in this work, has hardly been
considered. Additionally, there is no methodology to consolidate
and analyse performance depending on the choices of algorithms,
sensor modalities, and body mounting position, which could
improve wearable system design to match applications or
individual characteristics.

This paper provides the following contributions:

1. We present a co-simulation framework for synthesising inertial
sensor data based on two coupled and time-synchronsed
subsystems: 1) personalised inverse kinematic body
(i.e., digital twin) and shoe models, and 2) IMU sensor
models. Compared to the earlier digital twin approaches, we
focus on gait performance analysis of different algorithms and
extend our inertial sensor models include triaxial transducers
describing static and dynamic acceleration as well as triaxial
transducers of angular velocity.

2. We validated our framework against data from a measurement
study with healthy volunteers to prove correctness of our
modeling and co-simulation approach. Subsequently, we show
that the framework is capable of evaluating more challenging gait
patterns. Therefore, in simulation experiments, we instantiated a
total of 960 IMUs, virtually attached to upper leg, lower leg, and
shoe, to analyse gait phase detection of impaired walking in
hemiparetic patients.

3. The proposed framework enables system designers to perform a
comprehensive error analysis (timing error between detected gait
events and reference gait events) of common gait event detection
algorithms across 1-, 2-, and 4-phase gait models, considering
sensor type and sensor positioning. We varied sensor
configuration and algorithm paramerterisation (user-depenent
and sensor position-dependent parameterisation) as well as
analysed errors that may originate from sensor position
variation during wear.

2 Related work

2.1 Data simulation and synthesis

The concept of human digital twins has already been used, in
particular for accurate musculoskeletal models, validated for human
motion analysis and simulations. Among others, the open-source
platform OpenSim (Delp et al., 2007) has been validated in various
human motion studies (Rajagopal et al., 2016; Seth et al., 2018;
Karimi et al., 2021; Yap et al., 2021). Biomechanical models provide
the basis for evaluating wearable system design, as shown by
(Lambrecht et al., 2017; Derungs and Amft, 2020; Mundt et al.,
2020; Al Borno et al., 2022). In healthcare and rehabilitation, the
digital twin concept is increasingly used, e.g., to partially replace
expensive laboratory experiments with in silico simulations (Kamel
Boulos and Zhang, 2021). Kamel Boulos and Zhang (2021) provided
an overview on digital twin concepts used in healthcare. Pizzolato
et al. (2019) reviewed neuromusculoskeletal modeling approaches
for recovery from spinal cord injury and concluded that the digital
twins concept can be applied to people and assistive devices.
Derungs and Amft (2020) were the first to leverage digital twins
based on personalisable kinematic body models to synthesise sensor

data and estimate sensor-dependent algorithm performance in co-
simulations.

Collecting patient data can be tedious and error-prone. In
addition, many detection models require training data, thus the
synthesis of virtual sensor data is gaining interest in the research
community. For example, the dataset of Knarr et al. (2013),
including walking of eight hemiparetic patients, has been used in
previous simulation work by Derungs and Amft (2019). The latter
authors demonstrated how biomechanical simulations and
synthesised acceleration data could be used to estimate motion-
related clinical assessment scores, comparable to data of physical
sensors (Wang et al., 2015). Mundt et al. (2020) estimated joint
kinematics and kinetics using musculoskeletal modeling to
synthesise acceleration and angular velocity data from five
selected sensor positions as input for an artificial neural network.
Their results showed that the simulation approach is a valid method
for data augmentation in biomechanics. Furthermore, generative
adversarial networks (GANs), which originally emerged from
computer vision research (Zhang and Alshurafa, 2020;
Hoelzemann et al., 2021), were proposed to synthesise sensor
data for human activities. Zhang and Alshurafa (2020) proposed
two deep generative cross-modal architectures for synthesising
accelerometer data from video sequences. Kwon et al. (2020,
2021) presented IMUTube, an automated processing pipeline for
human activity recognition (HAR) that integrates existing computer
vision and signal processing techniques to convert video of human
activity into virtual streams of IMU data. A similar approach was
chosen by Lämsä et al. (2022), who used neural networks with
VIDEO2IMU to generate IMU signals and features frommonocular
videos of human activities. Their results suggested that HAR systems
trained using virtual sensor data could perform considerably better
than baseline models, trained using only physical IMU data (Kwon
et al., 2021; Lämsä et al., 2022). Esteban et al. (2017) deployed GANs
to synthesise respiratory data, where a generator model was used to
augment data, and a discriminator attempts to distinguish between
real and artificial data. Hoelzemann et al. (2021) used the latter
technique with a long-short-term memory layer. Their
augmentation approach increased classification performance and
produced simulated activity of daily living data similar to data
derived from physical measurements. However, there are
persisting challenges concerning validity and variability of data
augmentation for sensor timeseries, e.g., random transformation
is not applicable for every data set, time domain pattern mixing is
only recommended for short timeseries or a comparable weak
response of timeseries-based neural networks to data
augmentation (Iwana and Uchida, 2021). In purely data-driven
approaches, e.g., generative models based on neural networks, it
is difficult to synthesise new, meaningful time series, as the relation
to physical constraints cannot be assessed. In contrast, sensor
synthesis from measurement-based inverse kinematic models
implements a bottom-up knowledge ordering approach, thus
introducing evidence at all model layers. So far, synthesised data
was used for model training mostly, but the potential of synthesised
data for performance analysis of different algorithms, as shown in
this work, has hardly been considered. In this work, we rely on
validated biomechanical models that are personalised to synthesise
acceleration and angular velocity sensor data on multiple limbs.
Compared to previous work, our simulation approach and
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algorithms aim to evaluate, among a selection of several hundred
virtual sensor positions, which sensor configurations and algorithm
parameterisations are suitable to estimate gait events.

2.2 Sensor positioning

Several approaches have been used to optimise movement
monitoring and increase robustness against sensor repositioning.
Previous work focused on activity recognition under varying sensor
measurements, e.g., considering inter-individual differences and
sensor displacement (Lester et al., 2006; Thiemjarus, 2010;
Atallah et al., 2011; Banos Legran et al., 2012; Harms et al., 2012;
Guo et al., 2016; Chen et al., 2017). Kunze and Lukowicz (2014),
described rotation-independent signal features in frequency domain
to mitigate sensor positioning effects. Förster et al. (2009) proposed
orientation-robust features in addition to self-calibration algorithms
to overcome effects of sensor displacement in activity and gesture
recognition.

While previous work was limited to physical sensor
measurements, Derungs and Amft (2020) investigated sensor
positioning and biomarker estimation from synthesised
acceleration data, focussing on stride duration, cadence, and step
count in athletes and patients after stroke. For hemiparetic patients,
differences in gait marker estimation performance were shown, as
acceleration sensors were virtually attached to upper legs of affected
and less affected body side. Estimation errors ranged up to ~44%
confirmed a sensor position dependency of gait marker estimation.
Optimal sensor positions changed over a period of movement
therapy. At the less affected body side a favourable ventral region
was proposed for sensor positioning. For the affected body side, the
area of interest shifted medial-dorsal from before to after an
intervention. While the results of Derungs and Amft (2020)
showed that personalised and application-adapted wearable
systems can considerably outperform non-adapted ones, only
dynamic acceleration and selected gait markers were considered.
The aforementioned work analysed upper legs of hemiparetic
patients only and did not provide a dedicated validation. In
contrast, the present work considers complete acceleration and
gyroscope sensor models and investigates gait event and stride
duration estimation according to basic biomechanical definitions.

2.3 Gait event detection algorithms

Due to the clinical relevance and the large number of gait
disorders, gait phase analysis with IMUs has already entered
practice in research movement labs, e.g., Zhao et al. (2019);
Prasanth et al. (2021). Within this context, gait cycle
segmentation can be divided into two main categories of applied
algorithms (Sánchez Manchola et al., 2019; Vu et al., 2020): rule-
based e.g., used by (Catalfamo et al., 2010; Rueterbories et al., 2014;
Behboodi et al., 2015; Sánchez Manchola et al., 2019) and data-
based, e.g., Hidden Markov Models (HMMs), Artificial Neural
Networks and hybrids by (Mannini and Sabatini, 2010; Taborri
et al., 2015; Mannini et al., 2016; Zhao et al., 2019), respectively.
While HMMs have demonstrated top performance, their training-
and time-intensive implementation may be unnecessary (Taborri

et al., 2016). Indeed, recent publications show that rule-based
algorithms with parameterised thresholds are actively deployed
for gait phase detection (Vu et al., 2020; Prasanth et al., 2021). In
addition, vertical and antero-posterior linear acceleration and
angular velocity at the sagittal plane show periodic and repeating
signal patterns over gait cycles, resulting in intuitive, rule-based
algorithms (Taborri et al., 2016). Rule-based gait event and phase
detection algorithms include time domain-based methods, e.g.,
(Catalfamo et al., 2010; Rueterbories et al., 2014), time-frequency
analysis methods, e.g., (Zhou et al., 2016), and heuristic algorithms,
e.g., using derivative peak detection and sign changes (Gouwanda
and Gopalai, 2015). Detecting gait events often builds on
measurements from gyroscopes and accelerometers individually
or in combination (Taborri et al., 2016; Zhou et al., 2016; Vu
et al., 2020). For example, Catalfamo et al. (2010) used a rule-
based detection approach to segment gait into IC and TO events
based on one gyroscope placed at the dominant lower leg. Different
inclination levels in seven healthy participants were analysed. The
algorithm showed an overall detection accuracy of 99% for level
walking. Gouwanda and Gopalai (2015) used a lower leg angular
velocity heuristic for real-time detection of two gait phases during
walking with and without braces. Although all gait events were
detected with an average error of less than 125 ms, abnormal gait
patterns were simulated on healthy participants using ankle and
knee braces instead of participants with pathological gait. Behboodi
et al. (2015) extracted characteristics from lower leg angular velocity
signals of four healthy individuals to detect seven gait events with a
time difference of approx. 75 ms, and a detection accuracy of 99.8%.
Lambrecht et al. (2017) implemented different online peak detection
algorithms for segmenting walking in healthy participants. The
input signals for each algorithm were chosen from lower leg
angular velocity, lower leg segment angle, ankle joint angle, heel
linear velocity, toe linear velocity, lower leg position, foot angular
acceleration, and toe linear velocity, all obtained in OpenSim.
Timing delays ranged between 6 ms and 190 ms, depending on
algorithm and gait phase. SánchezManchola et al. (2019) proposed a
gait phase detection system for a lower limb exoskeleton and
evaluated it in nine healthy and nine hemiparetic patients.
Vertical acceleration and medio-lateral angular velocity of a
single IMU attached to the foot instep was used. They detected
four gait phases (IC, FF, HO, TO) with a rule-based algorithm,
among others. Compared to reference data from a pressure-sensing
insole, the rule-based algorithm showed an overall accuracy of
65.43% and timing errors ranging from −28 ms to 9 ms. Chia
Bejarano et al. (2015) placed two IMUs laterally at lower legs to
determine angular velocity in the sagittal plane and the lower leg
flexo-extension angle. They estimated three gait phases (IC, TO,
MSw) with an accuracy of 87% and an average timing difference of
up to 52 ms for ten stroke patients with severe impairment.
Furthermore, Rueterbories et al. (2014) utilised a rule-based
algorithm to identify four gait events from differential
acceleration signals of one foot-worn sensor in hemiparetic
patients. Their results showed a timing difference ranging from
65 ms to 104 ms, depending on the gait phase.

The above discussion shows that algorithms were restricted to
process data derived from a specific body position, thus preventing a
comparison of performance depending on placement. Moreover,
measurements with several hundred sensor positions
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simultaneously is prohibitively expensive and not feasible regarding
practicality and burden to study participants, e.g., patients. In
contrast, our co-simulation framework enables us to investigate
motion estimation error using virtually attached sensors at
personalised biomechanical models. We demonstrate the co-
simulation approach by evaluating estimation algorithms that use
vertical acceleration, including static and dynamic acceleration
components, as well as medio-lateral angular velocity, across a
total of 960 sensors.

3 Co-simulation framework

We propose a co-simulation framework comprising models to
represent the human body as well as inertial sensors. After
personalising the body models according to anthropometric data,
and defining the inertial sensor placement, models are simulated
with motion data (kinematic simulation). Based on the simulation’s
kinematic output, inertial sensor signals for each virtual sensor are
synthesised. Synthesised data is then fed into selected detection
algorithms. Here we focus on gait event detection across 1-phase, 2-
phase, and 4-phase gait models. Finally, algorithm performance was
analysed in relation to sensor position and gait patterns, to
demonstrate the evaluation process based on co-simulation.
Figure 2 provides an overview on the co-simulation components
and processing steps. In the following subsections, we detail the
framework components and their implementation.

3.1 Biomechanical body model and shoe
model

A biomechanical body model represents the basis for the sensor
simulation. We build on personalisable models, e.g., according to
anthropometric data, which can be used for motion simulation. In
this work, we used the OpenSim (OpenSim, Version 3.3, Simbios,
Simbios/SimTK, CA, United States) Gait2354 inverse kinematic
model (Delp et al., 2007). Gait2354 is a dynamic 23 degree-of-
freedom musculoskeletal human model, including
54 musculotendon actuators of the lower body, torso, and head.
The model was validated in healthy participants (John et al., 2013)
and different patient groups (Richards and Higginson, 2010; Knarr
et al., 2013). Personalisation of the biomechanical body model
involved scaling, i.e., changing body mass properties and
dimensions, by comparing static distance measurements between

specifiedmodel landmarks and registering markers (default weights)
placed on study participants. Thus, modeling input included body
weight and measured motion capture markers.

Since the original body model represents bones, joints, and
muscle links only, an auxiliary structure with a cylindrical shape was
designed to approximate limb silhouettes. On the auxiliary structure
12 rings with 16 positions per ring were defined to attach sensors per
body side (see Figure 3).

To represent the shoe, an inertia-free, non-deformable, feature-
less geometric silhouette model was designed to determine silhouette
and sensor positioning (2 rings with 36 sensor positions, and 1 ring
with 25 sensor positions). The shoe model was attached to the body
model at the foot segment and fixed via direct-link (WeldJoint).

A global 3D Cartesian coordinate frame G with coordinate axes
(x,y,z) was defined in OpenSim. In addition, Cartesian coordinates
of a body-local frame L were defined to support spatial
representation of the body and shoe model as anterior-posterior
(x-axis), vertical (y-axis), and medio-lateral (z-axis). Initial
orientation of the vertical axes of the body-local frame L and the
global frame G remained identical throughout all simulations.

3.2 Inertial sensor models

An additive model was used to represent 3D acceleration signals,
where �a (t) � (ax, ay, az) is the sum of the sensor’s dynamic
acceleration �ad(t) and the equivalent gravitational acceleration
�ag(t) acting on the sensor device:

�a t( ) � �ad t( ) + �ag t( ). (1)
Vector �k(t) � (kx(t), ky(t), kz(t)) is a main surface normal vector
at time t of an arbitrary simulated sensor instance that is attached at
body or shoe models. Vector coordinates were extracted from
OpenSim’s ‘Analyse Tool’ using the ‘BodyKinematics’ built-in
analysis. Dynamic acceleration ad

→ (t) was synthesised from the
second derivative of sensor normal vector �k(t) by applying a
discrete difference approach.

ad
→

t( ) � d2 �k t( )
dt2

. (2)

The static acceleration component �ag(t) was computed by mapping
the sensor orientation taken from rotation matrix QG

L ∈ R3x3 to
gravity-carrying axis �j � (0, 1, 0), i.e., along the y-axis of the global
coordinate frame G. The rotation matrix can be written in matrix

FIGURE 2
Co-simulation framework overview. Inertial sensor model instances are distributed across biomechanical and shoe models. Motion data is used to
co-simulate the models and synthesise inertial sensor data. Based on the various simulated sensors, performance of selected gait event detection
algorithms can be analysed in relation to sensor configuration, algorithm parameterisation, and sensor positioning.
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form QG
L
�k and rotates sensor position �k from the global coordinate

frame G to the sensor-local coordinate frame L. We assume that the
origins of both frames coincide. The resulting unit vector �kj
represents the per-axis gravity share:

�kj t( ) � QG
L
�k t( ) · �j. (3)

The unit vector �kj(t) was used to obtain ag
→ (t) for all sensor axes

with g = 9.81 m/s2:

�ag t( ) � �kj t( ) · g. (4)
Angular velocity, as measured by gyroscope sensors, was synthesised
by calculating the first derivative of the orientation estimate with
respect to time:

�ω t( ) � dQG
L
�k t( )

dt
, (5)

where QG
L
�k(t) refers to the simulated sensor orientation, and

satisfies (QG
L )−1 � (QG

L )Tand det(QG
L ) � 1 according to Zhao

(Zhao, 2016).
Sensors were designed as 5 mm3 cubes without inertia and scaled

in volume by factors of 0.001, 0.005, and 0.003 in x-, y-, and z-axis,
respectively, to match the scaled biomechanical model in OpenSim
(see Figure 3). Our approach was to systematically evaluate position-
dependent sensor information. Thus, a systematically arranged
sensor grid see Section 3.1 was defined with a maximum distance
of 26 mm between individual sensors for a body height of 1.83 m
which corresponds to the tallest participant in our evaluation study.
On each upper and lower leg 192 sensors were virtually attached. In

addition, 96 sensors were attached to each shoe, resulting in a total of
960 simulated sensors. Sensor attachment at body and shoe models
was defined as a direct-link (WeldJoint). Figure 3 illustrates the
simulated sensor positions.

3.3 Co-simulation and sensor signal
synthesis

Co-simulations of the models were performed using OpenSim
inverse kinematics tool and motion data as input variables (see
Section 5.1). MoCap marker data was filtered by a 6 Hz lowpass
Butterworth. Orientation estimates were derived as rotation
matrices (QG

L
�k(t)) and exported from a customised OpenSim

plugin (NIH National Center for Simulation in Rehabilitation
Research NCSRR, 2007). From sensor normal vector �k(t) �
(kx, ky, kz) and orientation estimates ((QG

L
�k(t))), inertial sensor

data were synthesised according to Eqs 1–5. In turn, synthesised
sensor data were applied to test the selected algorithms. For
algorithm evaluation, we synthesised y-axis acceleration ( �ay(t))
and z-angular velocity ( �ωz(t)), both at 100 Hz.

4 Gait detection algorithms

We adapted and contrasted threshold-based gait detection
algorithms that were published with promising estimation results
using at least one sensor position on the lower limbs. Algorithm
(Algo.) A1 used acceleration data only (see Section 4.2.1) and was

FIGURE 3
(A) Illustration of inertial sensor models attached to a biomechanical body model and a shoe model. The body model uses an auxiliary structure of
rings (R) to approximate the limb silhouette. (B) Movement simulation inside OpenSim using ground reaction force data (GRF) as reference. (C) Shoe
sensor positions. (D) Sensor positions (S) on the upper and lower legs and visualisation of sensor repositioning along transversal (rotatory part) and
longitudinal (translatory part) limb axis of body segments.
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taken fromCatalfamo et al. (2010), but parameterisation, i.e., thresholds
were derived from training data (see Section 5.3) instead of visual
inspection. We included Algo. A1 as a baseline. Algorithm A2 used
gyroscope data corrected by accelerometer data (see Sections
4.2.2–4.2.5). Algo. A2 represents a combination of detection
algorithms from Sánchez Manchola et al. (2019) to detect IC and
Zhao et al. (2019) to detect Mst and MSw. Similar to Algo. A1, training
data was used to derive parameters of Algo. A2. In the aforementioned
studies, inertial sensors were attached to feet and lower legs to capture
linear acceleration and/or angular velocity signals during gait. Instead
we defined multiple sensor positions according to the biomechanical
body and shoe models described in Section 3.1.

Synthesised data was preprocessed using a second order
Butterworth filter (cut-off: 17 Hz for �ay(t) and 15 Hz for �ωz(t))
as suggested by (Sánchez Manchola et al., 2019). Data was then
filtered with a Savitzy-Golay Filter (fifth order, w = 35), to remove
outliers, as applied in (Derungs and Amft, 2020). All data analysis
was performed using Python 3.8.

4.1 Peak detection function

In threshold-based gait event detection, peak detection is a
fundamental element. Maxima were detected by a peak detection
function f+

P() in acceleration data ây(t) and angular velocity data
ω̂z(t) at each sensor position according to:

f+
P ây,Θ( ) � U+{ } and f+

P ω̂z,Θ( ) � U+{ }. (6)

Θ refers to parameters of f+
P(), while U+ represents a set of final

positive peaks with U+ � u+1 , . . . , u
+
Un

{ }. Function f+
P returns peaks

u+i ∈ U+ with timestamp t̂
+
i and signal height ĥ

+
i according to:

u+
i � t+i , h

+
i{ } for i � 1, . . . , Un. (7)

The peak detection was parameterised by Θ = {θh, θd} during
training, withminimumpeak height θh andminimumdistance between
two consecutive peaks θd. Instead of visual inspection to findminimum
peak height θh, as pursued in previous work (Kotiadis et al., 2010;
Maqbool et al., 2016; Sánchez Manchola et al., 2019), in our training
procedure, we initially applied peak detection without parameter θh, to
find all candidate peaks ~u+i ∈ ~U

+
. Subsequently, we derived minimum

peak height θh as a fraction of the average candidate peak height ~h
+
. For

gyroscope signals, we visually chose a fraction of 0.25 and for
acceleration signals, a fraction of 0.15, to match the respective signal
variability during gait. Corresponding equations are shown in Section

4.2. Average candidate peak height ~h
+
was derived by:

~h
+ � 1

~Un

∑
~Un

i�1
~h
+
i . (8)

Await time tw between gait events was introduced to avoid bouncing
effects and thus false detections, according to (Rueterbories et al.,
2013; Sánchez Manchola et al., 2019). Related work described wait
times tw, ranging between 40 ms ≤ tw ≤ 300 ms, e.g., (Maqbool et al.,
2016; Sánchez Manchola et al., 2019), or 50% of last stance phase
duration (Catalfamo et al., 2010) to detect two to four gait phases.
Accordingly, we set tw = 600 ms for the 1-phase model, tw = 300 ms
for the 2-phase model, and tw = 150 ms for the 4-phase model.

For minima, peak detection f−
P(), with U− � u−1 , . . . , u−Un

{ } was
defined accordingly. All peak detections were implemented using
detect_peaks from the Python module detecta, which is equivalent
to Matlab’s findpeaks() function (Duarte, 2021).

4.2 Algorithm-specific parameterisation

Subsequent sections detail specific parameterisation, depending
on the algorithm (Algo. A1 or Algo. A2) and phase granularity (1-,
2-, 4-phase see Section 1; Figure 1).

4.2.1 IC event detection used in Algo. A1
Algo. A1 implemented a peak detection to obtain IC from

acceleration signal �ay(t). Minimum peak height θh of Algo.

A1 was set to a fraction of the average candidate peak height ~h
+

in training data following:

f+
P

�̂ay t( ),Θ( ): with θh � ~h
+ − |~h+| · 0.15( ). (9)

Minimal peak distance θd was set equal to tw = 600 ms between IC
events.

The purely acceleration-based Algo. A1 was solely investigated
for detection according to the 1-phase model, thus described here for
IC event detection only.

4.2.2 IC event detection used in Algo. A2
IC gait events were detected by Algo. A2 by a positive to negative

signal sign change function (fZ
S ) of the angular velocity signal �ωz(t),

followed by a peak in the acceleration signal �ay(t) with the
parameterisation described in Eq. 9. Positive to negative signal
sign changes, encoded as ‘1’, were detected according to:

fS
�̂ωz ti( )( ) � 1, if �̂ωz ti−1( )> 0 ∧ �̂ωz ti( )< 0

0, otherwise.
{ (10)

Algo. A2 reported an IC event, if the sign change and positive peak
conditions described above, were met within a time range of 50 ms,
according to (Sánchez Manchola et al., 2019). In addition, wait time
since the last detected IC event was set to tw = 600 ms. In the 2- and
4-phase model, we set tw = 300 ms, tw = 150 ms, since last detected
gait event, respectively.

4.2.3 TO event detection used in Algo. A2
To find TO events with Algo. A2, negative peaks were detected

in both, acceleration �ay(t) (see Eq. 11) and angular velocity signals
�ωz(t) (see Eq. 12) with a wait time tw = 300 ms, tw = 150 ms since the
last detected gait event according to 2-, or 4-phase model. We set
A2 minimum peak distance θd = 600ms between TO events and
minimum peak height θh was set to a fraction of the average negative
peak height of candidate peaks ~h

−
in the training data:

f−
P

�̂ay t( ),Θ( ): θh � ~h
− + |~h−| · 0.15( ); (11)

f−
P

�̂ωz t( ): Θ( ), θh � ~h
− + |~h−| · 0.25( ). (12)

A2 reported a TO event if ûai of the acceleration was followed by a û
ω
i

of the angular velocity signal within a time range of 50 ms.
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4.2.4 MSw event detection used in Algo. A2
MSw was determined from peaks of the angular velocity

signal �ωz(t) with a wait time tw = 150 ms since the last
detected IC event. Minimum peak distance was set to θd =
600 ms between MSw events. Minimum peak height θh was set
as a fraction of the average peak height of candidate peaks ~h

+
in

training data:

f+
P

�̂ωz t( ),Θ( ): θh � ~h
+ − |~h+| · 0.25( ), (13)

while the acceleration signal of the contralateral side �a
+

y (t)
exhibited minimal signal changes, determined as gradient
(using second order derivative) with a tolerance set at the
75th quantile in signal segments with td = 50 ms (Sánchez
Manchola et al., 2019). To determine the signal change
described above, �a

+

y (t) was segmented into time windows of
td = 50 ms (Sánchez Manchola et al., 2019).

4.2.5 MSt event detection used in Algo. A2
MSt was detected by peaks of the angular velocity signal at the

contralateral side �ωz*(t) with a wait time tw = 150 ms since the last
detected TO event. Minimum peak height θh was set as a fraction of

the average peak height in candidate peaks ~h
+
in the training data

according to:

fP*
�̂ωz* t( ): Θ( ), θh � ~h* − |~h*| · 0.25( ). (14)

We set minimum peak distance θd = 600 ms between MSt events.
A2 peak detection reported a MSt event, if the acceleration signal
exhibited minimal signal changes, determined as gradient (second
order derivative within a tolerance of the 75th quantile) in signal
segments with td = 50 ms.

5 Evaluation procedure

5.1 Evaluation dataset

Simulation data was extracted from a publicly available
dataset (Knarr et al., 2013), comprising treadmill walking of
eight hemiparetic patients after stroke. Patients walked at self-
selected speed, before (PRE) and after (POST) an intervention
therapy. Biomechanical motion references from marker-based
video motion capture and measured ground reaction force
(GRF) were used in our work. Our evaluation covers both
body sides of hemiparetic patients, i.e., the affected and less-
affected body side.

5.2 Ground truth

To obtain ground truth, we used GRF data, which provides
details about gait phases (see Figure 1). GRF data served as reference
to identify IC, MSt, TO, and MSw events for each study participant.
IC and TO were extracted automatically by detecting signal sign
changes of the GRF first derivative. MSt and MSw were visually
labelled by an experienced sports scientist.

5.3 Algorithm validation approach

We apply five-fold cross-validation (CV) and Leave-One-
Participant-Out CV as validation strategies to assess detection
algorithm performance. The validation strategies target different
evaluations, i.e., to estimate errors of user-dependent vs. user-
independent parameterisation and errors of sensor position-
dependent vs. sensor position-independent parameterisation at
limb segments (see details below). During training, the respective
algorithm parameters to find gait events (IC, TO, MSt, MSw, see
Sections 4.2.1–4.2.4) were fitted, while the CV testing sets were used
to evaluate performance. All algorithms were evaluated for PRE and
POST intervention separately (see Section 5.1). Below we match
validation strategies to algorithms, i.e., how minimum peak height
θh was derived from training data and evaluated on testing data.

5.3.1 Algo. A1 and Algo. A2a
To assess event estimation performance in user-dependent and

sensor position-dependent parameterisation, Algo. A1 and Algo. A2,
variant a (A2a), were evaluated using 5-fold CV per participant and
sensor position, thus each fold was split into 80% training data and
20% testing data. Training data was used to fit minimum peak height
θh according to synthesised sensor data. Training procedure was
repeated five times to cover each data fold once for testing and folds’
results were averaged.

5.3.2 Algo. A2b
To assess event estimation performance in user-independent

parameterisation, Algo. A2, variant b (A2b), was evaluated using
Leave-One-Participant-Out procedure. Training data was used
to fit minimum peak height θh according to synthesised sensor
data per sensor position, but averaged across all study
participants, except one participant. Data of the held-out
participant was assigned for testing. Training procedure was
repeated to hold-out every participant once and the folds’ results
were averaged.

5.3.3 Algo. A2c
To assess event estimation performance in user-dependent, but

sensor position-independent parameterisation, Algo. A2, variant c
(A2c), was evaluated using 5-fold CV per participant, thus each fold
was split into 80% training data and 20% testing data. Training data
was used to fit minimum peak height θh according to synthesised
sensor data and subsequently averaged per body segment. According
to the number of synthesised sensors per segment, 192 sensors at
each upper and lower legs, and 96 sensors at the shoe were averaged
before applying CV. Training procedure was repeated five times to
cover each data fold once for testing and the folds’ results were
averaged.

5.4 Gait event evaluation

Performance of the gait event detection algorithms was
evaluated by deriving timing error, i.e., mean absolute error
(MAE) of detected events t̂i and reference events ti (see Eq. 7)
across all Un events per test set following:
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MAE � 1
Un

∑Un

i�1
ti − t̂i
∣∣∣∣ ∣∣∣∣. (15)

Subsequently, normalised MAE (nMAE) was obtained in
percent by normalisation with the reference average stride
duration �F per body side, intervention condition, and patient
(see Eq. 16). Reference average stride duration �F was determined
according to GRF reference signal (see Section 5.2).

nMAE � MAE
�F

· 100%. (16)

To investigate detection errors that may originate from position
variation during sensor wearing, we analysed rotatory and
translatory error subcomponents for Algo. A2c. Algo. A2c was
designed as sensor-position independent, i.e., the same
parameterisation for minimum peak height θhwas used for each
sensor position per body segment (see Section 5.3.3). Rotatory errors
were determined from estimated errors (nMAE) at sensor positions
S1-S16 of auxiliary structure ring R1, see Figure 3D, thus simulating
an uniaxial sensor rotation around a limb segment.
Correspondingly, translatory errors were determined from
estimated errors (nMAE) at sensor position S1 of auxiliary
structure ring R1-R12, thus simulating an uniaxial sensor
translation along a limb axis. The error components can be
interpreted as voluntary or involuntary sensor position shifts on
longitudinal and transversal limb axes. By dissecting error
components, we assessed how susceptible the detection
algorithms are to specific types of sensor position shifts.

6 Model validation

The model validation was performed with specifically recorded
motion data to confirm correct synthesis of acceleration and
gyroscope signals as most public datasets lacked synchronous
MoCap marker data and physical IMU measurements, which are
needed for a direct comparison. Synthesised and measured
(reference) sensor data timeseries of ten healthy participants
during walking were analysed to validate our modeling and co-
simulation approach.

A total of 24 reflective spherical MoCap markers and six IMUs
(MyoMotion, Noraxon, United States) at lower limbs and pelvis
were selected. A synchronized and calibrated 11-camera marker-
based MoCap system (Qualisys, Sweden) was used to acquire gold-
standard MoCap data. Cameras and IMUs were time-synchronized
at a frame rate of 100 Hz. See Supplementary Table S1 for
participant details and Supplementary Figure S13 for participant
setup during model validation. All participants gave written consent
and ethics approval was granted by the ethics committee of
Friedrich-Alexander University Erlangen-Nuremberg.

After a static calibration trial (upright standing), participants
were instructed to walk straight for a distance of 9 m. On average
two gait cycles per body side and participant were captured for the
analysis. MoCap data preprocessing included marker labelling and
gap filling (Qualysis Track Manager, v. 2018). MoCap and IMU data
were subsequently filtered by a 6 Hz lowpass Butterworth.

The Gait2354 inverse kinematic model was used to create
personalised body models following the steps described in

Sections 3.1, 3.3. The best matching sensor positions were
selected (determined manually as lowest error and highest
correlation across all participants) at the upper limbs (S4 on
R12), lower limbs (S3 on R12) and foot (S22 on R3) for
comparison with real measurements (see Figure 3).

Figure 4 showsmeasured and simulated signals averaged per gait
cycle for upper and lower legs and foot instep. Data of left and right
body sides were combined, resulting in a total of 48 gait cycles per
segment to be analysed. Synthesised and measured accelerometer
data showed good average agreement at a Pearson’s correlation
coefficient of r = 0.62 across all three sensor positions (cf. Figures
4A–C). Pearson’s correlation coefficients were derived between
synthesised and measured sensor timeseries data per participant
and sensor position. All Pearson correlation r values were
transformed with the Fisher’s z transform as not all correlations
were normally distributed. We calculated mean and 95% confidence
interval (lower and upper bounds) from the transformed
distributions. Subsequently, the derived means and bounds were
inversely transformed (see Table 1). Correlation was r = 0.88 for
upper legs, r = 0.44 for lower legs, and r = 0.56 for feet. Absolute
signal minima and maxima varied between synthesised and
measured timeseries, however, mean median absolute deviation
(mean MAD) was 1.51 m/s2, mean RMSE was 3.59 m/s2, and
mean normalised median absolute deviation (mean nMAD) was
below 10% (see Table 1). Reduced correlation at lower legs and feet
compared to upper legs may be due to the auxiliary structures used
to approximate limb shapes: The cylindrical auxiliary structures had
larger circumferential difference at lower legs, thus making it harder
to map sensor positions, compared to upper legs. Similarly, the shoe
model may have resulted in larger variation of foot sensor
approximation compared to barefoot walking (cf. Figures 4A–C;
Table 1). For angular velocity signals correlations were r = 0.98 for
lower legs, r = 0.94 for feet, and r = 0.92 for upper legs. Figures 4D–F
illustrates the agreement of simulation and measurements. Lowest
mean nMAD were 7% for lower legs, overall mean nMAD was
~10.7% (see Table 1).

Overall, angular velocity signal agreement exceeded that of
acceleration. Nevertheless, signal patterns between synthesised
and measured acceleration signals clearly showed similarity, too.
The results indicate that acceleration is more susceptible to
individual movement patterns and potential sensor position
differences. An overall agreement between signal patterns is
evident, suggesting that our co-simulation framework provides
meaningful fidelity for sensor data synthesis of acceleration and
angular velocity data.

7 Results

We summarise estimation results of gait event detection based
on 1-, 2-, and 4-phase models. Result diagrams use a common
boxplot style to show error ranges over all simulated sensors per
limb, with whiskers extending to 1.5× the interquartile range (IQR)
below/above the lower/upper quartile (Q1/Q3). Since error
estimates were not always normally distributed, we compare
median and IQR, but visualise error means too. We limit visible
error ranges to highlight the performance of practically relevant
sensors per limb with nMAE below 50%.
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7.1 Event detection with the 1-phase model

Figure 5 shows the nMAE between ground truth and predicted
gait events of all simulated sensor positions on both body sides PRE
intervention (see Figures 5A–C) and POST intervention (see Figures
5D–F). Event detection error ranged between 10% and 50%,
corresponding to approx. 140–700 ms, depending on the body
segment. Algo. A1 showed larger median nMAEs for the upper
and lower leg, but lower IQR compared to Algo. A2a. Overall,

median nMAE decreased from PRE to POST by 5%–10% on
average.

Figures 5B, E show nMAEs of user-independent
parameterisation of Algo. A2b, i.e., by averaging parameters
across training set patients. Figures 5C, F show nMAEs of user-
dependent and sensor position-independent parameterisation of
Algo. A2c, i.e., by averaging parameters across body segments.
User-indepedency or sensor position-independency increased
nMAE median and IQR. Generally, nMAE median improved by

FIGURE 4
Comparison of accelerometer (Acc.) and gyroscope (Angl. vel.) measurements timeseries ( �ay , �ωz) and synthesis timeseries ( �̂ay , �̂ωz). (A) Upper leg
acceleration. (B) Lower leg acceleration. (C) Foot instep acceleration. (D)Upper leg angular velocity. (E) Lower leg angular velocity. (F) Foot instep angular
velocity.

TABLE 1 Pearson correlation coefficients r, mean MAD, mean RMSE, mean nMAD, and STD between measured and synthesised sensor timeseries across all
participants. LO/HI Bound: Lower and upper bound of 95% confidence interval.

Acceleration Angular velocity

Upper leg Lower leg Foot Mean Upper leg Lower leg Foot Mean

r Mean 0.88 0.44 0.56 0.63 0.92 0.98 0.94 0.95

LO/HI Bound 0.83/0.92 0.28/0.58 0.42/0.68 0.51/0.73 0.88/0.94 0.97/0.98 0.92/0.95 0.92/0.96

MAD [ m/s2; °/s] Mean 1.09 1.6 1.85 1.51 20.01 15.06 28.44 21.17

STD 0.09 0.14 0.08 0.10 2.74 3.46 3.63 3.28

RMSE [ m/s2; °/s] Mean 1.95 5.16 3.66 3.59 31.48 25.91 53.52 36.97

STD 0.08 0.12 0.26 0.15 3.29 3.21 4.71 3.74

nMAD [%] Mean 5.22 7.2 16.2 9.54 9.45 6.18 16.32 10.65

STD 0.65 1.49 1.54 1.23 3.35 3.69 5.18 4.07

Highlight Mean column and Metric used.
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about 65% depending on the body segment and algorithm choice
(see Supplementary Table S2). Performance degradation is a result
of the substantially increased nMAE IQR across sensor positions for
Algo. A2b and Algo. A2c. Still, selected sensor positions (e.g., S5/
S13 on upper and lower legs or S9/S15 on R3 on the shoe) could be

identified that exhibit similar performance as the personalised
algorithm variant (A2a), which can be seen in Supplementary
Figure S8.

nMAE larger than 100% appeared due to missing peaks in at
least one stride, or detecting additional peaks, which resulted in

FIGURE 5
1-phase gait event nMAE of all simulated sensor positions summarised per body segment for all algorithms. nMAE axes were limited to highlight
practically relevant sensor performances with nMAE below 50%. For full-range diagrams, please see Supplementary Figure S5. A1 shows larger nMAE in
medians for all segments. (A–C) PRE intervention. (D–F) POST intervention. (A,D) User-dependent and sensor position-dependent parameterisation
(Algo. A1, Algo A2a). (B,E) User-independent parameterisation by averaging parameters across training set patients (Algo. A2b). (C,D) User-
dependent and sensor position-independent parameterisation by averaging parameters across body segments (Algo. A2c). UL: Upper leg; LL: Lower leg;
S: Shoe.

FIGURE 6
1-phase model: Exemplary nMAE heatmaps POST intervention on the less-affected body side for Algo. A2a. (A) All simulated shoe sensor positions.
(B) Selected sensor ring at the upper leg. (C) Selected sensor ring at the lower leg. R: Ring; S: Sensor.
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increased event time differences with respect to ground truth.
Supplementary Figure S12 illustrates detection errors for two
selected sensor positions.

Shoe sensor positions showed larger error IQRs compared to
upper and lower legs (see Figure 5), which can be attributed to
varying orientation of the shoe-dependent sensors (see also
Figure 3). Shoe sensor heatmaps showed a MAE decrease by ~
50% for instep and heel sensor positions compared to the shoe
positions on the lateral and medial side (see Figure 6). Upper and
lower leg positions present circular error patterns as gyroscope-
based detection methods, i.e., Algo. A2, do not depend on limb axes
shifts. Therefore, Figures 6B, C show one selected sensor ring only,
to illustrate the error patterns. Medial and lateral sides of body
segments were more prone to errors. The error pattern can be
explained by the shift in the main sensor rotation axis during
walking. Medial and lateral sensors rotate around an orthogonal
axis compared to dorsal and ventral ones. In general, sensor
orientation signals are inverted for opposing limb positions,

which will affect detection performance for algorithms without
position-adapted parameters or models. More detailed error
analyses of all body segments can be found in the Supplementary
Material.

7.2 Event detection with the 2-phase model

Since our analysis of the event detection with the 1-phase model
yielded superior results for gyroscope-based algorithms compared to
acceleration only algorithm A1, only Algo. A2 variants (A2a, A2b
and A2c) were considered for increased phase granularity. Figure 7
shows nMAE for both predicted gait events of the 2-phase model of
all simulated sensor positions on both body sides PRE (see Figures
7A–C) and POST (see Figures 7D–F). Additionally, nMAE for the
three algorithm variants are shown. Parameter fitting showed the
best performance of all variants (see Figures 7A, D). Consequently,
user-independent parameterisation (Algo. A2b) resulted in largest

FIGURE 7
2-phase gait event nMAE of all simulated sensor positions summarised per body segment for Algo. A2 variants. nMAE axes were limited to highlight
practically relevant sensor performances with nMAE below 50%. For full-range diagrams, please see Supplementary Figure S6. Gait events are Initial
Contact (IC) and Toe off (TO). (A–C) PRE intervention. (D–F) POST intervention. (A,D) User-dependent and sensor position-dependent parameterisation
(A2a). (B,E) User-independent parameterisation by averaging parameters across training set patients (A2b). (C,F) User-dependent and sensor
position-independent parameterisation by averaging parameters across body segments (A2c). UL: Upper leg; LL: Lower leg; S: Shoe.
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median and IQR for both gait events (see Figures 7B, E;
Supplementary Table S3).

TO events showed larger median errors for upper and lower legs
compared to IC, but smaller IQR, while shoe sensor position median
and IQR were smaller for TO events compared to IC events. The
result can be explained by the signal characteristic of synthesised
data. As Supplementary Figure S16 illustrates, the negative signal
peak is more pronounced on shoe sensor positions compared to the
other leg segments and thus events can be recognised more robustly
than at the leg.

7.3 Event detection with the 4-phase model

Results of the 4-phase gait event detection are shown in Figure 8.
As the phase granularity increases from the 2-phase to the 4-phase
model, detection algorithms get more complex with more event

dependencies see Sections 4.2.2, 4.2.3, thus resulting in varying
estimates for common events among the phase models, e.g., IC.
For example, IC event detection yielded 14.3% nMAE in the 2-phase
model vs. 17.3% in the 4-phase model and for TO, we observed
16.8% vs. 21.7%, all on the less-affected lower leg using Algo. A2c
(see Supplementary Tables S3, S4). IQRs mostly decreased for POST
intervention, which is particularly evident at shoe sensor positions.
On average, TO showed larger median nMAE at UL and LL for both
body sides compared to the other gait events. Among Algo.
A2 variants, user-dependent and sensor position-dependent
parameterisation (A2a) improved nMAE median and IQR
considerably for all gait events of the 4-phase model. User-
independent parameterisation of Algo. A2b (see Figures 8B, E)
resulted in the largest medians and IQRs for all gait events,
indicating that a homogeneous patient group is beneficial when
relying on patient-adapted parameters (θh(kP�→)). User-dependent
and sensor position-independent parameterisation of Algo. A2c (see

FIGURE 8
4-phase gait event nMAE of all simulated sensor positions summarised per body segment for Algo. A2 variants. nMAE axes were limited to highlight
practically relevant sensor performances with nMAE below 50%. For full-range diagrams, please see Supplementary Figure S7. Gait events are Initial
Contact (IC), Mid Stance (MSt), Toe off (TO) and Mid Swing (MSw). (A–C) PRE intervention. (D–F) POST intervention. (A,D) User-dependent and sensor
position-dependent parameterisation (A2a). (B,E) User-independent parameterisation. (C,F) User-dependent and sensor position-independent
parameterisation. UL: Upper leg, LL: Lower leg, S: Shoe.

Frontiers in Bioengineering and Biotechnology frontiersin.org13

Uhlenberg et al. 10.3389/fbioe.2023.1104000

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1104000


Figures 8C, F) resulted in a performance deterioration, although less
severe than when removing patient adaptation (see also
Supplementary Table S4).

7.4 Rotatory and translatory errors

Gyroscope-based algorithms, i.e., Algo. A2, are more prone
to rotatory error when repositioning around the axis of the body
segment than along the limb axis. Consequently, larger IQRs of
rotatory errors can be observed in Figure 9 for all phase models.
Due to the translatory data invariance of gyroscope sensors
along a body segment, translatory rearrangement along a limb
axis did not result in IQRs, and median error remains constant.
Shoe sensor positions were excluded from the analysis due to
their asymmetric distribution.In 2- and 4-phase models (see
Figures 9B, C), TO events for both, affected and less-affected
body sides, showed larger median error compared to all other
gait events. Increased IQRs for detected gait events can be
attributed to a sensor rotation around a body segment.
Compared to upper legs, a more uniformly distributed but
larger IQR was observed at lower legs, even though error
minima were smaller.

When comparing gait phase models, event detection for the 4-
phase model showed a subtle increase in rotatory errors for IC and
TO events, which could be attributed to the increased algorithm
complexity and dependency of gait events compared to the other
two phase models. Furthermore, the 4-phase model showed a more
uniform error distribution, but larger IQR compared to 1- and 2-
phase models. Thus, with increasing phase granularity, error IQRs
across sensor positions increased, while the minimum error
remained almost constant.

8 Discussion

We introduced a comprehensive co-simulation framework to
model body motion, i.e., gait patterns of hemiparetic patients, and
inertial sensors, to interpret position and algorithm-dependent
performance for 1-, 2-, and 4-phase gait event detection. In
addition, we have investigated performance depending on
rotatory and translatory changes in all three gait phase models to
demonstrate versatility of our co-simulation framework.

8.1 Model validation

Our comparative model validation (Section 6) aimed at
quantifying similarities between synthesised and measured sensor
signal patterns, as well as to confirm matching value ranges for
acceleration and angular velocity signals. Model validation showed
that (1) simulated sensors can approximate healthy walking, and 2)
synthesised sensor signals showed moderate correlations (r = 0.63)
for acceleration signals and high correlations (r = 0.95) for angular
velocity signals, with nMAD below 11% for both.

Simulations are unlikely to yield perfect agreement with
measured inertial sensor signals due to non-modelled, dynamic
phenomena, e.g., IMU placement and fixation variability and
marker loss. Nevertheless, our results across all sensor signals
suggested meaningful synthesis performance. We attributed
deviations for acceleration at lower legs and feet (see Figures 4B,
C) to positioning variability along the gravitational axis that could
naturally occur for sensor mounts and were not adequately captured
by our sensor model’s auxiliary structures. RMSE and correlations
observed in our validation analysis are within ranges reported in
literature. Sharifi Renani et al. (2021) compared synthetic and

FIGURE 9
Sensor repositioning error analysis considering rotatory and translatory errors parts for Algo. A2c in all gait phase models. (A) 1-phase model. (B) 2-
phase model. (C) 4-phase model. UL: Upper leg; LL: Lower leg. Larger IQRs for rotatory errors can be observed compared to translatory errors, as well as
larger error IQRs in the 4-phase model compared to 1- and 2-phase models.
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measured IMU data at the pelvis, thigh, shank, and foot during
walking, where RMSE for angular velocity ranged between 22.9°/s -
58.4°/s depending on sensor positioning. Correlations ranged
between r = 0.3 – 0.9. RMSE for acceleration ranged between
0.6 m/s2 - 2.5 m/s2 with correlations between r = 0.7–0.9.
Zimmermann et al. (2018) reported average correlations of r =
0.6 for accelerometers and r = 0.9 for gyroscopes at feet, shanks,
thighs, and pelvis during walking. Average RMSE was 4.0 m/s2 and
35°/s for acceleration and angular velocity, respectively. The authors
attributed the synthetic gap to additional artifacts due to clothing
and soft-tissue that cause additional accelerations. Future work may
focus on natural body shape representation by surface modeling,
which can decrease model deviations (Uhlenberg and Amft, 2022).

8.2 Algorithm and performance analysis

For the present analysis, we selected parameterisable online,
i.e., sliding window-based algorithms that could operate in real-
time. The selected algorithm family extracts gait cycle events after
detecting an initial contact following the respective gait cycle.
Hence, the algorithms incur an event reporting delay of approx.
one gait cycle. Algorithm parameters were initially fitted in a
cross-validation procedure, but remained constant during the
evaluation. Algo. A2a represents a typical personalised
parameterisation, but implies that an initial parameter fitting
is made, based on user-specific data. Algo. A2b was user-
independent by fitting parameters from population data and
thus might be easier deployed. Finally, for Algo. A2c sensor
position dependency was removed, hence training data could
originate from elsewhere at the same limb. The analysed
algorithms are widely applied for gait event detection.
Nevertheless, our co-simulation framework is not limited to
one algorithm family. Other gait event detection algorithms,
e.g., based on Hidden-Markov Models (HMM), as well as
extended gait phase models, e.g., by additional gait phases, can
be analysed using the proposed framework. Algorithms
considered in our analysis rely on a bipedal detection
approach, adapted from Zhao et al. (Zhao et al., 2019), which
may be debatable with regard to body side-dependent gait
patterns of hemiparetic patients. Our evaluation results
however show that using the contralateral side to support gait
event detection did not influence detection error of MSt and MSw
events. The distribution of recognition errors in the 4-phase
model was relatively constant across all phases. Similarly, the
estimation errors of IC and TO in the 4-phase model were
comparable to those of the 2-phase model (see Supplementary
Tables S3, S4), even though the detection algorithms get more
complex with additional gait events and gait phase granularity.
Thus, we encourage further investigations of bipedal detection
algorithms in hemiparetic patients.

Results showed better performance of Algo. A2a compared
to Algo. A1 for event detection of the 1-phase model, which
agrees well with previous measurement studies, e.g., (Lau and
Tong, 2008; Kotiadis et al., 2010). A primary explanation of
detection performance differences is that angular velocity
signals used by A2 algorithms show more periodic and
repeatable patterns along the gait cycle than acceleration

signals, which confirms previous observations, e.g., made by
Taborri et al. (2016).

Among Algo. A2 variants, user-dependent and sensor position-
dependent parameterisation (Algo. A2a) showed lowest nMAE
median (13.1%–41.4%) and IQR (1.4%–25.6%) for all gait events
and gait models. User-dependent and sensor position-independent
parameterisation (Algo. A2c) led to performance deterioration
(increase in median nMAE by 5.5%–19.5%), although less severe
than user-independent parameterisation (Algo. A2b), which showed
an increase in median nMAE by 24.9%–80.2%. Parameter
personalisation clearly adds algorithm complexity. Consequently,
individual gait pattern variability should be specifically considered
in future studies of gait event detection algorithms, e.g., by
comparing algorithms under gait and sensor positioning
variations and incorporating algorithm personalisation methods,
where necessary. Most gait detection investigations to date have
focused on healthy volunteers, fixed sensor position, and algorithm
parameterisation with manually adjusted parameters or once-
trained statistical models (Catalfamo et al., 2010; Kotiadis et al.,
2010; Rueterbories et al., 2014; Maqbool et al., 2016; Sánchez
Manchola et al., 2019). Our results however show that for
hemiparetic patients a major potential to minimise event
detection errors lies in adapting (e.g., personalising) the main
rotation axis at medial-lateral vs. dorsal-ventral, depending on
sensor position. We achieved the intended user-dependency by
splitting the per-participant synthesised timeseries into folds.
User-dependency is generally considered to maximise detection
performance, but risking generalisability. Due to the 5-fold CV
splits of the timeseries, testing data may be overly dependent on
training data. Nevertheless, personalisation of different gait
detection models has recently been successfully applied for other
neurological disorders and gait rehabilitation robots (Martindale
et al., 2018; Ye et al., 2020; Ingelse et al., 2022). Based on our results,
further work on algorithm personalisation is warranted.
Furthermore, we observed that particular sensor positions, e.g., at
the shoe, show consistently robust signal patterns suggesting
minimal detection errors (see Supplementary Figure S11, S16).
Sensor positions found with our co-simulation framework may
be favourable for gait event detection or serve as an alternative
reference position in measurement studies, where minimal
instrumentation is required.

nMAE median and IQR decreased on all body segments from
PRE to POST intervention for all phase models, which could
indicate an improvement in gait regularity at POST intervention.
The hypothesised gait improvement is supported by findings of
Knarr et al. (2013) and Derungs and Amft (2020), who respectively
showed increased muscle activation of plantar flexors and decreased
stride duration after rehabilitation intervention for the same dataset.

To compare our results with those of Derungs and Amft (2020),
we additionally performed an analysis of stride duration using the
normalised root mean square error (nRMSE) as described in the
Supplementary Equation S2 and Supplementary Figure S5.
However, the aforementioned work analysed upper leg sensor
positions and dynamic acceleration only. Furthermore, ground
truth data was taken from the heel MoCap marker rather than
GRF in our work, which limits the comparison. Compared to Algo.
A1 in our work; Derungs and Amft (2020) showed smaller nRMSE
for the best performing sensor (0% vs. 17%), but larger errors for the
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worst performing sensor (44% vs. 36%), which may be due to the
combined static and dynamic acceleration model and GRF-based
ground truth used in our work. Algo. A2 showed similar nRMSE for
the best sensor (0.1%) and considerably smaller errors for the worst
performing sensor (8%). Thus Algo. A2 improves the error bound
compared to an acceleration-based detection.

Timing error across hemiparetic patient dataset varied
considerably between algorithm variants and sensor positions,
ranging from 16% to 160% mean nMAEs, corresponding to
temporal event deviations of approximately 220 ms–2,240 ms.
Timing errors reported by previous measurement studies ranged
between −28 ms and +190 ms, e.g., (Behboodi et al., 2015; Chia
Bejarano et al., 2015; Gouwanda and Gopalai, 2015; Zhou et al.,
2016; Lambrecht et al., 2017; Sánchez Manchola et al., 2019). We
assume that elevated error ranges may be observed for particular
patient groups and specific study designs (e.g., PRE and POST
intervention). However, a substantial share of the larger error
ranges found in our simulations can be explained by utilising an
absolute error metric, instead of averaging signed errors. When
averaging individual signed errors, early and late event detection
errors across individual gait cycles may compensate and thus,
result in artificially smaller mean error reporting. Similarly,
metrics derived from signed error, including accuracy,
precision, and recall may conceal the actual event timing
error. Therefore, we suggest that MAE or a metric variant
relative to stride duration, i.e., nMAE, as defined in Eq. 16,
should be applied for analyses of sensor positioning and
algorithm variants.

8.3 Biomechanical body model and shoe
model

We consider our approach robust and reproducible: we used
previously applied and validated biomechanical models in the well-
established and validated musculoskeletal modeling environment
OpenSim for our analysis (Delp et al., 2007; Seth et al., 2018; Karimi
et al., 2021; Yap et al., 2021). We applied default personalisation
procedures, using participant body weight andMoCap markers with
unchanged default weights. Our sensor models were derived using
fundamental physics-based equations. We validated our co-
simulation approach by comparing synthesised data and actual
IMU measurements (i.e., IMU data without modeling biases),
resulting in meaningful synthesis performance. Nevertheless,
further work may include sensitivity analyses, e.g., on MoCap
marker weights and further algorithm parameters, to explore
simulation variability.

According to rigid-body dynamics, vertical sensor translation
along a body segment does neither affect rotation nor angular
velocity. Thus, with a symmetric sensor distribution around limb
axes, synthesised sensor signals and timing errors are identical at
each ring of upper and lower legs (e.g., S1 on R1 vs. S1 on R2, see
Figure 3.). Our error analysis revealed that A2 algorithms were
more likely to incur rotational errors than translational errors,
which is a direct effect of gyroscope-based measurement. To add
further co-simulation fidelity, sensor placement may follow
natural body shapes more accurately, e.g., captured from

silhouette data. Further biomechanical research is needed to
adapt silhouette modeling concepts, e.g., those currently
investigated for animation purposes (Loper et al., 2015). A
particular challenge of animation models is to maintain
anatomically correct representation during motion (Baronetto
et al., 2021). We deployed non-deformable, feature-less
geometric silhouette models for shoes, which may
insufficiently represent natural sensor signal variation. Similar
to the auxiliary structure at limbs, the shoe model served as a
substrate for sensors and was not individually validated. Shoe
design and mechanical properties vary, including materials,
fixtures, and rigid structures. We believe that our co-
simulation framework enables researchers to investigate design
variations by adding corresponding mesh models into the
simulation, e.g., shoe and cloth designs.

A direct-link weld joint was used to simulate sensor
attachment. While a fixed sensor-bone fixation may not be
practically useful, it enabled us to contrast placement and
algorithm parameterisations in the present analysis, which
emphasised relative differences. Derungs and Amft (2020)
showed that simulating accelerometer attachment variation by
adding sinusoidal signal noise had only minor effects ( < 5%
change of nRMSE for step duration detection) (Chèze et al.,
1995). Similarly, Bogaarts et al. (2021) showed that for a
simulated smartphone worn at the pelvis, adding Gaussian
white noise via Monte Carlo Simulation, had a negligible
impact on estimating step power. We believe that future
research on realistic attachment modeling is needed to study
sensor performance effects and that our co-simulation
framework can provide an appropriate environment. While we
already show how non-ideal sensor placement influences sensor
readings (e.g., see Supplementary Figure S13–S15), further work
should simulate sensor specification variants to investigate
operational limits, including signal noise and gyroscope bias.

8.4 Perspectives

The proposed co-simulation framework focuses on optimising
information retrieval. For a wearable system realisation, other sensor
positioning priorities, e.g., according to user sensor wearing
preferences and technical feasibility, could be considered.
However, we consider that our information-driven simulation
framework can provide system designers with an initial
priorisation to select sensor positions, algorithms, and
parameters. Furthermore, co-simulations enable us to represent
temporal dynamics of individual motion and compensation
patterns that are challenging to describe analytically.

Our methodology enables wearable system designers and
algorithm developers to find suitable sensor types, position, and
algorithm parametrisation, when MoCap data, or similar body
orientation data is available. To implement an arbitrary
algorithm analysis, developers may follow the methods described
in Sections 3, 5.

Results of our analysis confirm a new pathway for wearable
system development and in silico performance evaluation using
human digital twins. Dynamic, model-based simulations of on-
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body systems could be used as a preliminary assessment before
testing in the physical world. For example, our co-simulation
framework could be used to assess wearable inertial sensor
systems for clinical testing, athletic tracking, and further proof of
concepts. In addition, initial simulation-based exploration could
help in planning of remote monitoring applications, before physical
prototypes are deployed or even fabricated. The human digital twins
developed in this work describe biomechanics and motion
phenomena, not any underlying neurological deficits. However,
neural control affects kinematics, which were captured in the
included study data.

9 Conclusion

We introduce a co-simulation framework that explores how
personalised biomechanical and motion sensor models can
assist in gait detection algorithm analysis and wearable
system design to achieve optimal body placement. Initially,
we validated sensor signal synthesis in a qualitative
comparison against measurements at the same participants,
confirming suitable performance of our co-simulation
approach. Subsequently, we evaluated common gait event
detection algorithms within our co-simulation framework
and showed absolute detection errors.

Gait phase analysis in hemiparetic patients demonstrated that
our framework can deal with highly complex gait patterns. The best
gait event detection performance was observed for an user-
dependent and sensor position-dependent algorithm
parameterisation (Algo. A2a), an increase of 65% compared to an
algorithm with user-independent parameterisation (Algo. A2b). For
comparison, sensor-position dependent parameterisation added
only 25% compared to position-independent detection (Algo.
A2c). While our simulations confirmed that gyroscope-based gait
event detection algorithms outperformed their acceleration-based
counterparts, the rotatory sensor error analysis demonstrated
limitations of a gyroscope-based gait phase detection: We found
larger IQRs when repositioning sensors around the main body
segment axis compared to repositioning sensors along the limb
axis for the gyroscope-based detection (Algo. A2c). We showed that
our framework can be used to evaluate different algorithms as well as
different gait phase models. For the commonly used algorithms
considered in this work, our analysis showed that there is a larger
dependency on the user than sensor position. Thus, user
personalisation of gait phase detection should be considered,
while sensor position variation may be a secondary adaptation
target.

Our co-simulation framework allowed us to evaluate arbitrary
sensor positions on the body. For example, sensor positions at the
shoe can lead to larger errors compared to upper and lower legs. In
addition, we can evaluate specific geometries, including shoe shape,
to determine optimal placement. For the shoe, instep and heel
positions were more suitable compared to lateral and medial
sensor positions.

Our approach opens a new pathway for utilising dynamic
human digital twins in wearable system design and performance
estimation, before physical prototypes are deployed or
manufactured.

Data availability statement

Publicly available datasets were analyzed in this study. This data
can be found here: https://simtk.org/projects/fesprediction.

Ethics statement

The studies involving human participants were reviewed and
approved by the ethics commitee of Friedrich-Alexander-University
Erlangen-Nuremberg. The patients/participants provided their
written informed consent to participate in this study.

Author contributions

LU performed framework development, algorithm
development, data analysis, and manuscript writing. AD
supported sensor data synthesis and provided validation data of
hemiparetic patients. OA supervised all development activities and
helped in all facets of the manuscript preparation. All authors read
and approved the final manuscript.

Acknowledgments

We acknowledge support by the Open Access Publication Fund
of the University of Freiburg. We thank Knarr et al. (2013) for
sharing motion capture data via OpenSimTK. Additionally, we
thank Sánchez Manchola et al. (2019) for making their code and
data available to us.

Conflict of interest

Author AD is employed by F. Hoffmann–La Roche Ltd., but
declares that there is no commercial or financial interest in the
research that represents a conflict of interest.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fbioe.2023.1104000/
full#supplementary-material

Frontiers in Bioengineering and Biotechnology frontiersin.org17

Uhlenberg et al. 10.3389/fbioe.2023.1104000

https://simtk.org/projects/fesprediction
https://www.frontiersin.org/articles/10.3389/fbioe.2023.1104000/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbioe.2023.1104000/full#supplementary-material
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1104000


References

Al Borno, M., O’Day, J., Ibarra, V., Dunne, J., Seth, A., Habib, A., et al. (2022).
OpenSense: An open-source toolbox for Inertial-measurement-unit-based
measurement of lower extremity kinematics over long durations. Journal of
NeuroEngineering and Rehabilitation 19, 22. doi:10.1186/738s12984-022-01001-x

Altini, M., Penders, J., Vullers, R., and Amft, O. (2015). Estimating energy
expenditure using body-worn accelerometers: A comparison of methods, sensors
number and positioning. IEEE J. Biomed. Health Inf. 19, 219–226. doi:10.1109/JBHI.
2014.2313039

Atallah, L., Lo, B., King, R., and Yang, G.-Z. (2011). Sensor positioning for activity
recognition using wearable accelerometers. IEEE Trans. Biomed. Circuits Syst. 5,
320–329. doi:10.1109/TBCAS.2011.2160540

Balaban, B., and Tok, F. (2014). Gait disturbances in patients with stroke. PM R
J. Inj. Funct. Rehabil. 6, 635–642. doi:10.1016/j.pmrj.2013.12.017

Balasubramanian, C. K., Neptune, R. R., and Kautz, S. A. (2009). Variability in
spatiotemporal step characteristics and its relationship to walking performance post-
stroke. Gait posture 29, 408–414. doi:10.1016/j.gaitpost.2008.10.061

Banos Legran, O., Damas, M., Pomares, H., Rojas, I., Toth, M., and Amft, O. (2012).
“A benchmark dataset to evaluate sensor displacement in activity recognition,” in
SAGAware 2012: International Workshop on Situation (Activity and Goal Awareness
(ACM)), 1026–1055. doi:10.1145/2370216.2370437

Baronetto, A., Uhlenberg, L., Wassermann, D., and Amft, O. (2021). “Simulation of
garment-embedded contact sensor performance under motion dynamics,” in ACM
International Symposium on Wearable Computers (Virtual Conference). doi:10.1145/
3460421.3480423

Behboodi, A., Wright, H., Zahradka, N., and Lee, S. C. K. (2015). “Seven phases of gait
detected in real-time using shank attached gyroscopes,” in 2015 37th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), 5529–5532. doi:10.1109/EMBC.2015.7319644

Bogaarts, G., Zanon, M., Dondelinger, F., Derungs, A., Lipsmeier, F., Gossens, C., et al.
(2021). “Simulating the impact of noise on gait features extracted from smartphone
sensor-data for the remote assessment of movement disorders,” in 2021 43rd Annual
International Conference of the IEEE Engineering inMedicine Biology Society (EMBC),
6905–6910. doi:10.1109/EMBC46164.2021.9630594

Canning, C. G., Ada, L., and Paul, S. S. (2006). Is automaticity of walking
regained after stroke? Disabil. Rehabilitation 28, 97–102. doi:10.1080/
09638280500167712

Catalfamo, P., Ghoussayni, S., and Ewins, D. (2010). Gait event detection on level
ground and incline walking using a rate gyroscope. Sensors (Basel, Switz.) 10,
5683–5702. doi:10.3390/s100605683

Chen, Z., Zhu, Q., Soh, Y. C., and Zhang, L. (2017). Robust human activity recognition
using smartphone sensors via CT-PCA and online SVM. IEEE Trans. Industrial Inf. 13,
3070–3080. doi:10.1109/TII.2017.2712746

Chèze, L., Fregly, B. J., and Dimnet, J. (1995). A solidification procedure to facilitate
kinematic analyses based on video system data. J. Biomech. 28, 879–884. doi:10.1016/
0021-9290(95)95278-D

Chia Bejarano, N., Ambrosini, E., Pedrocchi, A., Ferrigno, G., Monticone, M., and
Ferrante, S. (2015). A novel adaptive, real-time algorithm to detect gait events from
wearable sensors. IEEE Trans. Neural Syst. Rehabil. Eng. 23, 413–422. doi:10.1109/
TNSRE.2014.2337914

Delp, S. L., Anderson, F. C., Arnold, A. S., Loan, P., Habib, A., John, C. T., et al.
(2007). OpenSim: Open-Source software to create and analyze dynamic
simulations of movement. IEEE Trans. Biomed. Eng. 54, 1940–1950. doi:10.
1109/TBME.2007.901024

Derungs, A., and Amft, O. (2019). “Synthesising motion sensor data from
biomechanical simulations to investigate motion sensor placement and orientation
variations,” in 2019 41st Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC) (Berlin, Germany: IEEE), 6391–6394. doi:10.
1109/EMBC.2019.8857386

Derungs, A., and Amft, O. (2020). Estimating wearable motion sensor performance
from personal biomechanical models and sensor data synthesis.Nat. Sci. Rep. 10, 11450.
Available at: Https://rdcu.be/b5ynj. doi:10.1038/s41598-020-68225-6

Derungs, A., Schuster-Amft, C., andAmft, O. (2018). Physical activity comparison between
body sides in hemiparetic patients usingwearablemotion sensors in free-living and therapy: A
case series. Front. Bioeng. Biotechnol. 6, 136. doi:10.3389/fbioe.2018.00136

Duarte, M. (2021). Detecta: A Python module to detect events in data. doi:10.5281/
zenodo.4598962

Esteban, C., Hyland, S. L., and Rätsch, G. (2017). Real-valued (medical) time series
generation with recurrent conditional GANs. arXiv preprint arXiv:1706.02633.

Förster, K., Roggen, D., and Troster, G. (2009). “Unsupervised classifier self-
calibration through repeated context occurences: Is there robustness against sensor
displacement to gain?,” in ISWC 2009: International Symposium on Wearable
Computers (Washington, DC, USA: IEEE press), 77–84. doi:10.1109/ISWC.
2009.12

Gouwanda, D., and Gopalai, A. A. (2015). A robust real-time gait event detection
using wireless gyroscope and its application on normal and altered gaits. Med. Eng.
Phys. 37, 219–225. doi:10.1016/j.medengphy.2014.12.004

Guo, Y., Wei, Z., Keating, B. J., and Hakonarson, H. (2016). Machine learning derived
risk prediction of anorexia nervosa. BMCMed. Genomics 9, 4. doi:10.1186/s12920-016-
0165-x

Han, Y. C., Wong, K. I., and Murray, I. (2019). Gait phase detection for normal and
abnormal gaits using IMU. IEEE Sens. J. 19, 3439–3448. doi:10.1109/JSEN.2019.
2894143

Harms, H., Amft, O., and Tröster, G. (2012). “Does loose fitting matter? Predicting
sensor performance in smart garments,” in Bodynets 2012: Proceedings of the
International Conference on Body Area Networks (ACM), 1–4.

Hoelzemann, A., Sorathiya, N., and Van Laerhoven, K. (2021). “Data augmentation
strategies for human activity data using generative adversarial neural networks,” in
2021 IEEE International Conference on Pervasive Computing and Communications
Workshops and Other Affiliated Events (PerCom Workshops), 8–13. doi:10.1109/
PerComWorkshops51409.2021.9431046

Ingelse, L., Branco, D., Gjoreski, H., Guerreiro, T., Bouça-Machado, R., Ferreira, J. J.,
et al. (2022). Personalised gait recognition for people with neurological conditions.
Sensors 22, 3980. doi:10.3390/s22113980

Iwana, B. K., and Uchida, S. (2021). An empirical survey of data augmentation for
time series classification with neural networks. PLoS ONE 16, e0254841. doi:10.1371/
journal.pone.0254841

John, C. T., Anderson, F. C., Higginson, J. S., and Delp, S. L. (2013). Stabilisation of
walking by intrinsic muscle properties revealed in a three-dimensional muscle-driven
simulation. Comput. Methods Biomech. Biomed. Eng. 16, 451–462. doi:10.1080/
10255842.2011.627560

Kamel Boulos, M., and Zhang, P. (2021). Digital twins: From personalised medicine to
precision public health. J. Personal. Med. 11, 745. doi:10.3390/jpm11080745

Karimi, M. T., Hemmati, F., Mardani, M. A., Sharifmoradi, K., Hosseini, S. I.,
Fadayevatan, R., et al. (2021). Determination of the correlation between muscle
forces obtained from OpenSim and muscle activities obtained from
electromyography in the elderly. Phys. Eng. Sci. Med. 44, 243–251. doi:10.1007/
s13246-021-00973-9

Knarr, B. A., Kesar, T. M., Reisman, D. S., Binder-Macleod, S. A., and Higginson, J. S.
(2013). Changes in the activation and function of the ankle plantar flexor muscles due to
gait retraining in chronic stroke survivors. J. NeuroEng. Rehabil. 10, 12. doi:10.1186/
1743-0003-10-12

Kotiadis, D., Hermens, H., and Veltink, P. (2010). Inertial Gait Phase Detection for
control of a drop foot stimulator: Inertial sensing for gait phase detection. Med. Eng.
Phys. 32, 287–297. doi:10.1016/j.medengphy.2009.10.014

Kunze, K., and Lukowicz, P. (2014). Sensor placement variations in wearable activity
recognition. IEEE Pervasive Comput. 13, 32–41. doi:10.1109/MPRV.2014.73

Kwon, H., Tong, C., Haresamudram, H., Gao, Y., Abowd, G. D., Lane, N. D., et al.
(2020). IMUTube: Automatic extraction of virtual on-body accelerometry from video
for human activity recognition. Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol. 4. doi:10.1145/3411841

Kwon, H., Wang, B., Abowd, G. D., and Plötz, T. (2021). Approaching the real-world:
Supporting activity recognition training with virtual IMU data. Proc. ACM Interact.
Mob. Wearable Ubiquitous Technol. 5, 111:1–111:32. doi:10.1145/3478096

Lambrecht, S., Harutyunyan, A., Tanghe, K., Afschrift, M., De Schutter, J., and
Jonkers, I. (2017). Real-time gait event detection based on kinematic data coupled to a
biomechanical model†. Sensors 17, 671. doi:10.3390/s17040671

Lämsä, A., Tervonen, J., Liikka, J., Álvarez Casado, C., and Bordallo Lopez, M. (2022).
Video2IMU: Realistic IMU features and signals from videos

Lau, H. Y. A., and Tong, R. K.-Y. (2008). The reliability of using accelerometer and
gyroscope for gait event identification on persons with dropped foot. Gait posture 27,
248–257. doi:10.1016/j.gaitpost.2007.03.018

Lester, J., Choudhury, T., and Borriello, G. (2006). “A practical approach to
recognizing physical activities,” in Pervasive 2006: Proceedings of the 4th
International Conference on Pervasive Computing. Editors K. P. Fishkin, B. Schiele,
P. Nixon, and A. Quigley (Springer Berlin, Heidelberg), 1–16. Lecture notes in computer
science. doi:10.1007/11748625〈sub〉1〈/sub〉
Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., and Black, M. J. (2015). SMPL: A

skinned multi-person linear model. ACM Trans. Graph. 34, 1–16. doi:10.1145/2816795.
2818013

Mannini, A., and Sabatini, A. M. (2010). Machine learning methods for classifying
human physical activity from on-body accelerometers. Sensors (Basel, Switz. 10,
1154–1175. doi:10.3390/s100201154

Mannini, A., Trojaniello, D., Cereatti, A., and Sabatini, A. M. (2016). A machine
learning framework for gait classification using inertial sensors: Application to elderly,
post-stroke and huntington’s disease patients. Sensors 16, 134. doi:10.3390/s16010134

Frontiers in Bioengineering and Biotechnology frontiersin.org18

Uhlenberg et al. 10.3389/fbioe.2023.1104000

https://doi.org/10.1186/738s12984-022-01001-x
https://doi.org/10.1109/JBHI.2014.2313039
https://doi.org/10.1109/JBHI.2014.2313039
https://doi.org/10.1109/TBCAS.2011.2160540
https://doi.org/10.1016/j.pmrj.2013.12.017
https://doi.org/10.1016/j.gaitpost.2008.10.061
https://doi.org/10.1145/2370216.2370437
https://doi.org/10.1145/3460421.3480423
https://doi.org/10.1145/3460421.3480423
https://doi.org/10.1109/EMBC.2015.7319644
https://doi.org/10.1109/EMBC46164.2021.9630594
https://doi.org/10.1080/09638280500167712
https://doi.org/10.1080/09638280500167712
https://doi.org/10.3390/s100605683
https://doi.org/10.1109/TII.2017.2712746
https://doi.org/10.1016/0021-9290(95)95278-D
https://doi.org/10.1016/0021-9290(95)95278-D
https://doi.org/10.1109/TNSRE.2014.2337914
https://doi.org/10.1109/TNSRE.2014.2337914
https://doi.org/10.1109/TBME.2007.901024
https://doi.org/10.1109/TBME.2007.901024
https://doi.org/10.1109/EMBC.2019.8857386
https://doi.org/10.1109/EMBC.2019.8857386
http://Https://rdcu.be/b5ynj
https://doi.org/10.1038/s41598-020-68225-6
https://doi.org/10.3389/fbioe.2018.00136
https://doi.org/10.5281/zenodo.4598962
https://doi.org/10.5281/zenodo.4598962
https://doi.org/10.1109/ISWC.2009.12
https://doi.org/10.1109/ISWC.2009.12
https://doi.org/10.1016/j.medengphy.2014.12.004
https://doi.org/10.1186/s12920-016-0165-x
https://doi.org/10.1186/s12920-016-0165-x
https://doi.org/10.1109/JSEN.2019.2894143
https://doi.org/10.1109/JSEN.2019.2894143
https://doi.org/10.1109/PerComWorkshops51409.2021.9431046
https://doi.org/10.1109/PerComWorkshops51409.2021.9431046
https://doi.org/10.3390/s22113980
https://doi.org/10.1371/journal.pone.0254841
https://doi.org/10.1371/journal.pone.0254841
https://doi.org/10.1080/10255842.2011.627560
https://doi.org/10.1080/10255842.2011.627560
https://doi.org/10.3390/jpm11080745
https://doi.org/10.1007/s13246-021-00973-9
https://doi.org/10.1007/s13246-021-00973-9
https://doi.org/10.1186/1743-0003-10-12
https://doi.org/10.1186/1743-0003-10-12
https://doi.org/10.1016/j.medengphy.2009.10.014
https://doi.org/10.1109/MPRV.2014.73
https://doi.org/10.1145/3411841
https://doi.org/10.1145/3478096
https://doi.org/10.3390/s17040671
https://doi.org/10.1016/j.gaitpost.2007.03.018
https://doi.org/10.1007/11748625�sub�1�/sub�
https://doi.org/10.1007/11748625�sub�1�/sub�
https://doi.org/10.1007/11748625�sub�1�/sub�
https://doi.org/10.1007/11748625�sub�1�/sub�
https://doi.org/10.1145/2816795.2818013
https://doi.org/10.1145/2816795.2818013
https://doi.org/10.3390/s100201154
https://doi.org/10.3390/s16010134
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1104000


Maqbool, F., Husman, M., Awad, M., Abouhossein, A., Iqbal, N., and Dehghani-Sanij,
A. (2016). A real-time gait event detection for lower limb prosthesis control and
evaluation. IEEE Trans. Neural Syst. Rehabil. Eng. 1, 1500–1509. doi:10.1109/TNSRE.
2016.2636367

Martindale, C. F., Roth, N., Gassner, H., Jensen, D., Kohl, Z., and Eskofier, B. (2018).
“Mobile gait analysis using personalised hidden Markov models for hereditary spastic
paraplegia patients,” in 2018 40th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), 5430–5433.

Mundt, M., Koeppe, A., David, S., Witter, T., Bamer, F., Potthast, W., et al. (2020).
Estimation of gait mechanics based on simulated and measured IMU data using an
artificial neural network. Front. Bioeng. Biotechnol. 8, 41. doi:10.3389/fbioe.2020.00041

NIH National Center for Simulation in Rehabilitation Research (NCSRR) (2007).
Creating plugins - OpenSim documentation - global site. [Dataset]. Available at: https://
simtk-confluence.stanford.edu:8443/display/OpenSim/Creating+Plugins.

Nilsson, S., Ertzgaard, P., Lundgren, M., and Grip, H. (2022). Test-retest reliability of
kinematic and temporal outcomemeasures for clinical gait and stair walking tests, based
on wearable inertial sensors. Sensors (Basel, Switz.) 22, 1171. doi:10.3390/s22031171

Niswander, W., Wang, W., and Kontson, K. (2020). Optimization of IMU sensor
placement for the measurement of lower limb joint kinematics. Sensors 20, 5993. doi:10.
3390/s20215993

Pacini Panebianco, G., Bisi, M., Stagni, R., and Fantozzi, S. (2018). Analysis of the
performance of 17 algorithms from a systematic review: Influence of sensor position,
analysed variable and computational approach in gait timing estimation from IMU
measurements. Gait Posture 66, 76–82. doi:10.1016/j.gaitpost.2018.08.025

Perry, J., and Bunfield, J. (2010). Gait analysis: Normal and pathological function. 2nd
ed. edn. Thorofare, NJ: SLACK Incorporated.

Pizzolato, C., Saxby, D. J., Palipana, D., Diamond, L. E., Barrett, R. S., Teng, Y. D., et al.
(2019). Neuromusculoskeletal modeling-based prostheses for recovery after spinal cord
injury. Front. Neurorobotics 13, 97. doi:10.3389/fnbot.2019.00097

Prasanth, H., Caban, M., Keller, U., Courtine, G., Ijspeert, A., Vallery, H., et al. (2021).
Wearable sensor-based real-time gait detection: A systematic review. Sensors 21, 2727.
doi:10.3390/s21082727

Rajagopal, A., Dembia, C. L., DeMers, M. S., Delp, D. D., Hicks, J. L., and Delp, S. L.
(2016). Full-body musculoskeletal model for muscle-driven simulation of human gait.
IEEE Trans. bio-Med. Eng. 63, 2068–2079. doi:10.1109/TBME.2016.2586891

Richards, C., and Higginson, J. (2010). Knee contact force in subjects with
symmetrical OA grades: Differences between OA severities. J. Biomech. 43,
2595–2600. doi:10.1016/j.jbiomech.2010.05.006

Rueterbories, J., Spaich, E. G., and Andersen, O. K. (2013). Characterization of gait
pattern by 3D angular accelerations in hemiparetic and healthy gait. Gait Posture 37,
183–189. doi:10.1016/j.gaitpost.2012.06.029

Rueterbories, J., Spaich, E. G., and Andersen, O. K. (2014). Gait event detection for use
in FES rehabilitation by radial and tangential foot accelerations. Med. Eng. Phys. 36,
502–508. doi:10.1016/j.medengphy.2013.10.004

Sánchez Manchola, M. D., Bernal, M. J. P., Munera, M., and Cifuentes, C. A. (2019). Gait
phase detection for lower-limb exoskeletons using foot motion data from a single inertial
measurement unit in hemiparetic individuals. Sensors 19, 2988. doi:10.3390/s19132988

Seth, A., Hicks, J. L., Uchida, T. K., Habib, A., Dembia, C. L., Dunne, J. J., et al. (2018).
OpenSim: Simulating musculoskeletal dynamics and neuromuscular control to study human
and animal movement. PLoS Comput. Biol. 14, e1006223. doi:10.1371/journal.pcbi.1006223

Sharifi Renani, M., Eustace, A. M., Myers, C. A., and Clary, C. W. (2021). The use
of synthetic IMU signals in the training of deep learning models significantly
improves the accuracy of joint kinematic predictions. Sensors 21, 5876. doi:10.
3390/s21175876

Taborri, J., Scalona, E., Palermo, E., Rossi, S., and Cappa, P. (2015). Validation of
inter-subject training for hidden Markov models applied to gait phase detection in
children with cerebral palsy. Sensors 15, 24514–24529. doi:10.3390/s150924514

Taborri, J., Palermo, E., Rossi, S., and Cappa, P. (2016). Gait partitioning methods: A
systematic review. Sensors 16, 66. doi:10.3390/s16010066

Thiemjarus, S. (2010). “A device-orientation independent method for activity
recognition,” in 2010 International Conference on Body Sensor Networks, 19–23.
doi:10.1109/BSN.2010.55

Tulipani, L. J., Meyer, B., Larie, D., Solomon, A. J., andMcGinnis, R. S. (2020). Metrics
extracted from a single wearable sensor during sit-stand transitions relate to mobility
impairment and fall risk in people with multiple sclerosis. Gait posture 80, 361–366.
doi:10.1016/j.gaitpost.2020.06.014

Uhlenberg, L., and Amft, O. (2022). “Comparison of surface models and skeletal
models for inertial sensor data synthesis,” in 2022 IEEE-EMBS International
Conference on Wearable and Implantable Body Sensor Networks (BSN) (IEEE).
doi:10.1109/BSN56160.2022.9928504

Vu, H. T. T., Dong, D., Cao, H.-L., Verstraten, T., Lefeber, D., Vanderborght, B., et al.
(2020). A review of gait phase detection algorithms for lower limb prostheses. Sensors
(Basel, Switz. 20, 3972. doi:10.3390/s20143972

Wang, X., Kuzmicheva, O., Spranger, M., and Gräser, A. (2015). “Gait feature analysis
of polyneuropathy patients,” in 2015 IEEE International Symposium on Medical
Measurements and Applications (MeMeA) Proceedings, 58–63. doi:10.1109/
MeMeA.2015.7145172

Yap, Y. T., Gouwanda, D., Gopalai, A. A., and Chong, Y. Z. (2021). The effect of
asymmetrical gait induced by unilateral knee brace on the knee flexor and extensor
muscles. Med. Biol. Eng. Comput. 59, 711–720. doi:10.1007/s11517-021-02337-7

Ye, J., Wu, H., Wu, L., Long, J., Zhang, Y., Chen, G., et al. (2020). An adaptive method
for gait event detection of gait rehabilitation robots. Front. Neurorobotics 14, 38. doi:10.
3389/fnbot.2020.00038

Zhang, S., and Alshurafa, N. (2020). “Deep generative cross-modal on-body
accelerometer data synthesis from videos,” in Adjunct Proceedings of the
2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing
and Proceedings of the 2020 ACM International Symposium on Wearable Computers
(Virtual Event, Mexico: Association for Computing Machinery), 223–227.
UbiComp-ISWC ’20. doi:10.1145/3410530.3414329

Zhao, H.-Y., Wang, Z., Qiu, S., Xu, F., Wang, Z., Shen, Y., et al. (2019). Adaptive gait
detection based on foot-mounted inertial sensors and multi-sensor fusion. Inf. Fusion
52, 157–166. doi:10.1016/j.inffus.2019.03.002

Zhao, S. (2016). Time derivative of rotation matrices: A tutorial. arXiv preprint arXiv:
1609.06088.

Zhou, H., Ji, N., Samuel, O.W., Cao, Y., Zhao, Z., Chen, S., et al. (2016). Towards real-
time detection of gait events on different terrains using time-frequency analysis and
peak heuristics algorithm. Sensors 16, 1634. doi:10.3390/s16101634

Zimmermann, T., Taetz, B., and Bleser, G. (2018). IMU-to-Segment assignment and
orientation alignment for the lower body using deep learning. Sensors 18, 302. doi:10.
3390/s18010302

Frontiers in Bioengineering and Biotechnology frontiersin.org19

Uhlenberg et al. 10.3389/fbioe.2023.1104000

https://doi.org/10.1109/TNSRE.2016.2636367
https://doi.org/10.1109/TNSRE.2016.2636367
https://doi.org/10.3389/fbioe.2020.00041
https://simtk-confluence.stanford.edu:8443/display/OpenSim/Creating+Plugins
https://simtk-confluence.stanford.edu:8443/display/OpenSim/Creating+Plugins
https://doi.org/10.3390/s22031171
https://doi.org/10.3390/s20215993
https://doi.org/10.3390/s20215993
https://doi.org/10.1016/j.gaitpost.2018.08.025
https://doi.org/10.3389/fnbot.2019.00097
https://doi.org/10.3390/s21082727
https://doi.org/10.1109/TBME.2016.2586891
https://doi.org/10.1016/j.jbiomech.2010.05.006
https://doi.org/10.1016/j.gaitpost.2012.06.029
https://doi.org/10.1016/j.medengphy.2013.10.004
https://doi.org/10.3390/s19132988
https://doi.org/10.1371/journal.pcbi.1006223
https://doi.org/10.3390/s21175876
https://doi.org/10.3390/s21175876
https://doi.org/10.3390/s150924514
https://doi.org/10.3390/s16010066
https://doi.org/10.1109/BSN.2010.55
https://doi.org/10.1016/j.gaitpost.2020.06.014
https://doi.org/10.1109/BSN56160.2022.9928504
https://doi.org/10.3390/s20143972
https://doi.org/10.1109/MeMeA.2015.7145172
https://doi.org/10.1109/MeMeA.2015.7145172
https://doi.org/10.1007/s11517-021-02337-7
https://doi.org/10.3389/fnbot.2020.00038
https://doi.org/10.3389/fnbot.2020.00038
https://doi.org/10.1145/3410530.3414329
https://doi.org/10.1016/j.inffus.2019.03.002
https://doi.org/10.3390/s16101634
https://doi.org/10.3390/s18010302
https://doi.org/10.3390/s18010302
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1104000

	Co-simulation of human digital twins and wearable inertial sensors to analyse gait event estimation
	1 Introduction
	2 Related work
	2.1 Data simulation and synthesis
	2.2 Sensor positioning
	2.3 Gait event detection algorithms

	3 Co-simulation framework
	3.1 Biomechanical body model and shoe model
	3.2 Inertial sensor models
	3.3 Co-simulation and sensor signal synthesis

	4 Gait detection algorithms
	4.1 Peak detection function
	4.2 Algorithm-specific parameterisation
	4.2.1 IC event detection used in Algo. A1
	4.2.2 IC event detection used in Algo. A2
	4.2.3 TO event detection used in Algo. A2
	4.2.4 MSw event detection used in Algo. A2
	4.2.5 MSt event detection used in Algo. A2


	5 Evaluation procedure
	5.1 Evaluation dataset
	5.2 Ground truth
	5.3 Algorithm validation approach
	5.3.1 Algo. A1 and Algo. A2a
	5.3.2 Algo. A2b
	5.3.3 Algo. A2c

	5.4 Gait event evaluation

	6 Model validation
	7 Results
	7.1 Event detection with the 1-phase model
	7.2 Event detection with the 2-phase model
	7.3 Event detection with the 4-phase model
	7.4 Rotatory and translatory errors

	8 Discussion
	8.1 Model validation
	8.2 Algorithm and performance analysis
	8.3 Biomechanical body model and shoe model
	8.4 Perspectives

	9 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


