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Maternal malnutrition hampers the offspring health by manipulating the 
epigenome. Recent studies indicate that the changes in DNA methylation could 
be reversed by afterbirth nutrition supplementation. In this study, we used DNA 
methylation arrays to comprehensively investigate the DNA methylation status 
of the renal promoter regions and the effects of postnatal protein intake on DNA 
methylation. We fed stroke-prone spontaneously hypertensive (SHRSP) rat dams 
a normal diet or a low-protein diet during pregnancy, and their 4-week-old male 
offspring were fed a normal diet or a high−/low-protein diet for 2 weeks. We found 
that the methylation status of 2,395 differentially methylated DNA regions was 
reprogrammed, and 34 genes were reset by different levels of postnatal protein 
intake in the offspring. Among these genes, Adora2b, Trpc5, Ar, Xrcc2, and Atp1b1 
are involved in renal disease and blood pressure regulation. Our findings indicate 
that postnatal nutritional interventions can potentially reprogram epigenetic 
changes, providing novel therapeutic and preventive epigenetic targets for salt-
sensitive hypertension.
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1. Introduction

Hypertension is a serious medical condition that significantly increases the risks of 
cardiovascular, brain, renal, and other diseases, and is a major cause of premature death 
worldwide (1). Although the pathogenesis of hypertension is not yet fully elucidated, current 
evidence indicates that the origins of hypertension can be linked to the very early life stage. The 
developmental origins of health and disease (DOHaD) concept, which considers postnatal 
exposures to environmental stimuli as important risk factors for non-communicable diseases 
(2), has increasingly been applied to discover and explain the developmental pathology of 
hypertension. According to previous animal studies, a variety of environmental stimuli received 
in utero appear to participate in the etiology of hypertension, including maternal overnutrition, 
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maternal undernutrition, maternal renal insufficiency (3, 4), and 
others. The DOHaD concept posits that in utero stimuli influence 
offspring development and health by modifying the “epigenic 
phenotype” and forming an “epi-memory.” Among the major 
epigenetic modifications of DNA methylation, histone modification, 
and non-coding RNA, DNA methylation variance has garnered the 
most research attention to date (5). Epigenetic modifications are 
considered to be reversible, since they depend on the binding and 
release of chemical residues to DNA sequences and histone bonds. 
Therefore, using a balanced diet as a therapeutic agent immediately 
after birth may reverse the adverse effects caused by 
maternal malnutrition.

Studies on overnutrition suggest that high fructose intake during 
pregnancy can cause hypertension in offspring (6), and that excess 
fructose, fat, and salt intake have a synergistic effect on increased 
blood pressure in adult offspring (7, 8). Moreover, mothers fed a high-
protein/low-carbohydrate diet during pregnancy tend to have 
offspring with increased blood pressure and a higher risk of 
glomerulosclerosis (9). Micronutrient deficiencies during pregnancy 
have also been linked to an increased risk of hypertension in offspring. 
For example, causal links have been demonstrated in maternal 
nutritional status characterized by deficits in calcium (10), iron (11), 
zinc (12), and vitamin D (13) with hypertension in the offspring. 
Besides the above programming insults, maternal protein restriction 
has been established as a common developmental origin of 
hypertension. Studies in rodents have consistently reported that 6–9% 
protein restriction in pregnant mothers resulted in hypertension in 
adult offspring (14–17). Previous studies led to several hypotheses 
about the underlying mechanisms, involving the suppression of the 
newborn renin-angiotensin system (18), impairment to nephrogenesis 
(19), triggering oxidative disruption in the medulla oblongata (20), or 
hindering the hypothalamic–pituitary–adrenal axis (21). However, 
there have been sparse reports on uncovering the role of epigenetic 
regulation in the pathology of hypertension.

We previously reported that maternal protein restriction 
modulates the methylation state of the renal prostaglandin E receptor 
1 gene (Ptger1), a key regulator of hypertension, in the stroke-prone 
spontaneously hypertensive (SHRSP) rat model (17). In the present 
study, we administered SHRSP pups diets with different amounts of 
protein after a state of fetal protein restriction to investigate whether 
postnatal protein supplementation could rectify the negative changes 
in DNA methylation under malnutrition in pregnancy.

2. Materials and methods

2.1. Animal experiments

SHRSP rats obtained from Japan SLC, Inc. (Shizuoka, Japan) were 
kept under a 12 h light–dark cycle (light period 8:00–20:00), 
temperature of 22 ± 1°C, and humidity of 60 ± 5%. The animal 
experiments were approved and conducted in strict accordance with 
the guidelines stipulated by the Animal Usage Committee of the 
Graduate School of Agricultural and Life Sciences, University of 
Tokyo (approval no. P09-376).

Nine-week-old male and female SHRSP rats were placed in 
separate cages for 1 week of acclimatization and fed a control (CN) 

diet as the normal diet. After acclimatization, male and female rats 
were mated by cohabiting overnight, and pregnancy was determined 
by the presence of a semen plug the following morning (day 0 of 
pregnancy). Pregnant dams were divided into two groups: those fed 
a CN diet ad libitum (mCN group) and those fed a low-protein diet 
(9% casein diet) ad libitum (mLP group). After delivery, all dams 
and offspring were fed the CN diet. At 28 days after birth, male pups 
were separated from the dams and divided into six groups (n = 5 per 
group) based on the pregnant dam’s diet and the diet of the pup. 
Pups in the mCN-CN and mLP-CN groups were fed the CN diet, 
those in the mCN-LP and mLP-LP groups were fed the low-protein 
diet, and those in the mCN-HP and mLP-HP groups were fed a 
high-protein diet (40% casein diet), each for 2 weeks. At six-weeks 
of age, male offspring were sacrificed, and their livers, kidneys, and 
intraperitoneal fat were collected. After weighing, a portion of the 
collected kidneys was cut for RNA extraction, soaked in RNA Later 
(Life Technologies Japan Ltd., Tokyo, Japan) at 4°C overnight, and 
then stored at −20°C. The remaining kidneys were immediately 
frozen in liquid nitrogen and stored at −80°C until analysis. The 
feed composition is shown in Supplementary Table S1 and the 
rearing schedule is shown in Figure 1. The body weights, total food 
intake, and tissue weights of the rats are shown in 
Supplementary Table S2.

2.2. DNA extraction

DNA from the kidney was extracted using DNAiso Reagent 
(Takara Bio, Tokyo, Japan). Briefly, 1.5 ml DNAiso Reagent was 
added to 40 mg of kidney tissue, crushed using a homogenizer, 
and left to stand for 5 min at room temperature. DNA was 
extracted from the homogenate according to the manufacturer’s 
protocol. The DNA quality was checked by electrophoresis (100 V, 
20 min) using 1.2% agarose gel, and the DNA concentration was 
measured using a NanoDrop instrument (ND-1000, NanoDrop 
Technologies). The extracted DNA was stored at −80°C 
until analysis.

2.3. DNA methylation array

DNA methylation status was comprehensively analyzed by 
combining methylated DNA immunoprecipitation (MeDIP) and 
microarray technology outsourced to the MeDIP-chip microarray 
contract analysis service (Arraystar, Rockville, MD, USA). Briefly, 
1 μg DNA of each sample was incubated for 10 min at 98°C with 1 
optical density (OD) of Cy5-9mer primer (immunoprecipitation 
sample) or Cy3-9mer primer (input sample). Then, 100 pmol of 
deoxynucleoside triphosphates and 100 U of the Klenow fragment 
(New England Biolabs, Ipswich, MA, USA) were added and the 
mixture was incubated at 37°C for 2 h. The reaction was stopped by 
adding 0.1 volume of 0.5 M ethylenediaminetetraacetic acid and the 
labeled DNA was purified by isopropanol/ethanol precipitation. 
Microarrays were hybridized at 42°C for 16–20 h with Cy3/5-labeled 
DNA in NimbleGen hybridization buffer/hybridization component 
A in a hybridization chamber (Hybridization System, NimbleGen 
Systems, Inc., Madison, WI, USA). Following hybridization, washing 
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was performed using the NimbleGen Wash Buffer kit (NimbleGen 
Systems, Inc.). For array hybridization, ArrayStar Rat RefSeq 
Promoter Array was used, which is a single-array design that includes 
23,148 gene promoter regions (from approximately −1,300 bp to 
+500 bp of the transcription start sites) covered by approximately 
180,000 probes with approximately 210 bp spacing, depending on the 
sequence composition of the region. For data normalization, to avoid 
technical variability and effectively evaluate methylation differences 
between samples, the raw data value was normalized using the log2-
ratio. Median-centering, quantile normalization, and linear 
smoothing were performed by the Bioconductor packages Ringo, 
limma, and MEDME. The log2-normalized data were established for 
each sample and used in further peak-finding analysis. A sliding 
window (1,500 bp) peak-finding algorithm provided by NimbleScan 
v2.5 (Roche-NimbleGen) was applied to analyze the MeDIP-chip 
data. A one-sided Kolmogorov–Smirnov (KS) test was applied to 
determine whether the probes were drawn from a significantly more 
positive distribution of intensity log2-ratios than those in the rest of 
the array. Each probe was given a –log10 value of p score from the 
windowed KS test around that probe. If several adjacent probes rise 
significantly above a set threshold, the region is assigned to an 
enrichment peak. The peak data files were generated from the value 
of p data files. NimbleScan detects peaks by searching for at least two 
probes above a value of p minimum cutoff (−log10) of 2. Peaks within 
500 bp of each other were merged.

2.4. Statistical analysis

Body weight, tissue weight, and food intake of the rats are 
expressed as the mean ± standard error. Multiple-comparison tests 
with two factors such as fetal protein nutrition and postnatal protein 
nutrition were performed using two-way analysis of variance and 
Tukey’s post-hoc test. Statistical significance was set at p < 0.05.

3. Results

3.1. Identification of differentially 
methylated CpG sites in the promoter 
regions

The methylation of DNA promoter regions affects the 
transcriptional expression of their downstream genes. Therefore, 
differentially methylated regions (DMRs) in the promoters were 
examined using DNA methylation arrays. First, the number of DMRs 
in each group was compared. Promoter regions were classified into 
three groups (high-CpG-density promoter, HCP; low-CpG-density 
promoter, LCP; and intermediate-CpG-density promoter, ICP) 
according to the CpG ratio, GC content, and length of the CpG-rich 
regions. HCPs are promoters containing a 500 bp interval from 
−0.7 kb to +0.2 kb with a (G + C) fraction ≥0.55 and a CpG observed-
to-expected ratio (O/E) ≥ 0.6. An LCP is a promoter containing no 
500 bp interval and a CpG O/E ≥ 0.4. ICPs are promoters that are 
neither HCPs nor LCPs. Compared with the mCN-CN group, 478 
DMRs were hypermethylated and 576 were hypomethylated in the 
mLP-CN group (Table 1; Supplementary Figure S1). Compared to the 
mLP-CN group, 697 DMRs were hypermethylated and 405 were 
hypomethylated in the mLP-LP group, while 927 hypermethylated 
DMRs and 366 hypomethylated DMRs were obtained in the mLP-HP 
group vs. the mLP-CN group (Table 1; Supplementary Figure S1).

3.2. Pathway analysis of genes in the 
vicinity of DMRs altered by maternal 
protein restriction

In the comparison of mLP-CN vs. mCN-CN, the top five signaling 
pathways with highest enrichment scores for the hypermethylated 
genes were synaptic vesicle cycle; alanine, aspartate, and glutamate 

FIGURE 1

Schedule of the animal experiment. mLP-CN, maternal low-protein diet and control diet in offspring; mCN-CN, maternal control diet and control diet 
in offspring; mLP-LP, maternal low-protein diet and low-protein diet in offspring; mLP-HP, maternal low-protein diet and high-protein diet in offspring.
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metabolism; RNA transport; mitogen-activated protein kinase 
(MAPK) signaling pathway; and oxidative phosphorylation 
(Figure 2A). As a counterpart, hypomethylated genes were enriched 
in basal cell carcinoma, breast cancer, gastric cancer, neurotrophin 
signaling pathway, and glycosaminoglycan biosynthesis (Figure 2B). 
Next, Gene Ontology (GO) analysis of enriched biological process and 
molecular function terms was performed. As shown in Figures 2C,D, 
at the biological process level, the identified hypermethylated genes 
were mainly associated with various metabolic processes, whereas the 
hypomethylated genes were mainly involved in processes related to 
cellular progress regulation. As shown in Figures 2E,F, at the molecular 
function level, hypermethylated genes were mainly involved in 
molecular binding functions and catalytic activity, whereas the 
hypomethylated genes were mainly involved in disturbed protein 
binding functions.

3.3. Effect of postnatal protein intake on 
genes with altered DNA methylation status 
due to maternal protein restriction

Focusing on the pathways described in the previous section that 
possibly affect renal function and gene expression regulation, 
we examined whether genes with altered DNA methylation status due 
to maternal protein restriction could be reset by postnatal dietary 
protein correction. Among the genes that were altered to a 
hypermethylated state due to low maternal protein intake, Ddx3x 
(encoding the ATP-dependent RNA helicase DDX3X), Ivd (encoding 
mitochondrial isovaleryl-CoA dehydrogenase), Pcgf6 (encoding 
polycomb group RING finger protein 6), S100g (encoding protein 
S100-G), and Xrcc2 (encoding the DNA repair protein XRCC2) were 
identified as genes whose methylation status was reset by both 

low- and high-protein diets after birth. In addition, 11 genes were 
reset with a low-protein diet after birth, including Adora2b (adenosine 
receptor A2b) and Aplf (aprataxin and PNK-like factor), whereas 
genes reset by only a high-protein diet after birth included Ar 
(androgen receptor) and Csf3 (granulocyte colony-stimulating factor) 
(Table 2).

In contrast, among the genes altered to a hypomethylated state 
due to maternal low-protein intake, Atp1b1 (sodium/potassium-
transporting ATPase subunit) and Ly6g6d (lymphocyte antigen 6 
complex locus protein G6d) were identified to have a reset methylation 
status by both low- and high-protein diets after birth (Table 2). There 
were 10 genes reset by only a low-protein diet after birth (Table 2), 
including Bax (encoding the apoptosis regulator BAX) and Chrna4 
(encoding the neuronal acetylcholine receptor subunit alpha-4), 
whereas the genes reset by only a high-protein diet after birth included 
Casq2 (calsequestrin-2 precursor), Eif5a (eukaryotic translation 
initiation factor 5A-1), Mapt (microtubule-associated protein tau), 
and Sp7 (the transcription factor Sp7 isoform 2) (Table 2). For these 
genes whose hyper- or hypomethylated status was reset, the 
PeakDMvalue of the mLP-LP and mLP-HP groups did not vary 
compared to the mCN-CN group (data not shown).

4. Discussion

Maternal protein restriction hampers the health of offspring, 
causing long-lasting impacts by manipulating the descendent 
epigenome. In the present study, we investigated whether postnatal 
protein intake could remedy this situation at the methylation level.

We administered three diets to the pups of SHRSP rats under a 
state of dietary protein restriction during pregnancy: a CN diet with an 
“adequate” protein content, which is equivalent to the control 
condition; a low-protein diet to mimic a “continued restricted” protein 
content condition, representing a state of intergenerational 
undernutrition; and a high-protein diet to validate whether there could 
be  an “excess compensation” effect. We  therefore conducted three 
comparisons using methylome analyses, and found that postnatal CN 
remedy after maternal protein restriction still resulted in 1,054 DMRs 
compared with the state of non-protein deficiency throughout the 
study (mLP-CN vs. mCN-CN); however, cross-generation protein 
deficiency (mLP-LP) resulted in 1,102 DMRs in mLP-LP compared to 
the mLP-CN condition. Excessive protein also resulted in an altered 
methylated profile in the offspring. These results demonstrated that 
DNA methylation status in renal tissue is influenced by not only 
maternal nutrition but also postnatal nutritional status.

The methylated states of several genes that play important 
roles in renal disease and blood pressure regulation were found to 
be reset by postnatal low- or high-protein intake. Among them, 
postnatal high-protein administration reset the methylated states 
of Atp1b1, encoding an Na+/K+-ATPase as an important factor for 
blood pressure regulation because it reabsorbs sodium in the renal 
tubules (22–24). Polymorphisms of Atp1b1 have been associated 
with blood pressure (22). The postnatal high-protein condition 
also reset the methylation status of Xrcc2, a key gene in the DNA 
repair process (25), and Ar, which plays a role in renal sodium and 
calcium excretion and in maintaining blood pressure (26). As AR 
is closely related to blood pressure regulation and has been 
reported to affect Enac-α expression (27, 28), it is possible that the 

TABLE 1 Number of differentially methylated CpG sites of promoter 
regions in the kidney for comparisons between treatment groups.

Comparison All 
regions

HCP ICP LCP

mLP-CN vs. mCN-CN

Hypermethylated DMRs 478 280 129 69

Hypomethylated DMRs 576 264 152 160

Total DMRs 1,054 544 281 229

mLP-LP vs. mLP-CN

Hypermethylated DMRs 697 408 172 117

Hypomethylated DMRs 405 188 124 93

Total DMRs 1,102 596 296 210

mLP-HP vs. mLP-CN

Hypermethylated DMRs 927 486 233 208

Hypomethylated DMRs 366 162 107 97

Total DMRs 1,293 648 340 305

DMRs were classified into three categories—high-CpG-density promoter (HCP), low-CpG-
density promoter (LCP), and intermediate-CpG-density promoter (ICP)—according to the 
CpG ratio, GC content, and length of CpG-rich regions. DMR, differentially methylated gene 
region; mLP-CN, maternal low-protein diet and control diet in offspring; mCN-CN, 
maternal control diet and control diet in offspring; mLP-LP, maternal low-protein diet and 
low-protein diet in offspring; mLP-HP, maternal low-protein diet and high-protein diet in 
offspring.
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Ar gene was hypermethylated upon low maternal protein intake 
and reset by a high-protein diet after birth may influence blood 
pressure in the offspring. For Atp1b1 and Xrcc2, methylation was 
also reset by postnatal low-protein intake. This result is contrary 
to our expectation, and the mechanism of methylation resetting 
by both postnatal low- and high-protein intake should 
be  investigated in the future. Interestingly, Adora2b, which 
mediates renal AMP-activated protein kinase (AMPK) activation 

(29), and Trpc5, whose abnormal expression was suggested to 
interfere with progressive kidney diseases (30), were subsequently 
altered at the methylation level due to postnatal protein 
restriction. Signaling pathways involving the adenosine receptor 
encoded by Adora2b have been reported to exert protective effects 
during acute kidney injury by inhibiting neutrophil-dependent 
tumor necrosis factor-alpha release (31). In addition, among the 
transient receptor potential (TRP) channels, short transient 

A B

C D

E F

FIGURE 2

Top 10 signaling pathways of differentially expressed genes detected by methylation arrays in the kidney. Top pathways enriched in 
(A) hypermethylated or (B) hypomethylated genes in the mLP-CN group compared to the mCN-CN group are shown. Gene ontology of differentially 
expressed hypermethylated genes due to maternal low-protein intake for (C) biological process (BP) and (E) molecular function (MF) terms. Gene 
ontology of differentially expressed hypermethylated genes due to maternal low protein intake for (D) BP and (F) MF terms. Ten top gene ontology 
terms are shown. p < 0.05 was considered significant and –log10(p value) was calculated as the Enrichment Score. Sig, signaling; DE, differential 
expression; GO, gene ontology; BP, biological process; MF, molecular function; mLP-CN, maternal low-protein diet and control diet in offspring; 
mCN-CN, maternal control diet and control diet in offspring.
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TABLE 2 DNA methylation status in the kidney for genes that were altered to a hyper- or hypo-methylated state due to low maternal protein intake and reset by differences in dietary protein intake after birth.

Pathway/Gene ontology term Gene symbol Name
Promoter_

Classification
Chromosome

PeakDMvalue

mLP-CN/
mCN-CN

mLP-LP/
mLP-CN

mLP-HP/
mLP-CN

Reset by both low- and high-protein diets after birth (Hypermethylated state)

Cellular nitrogen compound metabolic process (BP)/ion 

binding (MF)/transcription factor binding (MF)

Ddx3x ATP-dependent RNA helicase DDX3X HCP chrX 0.12 −0.29 −0.43

Ion binding (MF) Ivd Isovaleryl-CoA dehydrogenase, mitochondrial ICP chr3 0.21 −0.17 −0.54

Cellular nitrogen compound metabolic process (BP)/ion 

binding (MF)

Pcgf6 Polycomb group RING finger protein 6 HCP chr1 0.28 −0.28 −0.36

ion binding (MF) S100g Protein S100-G LCP chrX 0.21 −0.44 −0.85

Cellular nitrogen compound metabolic process (BP)/ion 

binding (MF)

Xrcc2 DNA repair protein XRCC2 HCP chr4 0.27 −0.42 −0.46

Reset by only low-protein diets after birth (Hypermethylated state)

Cellular nitrogen compound metabolic process (BP) Adora

2B

Adenosine receptor A2b HCP chr10 0.34 −0.18 –

Cellular nitrogen compound metabolic process (BP) Aplf Aprataxin and PNK-like factor ICP chr4 0.22 −0.38 –

Cellular nitrogen compound metabolic process (BP)/ion 

binding (MF)

Ddx10 probable ATP-dependent RNA helicase DDX10 HCP chr8 0.25 −0.31 –

Ion binding (MF) Gem GTP binding protein HCP chr5 0.46 −0.10 –

Cellular nitrogen compound metabolic process (BP) Hoxb7 Homeobox protein Hox-B7 ICP chr10 0.38 −0.47 –

ion binding (MF) Isca1 Iron–sulfur cluster assembly 1 homolog HCP chr17 0.20 −0.28 –

MAPK signaling/cellular nitrogen compound metabolic 

process (BP)/ion binding (MF)/transcription factor 

binding (MF)

Mapk

14

Mitogen-activated protein kinase 14 HCP chr20 0.33 −0.16 –

Cellular nitrogen compound metabolic process (BP)/

transcription factor binding (MF)

Nbn Nibrin HCP chr5 0.27 −0.16 –

Oxidative phosphorylation/cellular nitrogen compound 

metabolic process (BP)

Ndufa

10

NADH dehydrogenase [ubiquinone] 1 alpha HCP chr9 0.22 −0.21 –

Cellular nitrogen compound metabolic process (BP) Ndufa

10 l1

NADH dehydrogenase (ubiquinone) 1 alpha HCP chr9 0.22 −0.21 –

Ion binding (MF) Trpc5 Short transient receptor potential channel 5 LCP chrX 0.47 −0.31 –

Reset by only high-protein diets after birth (Hypermethylated state)

Cellular nitrogen compound metabolic process (BP)/

transcription factor binding (MF)

Ar Androgen receptor LCP chrX 0.22 – −0.36

(Continued)
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TABLE 2 (Continued)

Pathway/Gene ontology term Gene symbol Name
Promoter_

Classification
Chromosome

PeakDMvalue

mLP-CN/
mCN-CN

mLP-LP/
mLP-CN

mLP-HP/
mLP-CN

JAK–STAT signaling/cellular nitrogen compound 

metabolic process (BP)

Csf3 Granulocyte colony-stimulating factor LCP chr10 0.26 – −0.36

Reset by both low- and high-protein diets after birth (Hypomethylated state)

Blood circulation (BP)/developmental process (BP)/

response to stress (BP)

Atp1b1 Sodium/potassium-transporting ATPase subunit HCP ch13 −0.28 0.31 0.56

Regulation of signaling (BP) Ly6g6d Lymphocyte antigen 6 complex locus protein 

G6D

ICP chr20 −0.28 0.15 0.28

Reset by only low-protein diets after birth (Hypomethylated state)

Channel activity (MF)/developmental process (BP)/

regulation of signaling (BP)/response to stress (BP)

Bax Apoptosis regulator BAX HCP chr1 −0.27 0.43 –

Channel activity (MF)/regulation of signaling (BP)/

response to stress (BP)

Chrna4 Neuronal acetylcholine receptor subunit alpha-4 HCP chr3 −0.20 0.23 –

Developmental process (BP)/regulation of signaling (BP) Dll4 Delta-like protein 4 ICP chr3 −0.33 0.36 –

Developmental process (BP)/regulation of signaling (BP)/

response to stress (BP)

Lmna Prelamin-A/C isoform C2 ICP chr2 −0.31 0.38 –

Developmental process (BP) Mafk Transcription factor MAFK HCP chr12 −0.24 0.26 –

Developmental process (BP) Neu1 Sialidase-1 precursor ICP chr20 −0.38 0.22 –

Developmental process (BP)/response to stress (BP) Nfatc2 Nuclear factor of activated T-cells, cytoplasmic LCP chr3 −0.39 0.47 –

Developmental process (BP)/response to stress (BP) Plg Plasminogen LCP chr1 −0.31 0.26 –

Developmental process (BP)/regulation of signaling (BP)/

response to stress (BP)

Vgf Neurosecretory protein VGF precursor HCP chr12 −0.33 0.35 –

Developmental process (BP)/regulation of signaling (BP)/

response to stress (BP)

Wnt5b Wingless-related MMTV integration site5B LCP chr4 −0.28 0.16 –

Reset by only high-protein diets after birth (Hypomethylated state)

Blood circulation (BP)/developmental process (BP)/

regulation of signaling (BP)

Casq2 Calsequestrin-2 precursor LCP chr2 −0.31 – 0.44

Developmental process (BP) Eif5a Eukaryotic translation initiation factor 5A-1 HCP chr10 −0.31 – 0.38

Developmental process (BP)/regulation of signaling (BP)/

response to stress (BP)

Mapt Microtubule-associated protein tau HCP chr10 0.24 – 0.36

Developmental process (BP) Sp7 Transcription factor SP7 isoform 2 LCP chr7 0.30 – 0.52

mLP-CN, maternal low-protein diet and control diet in offspring; mCN-CN, maternal control diet and control diet in offspring; mLP-LP, maternal low-protein diet and low-protein diet in offspring; mLP-HP, maternal low-protein diet and high-protein diet in offspring; 
HCP, high-CpG-density promoter; LCP, low-CpG-density promoter; ICP, intermediate-CpG-density promoter. PeakDMvalue is the median log2-ratio from probes within the peak. A positive PeakDMvalue means high methylation and a negative value means low 
methylation. The area indicated by “–” represents no variation. For the genes in the table, the PeakDMvalue of the mLP-LP and mLP-HP groups did not vary compared to the mCN-CN group (data not shown).
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receptor potential channel 5 (TRPC5) has been identified as a 
cause of erythropoietin-induced hypertension in patients with 
chronic kidney disease (32). Therefore, alterations in DNA 
methylation and the reprogramming of this gene promoter region 
may play an important role in blood pressure regulation. The 
above genes may be crucial in the reprogramming progress. Thus, 
further studies using gene-editing techniques such as epigenome 
editing mice are encouraged to validate this hypothesis and 
explore the detailed mechanisms.

The top pathways enriched with the hypermethylated DMRs 
upon maternal protein restriction that may affect renal function 
included the MAPK, oxidative phosphorylation, PPAR, and JAK–
STAT signaling pathways. RNA transport and degradation, which 
may affect gene expression, were also identified as top pathways. 
Although the specific activated/inhibited status of the indicated 
pathways requires further investigation, some of the factors 
involved in transcription or translation that affect associated gene 
expression may contain epigenetic markers. GO enrichment 
analysis revealed that the hypermethylated genes were mainly 
associated with voltage-gated sodium channel activity. This is 
consistent with previous studies demonstrating that Ptger1, a 
gene related to sodium retention in the kidney, can 
be  reprogrammed by postnatal nutritional interventions (17). 
Conversely, the results of pathway and GO enrichment analyses 
showed that many hypomethylated DMRs due to maternal 
protein restriction were related to cancer, with only a few related 
to renal function. However, genes related to blood circulation, 
channel activity, and transcriptional activator activity, along with 
RNA polymerase II transcription regulatory region sequence-
specific genes, may be  associated with renal disease and gene 
expression regulation.

Several studies have suggested that an inappropriate 
nutritional environment for the mother during pregnancy 
increases the risk of disease development in the offspring. Our 
previous studies showed that offspring born to mothers who 
ingested a low-protein diet during pregnancy had an increased 
risk of salt-sensitive hypertension after birth, which was also 
associated with a shorter lifespan (33, 34). This result suggests that 
pregnant women should be aware of the importance of consuming 
an appropriate amount of protein during pregnancy. However, 
although pregnant women and their families need to obtain 
proper nutritional guidance, excessive interference with an 
expectant mother is not recommended, because pregnancy is 
physically and mentally demanding, food preferences and dietary 
intake change compared to pre-pregnancy states, and medication 
and supplementation during pregnancy are difficult. In addition, 
knowledge of appropriate nutrition during pregnancy is 
insufficient to prevent and treat people born with a predisposition 
to developing a disease. Although the approach suggested in many 
previous studies is to ameliorate the risk of disease in the offspring 
through improving the nutritional environment during pregnancy 
and lactation, we  could propose that the postnatal nutritional 
environment is a novel and reasonable approach to prevent salt-
sensitive hypertension.

A limitation of this study is that individual changes in 
expression at the gene and protein levels were not examined as 

we  focused on DNA methylation. In addition, we  did not 
examine whether the changes in DNA methylation status 
revealed in this study affect the development of salt-sensitive 
hypertension. Investigation of these changes would lead to a 
more accurate understanding of the epigenetic effects of the 
pregnancy and postnatal nutritional environment on offspring. 
Moreover, while a comprehensive examination using DNA 
methylation arrays was conducted, further examination of the 
DMRs considered in this analysis should be conducted through 
other methods, such as pyrosequencing. Since our previous 
study reported that maternal protein restriction could increase 
salt-sensitive blood pressure in male offspring (33, 34), we used 
only male offspring in the present study to elucidate the 
mechanism. However, future studies should also examine this 
mechanism in female offspring.

5. Conclusion

In this study, we  showed that postnatal dietary protein 
supplementation may contribute to the reprogramming of an 
abnormal DNA methylation status caused by maternal 
malnutrition. Our results provide potential epigenetic targets for 
the treatment and prevention of hypertension caused by low 
maternal protein intake and offer a foundation for prevention 
strategies involving postnatal protein feeding.
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