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Members from the genus Fusarium can infect a broad range of plants and

threaten agricultural and horticultural production. Studies on the diversity of

Fusarium occurring in natural ecosystems have received less attention than the

better known phytopathogenic members of the genus. This study identified

Fusarium species from soils with low anthropogenic disturbance found in the

Golden Gate Highlands National Park (GGHNP), a part of the Drakensberg

system in South Africa. Selective techniques were implemented to obtain 257

individual isolates from the selected soil samples for which the translation

elongation factor 1α (tef-1α) gene region was sequenced and compared against

the Fusarium MLST and FUSARIUM-ID databases. Phylogenetic analyses, based

on maximum likelihood and Bayesian inference, were used to determine species

diversity in relation to reference isolates. Species level identifications were made

within three of the seven species complexes and identified F. brachygibbosum,

F. sporotrichioides, F. andiyazi, and F. gaditjirri based on the FUSARIUM-ID

database, with F. transvaalense and F. lyarnte identified against the Fusarium MLST

database. This indicated highly diverse populations of Fusarium from soils with

low anthropogenic disturbance from the Afromontane grassland region found in

mountain ranges.

KEYWORDS

Fusarium diversity, Afromontane, grassland biome, natural ecosystems, species complex,
low anthropogenic disturbance

Introduction

The genus Fusarium evolved from the ancient lineage of ascomycetous organisms
(Taylor and Berbee, 2006) and includes a significant variety of morphological and
phylogenetic characters that is indicative of early differentiation. The phytopathogenic
Fusarium species may have co-evolved with their associated plant hosts but this is not always
applicable (Wang et al., 2004; Summerell et al., 2010). Taylor and Berbee (2006) developed a
dating system for the divergence of important classes in the fungal kingdom, which included
the genus Fusarium. These approximate divergence dates varies when different taxonomic
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groups are used as calibration points. The predicted divergence
of the genus Fusarium is estimated between 110 and 250 to 420
million years ago (Taylor and Berbee, 2006). Based on two of
the three calibration models tested by Taylor and Berbee (2006),
the genus Fusarium diverged well before the splitting of the
Pangaea supercontinent. This supports the early distribution and
diversity of Fusarium members found in varying climates across
the world. Thus, host association coupled with climatic regions
may be considered as influencing factors that indicate the origin
of Fusarium species recovered from specific geographic locations
(Summerell et al., 2010). Although with the wide and cosmopolitan
distribution of the genus Fusarium, it is still difficult to establish the
initial point of origin (Summerell et al., 2010).

As Fusarium species form part of ecosystems all around the
world, their distribution and the link to biogeographic development
provides an opportunity to acquire information on speciation and
dispersal effectors (Summerell et al., 2010). The main focus of
phylogeography is to determine species distribution and possible
mechanisms that result in speciation events (Hickerson et al.,
2010). Phylogeographic studies are widely used in conservation and
may also be used to identify cryptic lineages that are not always
clearly indicated by morphological variation (Wiens, 2012). Fungal
(microbial) and animal biodiversity is greatly influenced by the
number and community relationship of plant species available in
the area that is in turn influenced by soil features such as the pH
and climatic factors, particularly the availability of water, especially
in an area with varying altitudes (Shen et al., 2013).

South Africa possesses nine different biomes (Mucina and
Rutherford, 2006). The grassland biome is critically important for
food production as it is used for commercial agriculture, feeding
grounds for livestock, or for subsistence farming (Rademeyer
and van Zyl, 2014). It has been reported that 33% of the
temperate grasslands are already irreversibly transformed (Carbutt
et al., 2011) and that only 36.7% is under conservation (Reyers
et al., 2005). Within the Golden Gate Highlands National Park
(GGHNP) the two bioregion types, Mesic Highveld Grassland
Bioregion and The Drakensberg Grassland Bioregion are found
(Rutherford et al., 2006). The Mesic Highveld Grassland Bioregion
is the largest of the four grassland bioregions and contains a
highly diverse vegetation community that includes bushveld and
summit grasslands. In contrast to the Mesic Highveld Bioregion,
the Drakensberg Grassland Bioregion has the lowest number of
vegetation types. The Drakensberg Grassland Bioregion stretches
southward from the Lesotho highlands along the high-lying
escarpment area in the Eastern Cape Province, it occurs at
a higher altitude than comparative bioregions with a greater
occurrence of frost (Rutherford et al., 2006). The Drakensberg
Grassland Bioregion is most conserved due to efforts by the Maloti-
Drakensberg Transfrontier Conservation Area and the Mesic
Highveld Grassland Bioregion has been transformed by 42.91%
with its conservation status indicated as “very urgent” (Carbutt
et al., 2011). The GGHNP is an important site for tourism after
its establishment in 1963. The region was used as farmland before
being proclaimed as a national park. The soil types of the park
are highly fertile, especially in regions lying above 2 070 m, and
supports dense temperate grassland that in turn supports the steep
slopes and minimises the effects of erosion. In some areas, the
shallow sandy soil are more prone to erosion (Roberts, 1969). For
the current study it was hypothesised that the Fusarium diversity

found in this area/habitat (grassland with low anthropogenic
disturbance) would be limited and that the species distribution
would be different to that observed in the lower lying grassland
biome. The possibility of recovering new previously undefined
species would also be likely.

Three new species of Fusarium were identified in the Kruger
National Park, South Africa, by Sandoval-Denis et al. (2018).
The species were described as F. fredkrugeri (Sandoval-Denis
et al., 2018), F. convolutans (Sandoval-Denis et al., 2018) and
F. transvaalense (Sandoval-Denis et al., 2018) and were isolated
from the rhizosphere of native herbaceous plant species endemic
to the area (Sandoval-Denis et al., 2018). They were isolated from
points with differing altitudes and soil characteristics across a
catena slope and is an example of the variation in biogeography
on the distribution of species. An earlier, study by Burgess
and Summerell (1992), looked at the geographical distribution
in Queensland, Australia, of Fusarium species obtained from
subtropical and semi-arid grassland soils. The majority of the
isolates comprised of F. chlamydosporum, F. compactum and
F. equiseti, with F. chlamydosporum and F. equiseti recovered
mostly from the drier sampling areas, although it is worth noting
that identification was based on morphological features and cryptic
species may not have been recognised. Chehri et al. (2010) found
that F. chlamydosporum is associated with soils from warmer
regions, and F. sporotrichioides and F. sambucinum is associated
with soils from colder regions.

It is important to be able to fully grasp the biodiversity in a
specific environment, especially one as important as the grassland
biome, which supports many livelihoods. The focus of the current
study was to ascertain the natural threshold of Fusarium species
found in the semi-disturbed soils of the Afromontane grassland
region of the GGHNP. This will contribute to ongoing research on
the distribution of fusaria from the South African grassland biome
(Jacobs-Venter et al., 2018; Mavhunga, 2021). The identification
of soil borne species from this major phytopathogenic genus
will expand our knowledge regarding possible origin of Fusarium
species and their phylogeography.

Materials and methods

Soil sampling and culture isolation

The soil samples were collected from the Golden Gate
Highlands National Park (GGHNP) that is located within the
north-eastern part of the Free State province, South Africa.
The grassland biome of the GGHNP is represented by both
the Drakensberg Grassland Bioregion and the Mesic Highland
Grassland Bioregion (Mabunda, 2011). The sampled sites, site 1
(28◦30’41” S, 28◦34’24” E; 1874 m; Mesic Highveld) and site 2
(28◦30’39” S, 28◦39’20” E; 2082 m; Drakensberg Grasslands) were
selected for comparison based on their bioregion and elevation
differences (208 m higher in elevation than site 1) (Figure 1). The
sampling was done in the top 10 cm of the upper soil profile as
this depth hosts the majority of soil micro-fungi (Mandeel, 2006)
using a 15 m × 15 m standardised transect method (Laurence
et al., 2012) and core sampler resulting in 5 samples pooled together
to form a collective single sample for each site (Jacobs et al.,
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TABLE 1 The phylogenetic analyses for the identified species complexes and their substitution model and reference isolates sources tabulated.

Phylogenetic analysis Isolation frequency Substitution model Reference isolates obtained from

FOSC 77% GTR + G O’Donnell et al., 1998b; O’Donnell et al., 2004, 2009;
Laurence et al., 2014; Lombard et al., 2019a

FSAMSC 8% GTR + G + I Laraba et al., 2021

FIESC 7% GTR + G + I Xia et al., 2019

FFSC 4% GTR + G Yilmaz et al., 2021

Minor species complex ≤4% GTR + G + I O’Donnell et al., 2008, 2009, 2018; Laurence et al., 2011;
Laurence et al., 2016; Sandoval-Denis et al., 2018

2018; Nephalela-Mavhunga et al., 2021). The collected soil was
air dried at room temperature (20–25◦C) overnight. From this
larger collective sample, 5 g soil for each site was separated into
large and small soil fragments using a 450 µm pore size sieve,
resulting in the smaller fragments being ≤450 µm and the larger
fragments ≥450 µm. Each soil fragment subsample, of the total
separated 5 g, was evenly spread onto Spezieller Nährstoffarmer
Agar (SNA) (Nirenberg, 1981; Leslie and Summerell, 2006) and
incubated for 7 days at 25◦C under near UV (black) light at a
12-h photoperiod to stimulate sporulation. Five fungal colonies
displaying Fusarium morphology were picked from each plate and
then sub-cultured to obtain pure individual isolates using single
conidium transfer from 2% water agar onto quarter strength potato
dextrose agar (PDA) (Nelson et al., 1983; Leslie and Summerell,
2006). This resulted in 257 isolates from which DNA was extracted
after growth on full strength PDA (Lab M Limited) plates that
were incubated for 5 days at 25◦C under a 12-h near UV (black)
light cycle. The isolates were assigned PPRI numbers (Jacobs et al.,
2018) when deposited into the National Collection of Fungi (NCF),
South Africa.

DNA extraction, PCR and identification

DNA extraction for the individual isolates were executed using
the Quick-DNATM Fungal/Bacterial Miniprep Kit (Zymo Research)
according to the manufacturer’s protocol specifications. The DNA
quality was evaluated using agarose gel electrophoresis before use as
template in a PCR that amplified the tef-1α gene region comprising
EF1 forward primer; 5’-ATGGGTAAGGA(A/G)GACAAGAC-
3’ (Inqaba Biotechnical Industries (Pty) Ltd), 5 µM of EF2
reverse primer; 5’-GGA(G/A)GTACCAGT(G/C)ATCATGTT-3’
(Inqaba Biotechnical Industries (Pty) Ltd) (O’Donnell et al.,
1998b). The tef-1α amplicons were sequenced for each of
the 257 isolates. Sanger sequence reactions were manually
edited and aligned using the MAFFT plugin incorporated
in Geneious software (version 8.1.9) to produce a consensus
sequence. Polymorphisms among the datasets were confirmed by
examination of the electropherograms and gaps were regarded
as missing data. The nBLASTTM analyses of the individual
consensus sequences against the FUSARIUM-ID1 database (Geiser
et al., 2004) and the Fusarium MLST2 database (O’Donnell
et al., 2010) served as the first analysis to identify the relation

1 https://www.fusarium.org/

2 http://fusarium.mycobank.org

of the GGHNP isolates to the different species complexes
(O’Donnell et al., 2013). These identifications were recorded in
Tables 1–7.

Phylogenetic analysis

Phylogenetic analyses for the individual species complexes were
based on nBLASTTM species complex identification and isolation
frequency resulting in five phylogenetic analyses. Phylogenetic
analyses using the aligned sequences for the different datasets
were based on Maximum Likelihood (ML) and Bayesian Inference
(BI). The ML and BI phylogenetic trees were topologically
congruent, and the presented topology is based on the ML
tree results. The presented phylogenetic trees (Figures 5–8)
highlight the clades in which the PPRI isolates are resolved. The
corresponding supplementary figures showing the full phylogenetic
trees are indicated at each of the respective phylogenetic figures.
Due to multiple phylogenetically identical isolates found in
the F. oxysporum species complex (FOSC) (sensu Smith and
Swingle) (based on nBLASTTM analyses) the resulting FOSC
analysis was performed with 53 of the original 199 isolates
identified as belonging to the FOSC. Members identified among
the F. sambucinum species complex (FSAMSC) (Fückel) (sensu
stricto), the F. incarnatum-equiseti species complex (FIESC)
[(Desm.) (Corda) Sacc. 1886] and the F. fujikuroi species complex
(FFSC) [(Sawada) S. Ito in Ito and K. Kimura] were evaluated
using separate datasets (Table 1). The three species complexes,
respectively comprising less than 2% of the total 257 isolates
were analysed with reference isolates from various publications
that identified similar Fusarium species complex isolates from
natural environments (Table 1). These species complexes include
the F. chlamydosporum species complex (FCSC) (Wollenw. and
Reinking), the F. solani species complex (FSSC) [(Mart.) Sacc. 1881]
and the F. nisikadoi species complex (FNSC) (Aoki and Nirenberg,
1999).

The generated tef-1α sequences and reference isolates were
aligned using MAFFT (Katoh and Standley, 2013) and manually
edited where necessary. For the ML and BI analyses the parameters
were determined using the online platform SMS: Smart Model
Selection (Lefort et al., 2017) with the Akaike information criterion.
The recommended substitution models used were GTR + G for
the FOSC and the FFSC and GTR + G + I for the FSAMSC, the
FIESC and the minor species complex analyses (Table 1). The ML
analyses were determined using the RAxML (version 7.2.8) plug-
in (Thompson et al., 1997) in Geneious 8.1.9 (Kearse et al., 2012).
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TABLE 2 Nucleotide BLAST (nBLASTTM) results from the Fusarium MLST and FUSARIUM-ID databases for the FOSC.

PPRI no. Fusarium
MLST

FUSARIUM-ID MYCOBANK
similarity%

FUSARIUM-ID
similarity%

Isolation site Particle size Accession
number

24779 F. oxysporum f.sp.
melonis

FOSC (222) 100% 100% Site 1 Large OL782448

24782 F. oxysporum FOSC (231) 100% 99% Site 1 Small OL782557

24785 FOSC (18) FOSC (18) 99% 99% Site 1 Small OL782526

24787 FOSC (239) F. oxysporum 100% 100% Site 1 Small OL782525

25046 FOSC FOSC (19) 100% 100% Site 1 Small OL782367

25047 FOSC FOSC (19) 100% 100% Site 1 Small OL782372

25480 FOSC (18) FOSC (18) 99% 99% Site 1 Large OL782502

25485 FOSC (167) FOSC (231) 99% 99% Site 1 Small OL782558

25489 FOSC (222) FOSC (222) 100% 100% Site 1 Small OL782447

25493 FOSC (239) FOSC (94) 99% 99% Site 1 Small OL782503

25496 F. oxysporum f.
cubense

FOSC (191) 100% 100% Site 1 Small OL782378

25497 FOSC FOSC (191) 100% 100% Site 1 Small OL782454

25499 FOSC FOSC (190 100% 100% Site 1 Large OL782471

25507 FOSC FOSC (19) 99% 99% Site 1 Small OL782365

26238 F. oxysporum FOSC (47) 100% 100% Site 2 Large OL782386

26247 F. oxysporum f. sp.
medicaginis

FOSC (18) 99% 99% Site 2 Small OL782533

26265 F. oxysporum f. sp.
medicaginis

FOSC (18) 99% 99% Site 2 Large OL782540

26268 F. oxysporum FOSC (47) 99% 100% Site 2 Large OL782390

26269 FOSC (20) FOSC (20) 100% 100% Site 2 Small OL782384

26274 F. oxysporum f.
cubense

FOSC (191) 100% 100% Site 2 Small OL782381

26291 FOSC (18) FOSC (18) 99% 99% Site 2 Small OL782537

26304 F. oxysporum FOSC (222) 100% 100% Site 2 Small OL782441

26312 FOSC (47) FOSC (47) 100% 100% Site 2 Small OL782435

26316 FOSC (179) FOSC (179) 99% 99% Site 2 Small OL782554

26324 F. oxysporum f. sp.
medicaginis

FOSC (18) 99% 99% Site 2 Small OL782539

26325 F. oxysporum FOSC (191) 100% 100% Site 2 Small OL782371

26328 F. oxysporum FOSC (18) 99% 99% Site 2 Large OL782518

26783 FOSC (18) FOSC (18) 100% 100% Site 2 Small OL782493

26793 FOSC (47) FOSC (18) 100% 99% Site 2 Small OL782388

27110 F. oxysporum FOSC (18) 99% 99% Site 2 Large OL782481

27119 F. oxysporum FOSC (47) 100% 100% Site 2 Large OL782389

27125 F. oxysporum FOSC (18) 100% 100% Site 2 Large OL782512

27127 F. oxysporum FOSC (18) 99% 99% Site 2 Small OL782482

27134 FOSC (191) FOSC (191) 100% 100% Site 2 Small OL782427

27135 FOSC (191) FOSC (191) 100% 100% Site 2 Small OL782428

27149 F. oxysporum FOSC (18) 100% 100% Site 2 Small OL782514

27151 FOSC (191) FOSC (191) 100% 100% Site 2 Small OL782429

27405 FOSC FOSC (19) 99% 99% Site 1 Large OL782399

(Continued)
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TABLE 2 (Continued)

PPRI no. Fusarium
MLST

FUSARIUM-ID MYCOBANK
similarity%

FUSARIUM-ID
similarity%

Isolation site Particle size Accession
number

27422 F. oxysporum FOSC (47) 100% 100% site 1 Large OL782436

27428 FOSC FOSC (19) 100% 100% Site 1 Large OL782469

27429 F. oxysporum f. sp.
pisi

FOSC (191) 99% 99% Site 1 Large OL782430

27430 FOSC (239) FOSC (94) 100% 100% Site 1 Large OL782477

27431 FOSC (167) FOSC (231) 99% 99% Site 1 Large OL782556

27496 FOSC (191) FOSC (191) 100% 100% Site 1 Large OL782392

27502 F. oxysporum f.sp.
pini

FOSC (91) 99% 99% Site 1 Large OL782439

27511 FOSC (107) FOSC (19) 99% 99% Site 1 Large OL782402

27515 F. oxysporum f. sp.
pisi

FOSC (191) 100% 100% Site 1 Large OL782419

27518 FOSC (101) FOSC (191) 100% 100% Site 1 Large OL782462

27531 FOSC (101) FOSC (191) 100% 100% Site 1 Large OL782460

27532 F. oxysporum f.sp.
pini

FOSC (91) 99% 99% Site 1 Large OL782440

27538 FOSC (101) FOSC (191) 100% 100% Site 1 Large OL782463

27542 FOSC (29) FOSC (29) 100% 100% Site 1 Small OL782432

27543 F. oxysporum f.sp.
pini

FOSC (91) 99% 99% Site 1 Small OL782438

Marked in bold are the isolates that produced contrasting nBLASTTM results between the two databases. Marked in gray are the isolates with identical MLST/haplotype types.

The clade stability was assessed by bootstrap support (BS) using 1
000 bootstrap replicates and default parameters. The BI analysis was
performed through the online portal CIPRES3 (Miller et al., 2010)
using the MRBayes v. 3.2.5 on XSEDE using four incrementally
heated MCMC chains. The chain length was set to run 10 million
generations and tree sampling was done for every 1 000 trees.
The burn-in length was set to 100 000. The BI was used to
calculate Posterior probability (PP) values for consensus nodes.
Only statistical support values ≥0.98 for PP values and ≥70%
for ML-BS were accepted. The topology used for each dataset is
based on the BI. The resulting phylogenetic trees were plotted and
visualised using FigTree (version 1.4.4)4 (Rambaut, 2013).

The respective phylogenetic trees were rooted using outgroup
isolates used in the referenced datasets (Table 1). The following
outgroup isolates were selected for the respective species complex
analyses: Fusarium sp. (NRRL 25184) for the FOSC analysis,
F. nelsonii (NRRL 13338) for the FSAMSC analysis, F. oxysporum
(NRRL 22902) for the FFSC analysis, F. concolor (NRRL 13459)
for the FIESC analysis and F. lateritium (NRRL 52786 and NRRL
25122) for the minor species complex analysis. The reference
sequences as well as the sequence data for the outgroup species
were mined from the NCBI Genbank database. The data presented
in this study are deposited in the Genbank repository, accession
numbers OL782317–OL782573.

3 https://www.phylo.org/

4 http://tree.bio.ed.ac.uk/software/figtree/

Results

Representative morphological characters

The gross colony morphology and pigmentation is shown in
Figure 2 for the different species complexes after culturing on
PDA. The FOSC’s characteristic pale violet and dark magenta
pigments produced on the agar was evident (A-D). The different
pigments or colourations were observed for the FFSC (E and F),
the FSSC (G), the FCSC (H), FSAMSC (I and J), and the FIESC
(K and L). The morphological characters of the FOSC, FSSC,
FIESC, FCSC, FFSC, and FSAMSC identified from the GGHNP
were studied to provide an overview of the common morphological
characters (Figure 3). The macroconidia for the FOSC isolate PPRI
26304 were 3-septate and slightly curved, with the microconidia
showing 0-septa (A and C). The microconidia were produced on
a short monophialide with a false head (B). The macroconidia
produced by the FSSC (PPRI 25492) on CLA (D and E) were
3- to 4-septate with a blunt and rounded apical cell morphology.
The FFSC (PPRI 27410) shows 3-septa macroconidia produced
on CLA (G and H) with a single microconidium amongst the
macroconidia in H and multiple microconidia in F that appear
uniform in size. The FIESC (PPRI 27406) macroconidia were long,
slender and 5-septate showing an elongated foot shape at the
basal end and an elongated whip-like appearance at the apical
cell (I). The FSAMSC (PPRI 27530) displayed its characteristic
short 5-septate macroconidia produced on CLA (J). The apical
cell appears to be pointed with the basal cell being foot shaped.
Microconidia were not present on the CLA, as expected. The FCSC
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TABLE 3 Nucleotide BLAST (nBLAST) results from the Fusarium MLST and FUSARIUM-ID databases for the FSAMSC.

PPRI no. Fusarium
MLST

FUSARIUM-ID Fusarium
MLST

similarity%

FUSARIUM-ID
similarity%

Isolation site Particle size Accession
number

26243 FSAMSC F. sporotrichioides 94% 91% Site 2 Small OL782346

26246 FSAMSC F. brachygibbosum 93% 93% Site 2 Small OL782338

26275 Fusarium sp. F. sporotrichioides 94% 91% Site 2 Small OL782342

26278 F. transvaalense F. brachygibbosum 94% 93% Site 2 Large OL782335

26284 FSAMSC F. brachygibbosum 94% 93% Site 2 Small OL782352

26285 FSAMSC F. sporotrichioides 93% 91% Site 2 Small OL782353

26310 FSAMSC F. sporotrichioides 94% 91% Site 2 Small OL782347

26311 FSAMSC F. brachygibbosum 93% 93% Site 2 Small OL782340

26319 Fusarium sp. F. sporotrichioides 94% 91% Site 2 Small OL782344

26330 F. transvaalense F. brachygibbosum 94% 93% Site 2 Small OL782348

26340 FSAMSC F. sporotrichioides 94% 91% Site 2 Small OL782349

26771 F. transvaalense F. brachygibbosum 94% 93% Site 2 Large OL782334

26782 FSAMSC F. sporotrichioides 94% 91% Site 2 Small OL782345

26789 Fusarium sp. F. sporotrichioides 94% 91% Site 2 Small OL782341

26792 F. transvaalense F. sporotrichioides 94% 91% Site 2 Small OL782351

26795 Fusarium sp. F. sporotrichioides 94% 91% Site 2 Small OL782343

27128 F. transvaalense F. brachygibbosum 94% 93% Site 2 Small OL782337

27145 Fusarium sp. F. brachygibbosum 94% 93% Site 2 Small OL782336

27322 F. transvaalense F. sporotrichioides 94% 91% Site 2 Small OL782350

27326 FSAMSC F. brachygibbosum 93% 93% Site 2 Small OL782339

27530 FSAMSC F. brachygibbosum 94% 94% Site 1 Large OL782354

Marked in bold are the isolates that produced contrasting nBLASTTM results between the two databases. All similarity percentages were below 97%.

(PPRI 26282) isolate produced 5-septate macroconidia on CLA
(K). The macroconidia, which are not commonly produced by
FCSC, appear to have a foot shaped basal cell morphology. The
FCSC microconidia produced on CLA were 0- to 1-septate (L).
The morphological characters were consistent with the characters
per species complex as identified using Leslie and Summerell
(2006).

Relatively similar numbers of isolates were obtained from the
two sampled sites. Site 1 contributed 122 isolates (47.5%) and
site 2 contributed 135 isolates (52.5%). Most of the FOSC isolates
(44%) were found from site 2’s small soil particles followed by
site 1’s large soil particles (35%) (Figure 4). The rest of the FOSC
isolates were isolated from site 1’s small soil particles (13%) and
site 2’s large soil particles (8%). Of the FSAMSC isolates 86%
came from site 2’s small soil particles and 9% from the large
particles of site 2. Only a single (5%) FSAMSC isolate was obtained
from the large particles of site 1, with no isolates identified from
site 1’s small soil particles. Isolates identified as belonging to
the FIESC were found amongst both sites and soil particle sizes
with 53% from site 1’s large particles, 29% from site 1’s small
soil particles. With 6% and 12% of the FIESC isolates from site
2’s large and small soil particles, respectively. The FCSC isolates
were obtained as 83% from site 1’s large soil particles and only
one isolate (17%) from site 2’s small soil particles. The three
(100%) FSSC isolates were only found in site 1 from small soil

particles and the FNSC were found in site 2, with one isolate
(50%) obtained from small and the other (50%) from large soil
particles.

Phylogenetic analyses

FOSC
Among the 199 FOSC isolates, the multilocus sequence type

(MLST), or haplotypes, were determined and some species-
specific identifications were made only against the Fusarium-
MLST database (Table 2). The MLST types refer to clinically
important Fusarium species represented as a haplotype code or
a number. From the 199 FOSC isolates, there were 60 isolates
identified with identical haplotypes by both the Fusarium MLST
and the FUSARIUM-ID databases’ nBLASTTM identities. Fourteen
of these similarities are indicated by the grey highlighted rows
in Table 2. A total of six haplotypes were identified among
the FOSC isolates using both databases. From these 61 isolates,
50.82% were identified as haplotype 18 followed by haplotype
191 contributing 37.70% and haplotype 47 at 6.56%. Haplotype
179 was identified as 3.28% and both haplotype, 29 and 222
were identified as 1.64% of the isolates. Twenty-nine of the
199 FOSC isolates had conflicting haplotypes between the two
databases. nBLASTTM data for all 199 isolates are not shown.
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TABLE 4 Nucleotide BLAST (nBLASTTM) results from the Fusarium MLST and FUSARIUM-ID databases for the FIESC.

PPRI no. Fusarium
MLST

FUSARIUM-ID Fusarium
MLST

similarity%

FUSARIUM-ID
similarity%

Isolation site Particle size Accession
number

24788 FIESC (10-a) FIESC 10-a 99% 99% Site 1 Small OL782326

25048 FIESC (10-a) FIESC 10-a 99% 99% Site 1 Small OL782327

25483 FIESC (10-a) FIESC 10-a 99% 99% Site 1 Large OL782330

25486 FIESC (10-a) FIESC 10-a 99% 99% Site 1 Small OL782332

25487 FIESC (10-a) FIESC 10-a 99% 99% Site 1 Small OL782331

25490 FIESC (10-a) FIESC 10-a 99% 99% Site 1 Small OL782328

25500 FIESC (9-b) FIESC 9-b 96% 96% Site 1 Large OL782325

25505 FIESC (10-a) FIESC 10-a 99% 99% Site 1 Large OL782329

26266 FIESC (9-b) FIESC 9-b 100% 100% Site 2 Large OL782318

26299 FIESC (9-b) FIESC 9-b 99% 99% Site 2 Small OL782321

26314 FIESC (9-b) FIESC 9-b 100% 100% Site 2 Small OL782320

27406 F. equiseti FIESC 9-b 100% 99% Site 1 Large OL782322

27424 FIESC (9-b) FIESC 9-b 99% 99% Site 1 Large OL782324

27425 F. equiseti FIESC 5-d 100% 99% Site 1 Large OL782317

27426 FIESC (9-b) FIESC 9-b 100% 99% Site 1 Large OL782319

27523 FIESC (9-b) FIESC 9-b 99% 99% Site 1 Large OL782323

28106 FIESC (28-a) FIESC 28-a 99% 99% Site 1 Large OL782333

Marked in bold are the isolates that produced contrasting nBLASTTM results between the two databases. Marked in blue are percentage similarities lower than 97%.

TABLE 5 Nucleotide BLAST (nBLASTTM) results from the Fusarium MLST and FUSARIUM-ID databases for the FFSC.

PPRI no. Fusarium
MLST

FUSARIUM-ID Fusarium
MLST

similarity%

FUSARIUM-ID
similarity%

Isolation site Particle size Accession
number

26239 F. fujikuroi GFSC 99% 98% Site 2 Small OL782562

26300 GFSC* GFSC 98% 98% Site 2 Small OL782567

26321 GFSC GFSC 98% 98% Site 2 Small OL782566

26329 F. fujikuroi GFSC 98% 98% Site 2 Small OL782563

27327 GFSC F. andiyazi 97% 96% Site 2 Small OL782569

27410 GFSC F. andiyazi 97% 96% Site 1 Large OL782568

27432 GFSC F. andiyazi 97% 97% Site 2 Small OL782570

27526 GFSC GFSC 98% 98% Site 1 Large OL782564

27540 GFSC GFSC 98% 98% Site 1 Large OL782565

*Gibberella fujikuroi species complex (GFSC) (Geiser et al., 2013). Marked in bold are the isolates that produced contrasting nBLASTTM results between the two databases. Marked in blue are
percentage similarities lower than 97%.

Nine of these conflicting isolates are indicated in bold in
Table 2.

The FOSC phylogeny resolved to form five distinguished
clades (Figure 5; Supplementary Figure 1). All 53 of the FOSC
PPRI isolates selected for the phylogenetic analysis grouped
within the larger clade 2 as demarcated by previous studies
(O’Donnell et al., 1998b, 2004; Laurence et al., 2014). Within
clade 2 the PPRI isolates formed multiple subclades that were
mostly unresolved or produced low resolution. Only one subclade
comprising three PPRI isolates and five F. oxysporum f. sp.
glycines reference isolates was highly resolved (BPP = 0.99; ML-
BS = 83%).

FSAMSC
The twenty-one FSAMSC isolates, produced the lowest

identification resolution when compared to the other six species
complexes. The nBLASTTM similarity percentages were all
below 94% similarity and most of the isolates produced
conflicting nBLASTTM identifications against the respective
databases (Table 3). Species-specific identifications were made for
six isolates linking to the F. transvaalense against the Fusarium-
MLST database only and all the identifications made against the
FUSARIUM-ID database were reported as either F. sporotrichioides
or as F. brachygibbosum. The phylogenetic analysis based only
on the tef-1α supports the six monophyletic clades designated
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TABLE 6 Nucleotide BLAST (nBLASTTM) results from the Fusarium MLST and FUSARIUM-ID databases for the FCSC.

PPRI no. Fusarium
MLST

FUSARIUM-ID Fusarium
MLST

similarity%

FUSARIUM-ID
similarity%

Isolation site Particle size Accession
number

26282 FCSC (1-m) FCSC (1-m) 97% 97% Site 2 Small OL782355

27412 FCSC (5-a) FCSC (2-a) 100% 99% Site 1 Large OL782357

27417 FCSC (5-a) FCSC (2-a) 100% 99% Site 1 Large OL782358

27419 FCSC (5-a) FCSC (2-a) 99% 99% Site 1 Large OL782359

27506 F. cf.
chlamydosporum

FCSC (2-a) 99% 99% Site 1 Large OL782360

27516 FCSC (5-a) FCSC (2-a) 99% 99% Site 1 Large OL782356

TABLE 7 Nucleotide BLAST (nBLASTTM) results from the Fusarium MLST and FUSARIUM-ID databases for the FSSC.

PPRI no. Fusarium
MLST

FUSARIUM-ID Fusarium
MLST

similarity%

FUSARIUM-ID
similarity%

Isolation site Particle size Accession
number

25492 FSSC (5-c) FSSC (5-d) 100% 100% Site 1 Small OL782571

25506 FSSC FSSC (5-i) 100% 100% Site 1 Small OL782573

25509 FSSC (5-c) FSSC (5-d) 100% 100% Site 1 Small OL782572

previously (Laraba et al., 2021), an additional, strongly supported,
seventh clade is revealed through the current study. This novel
clade clusters basal to the designated Brachygibbosum clade and
comprised of twenty PPRI isolates collected predominantly from

FIGURE 1

Map of the GGHNP, Free State Province, South Africa. (A) Elevation
map indicating the collection sites used in this study. (B) Map of the
Drakensberg and Mesic Highveld Grassland Bioregion types found
at the GGHNP. Site 1 is in the Mesic Highveld and site 2 in the
Drakensberg Grassland Bioregions.

site 2 of the GGHNP (Figure 4). This novel FSAMSC clade
formed two closely related subclades, with the split strongly
supported (BPP = 1; ML-BS = 100%). These two subclades
represent putatively novel unnamed species which will further
be referred to as Fusarium sp. nov.-A and Fusarium sp. nov.-B
as indicated in Figure 6; Supplementary Figure 2. Fusarium sp.
nov.-A and Fusarium sp. nov.-B is represented by nine and 11
isolates, respectively. A single isolate from the current study, PPRI
27530, nested with F. transvaalense isolates that grouped within the
larger Brachygibbosum clade of the FSAMSC analysis (Figure 6).
Although this isolate did not produce a nBLASTTM identification
linking to F. transvaalense the phylogenetic grouping supports its
relationship with this recently described species (Sandoval-Denis
et al., 2018).

FIESC
The FIESC isolates were the third most frequently isolated and

between four to five MLST types were identified (against both
databases) among the seventeen FIESC isolates (Table 4). The
FIESC PPRI isolates obtained showed seven of these identified as
FIESC MLST 10-a and another seven as FIESC MLST 9-b. All
the nBLASTTM similarity percentages were above 99% except for
isolate PPRI 25500, identified as FIESC MLST 9-b, which produced
a similarity percentage of 96% against both databases.

The phylogeny for the FIESC analysis resolved the ingroup taxa
into the three main clades (Figure 7; Supplementary Figure 3)
also found in Xia et al. (2019). The first clade demarcated as
the F. camptoceras species complex (FCAMSC) (BPP = -; ML-
BS = 100%), was resolved as the sister clade to the larger second
clade, the Equiseti clade. The third of the larger clades, demarcated
as the Incarnatum clade (BPP = 0.99; ML-BS =), grouped basal to
the Equiseti clade.

The FIESC PPRI isolates from the current study grouped
independently in five subclades, with sixteen isolates resolved
within subclades of the larger Equiseti clade and only one isolate
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FIGURE 2

The gross morphology growth (top row) and colony pigmentation (bottom row) for representative isolates of the different species complexes
cultured on PDA for 10 days. (A) FOSC (PPRI 25045), (B) FOSC (PPRI 25046), (C) FOSC (PPRI 25504), (D) FOSC (PPRI 25049), (E) FFSC (PPRI 27410),
(F) FFSC (PPRI 27540), (G) FSSC (PPRI 25506), (H) FCSC (PPRI 26282), (I) FSAMSC (PPRI 26792), (J) FSAMSC (PPRI 27530), (K) FIESC (PPRI 25500), and
(L) FIESC (PPRI 27406).
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resolved within the larger Incarnatum clade. There were seven
isolates resolved as being closely related to F. croceum (FIESC 10)
(BPP = 1; ML-BS = 99%) and another seven resolved as F. scirpi
(FIESC 9) (BPP = 0.99; ML-BS = 80) that corresponds to the
nBLASTTM identifications. The three remaining PPRI isolates are
represented by single strain isolates/lineages. The isolate PPRI
27425 resolved with the F. clavum subclade (FIESC 5) (BPP = 0.99;
ML-BS = 96%) and PPRI 25500 resolved with the F. serpentinum
subclade represented by a single strain (no FIESC MLST indicated)
(BPP = 0.99; ML-BS = 94%), both subclades were grouped
within the larger Equiseti clade. PPRI 25500 had a low similarity
percentage (96.14%) and that the nBLAST identity linked to FIESC
MLST 9-b (against both databases), yet this isolate did not group
within the F. scirpi (FIESC MLST 9) clade and instead grouped with
the recently described F. serpentinum ex-type culture (CBS 119880)
that is closely related to F. scirpi. PPRI 28106, the only isolate that
grouped within the larger Incarnatum clade, resolved within the
F. coffeatum subclade (FIESC 28) (BPP = 1; ML-BS = 100%).

FFSC
There were nine PPRI isolates identified as belonging to

the FFSC (Table 5). From these nine isolates three isolates
produced similarity percentages below 98%. These three isolates
also produced conflicting identifications against the respective
databases, with the FUSARIUM-ID database indicating the species
level identification as F. andiyazi (Marasas, Rheeder, Lampr., K. A.
Zeller and J.F. Leslie) and the Fusarium-MLST database linking to
either the FFSC or just Fusarium sp. (Table 5).

All the FFSC PPRI isolates from the current study were
phylogenetically resolved in the larger African clade (A) (Figure 8;
Supplementary Figure 4) (Yilmaz et al., 2021). The six FFSC
isolates were phylogenetically closely related to F. chinhoyiense
isolates and a single F. mundagurra isolate (RBG5717). This close
relationship was highly supported (BPP = 0.99; ML-BS = 100%).
F. chinhoyiense is a recently described phylo-species, obtained
from Zimbabwean and South African soils (Yilmaz et al., 2021),
that is closely related to F. mundagurra isolates, obtained from
uncultivated Australian soils (Laurence et al., 2016). The six PPRI
isolates formed a distinct sister clade to the above-mentioned
reference isolates indicating a possible new closely related species.
The three isolates that linked with F. andiyazi, based on nBLASTTM

results, did not group phylogenetically with F. andiyazi reference
isolates but formed a well-supported (BPP = 1; ML-BS = 100%)
sister clade to a single F. tjaetaba (NRRL 66243) reference isolate,
which were also described from natural ecosystems in Australia
(Laurence et al., 2016). This close yet distinguished relationship
may indicate another possible new species found in the GGHNP
belonging to the FFSC.

Minor species complex analysis

The minor species complex analyses include six FCSC, three
FSSC and two FNSC PPRI isolates obtained from the current study.
The six FCSC isolates obtained produced varying identifications
against the respective databases. PPRI 26282, was the only isolate
to produce an identical MLST against both databases and identified
as FCSC MLST 1-m. The nBLASTTM result for the remaining

FIGURE 3

Variation in macroconidium structures and some microconidia of
the identified Fusarium species complexes from the GGHNP. FOSC
(PPRI 26304) (A–C), FSSC (PPRI 25492) (D,E), FFSC (PPRI 27410)
(F–H), FIESC (PPRI 27406) (I), FSAMSC (PPRI 27530) (J), FCSC (PPRI
26282) (K,L). Images were visualised using a light microscope at
40X magnification.

FIGURE 4

The number of isolates obtained per species complex between the
two sampling sites from the respective soil particle sizes.

FCSC isolates were identical to each other but differed between
the respective databases as either FCSC MLST 5-a and MLST
2-a (Table 6). The F. chlamydosporum clade grouped basal to
the F. aywerte clade in the minor species complex phylogenetic
analysis. The F. chlamydosporum clade comprised seven reference
isolates identified as belonging to the FCSC and six undescribed
PPRI isolates from the current study. The monophyly of this clade
was strongly supported (BPP = 1; ML-BS = 98%), supporting the
nBLASTTM identifications that included the six PPRI isolates in
the FCSC. The isolate, PPRI 26282, that linked to FCSC MLST
1-m resolved with reference isolate GQ505413 with low support
(BPP = none; ML-BS = 77). Reference isolate GQ505413 was
identified as FCSC MLST 1-m supporting the identification of PPRI
26282 as MLST 1-m (O’Donnell et al., 2009).
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FIGURE 5

Phylogenetic tree of the FOSC dataset inferred from the tef-1α gene region for 123 taxa. Isolates from the GGHNP are indicated by PPRI number and
are marked in bold. Branch support values are indicated as ML-BS/PP values (>0.98/>70%) above the branches at the corresponding nodes.
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FIGURE 6

Phylogenetic tree of the FSAMSC dataset inferred from the tef-1α gene region for 204 taxa. Isolates from the GGHNP are indicated by PPRI number
and are marked in bold. Branch support values are indicated as ML-BS/PP values (>0.98/>70%) above the branches at the corresponding nodes.
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FIGURE 7

Phylogenetic tree of the FIESC dataset inferred from the tef-1α gene region for 175 taxa. Isolates from the GGHNP are indicated by PPRI number and
are marked in bold. Branch support values are indicated as ML-BS/PP values (>0.98/>70%) above the branches at the corresponding nodes.
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FIGURE 8

Phylogenetic tree of the FFSC dataset inferred from the tef-1α gene region for 359 taxa. Isolates from the GGHNP are indicated by PPRI number and
are marked in bold. Branch support values are indicated as ML-BS/PP values (>0.98/>70%) above the branches at the corresponding nodes.
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The three FSSC isolates produced two isolates (PPRI 25492
and PPRI 25509) that identified as MLST 5-c against the Fusarium
MLST database and as MLST 5-d against the FUSARIUM-ID
database (Table 7). The third FSSC isolate (PPRI 25506) identified
as MLST 5-i on the FUSARIUM-ID database and grouped with
the reference isolate identified as FSSC MLST 5-i (DQ246922). The
minor species complex tree shows the three FSSC isolates forming
a well-supported clade with the FSSC reference isolates, supporting
their identification as members of the FSSC. The grouping of the
F. solani clade was fully resolved (BPP = 1; ML-BS = 100%).

The two FNSC PPRI isolates (Table 8) produced high
percentage similarities against the Fusarium-MLST database
but low percentages against the FUSARIUM-ID database. The
nBLASTTM results indicated to the species level identifications
as F. lyarnte and F. gaditjirri. From the minor species complex
(Figure 9; Supplementary Figure 5) phylogenetic analysis, the two
PPRI isolates grouped with strong support with the FNSC reference
isolates to form the F. niskikadoi clade. The two FNSC PPRI
isolates’ relationship to the F. lyarnte and F. gaditjirri (EF107118
and AY639634) reference isolates was resolved by BS support of
86%. The FNSC is a known sister clade (Baayen et al., 2001) to the
FOSC and this grouping also exists in the current minor species
complex analysis (Figure 9).

Discussion

The diversity of soil-borne Fusarium isolates sampled from
the GGHNP were analysed to further contribute to research on
South African soils linked to presumed non-pathogenic strains of
Fusarium (Marasas et al., 1988; Jeschke et al., 1990; Rheeder and
Marasas, 1998; Mojela, 2017; Jacobs et al., 2018; Sandoval-Denis
et al., 2018; Mavhunga, 2021). The use of the tef1-α gene region
for molecular identification of Fusarium diversity found in the
GGHNP was a key instrument to achieve this. The undisturbed and
semi-disturbed soils of the grassland biome have proven to harbour
a high level of microbial diversity, including fungi like Fusarium.
The grassland biome is of importance as many households in
South Africa rely on subsistence farming that depends on the
health of the grassland biome. This study found seven Fusarium
species complexes with varying levels of diversity and relationships
to pathogenic isolates. The possibility of novel species found
within the FSAMSC and the FFSC, for which the pathogenicity is
still unknown, may have an influence on agricultural systems in
South Africa. This study builds on studies on diversity of Fusarium
members found in natural ecosystems, such as the grassland biome,
with low anthropogenic activity in South Africa, aimed at surveying
the diversity of Fusarium found in South African soil.

Previous studies on South African soils and plant debris found
the FOSC to be most dominant (Marasas et al., 1988; Jeschke et al.,
1990; Rheeder and Marasas, 1998; Mavhunga, 2021) followed by the
FSSC and the FIESC. Marasas et al. (1988) included the GGHNP as
one of 29 sites sampled in South Africa from which ten different
Fusarium species were identified based solely on morphological
characterisation. The GGHNP was one of five sites that produced
high levels of species diversity (i.e., ten different species) from 56
GGHNP isolates. There are three species complexes identified from
the GGHNP that agree with the findings of Marasas et al. (1988), the

FOSC, FSAMSC and the FIESC. When only looking at the GGHNP
isolates from the Marasas et al. (1988) study, F. sambucinum
(FSAMSC) and F. equiseti (FIESC) were the second and third most
frequently isolated species, recognising that these morpho-species
may have hidden further diversity. Our study further identified
members belonging to the FCSC and the FSSC, that were not
identified in the Marasas et al. (1988) study. This trend extrapolated
to comparisons with the Balmas et al. (2010) study with only three
FSSC isolates obtained, these were isolated least frequently. All
the species complexes were isolated in varying frequencies from
both large and small soil particles except for the FSSC, which were
only isolated from small soil particles of site 1. This may be why
Marasas et al. (1988) did not identify any FSSC from the GGHNP as
they only sampled plant debris. Jeschke et al. (1990) suggested that
the measure of diversity between the sampling techniques, such as
the collected sample material used, may be subjective and can be
influenced by the mode of survival of the species isolated.

The FOSC present a very complicated taxonomy. Between
three (O’Donnell et al., 1998b), five (Laurence et al., 2012)
and eight (Lombard et al., 2019a) reoccurring clades have been
reported and extensively studied in this species complex (Achari
et al., 2020). Initially clades one, two and three represented
several morphologically cryptic species and a fourth clade was
introduced through the inclusion of clinically important FOSC
isolates (O’Donnell et al., 2004). Through the incorporation
of Genealogical Concordance Phylogenetic Species Recognition
(GCPSR) studies the recognised phylogenetic species ranged from
two (Laurence et al., 2014) to twenty-one (Lombard et al., 2019a).
The study by Laurence et al. (2014) implemented eight gene regions
using GCPSR studies and determined seventeen independent
evolutionary lineages among members of the FOSC, which were
congregated to indicate two phylogenetic species (PS) demarcated
as PS1 and PS2. The species present in clade 1 formed PS1 and
clades 2, 3, 4, and 5 are regarded as PS2. None of the GGHNP
isolates grouped with PS1 isolates. Clade 5 housed FOSC PS2
reference isolates from Australia (Laurence et al., 2012) as well
as Indonesian isolates (Maryani et al., 2019a), indicating a wide
biogeographical scope. The FOSC are a community dominant
group with a high level of genetic diversity, found in semi- and un-
disturbed areas, and this contributes to the efforts made in resolving
the FOSC phylogeny (Nash and Snyder, 1965; Laurence et al., 2012;
Mavhunga, 2021).

The percentage of FOSC and FIESC isolates obtained
were among the top featured species complexes. Studies on
South African grassland soils from lower altitudes, also found the
FOSC and the FIESC to be highly diverse (Mojela, 2017; Mavhunga,
2021). The FOSC population differed in species diversity between
the two sampled sites. This corroborates the findings from French
soils, where the FOSC had a varied diversity within the same
sampling location and differed in variety when compared with
other sampling locations (Edel et al., 2001). For instance, FOSC
haplotype 18 was isolated more frequently from site 2 and FOSC
haplotype 191 was isolated more frequently from site 1, although
both haplotypes were present in both the respective sites. Studying
the distribution patterns of such species complexes may indicate
host-range, climate-range or the influence of anthropogenic
distribution (Summerell et al., 2010). The current study contributes
to this goal (Laurence et al., 2012, 2016) of identifying the range of
Fusarium species distribution in South Africa.
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TABLE 8 Nucleotide BLAST (nBLASTTM) results from the Fusarium MLST and FUSARIUM-ID databases for the FNSC.

PPRI no. Fusarium
MLST

FUSARIUM-ID Fusarium
MLST

similarity%

FUSARIUM-ID
similarity%

Isolation site Particle size Accession
number

26263 F. lyarnte F. gaditjirri 98% 96% Site 2 Large OL782560

26305 F. lyarnte F. gaditjirri 98% 96% Site 2 Small OL782561

Marked in bold are the isolates that produced contrasting nBLASTTM results between the two databases. Marked in blue are percentage similarities lower than 97%.

The GGHNP contain a variety of wild Protea species that are of
high conservation value (Mabunda, 2011) and it has been found
that F. oxysporum (species not defined) is capable of infecting
at least six Protea cultivars causing Fusarium Wilt (Swart et al.,
1999). This supports the cause for concern as the FOSC were
most frequently isolated from the GGHNP soils. As emphasised
by Laurence et al. and Swart et al. (1999), by evaluating the
phylogenetic distance between non-cultivated and agricultural
strains it could indicate a climatic or edaphic pattern which
is suggested to contribute to the diversity and distribution of
certain species complexes, such as the FOSC. With the grassland
biome used for a wide range of commercial and agricultural uses
(forestry, animal grazing, mining, commercial and subsistence
crop production), the remaining undisturbed hectares demands
protection and conservation (Mabunda, 2011; Mavhunga, 2021).

The FSAMSC PPRI grouping most likely represents more
than one novel Fusarium species belonging to the FSAMSC
that are related to F. transvaalense and F. brachygibbosum.
Fusarium sporotrichioides reference isolates were included (Xia
et al., 2019) in the current study and none of the PPRI isolates that
produced a nBLASTTM identification (against either database) as
F. sporotrichioides grouped within the Sporotrichioides clade. Thus,
there is a very strong possibility of new species discovered from
the GGHNP. The discovery of novel species based on phylogenetic
analysis is occurring more frequently, especially in studies on
undisturbed soils, and it has been found that novel species tend
to be geographically restricted to certain sites (Balmas et al., 2010;
Laurence et al., 2016; Summerell, 2019). In order to confirm this,
the inclusion of additional gene regions such as the RPB1 and RPB2
gene regions are needed (O’Donnell et al., 2013, 2015).

O’Donnell et al. (2009) implemented the informal haplotype
naming system, originally developed by Chang et al. (2006) to
facilitate communication of clinically important species that lack
Latin binomials. These haplotypes are referred to as MLST types.
Previously only 28 FIESC have been assigned Latin binomials
(O’Donnell et al., 2009), with many more recently being formally
named (Maryani et al., 2019b; Santos et al., 2019; Wang et al., 2019;
Xia et al., 2019). Some conflicts arise as the same MLST designation
(MLST 29 and 30) was used in different studies (O’Donnell et al.,
2012; Torbati et al., 2019) that was later designated as MLST
33 by Wang et al. (2019). As only some of the FIESC isolates
related to mycotic infections have accepted Latin binomials it
makes accurate reporting by clinicians and veterinarians difficult
(O’Donnell et al., 2009; Xia et al., 2019). There are currently 38
recognised lineages found within the FIESC (Lima et al., 2021) that
group phylogenetically within either the Equiseti or the Incarnatum
clades (Villani et al., 2019). The phylogenetic species found in
the Equiseti clade have been found to exhibit a cosmopolitan
distribution and the Incarnatum clade predominantly includes

isolates found in temperate regions (Ramdial et al., 2017; Lima
et al., 2021). The FIESC MLST 9 (types 9-a, 9-b and 9-c) has
a Latin binomial assigned as F. scirpi and the FIESC MLST 10
assigned as F. croceum (O’Donnell et al., 2009; Xia et al., 2019).
The seven PPRI isolates, linked to FIESC MLST 10, grouped highly
supported but basal to the F. croceum reference isolates indicating
possible new species. The F. croceum ex-type was recently described
by Xia et al. (2019) and further morphological and phylogenetic
analysis with the inclusion of additional gene regions would be
required to confirm the relation to F. croceum. The other seven
PPRI isolates that linked to FIESC MLST 9 grouped with F. scirpi
reference isolates. An early study on F. scirpi isolates showed it to be
common in arid and semi-arid regions in South Africa with isolates
obtained from seed pods, roots and plant debris from soil (Burgess
et al., 1985). F. scirpi related isolates have also been reported from
undisturbed natural soils from South Africa (Jacobs et al., 2018).
The only FIESC isolate (PPRI 28106) from the current study that
grouped within the larger Incarnatum clade was phylogenetically
resolved as F. coffeatum. FIESC MLST 28 was identified to species
level and named as F. coffeatum (Lombard et al., 2019b) and the
morphological characters for the ex-type culture were evaluated
and confirmed as F. coffeatum (Xia et al., 2019). A single isolate,
PPRI 27425, nested within the F. clavum clade with nBLASTTM

identifications supported by phylogenetic grouping. F. clavum was
demarcated as FIESC MLST 5 and the nBLAST identity linked to
FIESC MLST 5-d. Isolates phylogenetically closely related to FIESC
MLST 5 reference isolates were associated with the death of cattle
feeding on infected kikuyu grass (Botha et al., 2014; Jacobs et al.,
2018). It is important to consider the ecology of each species as it
contributes significantly to its description (Burgess et al., 1985).

The phylogenetic analysis on phytopathogenic members of
the F. fujikuroi species complex (FFSC) (published under the
GFSC name) by O’Donnell et al. (1998a) grouped members
based on the biogeographic origin that was consistent with clade
formation. These phylogenetic clades were designated as the
African, American, and Asian clades. This hypothesis by O’Donnell
et al. (1998a) is inconsistent with species falling within a certain
geographically based clade, although being associated with hosts
from a different geographical origin (Rheeder and Nelson, 1996;
Aoki and Nirenberg, 1999; Bentley et al., 2007). The FFSC member
known as F. verticillioides, for instance, falls within the African
clade, although its most common host association is maize, of
which the earliest ancestor is teosinte that originates from the
Americas and not Africa (Steenkamp et al., 2001; Summerell et al.,
2010). The FFSC isolates from the current study grouped within
the African clade demarcated by O’Donnell et al., 1998a or within
the African (A) clade as demarcated by Sandoval-Denis et al.
(2018) and Yilmaz et al. (2021). The FFSC PPRI isolates could
confidently be regarded as belonging to the FFSC, with three
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FIGURE 9

Phylogenetic tree of the minor species complex dataset inferred
from the tef-1α gene region for 113 taxa. Isolates from the GGHNP
are indicated by PPRI number and are marked in bold. Branch
support values are indicated as ML-BS/PP values (>0.98/>70%)
above the branches at the corresponding nodes.

isolates regarded as new sister species to F. tjaetaba members
and the remaining six isolates representing a new phylo-species
closely related to F. mundagurra and F. chinhoyiense species. The
FFSC is well represented in the FUSARIUM-ID database and the
low similarity percentages may indicate that there exists a variety
of closely related FFSC members within the grassland biome of
South Africa. A study by Niehaus et al. (2016) found that the genes
involved in producing secondary metabolites by members of the
FFSC indicated to species-specific differences, and can be related to
host specificity. The gene region, such as the tef1-α gene region,

has shown some difficulties in resolving recently evolved sister
species in the FFSC for instance, and the inclusion of additional
gene regions will help to resolve these phylogenetic groupings
(O’Donnell et al., 2012, 2015).

The FCSC isolates from the current study were predominantly
isolated from site 1’s large soil particles, with only one FCSC isolate
obtained from site 2’s small soil particles. PPRI 26282, was the
only isolate to produce an identical MLST against both databases
and identified as FCSC MLST 1-m. The nBLASTTM result for the
remaining FCSC isolates were identical to each other but differed
between the respective databases, FCSC MLST 5-a and MLST
2-a. The differences in identifications based on the nBLASTTM

results were supported by the phylogenetic clustering with the PPRI
26282 isolate being closely related to the remaining FCSC PPRI
isolates supporting their distinction as FCSC. The low resolving
capabilities of the minor species complex tree was evident in the
FCSC. Two reference isolates circumscribed as FCSC, F. nelsonii
(NRRL 13338) and Fusarium sp. (NRRL 46670) (Laurence et al.,
2016), were included in this study. The minor species complex tree
showed that these two reference isolates formed a sister clade with
the novel F. aywerte Species Complex (FASC), as expected from
the article by Laurence et al. (2016). The minor species complex
tree resolved the FCSC reference isolates in a single, well supported
clade, and included the FCSC PPRI isolates. This indicates the tef1-
α gene region as being more effective at resolving taxa belonging
to the same species complex and the minor species complex tree
may have just included too many species complexes decreasing its
resolution capabilities among closely related complexes (O’Donnell
et al., 2013, 2015). The use of the MLST typing scheme is
highly effective for clinical identification in both the FIESC and
FCSC, and identifications within these complexes can be done by
implementing partial tef1-α gene regions (O’Donnell et al., 2009).

The FSSC MLST types identified from the current study have
been reported as human pathogens originating from the USA
(Texas, Florida and South Dakota) with several being resistant
to antifungal treatments (O’Donnell et al., 2008; Rosa et al.,
2019). Published FSSC studies predominantly focus on clinical
and agricultural isolates, with little information on the population
structure in natural ecosystems (O’Donnell et al., 2008). The recent
study by Mavhunga (2021) characterised 62 FSSC isolates from
soils of South African nature reserves. The analysis separated
them into the three known/proposed FSSC clades. Three isolates,
MLST 5-c, 5-d and 5-i, from Mavhunga (2021) grouped within
clade 3 and were overall identified as three species, two of which
were the first to be reported in South Africa. The same MLST
identifications were made in this study from the GGHNP and
based on their phylogenetic grouping within our analysis, it may
be likely that they would also have resolved within clade 3, though
further phylogenetic analyses would be required to confirm this.
Laurence et al. (2016) included F. solani reference isolates in the
RPB1 and RPB2 analysis that showed the FSSC grouping basal to
the outgroup, similarly to the current study.

The FNSC in the minor species complex analysis comprised
two PPRI isolates from the current study with identifications linked
to F. lyarnte and F. gaditjirri. Both F. lyarnte (Walsh et al., 2010)
and F. gaditjirri (Phan et al., 2004) were isolated from tropical
grasses in Australia, and belong to the F. nisikadoi species complex
(FNSC) (Laurence et al., 2016; Geiser et al., 2020). The FNSC was
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originally referred to as the F. nisikadoi-F. miscanthi clade (Gams
et al., 1999), which comprises these two closely related species that
were host-associated with Asian grasses and are able to produce
pyriform conidia (Gams et al., 1999; Baayen et al., 2001). Summerell
et al. (2011) suggested that both F. lyarnte and F. gaditjirri may be
endophytic, with no direct pathogenic effects detected in the host
plant.

Conclusion

The current study aimed to expand on the known Fusarium
species diversity found in South African grassland soils with low
anthropogenic activity, such as in the GGHNP. Information from
the current study will further contribute to the link between
known pathogenic species complexes from highly cultivated soils
in comparison to native soils, assisting with conservation strategies
to prevent future outbreaks or for establishing new areas for
use in agriculture.
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