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Promotors are those genomic regions on the upstream of genes, which are

bound by RNA polymerase for starting gene transcription. Because it is the

most critical element of gene expression, the recognition of promoters is

crucial to understand the regulation of gene expression. This study aimed to

develop a machine learning-based model to predict promotors in Agrobacterium

tumefaciens (A. tumefaciens) strain C58. In the model, promotor sequences were

encoded by three di�erent kinds of feature descriptors, namely, accumulated

nucleotide frequency, k-mer nucleotide composition, and binary encodings. The

obtained features were optimized by using correlation and the mRMR-based

algorithm. These optimized features were inputted into a random forest (RF)

classifier to discriminate promotor sequences from non-promotor sequences in

A. tumefaciens strain C58. The examination of 10-fold cross-validation showed

that the proposed model could yield an overall accuracy of 0.837. This model will

provide help for the study of promoters in A. tumefaciens C58 strain.

KEYWORDS

prokaryotic promotors, feature extraction, agrobacterium tumefaciens strainC58, feature

selection, algorithms

1. Introduction

Agrobacterium belongs to the family of ubiquitous gram-negative soil bacteria.

Infectious strains of agrobacterium such as agrobacterium tumefaciens strain C58 cause

hairy root and crown gall diseases in plants (Goodner et al., 2001). Promotors are

the genomic regions upstream of a gene on DNA where transcription factor and RNA

polymerase bind together to initiate gene transcription (Sawadogo and Roeder, 1985; Zhao

et al., 2017; Zhang et al., 2018). The biological process of prokaryotic promotors is shown in

Figure 1. The study of promoters is the first step to understanding gene expression.

Correct identification of the promotor sequence could produce vital signs for

understanding its mechanism of the regulation (Cao et al., 2022; Li et al., 2022b).

Currently, numerous tentative techniques, such as mass spectrometry (Flusberg et al.,

2010), reduced-representation bisulfite sequencing (Doherty and Couldrey, 2014), and

single-molecule real-time sequencing (Boch and Bonas, 2010), have been developed. Though

these procedures are quite helpful in the identification of promotors prediction, they are

Frontiers inMicrobiology 01 frontiersin.org

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2023.1170785
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2023.1170785&domain=pdf&date_stamp=2023-04-13
mailto:hasanzulfiqar@uestc.edu.cn
mailto:zyzhang@uestc.edu.cn
mailto:nmlf906@163.com
https://doi.org/10.3389/fmicb.2023.1170785
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmicb.2023.1170785/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zulfiqar et al. 10.3389/fmicb.2023.1170785

FIGURE 1

Schematic diagram of the prokaryotic promotor structure and its biological processes.

costly when applied to large sequencing data. Thus, a

bioinformatics tool to recognize the promotor sequence is

urgently needed. At present, some computational tools have been

presented to recognize promotors in multiple species, such as

PePPer (de Jong et al., 2012) for Escherichia coli (E.coli) and Bacillus

subtilis (B.subtilis); Promotech for Bacillus amyloliquefaciens (B.

amyloliquefaciens) XH7 bacterium (Chevez-Guardado and Peña-

Castillo, 2021); DeePromotors (Oubounyt et al., 2019) for TATA

promotors (Zou et al., 2016) in eukaryotic genomes; iProEP (Lai

et al., 2019) forHomo sapiens (H. sapiens),Drosophila melanogaster

(D. melanogaster), Caenorhabditis elegans (C. elegans), B. subtilis,

and E. coli; and iPromotor-2L (Liu et al., 2018) for bacterial

promotors. However, there is no such model for A. tumefaciens

C58 strain. To address the above-mentioned problems, we

designed an RF-based model to predict promotor sequences in

agrobacterium tumefaciens strain C58. Figure 2 illustrates the

workflow of the projected model.

Accumulated nucleotide frequency, binary encodings, and k-

mer nucleotide composition were utilized to convert sequences

into numerical features, and then these features were optimized by

using correlation and themRMR-based feature selection algorithm.

After this, these optimized features were inputted into a random

forest classifier for the identification of promotor sequences on

the basis of 10-fold cross-validation. As a result, an ideal model

was attained.

2. Materials and methods

A precise and accurate dataset is necessary to establish

a prediction model (Liang et al., 2017; Ning et al., 2021a,b;

Su et al., 2021). Therefore, we obtained the experimentally

verified Agrobacterium tumefaciens strain C58 promotors data

of 706 sequences from PPD (http://lin-group.cn/database/ppd/

index.php) and also collected negative data of 2860 sequences

of 81 bp from (http://bioinformatics.hitsz.edu.cn/iPromotor-2L/

data). Moreover, we divided the dataset into 80/20 ratios for

training and testing the model.

2.1. Feature descriptors

Selecting the feature encodings that are useful and autonomous

is a key stage in establishing machine learning-based models (Lv

et al., 2021; Zhang D. et al., 2021; Ao et al., 2022a; Li et al., 2022a;

Ning et al., 2022; Teng et al., 2022; Wei et al., 2022). Representing

the DNA sequences with a mathematical manifestation is very

important in functional element identification. Some DNA

sequences coding strategies such as accumulated nucleotide

frequency, physiochemical properties, binary encodings, nucleotide

chemical properties and k-tuple nucleotide frequency component,

nucleotide pair spectrum encoding, and natural vector have been

applied in bioinformatics (Dao et al., 2020; Yang X. et al., 2021;

Zhang Y. et al., 2021; Ao et al., 2022b; Ren et al., 2022). The

performance of these feature descriptors was good. Here, to extract

DNA sequence information as more as possible, accumulated

nucleotide frequency, k-mer nucleotide composition, and binary

encodings were presented to describe the DNA sequences based on

their superior performance.

2.1.1. Accumulated nucleotide frequency
The encoding of ANF consists of the distribution and frequency

of nucleotides ni in the sequences. The nucleotide density Di at any

position in the sequence can be calculated as follows:

Di =
1

|ni|

z
∑

k=1

f (ni) , f
(

g
)

=

{

1 if ni = g

0 in other case
(1)

where z is the sequence length, ni is the length of the string {n1, n2,

. . . , ni} (Li et al., 2022c,d) in the sequence, and g ∈ {A, G, C, T}.

2.1.2. k-mer nucleotide composition
k-mer nucleotide composition can reflect short-range

nucleotide interaction of sequences (Salimi and Moeini, 2021;

Zhang et al., 2022b; Dao et al., 2023). The nucleotide residues can

be obtained via a sliding window method by setting the window
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FIGURE 2

Overall workflow of the study.

size of k bp with a step size of 1 bp to examine a sequence with n

bp. An arbitrary sample Z with the sequence length of n (where n

is 81bp) can be characterized as

Z = Q1 Q2 Q3 . . . .. Qi . . . .. Q(n−1) Qn (2)

where Qi signifies the nucleotide {A, G, C, T} at the i-th position.

The sequences can be transformed into the 4k D vector using k-mer

nucleotide composition as follows:

Qk = [p
k−tuple
1 p

k−tuple
2 . . . . .p

k−tuple
i . . . ..p

k−tuple

4k
]
t

(3)

where t denotes the transposition of the vector, and p
k−tuple
1

symbolizes the occurrence of the i-th k-mer nucleotide composition

in the sequence. When k = 1, a DNA sample can be decoded into

a 4 D vector Q1 = [p(A), p(T), p(G), p(C)]t .When k = 2, the DNA

sample can be described by a 16-dimension vector. In this study,

the value of k was set as 4 due to the best results. The whole results

of k-mer nucleotide composition (k = 1,2,3,4,5,6) on training and

independent data are shown in Supplementary Table S1.

2.1.3. Binary encoding
Encoding “0” and “1” can represent any information in the

computational work (Zou et al., 2019). Therefore, we can directly

convert a DNA sequence into a string of characters, which is

consisted of “0” and “1.” A= (1,0,0,0), T= (0,1,0,0), G= (0,0,1,0),

and C= (0,0,0,1). Thus, a DNA sample of 81 bp length is converted

into a 324 (4× 81) dimension vector in this study.

2.2. Feature selection

2.2.1. Correlation
Feature selection is an important step for improving model

performance (Dao et al., 2020). Correlation is a familiar

comparison measure between two features. If two features are

linearly dependent, then their correlation coefficient will be “±1.” If

the features are uncorrelated, the correlation coefficient will be “0.”

There are two comprehensive classes that can be used to measure

the correlation between two random variables. One is based on

information theory, and the other is classical linear correlation.

The most familiar measure is the linear correlation coefficient. The

linear correlation coefficient “d” for a pair of (m, n) variables is

specified as

d =

∑

(mi − mi)(ni − ni)
√

∑

(mi − mi)
2
√

∑

(ni − ni)
2

(4)

Due to the expansion of the data, the correlation coefficient

which is good for a sample may not produce decent outcomes for

the whole population. Therefore, it is necessary to determine the

significant association between the features, while captivating the

whole population. The most commonly used method to examine

statistical correlation is the t-test. The procedure used in the

projected algorithm is to use the t-test for choosing the most

important features from the whole feature set. The formula for

calculating the suitable “T” value to test the consequence of a

correlation coefficient employs the “T” distribution. The “T” value

can be calculated as

T = d

√

i− 2

1− d2
(5)
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where “i” is the number of instances and “d” is the correlation

coefficient for sample data. The significance of the relationship is

expressed in probability levels: p (e.g., significant at p = 0.05). The

degrees of freedom for entering the T-distribution are i – 2. If the

value of “T” is higher than the threshold value at the 0.05 significant

level, then the feature will be significant and selected (Zulfiqar et al.,

2022a).

2.2.2. mRMR
mRMR is a very popular feature selection technique, and it has

been applied in many bioinformatics and biological applications

(He et al., 2020; Zulfiqar et al., 2021b; Su et al., 2023). The

compactness functions are described as “i” and “y,” and their

corresponding probabilities are P (i) and P(y). The common

information between these two functions can be defined as

Qmin(fi, fy) =
∑

i∈Q

∑

y∈Y

P
(

fi, fy
)

log
P(i, y)

P (i) , P(y)
) (6)

If the target is Ji, then calculating the mutual information in

relation to the target and can be defined as

Qmax(fi, Ji) =
∑

fi∈Q

∑

Ji∈i

P
(

fi, Ji
)

log
P(fi, Ji)

P
(

fi
)

, P(Ji)
) (7)

Thus,mRMR(fi)can be calculated as

mRMR(fi) =
Qmax(fi, Ji)

Qmin(fi, fy)
(8)

2.3. Machine learning classifiers

Naïve Bayes (NB) classifier has been used widely in

bioinformatics due to its simplicity (Ye et al., 2021). This

classification method totally depends on the Bayes theorems. Ada

boost (AB) is another popular machine learning technique. The

main idea of AB is to set the classifiers’ weights and trained the data

in each and every iteration. The support vector machine (SVM)

is also very famous and has been used in many bioinformatics

and computational biology-related tools (Tao et al., 2020; Ahmed

et al., 2022; Manavalan and Patra, 2022; Zou et al., 2022; Bupi et al.,

TABLE 1 Best parameters of the proposed model.

Best parameters

“N-estimators” 80

“Max_depth” 20

“Bootstrap” True

“Min_samples_leaf” 1

“Min_samples_split” 2

Input: Training data: = H (x1, x2, ......,

xk, xc)

Output: Hbest

1st Round

1 Start

2 for i =1 to k do

3 d = calculate correlational coefficient

(xi, xc)

end

4 let p = 0.05 significant level

5 let ρ = 0 / suppose there is no

significant correlation between fi and fc

6 for i = 1 to k do

q = calculate the significance (d, ρ) for xi

/ by using the T-test

7 if T > CV / critical value

8 Hbest = Hlist

9 end

10 return Hbest

2nd Round

11 Start

12 By sorting the features

13 for each feature fi in Z do

14 By calculating the mutual information in

relation to other features as

15 Qmin(fi, fy) =
∑

i∈Q

∑

y∈Y P
(

fi, fy
)

log
P(i,y)

P(i),P(y)
)

16 By calculating the mutual information in

relation to the target:

17 Qmax(fi, Ji) =
∑

fi∈Q

∑

Ji∈i P
(

fi, Ji
)

log
P(fi,Ji)

P(fi),P(Ji)
)

18 By calculating the mRMR(fi) as

19 mRMR(fi) =
Qmax(fi ,Ji)
Qmin(fi ,fy)

20 end

21 for by sorting the features in descending

order

22 By updating the matrix Z’ with sorted

features

23 end

24 return Z’

Algorithm 1. Correlation and mRMR-based Feature Selection Algorithm.

2023; Zulfiqar et al., 2023). It is mostly used to perform binary

classification. We implemented these algorithms in Weka version

3. 8.4. by using the default values. RF is a combined knowledge

algorithm and is widely used in bioinformatics (Ao et al., 2022c;

Zhang et al., 2023). The main idea of this is to combine several

weak classifiers and outcomes generated on the basis of voting. The

brief description is clearly described by Zulfiqar et al. (2021a). We

have used randomized and grid search cross-validations to tune the

hyperparameters. We executed this job in the Scikit-learn package

version 0.22.2, and its parameters are summarized in Table 1. All

experiments were carried out on a Windows operating system with

1.7 GHz intel quad-core i5.
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TABLE 2 Performance of models using di�erent classifiers on the training and independent dataset.

Training dataset Independent dataset

Classifier FS k Method Accuracy Precision Recall F1 AUC Accuracy Precision Recall F1 AUC

AB 256 4 k-mer 0.761 0.772 0.761 0.791 0.812 0.775 0.820 0.801 0.798 0.881

50 4 k-mer 0.799 0.802 0.785 0.789 0.856 0.787 0.824 0.799 0.805 0.872

324 Binary 0.738 0.742 0.756 0.712 0.786 0.700 0.702 0.700 0.730 0.765

48 Binary 0.745 0.742 0.698 0.789 0.820 0.720 0.732 0.702 0.726 0.789

82 ANF 0.684 0.645 0.689 0.743 0.731 0.641 0.692 0.688 0.655 0.699

38 ANF 0.743 0.726 0.775 0.746 0.796 0.696 0.702 0.698 0.710 0.756

662 Fusion 0.745 0.732 0.785 0.775 0.799 0.720 0.732 0.775 0.745 0.774

136 Fusion 0.778 0.768 0.792 0.800 0.845 0.738 0.745 0.765 0.725 0.806

SVM 256 4 k-mer 0.761 0.802 0.789 0.799 0.865 0.749 0.838 0.761 0.648 0.860

50 4 k-mer 0.796 0.802 0.802 0.812 0.883 0.753 0.748 0.753 0.756 0.832

324 Binary 0.744 0.747 0.778 0.765 0.792 0.725 0.755 0.760 0.763 0.786

48 Binary 0.774 0.775 0.732 0.778 0.815 0.748 0.800 0.778 0.769 0.845

82 ANF 0.666 0.697 0.732 0.705 0.766 0.612 0.623 0.633 0.605 0.699

38 ANF 0.755 0.768 0.748 0.759 0.820 0.695 0.703 0.713 0.705 0.806

662 Fusion 0.710 0.722 0.708 0.709 0.745 0.705 0.700 0.700 0.710 0.740

136 Fusion 0.752 0.759 0.758 0.768 0.801 0.741 0.750 0.770 0.765 0.810

NB 256 4 k-mer 0.748 0.780 0.778 0.719 0.823 0.788 0.801 0.799 0.802 0.884

50 4 k-mer 0.802 0.821 0.823 0.827 0.881 0.792 0.778 0.792 0.802 0.878

324 Binary 0.737 0.775 0.765 0.789 0.794 0.776 0.770 0.778 0.793 0.835

48 Binary 0.777 0.789 0.759 0.788 0.864 0.782 0.810 0.815 0.816 0.891

82 ANF 0.675 0.689 0.720 0.696 0.756 0.665 0.685 0.691 0.701 0.741

38 ANF 0.735 0.741 0.728 0.733 0.770 0.723 0.715 0.705 0.740 0.762

662 Fusion 0.712 0.754 0.726 0.745 0.768 0.764 0.777 0.756 0.750 0.788

136 Fusion 0.778 0.802 0.808 0.810 0.880 0.790 0.807 0.803 0.800 0.892

RF 256 4 k-mer 0.809 0.830 0.810 0.74 0.861 0.808 0.841 0.811 0.799 0.897

50 4 k-mer 0.837 0.840 0.841 0.801 0.900 0.831 0.842 0.837 0.818 0.900

324 Binary 0.792 0.632 0.792 0.701 0.842 0.784 0.804 0.808 0.788 0.887

48 Binary 0.796 0.653 0.801 0.732 0.865 0.806 0.825 0.811 0.806 0.892

82 ANF 0.791 0.630 0.791 0.702 0.850 0.788 0.803 0.773 0.778 0.878

38 ANF 0.795 0.642 0.789 0.743 0.866 0.794 0.726 0.792 0.80 0.868

662 Fusion 0.792 0.630 0.790 0.708 0.822 0.794 0.771 0.790 0.789 0.856

136 Fusion 0.801 0.786 0.795 0.800 0.881 0.807 0.799 0.820 0.812 0.889
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FIGURE 3

Performance comparison on di�erent machine learning classifiers by using training and independent datasets. The higher point represents the

training accuracy and the lower point represents the accuracy on independent data (A). AUC curve of the anticipated model (B).

2.4. Evaluation metrics

Accuracy, precision, recall, and F1 (Hasan et al., 2020; Zhang

et al., 2020; Wei et al., 2021b; Shoombuatong et al., 2022; Yang

et al., 2022; Zulfiqar et al., 2022b) were employed to assess the

performance of the prediction model and are expressed as























Acc =
tp + tn

tp+fp + tn+fn

Pre =
tp

tp +fp

Rec =
tp

tp +fn

F1 = 2× Pre × Rec
Pre + Rec

(9)

where tp symbolizes the correctly predicted promotor sequences

and fp signifies the non-promotor sequences classified as the

promotor sequence. On the other hand, tn represents the

correctly identified non-promotor sequences, and fn demonstrates

the promotor sequences, which were classified as the non-

promotor sequence.

3. Results and discussion

3.1. Performance evaluation

On the basis of sequence features, we constructed an

anticipated model to recognize promotor sequences in A.

tumefaciens C58 strain. First, the training data were converted into

numerical feature vectors using accumulated nucleotide frequency,

binary encodings, and k-mer nucleotide composition. After this,

these features were optimized by using correlation and the mRMR-

based algorithm. First, correlation measures and then mRMR

were used to select the finest feature subset for the improved

prediction outcomes. Afterward, these features were inputted

into four machine learning methods. Cross-validation (CV) is a

statistical analysis procedure and has been applied in machine

learning to evaluate the model’s performance (Yang H. et al., 2021;

Chen et al., 2022; Liao et al., 2022; Xiao et al., 2022; Zhang et al.,

2022a; Yang et al., 2023). In this study, the 10-fold CV test was

used to investigate the performance of machine learning methods.

In 10-fold CV, the benchmark dataset was randomly separated

into ten groups of about equal size. Each group was individually

tested by the model which trained with the remaining nine groups.

Therefore, the 10-fold CVmethod was performed 10 times, and the

average of the results was the final result (Charoenkwan et al., 2021;

Wei et al., 2021a; Hasan et al., 2022). We have trained 32 models

on AB, SVM, NB, and RF. At first, we used single encodings and

their fusion to train and test the models, and then we optimized

the feature encodings and their fusions by using correlation and

the mRMR-based algorithm. In this phase, we utilized the t-test

and picked the significant features by selecting the probability of

the significance relation 0.05, and then used mRMR and picked

the top features. Moreover, we inputted these features into AB,

SVM, NB, and RF and found that the performance of k-mer was

good as compared to other feature encodings and their fusion. The

accuracy of k-mer in RF was 3.5%−4.1% higher than the other

three classifiers. TheAUC curve of the anticipated model was 0.900.

The accuracy, precision, recall, and F1 are recorded in Table 2. The

performance comparison on different machine learning classifiers

by using training and independent datasets and ROC plot of the

anticipated model is shown in Figures 3A, B.

4. Conclusion

Promotors have a significant role in the transcription process

because they are located on upstream of genes where RNA

polymerase binds with the transcription factor and initiate the

transcription. In this study, an RF model was established to
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identify promotors sequences in agrobacterium tumefaciens strain

C58. In the proposed model, sequences were encoded using

accumulated nucleotide frequency, k-mer nucleotide composition,

and binary encodings and then optimized with correlation and

the mRMR-based algorithm. After this, these optimized features

were inputted into the RF-based classifier using the 10-fold CV

test and achieved the best model. The estimated outcomes on

independent data showed that the projected model provided

brilliant performance and oversimplification. We provided the

source codes and data freely at https://github.com/linDing-groups/

model_promotor. Researchers can yield good results for DNA

sequences and recognize their roles by using our freely available

source codes. In future, we will further improve the efficiency by

using CNN/GNN and release a webserver to make our anticipated

model more convenient for users without mathematical and

programming knowledge.
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