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Background: Alzheimer’s disease (AD) is one of the most common causes of 
neurodegenerative disease affecting over 50 million people worldwide. However, 
most AD diagnosis occurs in the moderate to late stage, which means that the 
optimal time for treatment has already passed. Mild cognitive impairment (MCI) 
is an intermediate state between cognitively normal people and AD patients. 
Therefore, the accurate prediction in the conversion process of MCI to AD 
may allow patients to start preventive intervention to slow the progression of 
the disease. Nowadays, neuroimaging techniques have been developed and are 
used to determine AD-related structural biomarkers. Deep learning approaches 
have rapidly become a key methodology applied to these techniques to find 
biomarkers.

Methods: In this study, we aimed to investigate an MCI-to-AD prediction method 
using Vision Transformers (ViT) to structural magnetic resonance images (sMRI). 
The Alzheimer’s Disease Neuroimaging Initiative (ADNI) database containing 598 
MCI subjects was used to predict MCI subjects’ progression to AD. There are three 
main objectives in our study: (i) to propose an MRI-based Vision Transformers 
approach for MCI to AD progression classification, (ii) to evaluate the performance 
of different ViT architectures to obtain the most advisable one, and (iii) to visualize 
the brain region mostly affect the prediction of deep learning approach to MCI 
progression.

Results: Our method achieved state-of-the-art classification performance in 
terms of accuracy (83.27%), specificity (85.07%), and sensitivity (81.48%) compared 
with a set of conventional methods. Next, we visualized the brain regions that 
mostly contribute to the prediction of MCI progression for interpretability of the 
proposed model. The discriminative pathological locations include the thalamus, 
medial frontal, and occipital—corroborating the reliability of our model.

Conclusion: In conclusion, our methods provide an effective and accurate 
technique for the prediction of MCI conversion to AD. The results obtained in this 
study outperform previous reports using the ADNI collection, and it suggests that 
sMRI-based ViT could be efficiently applied with a considerable potential benefit 
for AD patient management. The brain regions mostly contributing to prediction, 
in conjunction with the identified anatomical features, will support the building of 
a robust solution for other neurodegenerative diseases in future.
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1. Introduction

Alzheimer’s disease (AD) is one of the most common causes of 
neurodegenerative disease affecting over 50 million people 
worldwide. The structural changes of the brain can be one of the 
biomarkers for identifying AD patients from normal elderly subjects 
(Chiba et al., 2009; Scheltens et al., 2016). Because of the accumulation 
of Aβ and the deposition of hyper-phosphorylated tau protein, the 
structure in the brain begins to shrink, called brain atrophy, especially 
in specific regions such as the frontal, and hippocampus. Progression 
of atrophy is first manifest in the medial temporal lobe and then 
closely followed by the hippocampus, amygdala, and para-
hippocampus. Some studies have suggested that in AD patients, 
entorhinal volumes are already reduced by 20–30%, hippocampal 
volumes by 15–25% and rates of hippocampal atrophy in mild AD 
are 3–5% per year. This cerebral atrophy can be visualized in life with 
MRI (best with a T1-weighted scan) (Johnson et al., 2012). However, 
most AD diagnosis occurs in the moderate to late stage, which means 
that the optimal time for treatment has already passed. Mild cognitive 
impairment (MCI) is an intermediate state between cognitively 
normal people and AD patients. It refers to mild impairment of 
cognitive and memory functions rather than dementia. People with 
MCI tend to convert to AD at a significantly higher rate than normal 
people. Typically, there are two subtypes of MCI: non-convert MCI 
(MCINC), which will not develop to AD, and converted MCI 
(MCIC), which will progress to AD. Therefore, the accurate 
prediction in the conversion process of MCI to AD may allow 
patients to start preventive intervention to slow or stop the 
progression of the disease.

As mentioned above, the accumulation of plaque and 
neurofibrillary tangles make several changes in brain structures. These 
changes could be used as a biomarker for the classification of MCI 
progression and are clearly analyzed by structural MRI (sMRI). Three 
planes of view are there in sMRI known as the axial, sagittal, and 
coronal planes (Vlaardingerbroek and Boer, 2003). The sagittal plane, 
especially the mid-sagittal plane provides the most visible information 
for the diagnosis such as the thalamus, frontal lobe, cerebellum, 
corpus callosum, which is expected to be  the source site for AD 
tangles and senile plaque. The frontal lobe is in charge of cognitive 
function in humans and gives an idea about the prognosis of AD 
(Stuss et al., 1992). Thalamus is also related to episodic memory loss 
and attention dysfunction in AD (Aggleton et al., 2016). Figure 1 
represents a mid-sagittal plane view of an MRI scan taken from the 
ADNI dataset showing the important section responsible for AD 

progression. Thus, we  adopted the mid-sagittal plane for the 
assessment of AD for the proposed model.

In recent years, deep learning approaches and their variants 
have been increasingly applied to AD diagnosis (Islam and Zhang, 
2017; Maqsood et al., 2019; Mehmood et al., 2020; Lim et al., 2022). 
AD classification has been greatly improved by structural 
MRI-based approaches using the whole brain, image patches, and 
regions of interest (ROIs). In regional feature-based methods, 
recent studies mainly relied on prior knowledge to determine ROIs. 
Using an ROI-based level model, Zhang et al. (2011) achieved an 
accuracy of 93.2% in AD classification, and 76.4% in MCI 
classification. Liu et  al. (2016) proposed a relationship-induced 
multi-template learning method for the automatic diagnosis of 
Alzheimer’s disease based on multiple sets of regional gray matter 
density features with an accuracy of 93.06% in the AD classification 
task and 79.25% in the progression MCI task. However, identify and 
segmenting regions of interest (ROIs) was a time-consuming 
process that relied on the expertise of specialists, and the features 
extracted from these regions might not capture the intricate 
alterations that occur in the brain.

To overcome this limitation, image patch-level methods were used 
for more effectively capturing the local structural changes in MRI 
scans. Zhu et al. (2021) have also proposed a method using image 
patch-level and multi-instance deep learning which achieves an 
accuracy of 90.2% for the AD classification task and 82.5% for the 
progression MCI task. Liu et al. (2019) extracted 27 overlapping 3D 
patches of size 50 × 41 × 40 voxels covering the whole volume of the 
MR image (100 × 81 × 80 voxels) then fit them into their model and 
achieve an accuracy of 93.7% in AD classification.

Although many studies have reported very high accuracy in AD 
classification task based on the deep learning model with 
neuroimaging data, there is currently a lack of studies regarding the 
prediction of MCI converting to AD. The progression of MCI 
classification has been challenging for not only computer-aid study 
but also clinical study. There is no obvious difference in brain anatomy 
between progression and stable MCI patients. Therefore, study about 
the progression of MCI classification using brain regions related to 
cognitive and sensory function is necessary.

Inspired by the success of transformers in Natural language 
processing (NLP), Dosovitskiy et  al. (2021) developed the vision 
transformers (ViT) by formulating the image classification as a 
sequence prediction task for the patches. ViT and its variants have 
achieved SOTA performance on several datasets. Nowadays, 
transformers are becoming one of the most popular methodologies of 
computer vision tasks, including classification, detection, and 
segmentation. Coming up with many successes of vision transformers 
in the medical imaging field (Dai and Gao, 2021; Gao et al., 2021; Jun 
et  al., 2021; Gheflati and Rivaz, 2022), we  hypothesized that 
transformers also could advance the performance of 
MCI-to-AD progression.

The motivations of our proposed method are as follows:

Abbreviations: AD, Alzheimer’s disease; MCI, mild cognitive impairment; CNN, 

convolutional neural network; ViT, vision transformers; sMRI, structural magnetic 

resonance image; MCINC, non-convert MCI; MCIC, convert MCI; NLP, natural 

language processing; PET, positron emission tomography; MLP, multi-layer 

perceptron.
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 1. Due to no obvious difference in brain atrophy among MCI 
patients, we hypothesize that the brain region responsible for 
cognitive and sensory function could be  used as a good 
biomarker for computer-aid diagnosis in the progression of 
MCI. The mid-sagittal plane is used for MCI progression because 
it provides extremely good informative features of the mid-brain 
region, including the thalamus, medial frontal lobe, etc.

 2. Vision transformers are proposed due to their successes in many 
medical classification studies before. We believe that ViT could 
replace other CNN-based methods in medical applications.

In this study, we proposed the first study to explore the potential 
of vision transformers in the medical image classification of 
MCI-to-AD progression by mid-sagittal planes MRI scan. We make 
the following contributions:

 1. We apply vision transformers to sMRI classification of MCI 
progression for the first time and achieve state-of-the-art 
performance in respect of accuracy in comparison with 
recent studies.

 2. We visualize the region that our model mostly focused on to 
ensure the interpretability and the reliability of our model. 
We  found that the medial frontal and thalamus were strong 
predictors of MCI progression, in agreement with previous studies.

2. Materials and methods

2.1. Data sets and preprocessing

The sMRI scans used for this study are collected from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI1) database, 

1 adni.loni.usc.edu/

including ADNI-1, ADNI-2, and ADNIGO. The ADNI was initiated 
in 2003 by Principal Investigator Michael W. Weiner, MD to test 
whether magnetic resonance imaging (MRI), positron emission 
tomography (PET), other biological markers, and clinical and 
neuropsychological tests can be  incorporated to measure the 
development of MCI and early AD. We included all participants with 
a T1 weighted MRI scan at baseline from the ADNI1/GO/2: 258 MCI 
patients who progressed to AD within 36 months after the baseline 
time (MCIC) and 340 MCI patients who did not convert (MCINC). 
Table  1 shows the demographic details of subjects accessed 
from ADNI.

The T1-weighted MRI scans were selected by following the steps, 
Figure 2. If there are multiple scans for a single session, we select the 
scan preferred by MAYOADIRL_MRI_IMAGEQC_12_08_15.csv, 
provided by ADNI. If no preferred scan is identified, we choose the 
higher-quality scan defined in MRIQUALITY.csv, also provided by 
ADNI. If there is no information regarding quality control, then 
we select the first scan for the visit.

The original sMRI data retrieved from the ADNI database are 
preprocessed to obtain improved image features for classification. In 
ADNI data, the scanners have different scanning parameters such as 
flip angle, slice thickness, etc. The ADNI scan intensity values were 
normalization by adjusting to have a zero mean and unit variance by 
subtracting the average intensity values and dividing the deviation. To 
reduce global linear differences or make all images fit into each other 
geometrically, we perform linear registration to the Colin27 templates 
(Holmes et al., 1998). Because the skull information is irrelevant for 
MCI progression prediction, skull-removing is applied for all images. 
Registration and skull-stripping steps were performed by ‘FLIRT’ 
function with default parameter and ‘BET’ function with fractional 
intensity threshold (0.5) of the FSL toolbox (Jenkinson et al., 2012) 
respectively. After preprocessing, the MR images have a size of 
181 × 217 × 181. Then we extract three middle slices of sagittal planes 
(middle ±3 voxels) to form mid-sagittal planes with the size of 
3 × 217 × 181. The mid-sagittal images then are resized to 
3 × 224 × 224 in order to fit the pre-trained model. The zero-padding 
was applied to resize for keeping the same resolution. Figure 2 shows 
the pipeline of our preprocessing process.

2.2. Vision transformers architecture

This work is oriented towards the exploitation of Vision 
Transformers (ViT) approaches. Proposed by Dosovitskiy et al. (2021) 
the ViT is an architecture for image classification that employs a 
Transformer-like architecture over patches of the image and can 
outperform common CNN architectures when trained on large 
amounts of image data. The concept of vision transformers is 
described as follows:

A standard transformer receives an input as a 1D sequence of 
token embeddings; therefore in order to handle a 2D image, ViT 

TABLE 1 Demographics information of the obtained subjects.

Diagnosis Num. of 
Subjects

Gender 
(Female/Male)

Age 
(Mean ± Std)

MCIC 258 103/155 74.11 ± 6.99

MCINC 340 134/206 72.32 ± 7.48

FIGURE 1

Sagittal plane view of MRI scan taken from ADNI dataset describing 
AD relevant section of the brain.

https://doi.org/10.3389/fnagi.2023.1102869
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://adni.loni.usc.edu/


Hoang et al. 10.3389/fnagi.2023.1102869

Frontiers in Aging Neuroscience 04 frontiersin.org

reshapes the image I RH W C × ×  into a sequence of flattened 2D 
patches I RP n P C × ×( )2

, where H W,( )  is the resolution of the 
original image, C  is the number of channels, P  is the resolution of 
image patch and n HW P= /

2  is the number of patches. Vision 
transformers flatten the patches and transform image patches to a D 
dimension vector with a trainable linear projection because vision 
transformers use the same width across all layers. The output of this 
projection is used as the patch embeddings.

The essential components of the standard transformer layers 
include Multi-Head Self Attention (MSA) and Multi-Layer Perceptron 
(MLP). The multi-head self-attention mechanism splits the input into 
many small parts, then measure the scaled dot-product of each input 
in parallel, and splices all the attention outputs to have the final 
outputs of multi-head self-attention:

 
Attention Q K V Softmax QK

d
V

T

x
, ,( ) =











−
.

 
(1)

 
head Attention QW KW VWi i

Q
i
K

i
V= ( )− − −, ,

 
(2)

 
MSA Q K V Concat head head Wi i

O, , , ,( ) = …( )  
(3)

The multi-layer perceptron is added on top of the MSA layer. The 
MLP module contains linear layers separated by a Gaussian Error 

Linear Unit (GeLU) activation. Both MSA and MLP have skip-
connection-like residual networks and layer normalization.

 
x MSA LN x xt t t′ − −= ( )( ) +1 1  

(4)

 
x MLP LN x xt t t= ( )( ) +′ ′

 
(5)

Where xt−1 represent for the t −1  layer, LN represents the linear 
normalization, xt  is the output of the t-th layer.

2.3. Our methodology

In this study, we followed the original ViT implementation as 
much as possible to intuitively compare the benefits of transformers 
and access the extensible ViT model and its pre-trained almost 
immediately. The structure of our model is shown in Figure 3.

Given original MR images I RB Ch S C Aoriginal original original × × × × , where 
S C Aoriginal original original× ×  (170 × 256 × 256 voxel) is sagittal, 
coronal and axial spatial resolution, the number of channels is Ch , 
the batch size is B. After registration and skull-stripping, the image 
will become I Rpreprocessed

B Ch S C Anew new new × × × × , where 
S C Anew new new× ×  (181 × 217 × 181 voxel) is the new sagittal, 
coronal, axial spatial resolution after preprocessing. Before sending 
it to transformers, it is necessary to extract mid-sagittal slices from 
the preprocessed images to 2D mid-sagittal slices images 
I Rmid sagittal

B C Afinal final
−

× × × 3 , where C Afinal final×  is the final 

FIGURE 2

T1-weighted MRI scans selection.
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spatial resolution. Here, we choose three mid-sagittal slices (mid 
slices ±3 voxels) of the sagittal plane to form three channels of a 2D 
image. Then, the image sequences are constructed and fit to 
the model.

2.4. Experimental setting and evaluation 
criteria

Our total dataset has 2,681 images from 258 MCIC and 340 
MCINC patients. We  shuffled the images randomly and all 
experiments were performed by splitting data into 10% as test and 
90% as train data; 20% data from the train set is used as a validation 
set. We set SGD as the optimizer with a learning rate equal to 1 7e−

. The model is trained for 200 epochs and an L2-Regularization 
value of 1 5e− . Our experiments are done on a machine with an 
Intel(R) Xeon(R) Gold 6258R CPU @ 2.70GHz with 256GB 
RAM. The GPU used is 4x NVIDIA GeForce RTX 3090. The code 
is implemented using Pytorch (Paszke et al., 2019) and PyCharm 
(PyCharm, n.d.).

The evaluation criteria for the model are accuracy rate (ACC), 
sensitive rate (SEN), and specificity (SPEC), defined as follows:

 
ACC TP TN

TP TN FP FN
=

+
+ + +  

(6)

 
SEN TP

TP FN
=

+  
(7)

 
SPEC TN

TN FP
=

+  
(8)

where TP, TN, FP, and FN denoted as true positive, true negative, 
false positive and false negative value, respectively.

3. Results and analysis

3.1. Classification performance on ADNI

The performance on MCI-to-AD progression prediction 
achieved by mid-sagittal MRI-based vision transformers is shown in 

A

B

FIGURE 3

sMRI Image preprocessing. (A) Image preprocessing pipeline for extracting mid-sagittal plane and fit to the model. (B) Sagittal plane view of the image 
in original, registration, and skull-stripping stages.
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Table 2 and Figure 4. The tables include our results and those of the 
literature. For each study, we  indicate the methodology, and the 
values of the performance measures. We provided three variants of 
our method: the small version (VIT-S), the base version (VIT-B), and 
the large version (VIT-L) of vision transformers. Our method 
consistently outperforms previous studies in three indicators of 
classification performance including sensitivity (Sen), specificity 
(Spec), and accuracy (Acc). The VIT-S archives 83.27% in accuracy 
and 85.07% which is about a 1 and 4% improvement, respectively in 
comparison with the other studies (Eskildsen et  al., 2013; Basaia 
et  al., 2019; Bae et  al., 2021; Zhang et  al., 2021; Zhu et  al., 2021; 
Ashtari-Majlan et  al., 2022). VIT-B also shows a significant 
performance enhancement in specificity with 82.22%. Although 
Ashtari-Majlan et al. (2022) have shown higher specificity (99.70%), 
their results are lower in both accuracy and sensitive indicators. 
Figure 4 shows the confusion matrix of the VIT-S model which has 
the best result among our methods with an AUC of 0.87. Finally, our 
proposed method is highly efficient compared with state-of-the-art 
MRI-based research.

3.2. Pathological locations attentions by 
transformers

Defining the brain region most related to the deep learning model 
prediction is of great importance to computer-aided diagnosis. One of 
the keys to the clinical diagnosis of AD and the progress of MCI to AD 
is to observe the structural change in the brain. As a prediction 
approach, we investigate the possible pathological region in the brain 
which is related to the prediction of our method. We use GRAD-CAM 
(Selvaraju et al., 2020) to investigate which brain region attention 
layers observe and focus on in order to classify MCIC and MCINC 
classes (Figure  5). depicts several locations in mid-sagittal slices 
identified by our proposed method. The marked locations are, 

respectively, suggested by attention score using GRAD-CAM. In the 
left panel, we compare the MCIC and MCINC classes in each marked 
location. The right panel shows the related brain regions of marked 
locations. We find that three major regions that are most informative 
for our model prediction are the thalamus, medial frontal, and 
occipital. We  observed brain atrophy in the medial frontal and 
occipital of MCIC class compared with these of MCINC. The right 
panel shows the related brain regions of marked locations. These 
marked regions are consistent with many previous studies about AD 
diagnosis (Lian et  al., 2020; Shao et  al., 2020; Bron et  al., 2021)  - 
attesting the reliability of the proposed model.

3.3. Ablation experiment

To investigate the effect of design choices for transformers in 
MCI-to-AD classification, we conducted an ablation experiment. In 
the experiment, we explore the impact of different models, the size 
of ViT, patch size, and pre-trained weight. We experimented in 3 
versions of our method: small version (VIT-S), base version (VIT-B), 
and large version (VIT-L). All models were trained using pre-trained 
weights available in Pytorch-Image-Model implementation 
(Wightman et al., 2022), including ImageNet-1K, ImageNet-21K, 
and Facebook DINO pre-trained weight. Patch size was selected 
between 8, 16, and 32. The results are shown in Table 3. We observe 
that the ViT small version with a patch size of 16 and pre-trained 
weight of ImageNet-1K gives the best classification performance. 
From our point of view, the patch size of 16 could catch the most 
effective and informative features of MR images. The proposed 
model makes predictions by extracting the brain regions with related 
patch sizes. With the larger patch size, the information collected by 
the model becomes too generalized and loses a lot of details leading 
to underfitting. In contrast, too small an image patch size can destroy 
the semantic information of the MRI scan.

4. Discussion

Effective and precise MCI-to-AD prediction is critical for early 
intervention and management of the disease. Therefore, many studies 
make an effort to research and improve the performance of MCI 
progression prediction. In this study, we investigated a comparative 
study focusing on the predictive performance of vision transformers 
based on mid-sagittal slices sMRI data of the ADNI. Our proposed 
method outperformed the current state-of-the-art MRI-based studies 
on MCI progression diagnosis (Basaia et al., 2019; Bae et al., 2021; Zhu 
et al., 2021; Ashtari-Majlan et al., 2022) with an accuracy of 83.27%, 
specificity of 85.07%, and sensitivity of 81.48%. These results imply 
that using vision transformers equipped with attention power could 
achieve better classification performance compared with the current 
CNN architecture. The possible reason is that the attention mechanism 
in vision transformers could effectively enhance the difference in the 
brain region between MCI convert and no convert classes.

In the ablation contribution, we conducted the variant of the 
model, patch size, and pre-trained weights to better understand the 
efficacy of the proposed method. For patch size, we observe that the 
proposed method could gather better informative features with a 
patch size of 16. The results also have shown that reducing the 

TABLE 2 Referential comparison between the proposed model with MRI-
based studies for MCI progression prediction (in %).

Study Method Acc Sen Spec

Basaia et al. 

(2019)

3D CNN architecture 75.1 74.8 75.3

Bae et al. (2021) CNN with ResNet backbone 82.4 81.08 –

Zhang et al. 

(2021)

Connection-wise-attention-

model-based densely 

connected convolution 

neural network (CAM-CNN)

78.79 75.16 82.42

Eskildsen et al. 

(2013)

mRMR, linear discriminant 

analysis (LDA)

77.30 69.00 79.10

Ashtari-Majlan 

et al. (2022)

Multi-stream convolutional 

neural network

79.90 75.55 99.70

Zhu et al. 

(2021)

Dual attention multi-

instance deep learning 

network

80.20 77.10 82.60

VIT-S Vision transformers 83.27 85.07 81.48

VIT-B Vision transformers 80.67 79.10 82.22

VIT-L Vision transformers 72.86 74.63 71.11
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complexity of the model leads to better accuracy, where ViT-S gives 
us the best accuracy. We  assume that the reason is the poor 
performance of the pure transformer with larger complexity due to 
the small dataset. These also are proven by the better results of 
Facebook DINO pre-trained weight in the base version (VIT-B). 
DINO Facebook pre-trained is the weight trained by self-distillation 
with no label’s methods (Caron et al., 2021). Through the distillation 
train approach, their model has worked efficiently even with a small 
dataset. In future work, we will explore the performance of the self-
distillation train approach in our proposed method.

Besides, we  also observed the brain regions that affect our 
proposed method’s prediction. Identifying these regions will help 
for future development of deep learning models to improve 
classification performance as well as for doctors to find the regions 
of interest for diagnosis easily. We mark out three main regions 
that have the highest attention score: the thalamus, medial frontal, 
and occipital. We also observed brain atrophy in these regions in 

MRI scans. Figure 6 have shown examples of MRI scans in both 
convert (MCIC) and non-convert (MCINC). Specifically, the 
thalamus is the main relay of sensorimotor information in the 
brain and is thought to be crucial for memory processing which is 
impacted early in Alzheimer’s disease (Aggleton and Brown, 1999; 
Aggleton and Nelson, 2015). The medial frontal also plays an 
important role in numerous cognitive functions, including 
attention, and spatial or long-term memory (Jobson et al., 2021; 
Park et al., 2021). The occipital is responsible for visual perception, 
including color, form, and motion where the volume is reduced 
due to Alzheimer’s disease (Holroyd et  al., 2000; Brewer and 
Barton, 2014). These results suggest informative regions for future 
feature extraction to improve our proposed method by focusing 
more attention on these locations. In addition, the three marked 
brain regions which contribute critical information for the 
prediction of the method also give more useful clues for doctors in 
clinical diagnosis (Figure 7).

FIGURE 4

Overview of sMRI-based vision transformers model in prediction of MCI-to-AD progression.
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5. Limitations and future work

Although our proposed method achieves good performance in 
AD-related diagnosis, several limitations still need to improve in the 
future. We  summarize the limitations and potential solutions 
as follows.

Our method is not actually a 3D scan model, only 3 slices of the 
mid-sagittal brain are extracted. Therefore, the global anatomical 
information in another brain region could be  missed during the 
prediction. In Alzheimer’s disease diagnosis, the hippocampus and 

media temporal lobe is critical regions. Missing the image slices 
covering these regions could lead to misdiagnosing the disease. The 
segmentation of these regions is needed in future work.

Moreover, the 3DViT consumed a lot of computational time when 
trained with 224 × 224 × 224 images. In future work, embedding only 
the attention mechanism of vision transformer into convolution 
neutral network model could be one of the solutions to reduce the 
computational time when performing the model in the 3D scan. The 
automatic segmentation of the hippocampus and media temporal lobe 
from a 3D scan could reduce the image size and keep the necessary 
information for disease diagnosis.

A B

FIGURE 5

Classification result for the proposed model for MCINC and MCIC class. (A) Confusion matrix of the test dataset. (B) ROC curve (receiver operating 
characteristic curve).

TABLE 3 Ablation study on the effectiveness of transformers.

Model Patch size Pretrained data Accuracy Sensitivity Specificity

VIT-B

32
ImageNet-1k 76.21 77.04 75.37

ImageNet-21k 75.84 75.56 76.12

16

ImageNet-1k 80.67 82.22 79.10

ImageNet-21k 76.95 75.56 78.36

Facebook DINO 80.67 82.22 79.10

8

ImageNet-1k 73.98 72.59 75.37

ImageNet-21k 72.86 71.11 74.63

Facebook DINO 81.41 82.96 79.85

VIT-S

32
ImageNet-1k 73.61 71.85 75.37

ImageNet-21k 75.84 72.59 79.10

16

ImageNet-1k 83.27 81.48 85.07

ImageNet-21k 76.58 76.30 76.87

Facebook DINO 73.98 69.63 78.36

8 Facebook DINO 77.32 71.85 82.84

VIT-L

32 ImageNet-21k 72.49 69.63 75.37

16
ImageNet-1k 72.86 71.11 74.63

ImageNet-21k 71.38 69.63 73.13

8
ImageNet-1k 74.35 71.11 77.61

ImageNet-21k 73.61 71.85 75.37
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6. Conclusion

In this work, we proposed a vision transformers model to advance 
the classification accuracy in MCI-to-AD conversion prediction, 
which includes two major contributions:

 1. Our proposed method is evaluated on 598 subjects from ADNI 
datasets. As far as we know, we are the first study to develop a 
ViT model for midsagittal sMRI for MCI to AD progression 
classification. We achieved a classification accuracy of 83.27%, 

specificity of 85.07%, and sensitivity of 81.48%. Compared with 
other MRI-based studies on the same datasets, the proposed 
method has demonstrated top-ranked classification accuracy.

 2. We visualized the brain regions affected mostly to the 
performance of our method. We  found that the thalamus, 
medial frontal, and occipital regions of sMRI were the strongest 
features in our proposed model. These results highlight the 
potential for early diagnosis and stratification of individuals 
with MCI based on patterns of cortical atrophy, prior to 
interventional clinical trials.

FIGURE 6

Visualization of the pathological sagittal brain region identified by proposed method on MCI-to-AD Progression Classification. The left panel shows the 
informative locations suggested by attention scores and the comparison between MCIC and MCINC classes in each region. The right panel shows the 
related brain region, respectively, with marked locations.

FIGURE 7

Example of MCIC and MCINC MRI scans with region of interest (ROI).
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