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STGATE: Spatial-temporal graph
attention network with a
transformer encoder for
EEG-based emotion recognition

Jingcong Li, Weijian Pan, Haiyun Huang, Jiahui Pan and

Fei Wang*

School of Software, South China Normal University, Guangzhou, China

Electroencephalogram (EEG) is a crucial and widely utilized technique in

neuroscience research. In this paper, we introduce a novel graph neural network

called the spatial-temporal graph attention network with a transformer encoder

(STGATE) to learn graph representations of emotion EEG signals and improve

emotion recognition performance. In STGATE, a transformer-encoder is applied

for capturing time-frequency features which are fed into a spatial-temporal

graph attention for emotion classification. Using a dynamic adjacency matrix,

the proposed STGATE adaptively learns intrinsic connections between di�erent

EEG channels. To evaluate the cross-subject emotion recognition performance,

leave-one-subject-out experiments are carried out on three public emotion

recognition datasets, i.e., SEED, SEED-IV, and DREAMER. The proposed STGATE

model achieved a state-of-the-art EEG-based emotion recognition performance

accuracy of 90.37% in SEED, 76.43% in SEED-IV, and 76.35% in DREAMER dataset,

respectively. The experiments demonstrated the e�ectiveness of the proposed

STGATE model for cross-subject EEG emotion recognition and its potential for

graph-based neuroscience research.
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1. Introduction

Emotion is a generalization of subjective human experience and behavior. Emotions
affect our perceptions and attitudes dramatically and play an essential role in human-
computer interaction (HCI) (Jerritta et al., 2011). Emotions have a significant impact on our
evaluation, attitudes, behavior, decisions, cognition, learning, perception, and understanding
(Brosch et al., 2013). Moreover, emotions can act as a motivational mechanism that enhances
users’ attention, interest, and motivation, thereby promoting their learning and cognition
(Tyng et al., 2017). In the context of human-computer interaction (HCI), emotions can serve
as a valuable feedback mechanism that increases user satisfaction, engagement, and loyalty
(Brave and Nass, 2007; Jeon, 2017).

As a crucial and fundamental research area of affective computing and neuroscience,
emotion recognition has attracted great attention from the academy and enterprise fields
in recent years (Cambria et al., 2017; Torres et al., 2020). Emotion recognition technology
can generally be categorized into two major categories (Shu et al., 2018). The first
category involves non-physiological signals such as facial expressions, speech, gestures,
and posture (Schuller et al., 2003; Anderson and McOwan, 2006; Castellano et al., 2008).
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The second category is based on physiological signals such
as electroencephalogram (EEG), electrocardiogram (ECG),
electromyography (EMG), skin temperature (SKT), and others
(Egger et al., 2019). Physiological-based emotion recognition
is considered more reliable as it is difficult for individuals to
deliberately control their physiological signals. Among the
physiological signals, EEG signals are widely used in neural
engineering and brain-computer interfaces (BCIs) research due
to their high temporal resolution, non-invasiveness, and low cost
(Craik et al., 2019). Emotional states are closely related to neural
activity produced by the central nervous system (Torres et al.,
2020). This neural activity can be directly measured using EEG
devices, making EEG-based emotion recognition increasingly
popular in various fields, such as education, health, entertainment
(Xu et al., 2018; Suhaimi et al., 2020; Abdel-Hamid, 2023;
Moontaha et al., 2023).

A major problem with recognizing emotions is that emotions
should be defined and accessed quantitatively. There are two
different models used to define emotions: the discrete model and
the dimensional model (Shu et al., 2018). According to the discrete
model, emotions are divided into several basic categories, such
as sadness, fear, disgust, surprise, happiness, and anger. These
emotions can form more complex emotion categories through a
certain combination of patterns (Peter and Herbon, 2006; Van den
Broek, 2013). The dimensional emotion model maps emotional
states into the points on a certain coordinate system. Different
emotional states are distributed in different positions in the
coordinate system, and the distance between positions reflects the
difference between different emotional states (Wioleta, 2013; Poria
et al., 2017; He et al., 2020). Different from discrete emotion
models, the dimensional emotion model is continuous and has the
advantages of a wide range of emotions and the ability to describe
the evolution of emotions.

In recent decades, EEG-based emotion recognition has
attracted much attention from researchers (Jerritta et al., 2011).
A typical recognition process of emotional EEG usually consists
of two parts: EEG feature extraction and emotion classification
(Alarcao and Fonseca, 2017). EEG is a highly dynamic and
nonlinear signal with a large amount and redundancy of data.
Thus, feature extraction is an important step in emotion evaluation
because high-resolution features are essential for effective pattern
recognition (He et al., 2020). EEG features can be mainly
divided into time-domain features, frequency-domain features,
and time-frequency features (Jenke et al., 2014; Stancin et al.,
2021; Huang et al., 2022). One of the widely used methods
of frequency domain feature analysis of EEG signals is to
decompose EEG signals into several frequency bands, including
delta (1–3 Hz), theta (4–7 Hz), alpha (8–13 Hz), beta (14–
30 Hz), and gamma (>31 Hz) (Aftanas et al., 2004; Davidson,
2004; Li and Lu, 2009). EEG features can be extracted from
each band. The common time domain features include statistical
features (Liu and Sourina, 2014) and Hjorth features (Hjorth,
1970). Commonly used frequency domain features include power
spectral density (PSD) (Thammasan et al., 2016), differential
entropy (DE) (Shi et al., 2013), and rational asymmetry (RASM)
(Zheng et al., 2017). The common time-frequency domain
features include wavelet features (Akin, 2002), short-time Fourier

transform (Kıymık et al., 2005), and Hilbert-Huang transform
(Hadjidimitriou and Hadjileontiadis, 2012).

One of the most successful methods for recognizing emotions
based on EEG signals is Deep Neural Networks (DNN) (Zhang
et al., 2020; Ozdemir et al., 2021). The Convolutional Neural
Networks (CNN) method was proven to be a powerful tool to
model structured data in many applications, ranging from image
classification and video processing to speech recognition and
natural language understanding (Gu et al., 2018). However, EEG
signals can be considered non-Euclidean data in order to extract the
relationship of different brain regions, and Convolutional Neural
Networks (CNN) may not be effective in capturing the hidden
patterns of non-Euclidean data (Micheloyannis et al., 2006). In
recent years, Graph Neural Networks (GNNs) have been developed
rapidly and offer a potential solution to extract correlation features
among EEG channels in emotion recognition tasks (Wu et al.,
2020). In the graph representation of emotional EEG signals, each
EEG channel corresponds to a vertex node, and the connections
between vertex nodes correspond to edges in the graph, making it
suitable for encoding the correlation among the brain regions in the
multichannel EEG signal (Jia et al., 2020). However, constructing a
better graph representation of EEG signals for emotion recognition
problems remains challenging as the spatial position, which must
be predetermined before building the EEG emotion recognition
model, is different from the functional connections among EEG
channels (Song et al., 2018).

To leverage both spatial relationships and time-frequency
information, many researchers have extended graph neural
networks by spatial-temporal attention. Spatial temporal attention
is a mechanism that captures the dynamic relationship between
spatial and temporal dimensions in data. It consists of two kinds
of attention: spatial attention, which focuses on the relevant
regions or nodes in space; and temporal attention, which focuses
on the time steps in time dimension. Sartipi et al. proposed
the novel spatial-temporal attention neural network (STANN)
to extract discriminative spatial and temporal features of EEG
signals by a parallel structure of the multi-column convolutional
neural network and attention-based bidirectional long-short term
memory (Sartipi et al., 2021). Li X. et al. (2021) proposed a
model called attention-based spatial=temporal graphic long short-
term memory (ASTG-LSTM), in which a specific spatial-temporal
attention embedded into the model to improve the invariance
ability against the emotional intensity fluctuation. Liu et al. (2022)
proposed a spatial-temporal attention to explore the relationship
between emotion and spatial-temporal EEG features. Therefore, it
is reasonable to consider incorporating spatial-temporal attention
to improve classification accuracy.

In this paper, we propose a novel model, STGATE, which
combines a transformer learning block (TLB) and a Spatial-
temporal Graph Attention (STGAT) mechanism. TLB utilizes 2D
convolutional layers and a transformer encoder to extract time-
frequency information, while the STGAT utilizes both spatial and
temporal attentionmechanisms to learn connections between brain
regions and temporal information, respectively. Our approach
treats EEG signals as graph data and incorporates them into
graph neural networks to capture correlations between EEG
channels. Unlike the GNN methods, the adjacency matrix learned
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by STGATE can provide a better graph representation because
it is adaptively updated by spatial attention during the training
process. The main contributions of this paper can be summarized
as follows:

• This paper proposes a novel spatial-temporal graph attention
network with a transformer encoder (termed STGATE) for
EEG-based emotion recognition.

• STGATE utilizes a transformer learning block and spatial-
temporal graph attention. This allows it to capture electrode-
level time-frequency representations. It also helps STGATE
learn the emotional brain activities within and among different
brain functional areas.

• STGATE achieved state-of-the-art performance with a cross-
subject accuracy of 90.37% in SEED, 76.43% in SEED-IV, and
77.44% and 75.26% in the valence and arousal dimensions
of the DREAMER dataset, respectively. Extensive ablation
studies and analysis experiments were conducted to validate
the efficiency of the proposed STGATE.

Remainder of this paper is organized as follows. The proposed
STGATE method is presented in Section 3. The datasets and
experiment settings are presented in Section 4. In Section 5,
numerical emotion recognition experiments on the SEED, SEED-
IV, and DREAMER datasets are carried out. In addition, the
performance of the current methods and the proposed methods
are presented and compared. Some discussions and analyzes of the
proposed model are presented in Section 5. The conclusions of this
paper are given in Section 6.

2. Related work

2.1. Emotion recognition

Emotion recognition is crucial for research in affective
computing and neuroscience. Many studies on EEG-based emotion
recognition focus on feature engineering or deep learning. Long
short-termmemory (LSTM) has been utilized to learn features from
raw EEG signals and has achieved higher average accuracy than
traditional techniques (Alhagry et al., 2017). A deep adaptation
network has also been used to eliminate individual differences in
EEG signals for effective model implementation (Li et al., 2018).

However, the inter-channel correlation of EEG signals for
emotion recognition is critical. Song et al. (2018) proposed a novel
dynamic graph convolutional neural network to dynamically learn
the intrinsic relationship between different channels. To capture
both local and global relations among different EEG channels,
Zhong et al. proposed a regularized graph neural network (RGNN)
for EEG-based emotion recognition, which models the inter-
channel relations in EEG signals via an adjacency matrix (Zhong
et al., 2020). A graph convolutional broad network was designed
to explore the deeper-level information of graph-structured data
and achieved high performance in EEG-based emotion recognition
(Zhang et al., 2019). Li et al. proposed a Multi-Domain Adaptive
GraphConvolutional Network (MD-AGCN), fusing the knowledge
of both the frequency domain and the temporal domain to

fully utilize the complementary information of EEG signals (Li
R. et al., 2021) designed a model called ST-GCLSTM, which
utilizes spatial attention to modify adjacency matrices to adaptively
learn the intrinsic connection among different EEG channels
(Feng et al., 2022).

Various methods and classifiers have been proposed and
applied to the problem of EEG-based emotion recognition. To
improve the accuracy of emotion recognition, this paper proposes
STGATE, a model that extracts time-frequency and spatial features
from EEG signals.

2.2. Graph attention network

According to previous studies, graph convolutional neural
networks are divided into spectral and spatial methods (Chen et al.,
2020). The spectral method uses the convolution theorem to map
the signal to the spectral space, which overcomes the non-Euclidean
data missing translation invariance feature. The spatial method
operates directly on the graph data and achieves the convolution
effect by aggregating the information of neighboring nodes.

Graph attention networks (GATs) are a kind of network based
on an attention mechanism to classify graph-structured data,
which belongs to the spatial method of graph convolutional neural
network (Veličković et al., 2017). The basic idea is to calculate the
hidden representation of each graph node in the graph data by
aggregating the information of neighboring points using the self-
attention strategy and to define the information fusion using the
attention mechanism function. Unlike other graph networks, GAT
calculates the association weights by the feature representations
of the nodes instead of calculating the weights based on the
information of the edges. The input to a graph attention network
is a series of feature vectors of nodes, which can be expressed

as H =
{−→
h 1,

−→
h 2, . . . ,

−→
h N

}
,
−→
h i ∈ R

N×F , where N is the

number of vertices, and F represents feature dimensions. The graph
attention network uses a self-attentive mechanism to compute the
attention coefficients of the input feature vectors and normalize
them as follows:

eij = a
(
W

−→
h i,W

−→
h j

)
(1)

αij = Softmax j

(
eij

)
= exp

(
eij

)
∑

k∈Ni
exp (eik)

(2)

where eij represents attention weights between node i and node
j, and aij is the normalized attention weight, indicating the

importance of node i to node j,
−→
h is the eigenvector; W is the

weight matrix in (1, 2). The attention weights and expressions can
be represented as follows:

αij =
exp

(
LeakyReLU

(−→
a T

[
WEhi‖WEhj

]))

∑
k∈Ni

exp
(
LeakyReLU

(−→
a T

[
WEhi‖WEhk

])) (3)

where || denotes the concatenation operation, Ni denotes the
set of neighboring nodes of the i th node, −→a T represents the
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FIGURE 1

The overall structure of STGATE. The model contains two main modules, Transformer Learning Block and Spatial-Temporal Graph Attention. The first

module aims to learn time-frequency representations. The second module focuses on building dynamic graph representations by using an attention

mechanism.

transpose of the attention weight vector, and LeakyReLU denotes
the nonlinear activation function in Equation (3). To make the
network more informative, the graph attention network uses a
multi-head mechanism that makes each head capture different
information. The information frommultiple heads is fused through
a linear layer, and the attention coefficients are combined with the
corresponding feature vectors to compute the final output features
of each node.

Eh′i = σ


 1

K

K∑

k=1

∑

j∈Ni

αk
ijW

kEhj


 (4)

whereW is the weight matrix of the linear layer, σ is the nonlinear
activation function, and Eh′i is the final output vector of the graph
attention network in Equation (4).

The graph attention network assigns different weights to the
nodes (EEG channels) through the attention mechanism, which
effectively improves the representational capability of the network.
At the same time, the graph attention network operates very
efficiently with a computational complexity of O

(
|V|FF′ + |E|F′

)
,

where F is the dimension of the input vector, |V| is the number of
nodes, and |E| is the number of edges.

3. Methods

As shown in Figure 1, the architecture for our proposed model
consists of two modules. The upper module is an electrode-level
learning block for extracting time-frequency information. The
bottom module is a dynamic graph convolution for the correlation
of EEG channels by constructing the adjacency matrix during the
training and testing processes.

3.1. Transformer learning block

Figure 1 illustrates the transformer learning block (TLB),
which aims to learn electrode-level time-frequency representations
from EEG signals. TLB comprises two main components. The
first component is a stack of multi-kernel convolutions that
downsample five frequency bands and extract multi-scale features.
Previous studies have reported that network connections in the
high gamma band are denser among different emotional states,
such as happiness, neutrality, and sadness, compared to other
frequency bands (Yang et al., 2020). Similarly, Newson and
Thiagarajan (2019) found that emotional disorders aremore related
to higher frequencies, including the alpha, beta, and gamma bands.
Therefore, emotional states are more relevant to the alpha (8–
13 Hz), beta (14–30 Hz), and gamma (>31 Hz) frequency bands
(Ding et al., 2020). To better make use of all informative frequency
bands, the kernels of the convolution layers are set to 1, 3, and
3. The 3*3 convolution layers are adopted followed by the 1*1
convolution layer, which aims to add network nonlinear features.
Transformer-based methods have achieved great success in many
areas (Raganato and Tiedemann, 2018; Liu et al., 2021). The multi-
head self-attention and parallel inputting have superior abilities to
capture long-range dependencies. The positional embedding learns
the positional information of the sequence. To enhance the long-
range dependencies captured in EEG, the second component uses
a transformer encoder to map the EEG sequence to a new encoded
sequence that contains more temporal information to enhance the
long-range dependency capturing ability in EEG.

3.2. Graph representation

Usually, EEG signals are measured by placing the electrodes
on the corresponding locations in the human brain scalp, and
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the brain electrodes measure voltage changes generated by neural
activity in the cerebral cortex (Subha et al., 2010). The distribution
position of the brain electrodes is defined by some standards,
such as the international 10/20 system. The distribution position
of the brain electrodes is fixed and regular, so the EEG signal
channels can be considered classical non-Euclidean structured data
(Micheloyannis et al., 2006), which are well suited to be represented
by graphical data.

G = (V , E) (5)

V = {vi | i = 1, . . . ,N} (6)

E =
{
eij | vi, vj ∈ V

}
(7)

A =
{
aij

}
(8)

A segment of EEG signals collected by a brain electrode can
be considered as a node of the graph. Therefore, we regard multi-
channel EEG signals as a graph. G denotes a graph, V denotes the
set of vertices in graph G, and E represents the set of edges in
Equations (5–7). N is the number of brain electrodes in Equation
(6). In the graph representation of EEG signals, a node vi is usually
used to represent an EEG electrode, while an edge eij represents the
correlation between nodes vi and vj. A is the adjacency matrix of
graph G. aij represents the strength of the correlation of nodes vi
and vj in Equation (8). The adjacency matrixA is a learnable matrix
and can be dynamically modified during the training process.
Generally, we model the EEG signal as an undirected graph and use
this undirected graph as the input to the adaptive graph module.
The initial set of edges of the undirected graph obtained from
the above modeling is determined by the kNN algorithm, which
computes graph edges to the nearest k points.

3.3. Spatial-temporal graph attention

Neural activity in different brain regions has an intrinsic
correlation during the emotional experience. EEG signals recorded
by brain electrodes can also reflect some intrinsic correlation in
different brain regions. Therefore, we proposed spatial-temporal
graph attention (STGAT) to capture correlations between EEG
electrodes in the spatial domain and temporal EEG information in
the temporal domain. Specifically, STGAT dynamically learns the
adjacency matrix A through a spatial attention mechanism during
the training process and uses temporal attention to further learn the
temporal information in EEG.

Spatial attention can be implemented with the
following formula:

S = V · σ
(
W1XhW2 + bs

)
(9)

A = S− E[S]√
Var[S]

(10)

where S ∈ R
B×N×N is a weight matrix, which represents the

importance of edges. A represents the dynamic adjacency matrix.
Xh ∈ R

B×N×C×Tr is the input of the block. B is the batch size.
N is the number of vertices of the input data. C represents the
2D convolution channels. Tr denotes the length of the temporal
dimension. V , bs ∈ R

N×N , W1 ∈ R
Tr , and W2 ∈ R

C×N are
learnable parameters, and σ denotes the Tanh activation function.
We adopt batch normalization to reduce internal covariate shifts
and accelerate training (Santurkar et al., 2018). E[·] and Var[·]
denote the mini-batch mean and mini-batch variance of S. The
value of an element Sij indicates the strength of the connection
between node i and node j. We use the spatial attention matrix
A as the adjacency matrix so that the adjacency matrix can be
dynamically constructed by the corresponding input features. To
obtain better representations of EEG signals, we adopt a Top-K
algorithm to maintain the 10 edges with the highest weight and
discard the others. The Top-K operation is applied as follows:





for i = 1, 2, . . . ,N
index = argtopk(A[i, :])

A[i, index ] = 0

(11)

where the argtopk(·) is a function to obtain the index of the top-k
largest values of each vector in Equation (11). The use of a dynamic
adjacency matrix in EEG emotion recognition has contributed
to the ability to dynamically learn the intrinsic relationship
between different EEG channels, which can reflect the brain
connectivity patterns associated with different emotional states.
Moreover, the dynamic adjacency matrix can adapt to different
subjects, thereby improving the cross-subject generalization
ability of EEG emotion recognition models. By applying graph
convolution on multichannel EEG features using the dynamic
adjacency matrix, more discriminative features can be extracted for
emotion classification.

Temporal attention is designed to dynamically capture the
correlation between emotional EEG signals in the time domain. The
temporal attention mechanism is defined as follows:

T = V · σ
(
W3XhW4 + bt

)
(12)

T̂ = T − E[T]√
Var[T]

(13)

W3 ∈ R
Tr and W4 ∈ R

C×N are learnable parameters, and σ

denotes the tanh activation function. Having the temporal attention
weight matrix, we tuned the input Xh by the temporal attention:

X̂h = T̂Xh (14)

We utilize temporal attention to focus on valuable temporal
information in EEG-based emotion recognition. The purpose
of time-domain attention is to uncover the temporal patterns
in EEG signals and assign importance weights based on their
intrinsic similarities. By combining spatial attention with temporal
attention, the model can extract more discriminative features from
EEG signals and enhance the accuracy of emotion recognition. We
use X̂h as the input to the graph attention network and A as the
adjacency matrix of the graph data.
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4. Experiment

4.1. Datasets

The SEED dataset is an EEG-based dataset collected in the
BCMI lab of Shanghai Jiao Tong University, known as the
SJTU Emotion EEG Dataset (Zheng and Lu, 2015). The dataset
contains a total of 62 channels of EEG signals from 15 subjects
for 15 experiments. The researchers prepared 15 movie clips
of approximately 4 min, which were divided into 3 categories:
negative, neutral, and positive. Positive movies are comedies that
stimulate positive emotions such as happiness; negative movies are
tragic movies that stimulate negative emotions such as sadness,
and neutral movies are world heritage documentaries that do not
stimulate positive or negative emotions. The subjects were asked to
watch these movie clips and were given 45 s to self-evaluate and
calm down after each clip was shown.

The SEED-IV dataset is also from the BCMI lab (Zheng
et al., 2018). This dataset features 168 movie clips that serve as
a repository for four emotions (happy, sad, fearful, and neutral).
Forty-four participants (22 females, all college students) were
recruited to assess their emotions while watching the movie clips
using keywords from four discrete emotions (happy, sad, neutral,
and fearful) and rating 10 points (from –5 to 5) on two dimensions:
valence and arousal.

The DREAMER dataset is a commonly used emotion
recognition dataset (Katsigiannis and Ramzan, 2017). Researchers
had subjects watch edited movie clips to elicit emotions from
subjects and recorded EEG data using a 14-channel EEG
acquisition device. These film clips consist of selected scenes
from various movies that have been demonstrated to elicit a
diverse array of emotions (Gabert-Quillen et al., 2015). After each
movie clip was played, the researchers classified the emotions
based on the subjects’ ratings using 3 dimensions: potency,
arousal, and dominance. The dataset contained 2 clips each of 9
emotion-evoking movies of happiness, excitement, bliss, calmness,
anger, disgust, fear, sadness, and surprise, for a total of 18
movie clips.

4.2. Experiment settings

The STGATE model is implemented by PyTorch 1.10. The
hyperparameters were tuned to obtain the best performance on the
validation datasets.

The cross-subject experiments are conducted. Since there
were multiple subjects, the leave-one-subject-out (LOSO) cross-
validation strategy was applied in the experiments. The EEG data
of one subject were used as the validation dataset, while the data of
the other subjects were used as the training dataset. We repeatedly
performed ten rounds of cross-validation experiments and the
average accuracy and standard deviation of the test set are adopted
as the performance criteria. The experiments in this paper use the
Adam optimizer to accelerate the training process of themodel with
a batch size of 16 and a learning rate of 0.00001 (Kingma and Ba,
2014). Additionally, we use the Dropout algorithm to suppress the
overfitting phenomenon of the model. The drop rate is set to 0.3.

During the training process, the training set is stopped when the
training loss is lower than 0.15.

5. Results

5.1. Results of experiments

Tables 1, 2 summarize the experimental results in terms of
the average EEG emotion recognition accuracies and standard
deviations of the STGATE method. To validate the effectiveness
of our proposed method for EEG emotion recognition, we
compared it with various machine learning and deep learning
methods. Conventional classifiers such as supported vector
machine (SVM) (Zhong et al., 2020) and transductive SVM (T-
SVM) (Collobert et al., 2006) can be applied for cross-subject
emotion recognition problems. Domain adaptation methods such
as Transfer Component Analysis (TCA) (Pan et al., 2010)
can also handle cross-subject emotion recognition problems.
Pretrained Convolutional Neural Network (CNN) architectures
have also been used in emotion recognition tasks (Cimtay
and Ekmekcioglu, 2020). Rahman et al. proposed a method

TABLE 1 Leave-one-subject-out emotion recognition (accuracy/standard

deviation) on the SEED and SEED-IV datasets.

Model SEED SEED-IV

SVM (Zhong et al., 2020) 56.73/16.29 37.99/12.52

T-SVM (Collobert et al., 2006) 72.53/14.00 (-)/(-)

TCA (Pan et al., 2010) 63.64/14.88 56.56/13.77

CNN (Cimtay and Ekmekcioglu, 2020) 78.34/6.11 (-)/(-)

PCA+ANN (Rahman et al., 2020) 84.3/(-) (-)/(-)

RODAN (Lew et al., 2020) (-)/(-) 60.75/(-)

DAN (Li et al., 2018) 83.81/8.56 58.87/8.13

BiHDM (Li et al., 2020) 85.40/7.53 69.03/8.66

DGCNN (Song et al., 2018) 79.95/9.02 (-)/(-)

GCN (Kipf and Welling, 2016) 84.95/7.51 72.23/4.01

GAT (Veličković et al., 2017) 85.56/6.75 70.33/4.57

STGATE (Ours) 90.37/6.18 76.43/5.01

The bold values indicate the maximum value of the current column in tables.

TABLE 2 Leave-one-subject-out emotion recognition (accuracy/standard

deviation) on the DREAMER dataset.

Model Valence Arousal Average

SVM (Zheng and Lu, 2015) 56.57/(-) 58.91/(-) 57.74/(-)

DBN (Zheng and Lu, 2015) 56.43/(-) 58.94/(-) 57.685/(-)

DGCNN (Song et al., 2018) 59.64/(-) 62.91/(-) 61.28/(-)

ADDA-TCN (He et al., 2022) 66.56/10.04 63.69/6.57 65.13/8.31

GCN (Kipf and Welling, 2016) 76.43/10.13 74.01/10.76 75.22/10.45

GAT (Veličković et al., 2017) 75.70/9.64 75.31/10.71 75.51/10.18

STGATE (Ours) 77.44/8.40 75.26/9.71 76.35/8.40

The bold values indicate the maximum value of the current column in tables.
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that hybridizes Principal Component Analysis (PCA) and t-
statistics for feature extraction, and Artificial Neural Network
(ANN) is applied for classification (Rahman et al., 2020). To
deal with the domain shift problem between different subjects,
a deep domain adaptation network (DAN) was proposed for
cross-subject EEG signal recognition (Li et al., 2018). Likewise,
to model asymmetric differences between two hemispheres of
the EEG signal, a novel bi-hemispheric discrepancy model
(BiHDM) was proposed for EEG emotion recognition (Li et al.,
2020). He et al. explored the feasibility of combining Temporal
Convolutional Networks (TCNs) and Adversarial Discriminative
Domain Adaptation (ADDA) algorithms to solve the domain
shift problem in EEG-based cross-subject emotion recognition
(He et al., 2022). The Dynamical Graph Convolutional Neural
Network (DGCNN) is a novel EEG-based emotion recognition
model in which graph spectral convolution operation with
dynamical adjacent matrix is applied (Song et al., 2018).
Lew et al. propose a Regionally-Operated Domain Adversarial
Network (RODAN) incorporate the attention mechanism to
enable cross-domain learning to capture both spatial-temporal
relationships among the EEG electrodes and an adversarial
mechanism to reduce the domain shift in EEG signals (Lew et al.,
2020).

Machine learning methods such as supported vector machine
(SVM) and transfer component analysis (TCA) can be applied
to address cross-subject emotion recognition problems. According
to the experimental results in the SEED dataset and SEED-
IV dataset, both machine learning methods, SVM, T-SVM and
TCA, give lower accuracy than deep learning models. The
performance of many deep learning methods, such as CNN,
PCA+ANN, RODAN, DGCNN, DAN, and BiHDM, are better
than that of the traditional machine learning methods (SVM and
TCA), indicating that machine learning has difficulty obtaining
valid features.

The proposed method achieves the highest accuracy in
SEED, SEED-IV and DREAMER dataset. STGATE achieve 90.37%
in SEED dataset and 76.43% in SEED-IV dataset. STGATE
achieves 77.44% in the valence dimension, 75.26% in the arousal
dimension, and 76.35% in the average value in both dimensions
in DREAMER dataset, because the proposed STGATE can
extract more useful information in the temporal and spatial
dimensions. The proposed method treats EEG signals as non-
Euclidean data and uses graph representations and attention
mechanisms to extract the spatial and temporal characteristics of
EEGs. STGATE compensates for the limitations of convolutional
neural networks and can handle the feature extraction problem
of non-Euclidean data with topological graph structure. The
combination of the transformer encoder and STGAT enhances the
performance of the network. The modeled graph representations
restore the spatial and temporal connectivity of the data and
make STGATE extract more discriminative emotional features
that can be used to accurately classify and identify the emotional
states of subjects. The proposed STGATE extracts electrode-level
information through TLB and spatial features based on an adaptive
graph structure. Therefore, we can see that our proposed method
achieves the best accuracy results on the SEED, SEED-IV, and
DREAMER datasets.

5.2. Ablation study

To verify the effectiveness of each module in STGATE, we
removed them one at a time or replaced some of the layers and
evaluated the performance of the ablated model. As shown in
Table 3, we trained several models to verify the impact of the
modules in STGATE. For the baseline model, we only deployed a
series of multi-kernel 2D convolutions during training and testing.
"TGAT" refers to using spatial-temporal graph attention without
spatial attention and is similar to “SGAT.” The TLB was utilized to
attentively fuse the node-level features, and the convolutional layers
downsampled the multi-channel EEG input and learned the time-
frequency representations. The transformer encoder enhanced the
long-range dependency capturing ability. According to the results
shown in Table 3, removing the TLB module caused the accuracy
to drop from 90.27% to 87.88%, a decrease of 2.39%. When we
removed the transformer encoder in the TLB, the accuracy dropped
from 86.2% to 83.86%, a decrease of 2.36%. The results show the
effectiveness of the TLB module.

The STGAT module aimed to learn the dynamic spatial-
temporal representations of the graph. Spatial attention built an
adaptive adjacency matrix through several learnable parameters,
making the graph structure dynamically change during the
training process. The dynamic adjacency matrix had the potential
to extract informative correlations among electrodes. Temporal
attention was similar to spatial attention and captured temporal
information through several learnable parameters. As shown in
Table 3, removing the STGAT module caused the accuracy to drop
from 90.27% to 86.22%, a decrease of 4.05%. When we removed
the spatial and temporal attention in STGAT, the accuracy dropped
from 87.88% to 86.84%, decreasing by 1.04%, and 87.88% to
86.67%, decreasing by 1.21%, respectively.

The performance of the STGATE model outperforms that of
other models by a significant margin. This is attributed to the
ability of the spatial and temporal attention modules to capture
potential EEG signal features, while the transformer encoder helps
to enhance long-range dependency capturing ability. The models
with STGAT and TLB modules significantly outperform those
without these modules. The transformer learning block aggregates
time-frequency features using convolution and a transformer

TABLE 3 Performance of our proposed modules on the SEED and SEED-IV

datasets.

Model SEED SEED-IV

Baseline 83.86/9.88 71.17/4.48

TLB 86.22/8.57 73.98/4.12

SGAT 86.67/6.98 75.39/5.49

SGAT+TLB 88.56/5.91 75.85/5.06

TGAT 86.84/7.40 76.04/4.76

TGAT+TLB 89.30/5.69 76.28/4.06

SGAT+TGAT (STGAT) 87.88/7.38 75.52/4.30

SGAT+TGAT+TLB (STGATE) 90.37/6.18 76.43/5.01

The bold values indicate the maximum value of the current column in tables.
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encoder, while the spatial-temporal graph attention captures
inter-channel connections via an adaptive adjacency matrix and
temporal information using temporal attention. Therefore, both the
transformer learning block and the dynamic graph convolution are
essential components of the STGATE model.

5.3. The impact of feature selection

Raw emotional EEG is a non-linear random signal with
a large amount of data redundancy and a low signal-to-noise

FIGURE 2

The impact of di�erent features on SEED accuracy.

ratio (Balasubramanian et al., 2018). The EEG signal features,
such as power spectral density (PSD) and differential entropy,
are more representative of the prominent features of the EEG
signal in certain aspects. Therefore, the emotion classification task
generally uses the feature of the EEG signal for classification.
Therefore, we study the impact of the feature selection of
STGATE on classification performance. Figure 2 shows the
emotion recognition accuracies and standard deviations of the
proposed STGATE model with different features, including
DE, PSD, ASM, DASM, and RASM features, in the SEED
dataset. The DE feature is the most discriminated feature, while
the performance of other features is much lower. The DE
feature obtained the highest classification accuracy (90.37%) and
lowest standard deviation, followed by PSD (83.17%). RASM
(rational asymmetry), DASM (differential asymmetry), and ASM
(asymmetry) are calculated from DE features designed to express
asymmetry (Shi et al., 2013). The average accuracies of the
RASM, DASM, and ASM features are close to each other, 78.07%,
75.76%, and 77.75%, respectively. The result implies that the DE
feature is more suitable for EEG emotion recognition than the
traditional feature.

5.4. Visualization

As shown in Figure 3, the topographic map is utilized to
analyze the inter-channel connections of the learned graphs
for emotion recognition in the SEED dataset. The adjacent
matrices are extracted at the end of training and transformed
into a topographic map. To better show which part of the
connections is more informative, we extracted the adjacency
matrices of the EEG samples of all the subjects, averaged all

FIGURE 3

Topographic map of adjacency matrices on SEED datasets. The weighted electrodes are mainly distributed in the frontal and parietal lobes.
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the matrices, took the largest ten values, and set the others
to zero. The topographic map of the adjacency matrices is
shown in Figure 3. According to the topographic map, the
frontal lobe plays an important role in the classification of
emotions. The F5, FC5, FC1, FZ, F8, AF8, CP2, FC6, FT8,
and C2 channels have more weight than other channels, which
means that these channels provide more information during
the training process. According to previous studies, the pre-
frontal, parietal and occipital channels may be the most associated
with emotions (Zheng and Lu, 2015; Zhong et al., 2020; Ding
et al., 2021). The visualization results basically coincide with the
observations in neuroscience. Therefore, the topographic map
indicates that the dynamic adjacency matrix gives more weight to
the emotionally relevant EEG channels to enhance the potential
ability of STGATE.

6. Conclusion

In this paper, we proposed STGATE, a novel method for
EEG-based emotion recognition that can dynamically learn the
inter-channel relationships of EEG emotion signals. The STGATE
is composed of two modules, TLB and STGAT. The TLB
module employs 2D convolutions and a transformer encoder to
downsample EEG signals and capture long-range information. The
STGAT module dynamically captures correlations between EEG
electrodes in the spatial domain and temporal EEG information
using a time-spatial attention mechanism. The experimental
results demonstrate that STGATE achieves higher classification
accuracies compared to existing methods for cross-subject EEG-
based emotion recognition. However, a limitation of this study
is the small sample size of the publicly available dataset used
in the article and the lack of sufficient reliable data within the
dataset. Nevertheless, our proposed method has the potential
to inspire new methodologies for emotion recognition and
affective computing.
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