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Knee osteoarthritis is one of the most common musculoskeletal diseases and is
usually diagnosed with medical imaging techniques. Conventionally, case
identification using plain radiography is practiced. However, we acknowledge
that knee osteoarthritis is a 3D complexity; hence, magnetic resonance imaging
will be the ideal modality to reveal the hidden osteoarthritis features from a three-
dimensional view. In this work, the feasibility of well-known convolutional neural
network (CNN) structures (ResNet, DenseNet, VGG, and AlexNet) to distinguish
knees with and without osteoarthritis (OA) is investigated. Using 3D convolutional
layers, we demonstrated the potential of 3D convolutional neural networks of
13 different architectures in knee osteoarthritis diagnosis. We used transfer
learning by transforming 2D pre-trained weights into 3D as initial weights for
the training of the 3Dmodels. The performance of the models was compared and
evaluated based on the performance metrics [balanced accuracy, precision,
F1 score, and area under receiver operating characteristic (AUC) curve]. This
study suggested that transfer learning indeed enhanced the performance of
the models, especially for ResNet and DenseNet models. Transfer learning-
based models presented promising results, with ResNet34 achieving the best
overall accuracy of 0.875 and an F1 score of 0.871. The results also showed that
shallow networks yielded better performance than deeper neural networks,
demonstrated by ResNet18, DenseNet121, and VGG11 with AUC values of
0.945, 0.914, and 0.928, respectively. This encourages the application of
clinical diagnostic aid for knee osteoarthritis using 3DCNN even in limited
hardware conditions.
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1 Introduction

Knee osteoarthritis (OA) is the most prevalent type of arthritis and has negatively
impacted approximately 5% of the world population (Morales Martinez et al., 2020). This
disease is highly prevalent among the older population (Hossain et al., 2014). It is a
progressive disease that leads to impairment and disability in patients, affecting one’s quality
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of life. This disease is typically diagnosed manually using medical
imaging such as X-ray and magnetic resonance imaging (MRI)
(Yong et al., 2021a; Teoh et al., 2022).

With the increasing number of publicly available medical
datasets, the development of artificial intelligence-based
diagnostic models has become more feasible and has emerged
rapidly in the recent years. Deep learning algorithms, particularly
convolutional neural networks (CNNs), have proven to be effective
for analyzing medical images and providing more accurate results
with less pre- and post-processing than traditional methods. CNN
has been widely applied in a variety of tasks in the medical field,
including the identification and segmentation of regions of interest,
such as organs and tumors, and the classification and prediction of
different diseases. Basically, a CNN takes images as input, and the
convolutional layers within are trained to learn the features by
assigning weights and biases, allowing the CNN model to improve
over time. Due to computational constraints, most deep learning
studies from the previous years adopted 2DCNN in most of the
computer vision applications of 2D inputs (Klaiber et al., 2021). The
2DCNN uses a 2D convolutional kernel that only collects spatial
information in two dimensions. Hence, conventionally, to
accommodate 3D data such as MRI in 2DCNN, the appropriate
slice and orientation have to be selected as input (Chang et al., 2020).
However, with this approach, the information along the third
dimension is neglected. The 3DCNN overcomes the problematic
slice selection process, allowing 3D computer vision tasks to be less
tedious by accepting the whole 3D MRI volume (Khagi and Kwon,
2020). In comparison to the 2DCNN, 3DCNN captures the spatial
information in all three dimensions, including spatial connections
between 2D slices, allowing a more comprehensive view of the
volumetric data to extract more distinguishable representations.
However, obtaining high-quality annotated medical images is
challenging, making it difficult to develop a robust deep learning
model. Implementing 3DCNN is harder since 3D training datasets
are limited and more computationally expensive (Klaiber et al.,
2021).

Transfer learning is a powerful technique that leverages
previous knowledge to enhance model performance (Wu et al.,
2020). Transfer learning has been a prominent approach to
address the medical data scarcity problem using pre-trained
models trained on huge datasets to extract useful features for
small target datasets. This technique not only uses the weights
and biases from pre-trained models but also contributes by
saving time and computation resources compared to training a
new model from scratch (Kim et al., 2022). The configuration of
the transfer learning approach varies according to the models and
tasks involved, with the aim to maximize the performance of the
target task (Wu et al., 2020; Kim et al., 2022). In the context of
3DCNN tasks, several studies have transformed 2D weights from
pre-trained models on the 3DCNN and presented favorable
results in their respective tasks (Ebrahimi et al., 2020; Merino
et al., 2021).

The majority of the previous CNN approaches in knee
osteoarthritis diagnosis are based on 2D plain radiography (Yeoh
et al., 2021). Although knee radiographs have a significant role in
diagnosing OA, it is well known that it is insensitive in early OA
detection, as shown in several recent studies (Tiulpin et al., 2018;
Kim et al., 2020a; Nguyen et al., 2020). Nguyen et al. (2020)

proposed a novel Semixup algorithm, which achieved a relatively
low accuracy for early OA stages. With 500 labeled samples per
Kellgren–Lawrence (KL) grade, Semixup achieved 58% accuracy for
KL grade 2, whereas with 1,000 labeled samples per KL grade, the
model obtained 38% accuracy for KL grade 1. Kim et al. (2020a) used
the SE-ResNet algorithm and reported having difficulty in
diagnosing KL grade 2. Plain radiography might have low
accuracy in detecting early OA because the changes of articular
cartilages that are crucial in OA progression assessment are not
visible in plain radiography. Alternatively, these changes can be
directly visualized by MRI.

While X-ray imaging can visualize bony changes associated
with knee OA, MRI provides precise depiction of the knee joint
structures, with better contrast for visualizing both bony and
soft tissue changes (Faisal et al., 2018; Chang et al., 2020; Yong
et al., 2021b; Teoh et al., 2022). The soft tissue change is
pertinent for knee OA diagnosis because the shape of knee
joint cartilages changes significantly as the disease progresses
(Hossain et al., 2015; Hayashi et al., 2019). Since the 2DCNN
trained on plain radiography examines one 2D image at a time,
it is unable to capture the complex 3D structure of the knee
joint as compared to the 3DCNN approach that uses the whole
sequence of 3D MRI as a single unit (Guida et al., 2021).
Previous studies suggested that 3D MRI may contain
intrinsic information that can recognize subtle changes in
the knee joint, which contributes to better sensitivity for OA
detection as compared to 2D plain radiography (Tolpadi et al.,
2020).

Moreover, since knee OA is a 3D complexity that involves the
whole joint, MRI will be the ideal modality for OA assessment,
having the potential to reveal hidden OA structures using the
3DCNN. This allows better interpretation of the condition of the
knee through volumetric analysis. This is also supported by a recent
study by Guida et al. (2021), who showed that 3DCNN combined
with MRI volumes can outperform 2DCNN on plain radiography in
knee OA diagnosis. Despite these advances, there is a gap of
knowledge in the feasibility of 3DCNN in knee OA detection,
which is still subject to intensive research.

The purpose of this study is to fill the void by leveraging
transfer learning of 2D pre-trained weights in the 3DCNN in
medical imaging, particularly for knee OA diagnosis. In this
work, we focus on binary classification to identify knees with
OA. With interest in finding the best model for 3D knee
osteoarthritis detection, the effectiveness of transfer learning
is validated among different CNN architectures. This study
takes the advantage of pre-trained models in distinguishing
knees with and without OA by using their weights. This study
enhances the existing research by evaluating and comparing
13 models trained from scratch and ImageNet (Deng et al.,
2009) pre-trained weights, respectively, with different
performance metrics.

Motivated by the performance of deep learning models and the
potential of transfer learning in medical images, 13 end-to-end
automated knee OA diagnosis systems are developed. To the best
of our knowledge, this is the first work that includes the exploration
of the potential and comparative analysis of 3D deep learning
models and transfer learning in knee osteoarthritis detection. The
main contributions of this work are as follows:
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1. We conducted a comparative study of 13 different feature
extractors from commonly used CNN models on knee OA
detection.

2. Our work investigates the ability of the models to learn relevant
features from whole MRI scans through an end-to-end deep
learning approach.

3. Contrary to other comparative studies, the potential of transfer
learning on the classification performance of all the involved
models was investigated. The result showed that fine-tuned
models can achieve higher accuracy than training from
scratch, which is effective when the available training dataset
is limited.

4. We investigated the robustness of different CNN architectures
from two different training approaches (scratch vs. transfer
learning) by assessing the evaluation metrics and comparing
them based on the models’ size and number of parameters.
The result demonstrated that shallower networks can be more
efficient by producing desirable outcomes with reduced
computational cost (memory usage and number of parameters).

2 Materials and methods

2.1 Dataset

Four hundred knee MRI volumes of 3D sagittal double-echo
steady-state (DESS) scans from Siemens 3T Trio systems were used
in this study. All the MRI volumes were obtained from the publicly
available Osteoarthritis Initiative (OAI) dataset (https://nda.nih.
gov/oai/). OAI is a multicenter longitudinal study of
4,796 participants with comprehensive clinical data, imaging
data, and analysis from different time points. All volumes used in
this study are collected from 400 different subjects from the baseline
timepoint. All MRI volumes were converted to the Neuroimaging
Informatics Technology Initiative (NIfTI) standard. The volumes
were transformed to a right-anterior-superior coordinate frame,
resized to 160 × 160×160, Z-normalized, and standardized, which
rescales the intensity values of the voxels from 0 to 1 with a uniform
distribution. All datasets were randomly classified into training,
validation, and test datasets with a 7:2:1 split.

The Kellgren–Lawrence (KL) grade is one of the most common
OA severity grading systems to diagnose patients with knee OA in
the clinical setting (Guida et al., 2021). To perform a 2-class
classification, the KL grades of each volume were retrieved from

OAI and categorized into two classes based on the occurrence of OA.
As recommended in a previous study by Norman et al. (2019), KL
grades of 0 and 1 were grouped into “No OA” or class 0, whereas KL
grades of 2, 3, and 4 were grouped into “OA” or class 1. Table 1
shows the distribution of the dataset used in this study.

2.2 Study design

The overall study provides a comparative overview of different
deep learning architectures training from scratch and training
from pre-trained weights. This study makes use of a transfer
learning approach for knee OA detection by using the pre-
trained weights as initial weights and further fine-tuning the
model. The components used to construct the complete neural
network model are discussed in the following sections. Figure 1
shows the general architecture.

Generally, a neural network is composed of two different sets of
layers. The first set of the model layer that carries out feature
extraction from the input volume is known as the feature
extractor. The other set of layer that comprises fully connected
layers to extract features and perform class prediction is known as
the classifier. As shown in Figure 1, the feature extractor of the pre-
trained models is adapted in this study along with their pre-trained
weights only, without the classifier of the pre-trained models. The
classifier used by all architectures in this study is identical; it consists
of an average pooling layer before three fully connected layers (layer
output: 128, 32, 2), with the last final output of two classes and a
SoftMax layer. The first two fully connected layers are followed by a
ReLU layer and a dropout layer of 0.5.

2.3 Pre-trained model architecture and
transfer learning

Conceptually, the feature extractor consists of convolutional
layers and pooling layers to detect and extract features of the image
to be forwarded to the classifier. In this study, 13 different
convolutional neural networks from four different architectures
[ResNet (He et al., 2016), DenseNet (Huang et al., 2017), VGG
(Simonyan and Zisserman, 2014), and AlexNet (Krizhevsky, 2014)]
were investigated. All the VGG networks implemented in this study
are models with batch normalization layers, which help to deal with
the vanishing gradient.

TABLE 1 Distribution of dataset.

Dataset No of volume samples in each class

No OA OA

Training 87 193

Validation 32 48

Test 16 24

Total MR volumes used in this study 135 265

400
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All the models were previously proposed in 2D (Krizhevsky,
2014; Simonyan and Zisserman, 2014; He et al., 2016; Huang et al.,
2017), and the 3D models used in this research were constructed in
3D by replacing the 2D operations of the original model with their
3D counterparts. The implemented models were modified to accept
the 3D DESS MRI as input.

Themodels with two types of initial weights, 1) ImageNet (Deng et al.,
2009) pre-trained initial weights (transfer learning) and 2) randomly
assigned initial weights (training from scratch), were trained and
compared. There are different approaches for transfer learning as it is
an adaptable application of transferring the previously learned parameters
(weights and biases) from pre-trained models to entirely new models that
solve a related or novel problem.Thepre-trainedweights used in this study
are pre-trainedweights trainedwith ImageNet (Deng et al., 2009) provided
in the torchvisionpackage from thePyTorch (Paszke et al., 2019) library.A
weight initialization scheme is implemented,where the pre-trainedweights
are used as the initial weights of the training process of the 3Dmodels. This
is also known as fine-tuning (Tajbakhsh et al., 2016).

Since the models implemented in this study are in 3D, but the
available pre-trained weights are in 2D, to transfer the learnable
parameters, extrusion (Merino et al., 2021) of weights is performed,
where the 2D weights are duplicated along the third axis to
transform them into 3D. Figure 2 visualizes the repeated 2D
weights along the third dimension.

2.4 Training specifications

The same training strategy and hyperparameters were applied
for all model training sessions in this study, regardless of the training
method (transfer learning or training from scratch). The input sizes
used for all training sessions are kept identical, as specified earlier in
the dataset section. To train the neural networks, the models are
optimized with an ADAM optimizer with a learning rate of 1e-5.
The learning rate is decided after some preliminary testing, where a
higher learning rate may negatively affect the performance of the

FIGURE 1
General neural network architecture used in this study.

FIGURE 2
Replication of 2D weights along the third dimension.
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models. The optimal learning rate chosen allows the model to learn
effectively to make progress toward the optimal weights and biases.
The models were trained with a batch size of four and a drop out of
0.5, with a maximum of 50 epochs. We selected 50 as the suitable
amount for maximum epoch as most of the models showed
convergence below 50 epochs. Since the training dataset has a
class imbalance problem, weighted random sampler

(implemented by PyTorch (Paszke et al., 2019)), an oversampling
technique based on class weights, was used to allow equal class
distribution during model training. Early stopping was applied,
where the training stops if the validation loss does not reduce
over the preceding 10 epochs to prevent overfitting of the
models. The loss function used is the cross-entropy loss function.
All training sessions were implemented using PyTorch on central

TABLE 2 Performance comparison of ResNet variants.

Transfer learning-based model (pre-trained weights)

Parameters (M) Memory (MB) Accuracy Balanced accuracy Precision F1 score AUC

No OA OA

ResNet18 33.230 132.919 0.625 1.000 0.812 0.900 0.829 0.945

ResNet34 63.539 254.158 0.875 0.875 0.875 0.868 0.871 0.925

ResNet50 46.422 185.686 0.563 0.958 0.760 0.833 0.772 0.900

ResNet101 85.468 341.871 0.875 0.500 0.688 0.698 0.649 0.736

ResNet152 117.626 470.506 0.625 0.917 0.771 0.810 0.780 0.901

Scratch-based model (random weights)

Parameters (M) Memory (MB) Accuracy Balanced accuracy Precision F1 Score AUC

No OA OA

ResNet18 33.230 132.919 0.250 0.958 0.604 0.729 0.580 0.763

ResNet34 63.539 254.158 0.625 0.792 0.708 0.713 0.710 0.763

ResNet50 46.422 185.686 0.500 0.625 0.563 0.561 0.562 0.529

ResNet101 85.468 341.871 0.125 0.875 0.500 0.500 0.451 0.421

ResNet152 117.626 470.506 0.000 1.000 0.500 0.300 0.375 0.518

The highest performance metrics values among the architectures are in bold.

TABLE 3 Performance comparison of DenseNet variants.

Transfer learning-based model (pre-trained weights)

Parameters (M) Memory (MB) Accuracy Balanced accuracy Precision F1 score AUC

No OA OA

DenseNet121 11.378 45.512 0.563 0.958 0.760 0.833 0.772 0.914

DenseNet169 18.760 75.040 0.625 0.917 0.771 0.810 0.780 0.913

DenseNet201 25.581 102.324 0.625 0.875 0.750 0.774 0.757 0.891

Scratch-based model (random weights)

Parameters (M) Memory (MB) Accuracy Balanced accuracy Precision F1 Score AUC

No OA OA

DenseNet121 11.378 45.512 0.5 0.833 0.667 0.691 0.670 0.798

DenseNet169 18.760 75.040 0.125 0.917 0.521 0.556 0.467 0.542

DenseNet201 25.581 102.324 0.000 0.958 0.479 0.295 0.365 0.530

The highest performance metrics values among the architectures are in bold.
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processing unit Intel Xeon W-2225 CPU and graphics processing
unit (GPU) NVIDIA RTX A6000 with random access memory
(RAM) of 32.0 GB.

2.5 Evaluation metric

The classification performance of the models was evaluated on
the test dataset and analyzed in terms of evaluation metrics. The
evaluation metrics were based on the confusion matrix
characteristics, which are true positives (TPs), true negatives
(TNs), false positives (FPs), and false negatives (FNs). In this

work, the positive class is defined as the class of interest, where
TP refers to the number of samples belong to that specific class
whereas FP refers to the number of samples that do not belong to
that specific class but are labelled as such by the model. The
evaluations used in this study are as follows:

2.5.1 Accuracy (balanced accuracy)
Acknowledging that our dataset used is imbalanced, balanced

accuracy is used instead of the commonly used accuracy metric.
Balanced accuracy is also defined as the average of recall obtained in
each class and is the ratio of correctly classified samples to the total
number of samples in that particular class. In binary classification, it
is defined as follows (Guyon et al., 2015):

BalancedAccuracy � 1
2

TP

TP + FN
+ TN

TN + FP
( ).

2.5.2 Precision
It is the measure of correctly predicted samples out of all

predicted positive samples.

Precision � TP

TP + FP
.

2.5.3 F1 score
It is a harmonic average between precision and recall with a

minimum value of 0 and a maximum value of 1.

F1 � 2TP
2TP + FP + FN

.

TABLE 4 Performance comparison of AlexNet and VGG variants.

Transfer learning-based model (pre-trained weights)

Parameters (M) Memory (MB) Accuracy Balanced accuracy Precision F1 score AUC

No OA OA

AlexNet 15.119 60.476 0.000 1.000 0.500 0.300 0.375 0.500

VGG11 50.141 200.565 0.750 0.792 0.771 0.766 0.768 0.928

VGG13 50.695 202.779 0.688 0.833 0.760 0.767 0.763 0.914

VGG16 66.624 266.495 0.688 0.875 0.781 0.797 0.787 0.883

VGG19 82.553 330.211 0.688 1.000 0.844 0.914 0.860 0.909

Scratch-based model (random weights)

Parameters (M) Memory (MB) Accuracy Balanced accuracy Precision F1 Score AUC

No OA OA

AlexNet 15.119 60.476 0.000 1.000 0.500 0.300 0.375 0.504

VGG11 50.141 200.565 0.688 0.750 0.719 0.715 0.716 0.870

VGG13 50.695 202.779 0.563 0.833 0.698 0.717 0.703 0.811

VGG16 66.624 266.495 0.750 0.958 0.854 0.888 0.865 0.869

VGG19 82.553 330.211 0.625 0.958 0.792 0.851 0.804 0.866

The highest performance metrics values among the architectures are in bold.

TABLE 5 Comparison between the best-performing models in this study and
the model in an existing study.

Balanced accuracy F1 score AUC

ResNet18 (TL) 0.812 0.829 0.945

ResNet34 (TL) 0.875 0.871 0.925

DenseNet121 (TL) 0.760 0.772 0.914

VGG11 (TL) 0.771 0.768 0.928

VGG19 (TL) 0.844 0.860 0.909

VGG16 (scratch) 0.854 0.865 0.869

Guida et al. (2021) 0.817 0.831 0.911

The performance metrics values that outperformed those in the existing study (Guida et al.

(2021)) are in bold.
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2.5.4 Area under receiver operating characteristics
curve

AUC is the area under the plot of the true positive rate (TPR)
against the false positive rate (FPR). It demonstrates the ability of a
model to distinguish two classes.

TPR � TP

TP + FN
.

FPR � FP

FP + TN
.

3 Results

A range of pre-trained models, which consist of different
architectural configurations of ResNet, DenseNet, VGG, and
AlexNet, with and without pre-trained weights, were compared in
this study. The models are classified based on their architectural
innovations: 1) ResNet with residual modules involving shortcut
connections; 2) DenseNet, which is composed of dense blocks; and
3) VGG, which is made of repeating structures of convolution layers.
Since AlexNet is also made up of stacked convolutional layers without
residual or dense blocks, it is categorized under VGG in the following
sections for comparison. The overview of the performance of all models
is summarized in Table 2, Table 3, and Table 4. The accuracy per class is
provided and is defined as the ratio of correctly classified samples per
class. For precision, F1 score and AUC metrics, the macro-average of
the performancemetrics are presented as the overall performance of the
model. Both classes (No OA and OA) in this study are treated equally
while evaluating the overall performance. The best performancemetrics
among the architectures are in bold.

3.1 Comparison analysis among different
architectures

The comparative analysis of the ResNet variants is presented in
Table 2. Among the ResNet variants, ResNet18 and ResNet34 showed

better performance, with and without transfer learning. With transfer
learning, ResNet18 achieved an overall AUC score of 0.945, which is
the highest among all architectures. The ability of ResNet18 to
distinguish between OA and No OA is the best, with an accuracy
score of 1.0 in OA detection. ResNet34 obtained the highest overall
balanced accuracy (0.875) and F1 score (0.871). It is worth noting that
ResNet18 and ResNet34 trained from scratch obtained a relatively
good performance compared to their other variants with transfer
learning, showing the models’ potential in knee OA detection even
without pre-trained weights.

Table 3 shows the comparative analysis of the DenseNet variants.
Transfer learning-based DenseNet121 obtained the highest overall
AUC (0.914) and precision (0.833) scores, whereas transfer learning-
based DenseNet169 achieved the highest overall balanced accuracy
(0.771) and F1 score (0.780) among the DenseNet variants.

For all the architectures of the ResNet and DenseNet variants,
the models initialized with pre-trained weights performed better
than those with random weights. However, from the comparative
analysis presented in Table 4, VGG16 trained from scratch
performed better than the variant with pre-trained weights.
Scratch-based VGG16 achieved a good score in balanced
accuracy (0.854), precision (0.888), and F1 score (0.865) metrics.
With transfer learning, VGG19 outperformed the other variants
with a balanced accuracy of 0.844, F1 score of 0.860, and precision of
0.914, with AUC slightly lower than that of VGG11 (0.909 vs. 0.928.)
The performance of AlexNet in this study is the worst among all
architectures, with or without transfer learning.

3.2 Comparison with another existing study

A comparative evaluation of the best-performing models in this
study against a current existing study is presented in Table 5. The
performance metrics achieved by the models in our study that
exceeded those in the existing study (Guida et al., 2021) are in
bold. Since studies on 3DMRI in classification task for OA diagnosis
is really limited as it is an emerging research field, only one similar

FIGURE 3
Graph of area under receiver operating characteristic curve of (A) ResNet34 and (B) VGG19.
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study on knee OA classification is adopted for comparison in this
study.

Guida et al. (2021), the authors of the existing study, also used
the OAI datasets, where the quality and characteristics of the dataset,
such as original pulse sequence, resolution, and acquisition plane,
are similar to those in our study. This allows a relatively fair
comparison among the studies. Guida et al. (2021) reported an
overall accuracy of 0.817, F1 score of 0.831, and AUC of 0.911 using
their proposed model, with a total of 1,100 data included in their
study. The successful knowledge transfer from ImageNet (Deng
et al., 2009) to medical imaging applications, specifically OA, is
exhibited excellently, especially in ResNet34 and VGG19. The AUC
curves for the best-performing transfer learning-based models, 1)
ResNet34 and 2) VGG19, which are presented in Figure 3. With
transfer learning, ResNet34 in this study has surpassed the results of
Guida et al. (2021) in terms of all three evaluation metrics. A
comparable performance has been achieved by other transfer
learning models, where they exceeded the existing study (Guida
et al., 2021) in terms of AUC, whereas VGG16 trained from scratch
outperformed the study in terms of accuracy (0.854 vs. 0.817) and
F1 score (0.865 vs. 0.831).

4 Discussion

In this study, different architectures of the convolutional neural
network are analyzed and compared based on their ability to detect
knees with or without knee osteoarthritis from 3D MRI volumes.
The feasibility of pre-trained weights is well-demonstrated, where
generally, the accuracy, F1 score, and AUC score obtained for
transfer learning-based models are better than those of models
trained from scratch. This result supports a previous finding on
different applications (Ebrahimi et al., 2020), validating the
expediency of transferring 2D weights to 3D models. Training
from scratch is usually not optimized and is computationally

expensive, but transfer learning has made the application of the
models for knee OA detection possible, even with a relatively smaller
number of samples involved as compared to existing studies. It is
anticipated and proven that transfer learning will be beneficial for
other medical imaging applications (Kim et al., 2020b).

One of the interesting findings in this study is that it differs from
results from other medical imaging studies, where the AlexNet
performs well in their classification study, such as on chest
radiographs (Bressem et al., 2020) and brain MRI (Maqsood
et al., 2019) scans. This, once again, shows that the development
of a CNN is problem-dependent and not a one-model-fits-all
solution. Moreover, results for AlexNet are far below expectations
in knee OA detection, even with the use of transfer learning.

Our study has presented the classification of knee osteoarthritis
with minimal pre-processing computations and efforts. Unlike
previous studies that used segmented images or volumes for
classification tasks (Nunes et al., 2019; Pedoia et al., 2019), this
study has presented the ability of 3DCNN models to extract
sufficient insights from entire unsegmented volumes to classify
knee OA. Furthermore, to allow the models to encode the spatial
patterns of 3D knee MRI completely, the entire MRI was involved
for training without cropping or segmenting the volume. Although
we perform resizing of the volume due to GPUmemory restrictions,
the input volume for the models still comprises all the knee
structures included in the original MRI volumes. This approach
differs from another recent study of 3DCNN application in knee
osteoarthritis, where the authors only used a subregion of the image
that comprises the cartilage and joint area (Guida et al., 2021). This
makes the system in our study more automatic and robust. Despite
the fact that diagnosis usually may be based on a few features of a
radiographic image, where the cartilage and the tibiofemoral joint
region are certainly indicators of OA, with the collective information
of all the knee components in a single knee MR volume, other OA
biomarkers such as bone marrow lesions in both tibiofemoral and
patellofemoral joints can add value to the training of the
osteoarthritis detection model.

Our findings align with a recent study by Bressem et al. (2020),
where the usage of deeper architectures did not result in a significant
performance increase for knee osteoarthritis detection. As illustrated
in Figure 4, shallow networks such as ResNet18, DenseNet121, and
VGG11 achieved an AUC of scores 0.945, 0.914, and 0.928,
respectively, exhibiting an excellent ability for osteoarthritis
detection, as compared to their deeper counterparts. The
tendency of showing lower AUC in the deeper counterparts is
shown among all architectures, with and without transfer
learning. Current CNN development is getting deeper, where
with the increasing complexity of the models, the computational
resources needed will be heavier. This finding addresses the
complexity of the current 3DCNN, where shallow networks with
lower hardware requirements have the potential and should be used
fully for different applications, increasing the possibility of more
efficient 3DCNN being deployed in real-world scenarios, especially
with limited hardware. The deployment of the models in embedded
healthcare devices as a clinical decision aid can be an efficient
alternative to assist clinicians in knee osteoarthritis diagnosis.

Although the findings obtained are encouraging, there are a
few drawbacks in this present work. The models in our studies
were not optimized, where all the models are trained under the

FIGURE 4
Comparison of all transfer learning-based models in terms
of AUC.
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same condition and hyperparameters, as described in previous
sections. The objective of the present work is to provide an
overview of a comparison between neural networks with and
without transfer learning and not on maximizing the
performance of the models. Hyperparameter tuning will indeed
improve the model’s performance in terms of accuracy and
convergence speed. However, performing hyperparameter
optimization is challenging and not feasible in this study as
there are a large number of CNNs involved in this study.
Determining the ideal hyperparameter in this study will be
difficult and time-consuming; however, we intend to optimize
the best-performing models in future works. However, it is
suggested that this problem might not have a significant
impact on the overall findings (Tajbakhsh et al., 2016).
Moreover, the number of samples used in this study is
relatively less than that in other knee OA research studies due
to the available computation resources. Without a doubt, the
performance of the models can be enhanced with more
training samples. Another limitation of the current work is the
lack of generalizability of the developed models to accurately
interpret and analyze MRI data from various datasets and
sequences. The use of different MRI sequences in research
studies has led to a research gap in a generalized approach,
where the learned features can be transferable across different
sequences, datasets, or populations. Separate testing on
completely independent datasets is necessary to validate the
generalizability of a deep learning model (Pedoia et al., 2019).
The currently available dataset with ground truth is not diverse
enough, and hence, it is suggested to gather more ground truth
data for a heterogeneous dataset. Conducting larger studies that
involve multiple sequences from multiple datasets can confirm
our preliminary findings from this study. One of the strategies to
develop a generalized approach that is robust to variation among
MRI datasets is to use transfer learning to transfer learned features
across different MRI datasets. Hence, in order to fully validate the
models’ potential in knee osteoarthritis detection, more data from
public and private datasets can be incorporated into future works.
In addition, MRI’s excellent soft tissue contrast might contribute
to the early detection of OA, which is an important stage pertinent
to OA diagnosis. This work can be further extended to explore the
classification of different OA gradings and identification of
early OA.

5 Conclusion

The findings concluded that transfer learning-based models are
generally more robust and accurate than models trained from

scratch. The application of transfer learning in medical imaging
has demonstrated its importance by achieving high accuracy in knee
osteoarthritis diagnosis, using pre-trained weights from ImageNet as
initial weights. Shallower 3D convolutional neural networks such as
ResNet18, DenseNet121, and VGG11 achieved comparable results
to the deeper networks. This encourages the application of 3D
shallow neural networks in medical imaging tasks to allow more
efficient training and deployment, especially with limited
computation resources.
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