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With the rapid development of digital technologies such as artificial intelligence,
big data and cloud computing, China’s agricultural production is entering a new
era characterized by digitalization. Based on provincial panel data of China from
2013 to 2020, this paper adopts the system GMM and mediating effects model to
systematically examine the impact of digitalization on low-carbon agricultural
production from the perspective of resource misallocation. The results indicate
that digitalization can significantly curb agricultural carbon emissions and thus
promote low-carbon agricultural production, and this finding still holds after the
robustness test. The heterogeneity analysis indicates that the inhibiting effect of
digitalization on agricultural carbon emissions is most pronounced in the eastern
region relative to the central and western regions (the regression coefficients
are −0.400 and −0.126 respectively). Further mechanism analysis suggests that
digitalization can reduce agricultural carbon emissions by correcting the
widespread capital and labor misallocation in agricultural factor markets. The
findings of this study provide significant policy implications for low-carbon
agricultural production in China.
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1 Introduction

Since the industrial revolution, global warming has become increasingly serious due to
the continued emissions of greenhouse gases like carbon dioxide (Bekun et al., 2019),
resulting in a series of extreme phenomena such as sea-level rise, drought and waterlogging
disasters (Mukul et al., 2019). Confronted with the severe situation of global warming,
Chinese government promised to peak carbon dioxide emissions by 2030 and strive to
achieve carbon neutralization by 2060 (the dual-carbon target) (Wang et al., 2021). Guided
by the dual carbon target, the latest Central Document No 1, issued by the Ministry of
Agriculture and Rural Affairs of the People’s Republic of China in 2022, has emphasized that
continuing to promote green development in agriculture and rural areas is an important task
in comprehensively promoting rural revitalization (Wen et al., 2022). However, in deep
contrast with the proliferation of policies, China’s carbon emission from the agricultural
sector keeps on growing rapidly from 99 Mt in 1998 to 242 Mt in 2015, which is estimated
with an increase of 142% (Chen et al., 2020). In this case, it is urgent for us to explore how to
give impetus to low-carbon agricultural production, reduce agricultural carbon emissions
and contribute to achieving the dual carbon goal.
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Under the new round of technology revolution marked by
digital technology, digitalization, with its high penetration, scale
and network effects, plays an important role in reorganizing
production factors, reshaping economic structure and changing
competitive advantages (Brenner and Hartl, 2021; Zhao et al.,
2022). According to the China Academy of Information and
Communications Technology, the scale of China’s digitalization
reached $5.681 billion in 2020. Meanwhile, the scale of agricultural
digitalization accounted for 22.5%. The rapid rise of digitalization is
not only a direct response to the huge changes in the social internal
endowment and external environment, but also provides a valuable
opportunity for promoting low-carbon agricultural production in
China (Fu and Zhang, 2022). Thus, propelling the low-carbon
transformation of agriculture from the digitalization perspective
is of great significance in accelerating the process of agricultural
modernization and achieving the dual carbon goal.

Aside from digitalization, the impact of resource misallocation
on low-carbon agricultural production cannot be ignored. Resource
misallocation is relative to efficient resource allocation. In an
economy where resources can flow freely to achieve Pareto
optimality, there is said to be an efficient resource allocation, and
resource misallocation presents a deviation from this ideal state
(Berthou et al., 2019). Numerous studies show that resource
misallocation could lead to wasted resources and reduced
resource utilization, which is detrimental to the low-carbon
transition in agriculture (Du et al.; Razzaq et al., 2021). There
has been an urban bias in China’s macro development policy for
a long time. The agricultural sector has been relatively disadvantaged
in the national economy and resource allocation, which has affected
the flow and rational allocation of labor, capital and other important
retention (Meng and Zhao, 2018). Therefore, confronted with the
rigorous situation of agricultural resource misallocation, it is
necessary for us not only to recognize the direct impact of
digitalization on low-carbon agricultural production but also to
investigate how to make full use of digitalization to achieve efficient
resource allocation and reduce agricultural carbon emissions.

This study aims to clarify the relationship between
digitalization and low-carbon agricultural production.
Compared with the existing literature, the possible marginal
contributions of this study are the following three. First, this
is the first study to place digitalization, resource misallocation
and low-carbon agricultural production into the same analytical
framework, which expands and enriches the existing research
perspective. Second, the asymmetric relationship between
digitalization and low-carbon agricultural production is
further analyzed according to the level of economic
development in different regions, which makes the
demonstration of this paper more stereoscopic and
comprehensive. Third, this paper constructs a mathematical
model to accurately calculate the degree of agricultural
resource misallocation. Then, an empirical examination of the
transmission mechanism of digitalization affecting low-carbon
agricultural production from the perspective of agricultural
capital mismatch and labor mismatch is conducted, which
provides empirical evidence to promote low-carbon transition
in agriculture for China.

The remainder of this paper is structured as follows: Section 2
summarizes the existing literature. Section 3 examines the

theoretical analysis and hypothesis. Section 4 describes the
data and methods. Section 5 discusses the empirical results.
Section 6 summarizes the conclusions and policy implications.

2 Literature review

2.1 Digitalization and low-carbon
agricultural production

The existing studies on the relationship between digitalization
and low-carbon agricultural production can be broadly divided into
macro and micro levels. From the macro perspective, most scholars
believe that digitalization can effectively curb agricultural carbon
emissions and promote low-carbon agricultural production
(Kamilaris et al., 2017; Zhu and Li, 2021). Balogun et al. (2022)
examined the implementation of digitalization in African urban
farming by assessing various case studies. They found that
introducing digitalization to agriculture can reduce carbon
emissions while supporting food availability for the growing
number of urban residents. Xu et al. (2022) then explored the
impact of digital transformation on agricultural carbon
productivity. The empirical evidence indicated that digitalization
positively contributes to promoting low-carbon agricultural
production. From a micro perspective, Zhou et al. (2022) pointed
out that the internet substantially promotes farmers’ low-carbon
tillage technology adoption and low-carbon fertilization technology
adoption after surveying 1080 farmers in Sichuan Province in China.
Meanwhile, Huang et al. (2022) further found that digital technology
applications can indirectly promote the adoption of low-carbon
technologies by influencing farmers’ risk perceptions in an empirical
test using the field survey data of 571 farm households in Jiangsu
Province, China.

2.2 Resource misallocation and low-carbon
agricultural production

The persistent resource misallocation not only hinders
economic development, but also leads to ecological degradation
(He and Qi, 2021). Few studies are available to examine the
interlinkage between resource misallocation and agricultural
carbon emissions but can be broadly categorized as single-factor
and multi-factor misallocation. Regarding single-factor
misallocation, Zhang and Xu (2017) found that land
misallocation can significantly aggravate carbon emissions across
the country. Chu et al. (2019) empirically examined the impact of
energy misallocation on carbon emission efficiency based on panel
data from 30 provinces in China. The results showed that energy
misallocation forces production factors to flow to inferior industries
with low returns, especially those with high energy consumption,
exacerbating the adverse impact on carbon emission efficiency.
Regarding the multi-factor misallocation, Hu et al. (2022) tested
the effect of resource misallocation on agricultural green total factor
productivity (GTFP) based on panel data from 306 cities in China
from 1996 to 2007. The research results suggested that the
misallocation of land, labor, machinery, and fertilizer directly
hinders GTFP. Qin et al. (2022) further pointed out that the
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inhibitory effect of factor misallocation on GTFP constantly
weakens with the optimization and upgrading of the agricultural
and industrial structure and the improvement of agricultural science
and technology.

2.3 Digitalization and resource misallocation

Digitalization is unanimously recognized for its effectiveness
in reducing resource mismatches and improving allocation
efficiency (Asongu and Le Roux, 2017). In terms of labor
allocation, Martin et al. (2013) stated that digitalization
inevitably leads to the rational allocation of regional human
resources by accelerating information sharing and facilitating
information coordination. Based on the China Family Panel
Studies data, Liu Shi-yang (2022) empirically confirmed this
view. They found that digitalization could significantly reduce
the degree of labor misallocation through the information
improvement effect and the thick labor market effect. In terms
of capital allocation, Li et al. (2022) presented the hypothesis that
digitalization can increase the firms’ internal management and
communication efficiency, optimize the division of work, and
reduce internal capital misallocation. Li and Pang (2023)
conducted empirical research with the innovation data of
Chinese A-share and noted that digitalization could effectively
correct the financial mismatch problem in the traditional
financial model. In addition, Jin et al. (2023) adopted capital
deviation and labor deviation to measure resource misallocation
and further empirically investigated the impact of digitalization
on resource misallocation from the multi-factor perspective. The
findings of their study further verified the positive effect of
digitalization on reducing resource misallocation.

Overall, evidence from existing studies suggests that low-carbon
agricultural production could be influenced by resource
misallocation to some extent. Hence, resource misallocation is an
important issue that should be considered when assessing the impact
of digitalization on low-carbon agricultural production. In light of
the foregoing, this study tries to empirically examine the relationship
between digitalization, resource misallocation and low-carbon
agricultural production based on theoretical analysis.

3 Theoretical analysis and hypothesis

3.1 The direct effect of digitalization on low-
carbon agricultural production

Digitalization originates from technology and data elements,
and is a disruptive technological innovation that stems from the
deep penetration of information technology in the social economy.
Its vigorous rise can not only bring extensive and profound impact
on the social development pattern but also provide an important
opportunity for low-carbon agricultural production. First,
digitalization derived from information and communication
technology has the essential characteristics of information
dissemination across time and space, and the comparative
advantage of big data creation and sharing. Thus, digitalization
can break through the limitations of time and space to widely

disseminate the concept of low-carbon agricultural production
and promote low-carbon agricultural production technologies.
Second, digitalization has revolutionized traditional agricultural
production patterns. With the help of digital technologies such as
big data and cloud computing, farmers can collect and analyze crop
planting experience and market information, calculate the amount
of water and fertilizer needed for crop production, and then make
scientific planting decisions to reduce agricultural carbon emissions
and achieve low-carbon agricultural production. Third,
digitalization strengthens the supervision of agricultural high-
carbon behavior. Digitalization can promote the spread of the
concept of low-carbon agricultural production and innovate and
broaden the channels and methods for government to supervise
agricultural production. Accurate identification, appropriate
rewards and punishments, and timely correction of high-carbon
behaviors in the agricultural production process by government
departments can effectively reduce agricultural carbon emissions.

Hypothesis 1. Digitalization is beneficial to reduce agricultural
carbon emissions and to drive low-carbon agricultural
production

3.2 The indirect effect of digitalization on
low-carbon agricultural production

The action process of digitalization on agricultural resource
allocation can be roughly divided into three stages: penetration,
substitution, and synergy. In the penetration stage, affected by
the urban-rural dual system, it is difficult for the agricultural
resource to achieve a two-way flow between urban and rural
areas, which leads to distortions in the agricultural resource
allocation. By expanding the economic right and selecting the
range of agricultural production entities, digitalization can
further promote the flow and accumulation of production
factors such as labor force and capital in accordance with the
market supply and demand relationship and the functional
positioning of urban and rural industries, and realize the two-
way flow of urban and rural resource finally. In the substitution
stage, digitalization could substitute agricultural labor and capital
resources, releasing redundant labor and capital in all segments
of agriculture and achieving the optimal allocation of agricultural
resources. First, digitalization directly enhances agricultural
intelligence and modernization, reduces labor demand,
improves labor quality, and releases redundant agricultural
labor. Second, digitalization can strengthen farmers’
management and control over the processes of arable land,
sowing, fertilization, pesticide application, and harvesting,
reduces pesticide and fertilizer use, and releases redundant
agricultural capital. In the synergy stage, the digital
transformation of agriculture and digital industrialization co-
evolve to jointly improve the allocation efficiency of factor
resources and reduce agricultural resource misallocation.
Relying on strong penetration and substitution effects,
digitalization can optimize the entire agricultural industry
chain, including production, management, storage and
transportation, circulation, and market distribution, thereby
reshaping the original element allocation structure. Given the
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above hypothetical mechanism analysis, we construct a
mechanism diagram of the role of digitalization in low-carbon
agricultural production (see Figure 1).

Hypothesis 2. Digitalization effectively propels low-carbon
agricultural production by reducing the degree of agricultural
resource misallocation.

4 Methodology and data

4.1 Methodology

4.1.1 Benchmark model
To test the impact of digitalization on low-carbon

agricultural production, a dynamic benchmark model is
constructed as follows:

lnLCAit � α0 + α1lnLCAi,t−1 + α2lnDIGit + α3lnFASit + α4lnURBit

+ α5lnSTRit + α6lnDIAit + α7lnADLit + εit
(1)

Among them, i and t denote provinces and years, respectively. αi
is parameter to be estimated for the model. lnLCAit is the explained
variable, which denotes the level of low-carbon agricultural
production of the i province in the t year. Given the continuity
and accumulation of agricultural carbon emissions, this paper adds
one-period lagged explained variable lnLCAi,t−1 to the right side of
Eq. 1. lnDIGit is the core explanatory variable, which denotes the
level of digitalization of the i province in the t year.
lnFASit, lnURBit, lnSTRit, lnDIAit, lnADLit are control variables,
which denote agricultural fiscal expenditure, urbanization,
agricultural structure, natural disasters and the level of
agricultural economic development. εit denotes the stochastic
disturbance term.

4.1.2 Mediating effect model
To validate whether digitalization can promote low-carbon

agricultural production by reducing agricultural resource
misallocation, this paper draws on the research of Baron and
Kenny (1986) and MacKinnon et al. (2007) adopts the stepwise
regression to test the mediating effect. The stepwise regression
covers three steps. In addition to Eq. 1, the following two
regressions should be constructed.

lnMit � β0 + β1lnMi,t−1 + β2lnDIGit + β3lnFASit + β4URBit

+ β5STRit + β6DIAit + β7ADLit + εit (2)
lnLCAit � δ0 + δ1lnLCAit + δ2lnDIGit + δ3lnMit + δ4lnFASit

+ δ5lnURBit + δ6lnSTRit + δ7DIAit + δ8ADLit + εit
(3)

First, Eq. 1 is estimated to test whether low-carbon agricultural
production is affected by digitalization. Next, all mediating variables,
including agricultural capital misallocation and labor misallocation,
are regressed against digitalization, as shown in Eq. 2. Finally, low-
carbon agricultural production is regressed against both the main
variable of digitalization and the mediating variables in Eq. 3. Where

lnMit is the mediating variable in Eq. 2, which denotes agricultural
capital misallocation (lnCMIit) and agricultural labor misallocation
(ln LMIit). Eq. 2 also introduces a lag period of the intermediary
variable (lnMi,t−1) to reduce the possibility of missing variables and
ensure the robustness of the model set. Other variables in Eq. 2 have
the same meaning as in Eq. 1. The definition of the variables in Eq. 3
is also the same as in Eq.1–2.

4.2 Variables

4.2.1 Explained variable
The explained variable is low-carbon agricultural production

(LCA), which is measured by employing agricultural carbon
emissions (ACE). According to Johnson et al. (2007) and Cui
et al. (2022), agricultural carbon emissions come mainly from
agricultural production activities (chemical fertilizer, agricultural
film, pesticide, diesel oil, plowing, agricultural irrigation), rice
cultivation (paddy field) and livestock and poultry farming (pigs,
cattle, sheep). After determining agricultural carbon source, this
paper calculates agricultural carbon emissions according to the
following formula:

ACE � ∑ACEi � ∑ δiTi (4)

Where ACE denotes agricultural carbon emissions. ACEi

indicates the carbon emissions of each carbon source. Ti is the
number of carbon sources. δi is the coefficient of carbon emission of
each carbon source. The carbon sources and its carbon emissions
coefficient are shown in Table 1 for details.

4.2.2 Core explanatory variable
Digitalization (DIG) is the core explanatory variable. Drawing

on the research of Yang et al. (2022), 13 indicators are selected from
three aspects: digital foundation, digital industrialization, and
industrial digitalization to construct a more objective
digitalization index system. After constructing the digitalization
index system, it is necessary to determine the weights of each
index. The entropy method, which can avoid the error caused by
subjective judgment, is chosen to measure the weights of each index
in this paper (Yi et al., 2022). The specific indicators and their
weights can be seen in Table 2.

As shown in Table 2, the weights of digital foundation, digital
industrialization and industrial digitalization are 0.407, 0.264 and
0.328, respectively. Specifically, in digital foundation, the weight of
the number of web pages is larger, which is an important factor
affecting the digital foundation. In digital industrialization, the
weight of software business income is 0.132, significantly higher
than other indicators, indicating that software business income is an
essential indicator reflecting digital industrialization. In industrial
digitalization, E-commerce sales have the largest weight of 0.098,
which reveals the importance of developing e-commerce for
industrial digitalization.

To substantiate the robustness of the regression results, referring
to the study of Guo et al., 2020; Du et al., 2022b, this paper replaces
the core explanatory variable digitalization with the Peking
University Digital Financial Inclusion Index (DIGF) for
regression analysis.

Frontiers in Environmental Science frontiersin.org04

Xu et al. 10.3389/fenvs.2023.1117086

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1117086


4.2.3 Mediating variable
Agricultural capital misallocation (CMI) and agricultural labor

misallocation (LMI) are mediating variables. Referring to Hsieh and
Klenow (2009) and Aoki (2012), this study constructs the following
theoretical framework to calculate agricultural resource
misallocation.

There are i regions in the economy. Farmers in each region are
price-takers in both the goods and factor markets and pay linear
taxes on capital and labor inputs, which vary by region. Therefore,
farmers in region i produce agricultural products given the price of
the region Pi and capital and labor costs (1 + τki)Pki and (1 + τli)Pli,
respectively, where τik and τil are the capial and labor taxes of the
region, Pki and Pli are the factor prices of capital and labor,
respectively. We assume that the farmers possess the Cobb-

Douglas production technology exhibiting constant-returns-to-
scale (CRS). The production function can be written as follows:

Yi � AiK
αki
i Lαli

i (5)
Where Yi is the output.Ki is the capital input. Li is the labor input.

Ai is the productivity of the farmer. αki and αli are the output elasticity
of capital and labor, calculated by the Solow residual method (Du et al.,
2022a). Meanwhile, there exists αki + αli � 1 under the assumption of
CRS. In this setting, the profit function of the region i is written as:

πi � PiYi − 1 + τki( )PkiKi − 1 + τ li( )PliLi (6)
Under the profit maximization objective, the first-order

conditions can be described as below:

TABLE 1 The carbon sources and its carbon emissions coefficient.

Classification Sources Coefficient Units Reference source

Agricultural land
production

Chemical fertilizer 0.896 kg c/kg West and Marland (2002)

Agricultural film 5.180 kg c/kg Research Institute of Agricultural Resources and Ecological Environment of Nanjing
Agricultural University

Pesticide 4.934 kg c/kg American Oak Ridge National Laboratory

Diesel oil 0.593 kg c/kg Intergovernmental Panel on Climate Change

Plowing 312.600 kg c/km2 College of Biology, China Agricultural University

Agricultural
irrigation

20.400 kg c/km2 Dubey and Lal (2009)

Rice cultivation Paddy field 4078.360 kg c/km2 Matthews et al. (1991), Mingxing and Jing (2002)

Livestock breeding Pigs 34.100 kg c/a Intergovernmental Panel on Climate Change

Cattle 418.290 kg c/a Intergovernmental Panel on Climate Change

Sheep 35.190 kg c/a Intergovernmental Panel on Climate Change

FIGURE 1
The impact mechanism of digitalization on low-carbon agricultural production.
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zπi
zKi

� Pi
zYi

zKi
− 1 + τki( )Pki � 0;

zπi
zLi

� Pi
zYi

zLi
− 1 + τli( )Pli � 0 (7)

Thus, the absolute mismatch index of capital and labor are γki �
1

1+τki and γli � 1
1+τli, respectively. In practice, it is common to replace

γki and γli with γki* and γli*, respectively.

γki
* � Ki

K
/Siαkiαk

, γli
* � Li

L
/Siαliαl

; K � ∑N

i
Ki, αk � ∑N

i
siαki,

L � ∑N

i
Li, αl � ∑N

i
siαli

(8)

Where γki* and γli* are the relative mismatch index of capital and
labor. Si � Yi

Y represents the share of the agricultural output of region

TABLE 2 Measurement index system of digitalization.

First-level indicators Second-level
indicators

Weight Third-level indicators Weight

Digitalization

Digital foundation 0.407 Mobile phone switches (ten thousand) 0.037

Mobile phone penetration (%) 0.039

Number of domain names (ten thousand) 0.083

Number of web pages (ten thousand) 0.170

Long-distance cable length (km) 0.035

Number of internet broadband interface number (ten thousand) 0.043

Digital industrialization 0.264 Software business income (hundred million) 0.132

Information transmission, computer services and software industry practitioners
(people)

0.086

Total telecommunications business (hundred million) 0.046

Industrial digitalization 0.328 Number of websites owned by enterprises (unit) 0.074

Enterprises with e-commerce activities (unit) 0.078

Number of computers used by enterprises (ten thousand) 0.078

E-commerce sales (hundred million) 0.098

TABLE 3 Calculation results of China’s agricultural capital and labor misallocation in 2020.

Regions Agricultural capital
misallocation

Agricultural labor
misallocation

Regions Agricultural capital
misallocation

Agricultural labor
misallocation

Beijing 0.961 0.382 Henan 1.318 0.158

Tianjin 0.915 1.217 Hubei 0.499 0.043

Hebei 0.353 0.026 Hunan 0.244 0.056

Shanxi 0.552 0.245 Guangdong 0.566 0.114

Neimenggu 0.272 0.065 Guangxi 0.351 0.065

Liaoning 0.117 0.133 Hainan 0.545 0.354

Jilin 0.483 0.315 Chongqing 0.340 0.146

Heilongjiang 0.595 0.674 Sichuan 0.481 0.308

Shanghai 0.949 0.623 Guizhou 0.051 0.016

Jiangsu 0.830 0.469 Yunnan 0.116 0.391

Zhejiang 0.315 0.918 Shaanxi 0.015 0.113

Anhui 0.046 0.203 Gansu 0.314 0.373

Fujian 0.300 0.433 Qinghai 0.931 0.159

Jiangxi 0.315 0.013 Ningxia 0.843 0.307

Shandong 1.162 0.067 Xinjiang 0.400 0.593
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i (Yi) in the agricultural output of the whole economy (Y). Ki
k is the

proportion of capital input in the region i to the capital input of the
whole economy. Siαkiαk is the theoretical proportion of capital used by
region i when capital is efficiently allocated.

In addition, to make it easy to conduct empirical tests, this paper
transforms the relative mismatch index of agricultural resources as
follows:

CMIi � 1
γki*

− 1; LMIi � 1
γli*

− 1 (9)

γki* > 1 and CMIi < 0 denote that the input cost of agricultural
capital is low and the allocation is surplus. γki* < 1 and CMIi > 0
indicate that the input cost of agricultural capital is high and the
allocation is insufficient. Considering the negative value of
agricultural resource misallocation index, this paper utilizes the
absolute value of agricultural resource misallocation index in the
empirical analysis. The smaller the absolute value of agricultural
resource misallocation index, the lower the degree of agricultural
resource mismatch. The total agricultural output, capital, and labor
force are measured by the total output value of agriculture, forestry,
animal husbandry and fishery, agricultural capital stock, and the
number of employees in the primary industry, respectively.

Table 3 shows China’s agricultural capital and labor misallocation
in 2020. As seen from Table 3, there is a certain degree of mismatch
between agricultural capital and labor markets in all regions of China.
The agricultural capital misallocation in Henan, Shandong, Beijing,
Shanghai and Tianjin is serious. Specifically, the agricultural capital
misallocation index of Henan and Shandong are greater than 1, while
the agricultural capital misallocation index of Beijing, Shanghai,
Qinghai and Tianjin is in the range of 0.9–1.0. Compared with the
agricultural capital market, agricultural labor misallocations are
relatively low. Tianjin has the highest degree of agricultural labor
misallocation, followed by Zhejiang, while other regions are
relatively mild.

4.2.4 Control variable
Fiscal expenditure for agriculture (FAS). Fiscal expenditure for

agriculture refers to the spending on agricultural production and
public agricultural goods input, which can reflect government support
for agricultural production. This paper uses the ratio of agricultural,
forestry, and water affairs expenditure to total fiscal expenditure to
measure, which is expected to have a negative impact on agricultural
carbon emissions. Urbanization (URB). The proportion of the urban
population and the total population is adopted to measure
urbanization. Urbanization leads to the loss of the young rural
labor force, and agricultural production may show aging
characteristics. Constrained by cognitive level, the elderly mostly
carry out extensive farming, which can lead to increased
agricultural carbon emissions. Agricultural structure (STR). Grain
and cash crops’ carbon emissions differ substantially (Zhang et al.,
2020). The ratio of grain planting area to crop planting area represents
the agricultural structure, which is expected to be positively related to
agricultural carbon emissions. Natural disaster (DIA) is measured by
the affected area of the total sown area of crops. Generally, the higher
the degree of disaster, the greater the damage to farmers’ income and
the ecological environment. Agricultural economic development
(ADL) is an essential control variable affecting low-carbon
agricultural production (Yang et al., 2022).

Considering the availability of data and the implementation
of the “Broadband China” strategy, this paper uses the panel data
of 30 provinces in China from 2013 to 2020 as the research
sample. The data on digital inclusive finance comes from the
Digital Finance Research Center of Peking University. The rest of
the data is from the China Statistical Yearbook, China Rural
Statistical Yearbook, China Fixed Asset Investment Statistical
Yearbook, and each provincial statistical yearbook. Descriptive
statistics for each variable and the correlation coefficient matrix
are shown in Table 4.

5 Empirical analysis

5.1 Analysis of direct effect

5.1.1 Benchmark regression results analysis
Due to the existence of lagged explained variables in the

model, merely using the OLS method may lead to biased and
inconsistent estimation results (Cameron and Trivedi, 2010).
Therefore, this paper employs the system GMM method,
which is widely used in the dynamic panel model, to estimate
the parameters. The estimation results are shown in Table 5. In
the results of Table 5, columns (1) to (3) are the benchmark
regression result, and columns (4) to (6) are the robustness test
results with digital inclusive finance as the proxy variable for
digitalization. From the estimation results of column (1), the AR
(1) is less than 0.05, and AR (2) is greater than 0.1, indicating that
there is no autocorrelation problem. The Hansen test cannot
reject the null hypothesis that the model variable setting is over-
identified at the 10% significant level, indicating that the
instrumental variables selected in this paper are effective.
According to the research of Bond (2002), this paper uses OLS
and FE methods to estimate the dynamic panel model once more.
From columns (1) to (3), the estimated coefficient of the lagged
explanatory variables in the system GMM is between the FE
estimation result and the OLS estimation result, which indicates
that the system GMM estimation result is valid.

Specifically, in column (1), the coefficient of low-carbon
agricultural production with one-period lag is significantly positive,
suggesting that low-carbon agricultural production is persistent,
which further proves the construction of a dynamic panel model
for analysis is necessary. This finding is consistent with Pretty (2007),
who argued that agriculture production sometimes accumulates
carbon and thus pollutes the environment. The coefficient of
digitalization is −0.089 and significant at the 1% level, suggesting
that digitalization can significantly curb agricultural carbon emissions
and promote low-carbon agricultural production. Hypothesis 1 is
proved. The research conducted by Khan et al. (2021) using a sample
of a national dataset from 7987 rural households in Afghanistan
supports this conclusion, further illustrating the generality of
Hypothesis 1. In the whole industrial chain of agricultural
production, processing, packaging, warehousing, transportation and
sales, digitalization accurately serves the decision-making behavior of
production entities through intelligent perception, analysis and
control systems, to reduce chemical input, energy consumption
and waste of land resource, and ultimately drive low-carbon
agricultural production.
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The coefficient of fiscal spending on agriculture is negative and
the association is significant, suggesting that the agricultural
financial policy implemented by the government is effective. This
is not surprising because Xu et al. (2022) noted that the extension of
agricultural green low-carbon technology is closely related to fiscal
support. However, the effect of urbanization on agricultural carbon
emissions is significantly positive, implying that urbanization

hinders low-carbon agricultural production. During urbanization,
young laborers gradually transfer to cities, and agricultural
production is characterized by aging. Bound by perceptions,
older people still adopt relatively crude production methods,
ultimately upturning agricultural carbon emissions. Similarly,
natural disaster has a significant positive effect on agricultural
carbon emissions. The reason is that before natural disasters

TABLE 4 Descriptive statistics and correlation matrix.

Variables lnLCAit lnDIGit lnDIGFit lnFASit lnURBit lnSTRit lnDIAit lnADLit lnCMIit lnLMIit

Obs 240 240 240 240 240 240 202 240 240 240

Mean 5.698 2.331 5.498 2.399 4.079 4.146 5.766 9.461 1.050 0.952

Std.Dev 1.006 0.863 0.285 0.333 0.185 0.227 1.583 0.357 1.069 1.057

Min 2.312 0.307 4.771 1.413 3.635 3.570 0.000 8.629 −3.219 −4.605

MAX 7.168 4.353 6.068 3.015 4.495 4.575 8.349 10.461 3.062 2.697

lnLCAit 1.000

lnDIGit 0.128 1.000

lnDIGFit −0.150 0.499 1.000

lnFASit 0.362 −0.601 −0.180 1.000

lnURBit −0.515 0.562 0.532 −0.664 1.000

lnSTRit 0.271 0.033 −0.078 0.090 0.046 1.000

lnDIAit 0.722 −0.160 −0.463 0.428 −0.522 0.408 1.000

lnADLit −0.259 0.734 0.770 −0.563 0.827 −0.056 −0.513 1.000

lnCMIit −0.367 −0.277 0.013 0.099 0.025 −0.220 −0.317 −0.055 1.000

lnLMIit −0.226 0.043 0.067 −0.096 0.238 −0.095 −0.297 0.244 0.204 1.000

TABLE 5 The results of benchmark regression.

Variables Main Regression Robust Test

(1) SYS − GMM (2) FE (3) OLS (4) SYS − GMM (5) FE (6) OLS

L.lnLCAit 1.010*** (0.011) 0.924*** (0.037) 1.011*** (0.006) 1.007*** (0.004) 0.947*** (0.035) 1.008*** (0.005)

lnDIGit −0.089*** (0.010) −0.083** (0.034) −0.014** (0.006)

lnDIGFit −0.081*** (0.016) −0.229*** (0.055) −0.057*** (0.020)

lnFASit −0.091*** (0.010) −0.042 (0.031) −0.002 (0.014) 0.047*** (0.009) −0.047 (0.030) 0.028** (0.013)

lnURBit 0.105* (0.060) 0.407** (0.169) 0.092** (0.042) 0.097*** (0.021) 0.358** (0.156) 0.084** (0.042)

lnSTRit −0.006 (0.026) −0.031 (0.071) −0.025* (0.014) −0.014 (0.012) 0.055 (0.070) −0.021 (0.014)

lnDIAit 0.007*** (0.002) 0.001 (0.004) 0.005 (0.003) 0.001 (0.001) 0.001 (0.004) 0.002 (0.003)

lnADLit −0.041* (0.020) −0.147** (0.059) −0.085*** (0.021) −0.049* (0.025) 0.073 (0.085) −0.068*** (0.023)

Cons 0.294* (0.156) 0.579 (0.493) 0.457*** (0.153) 0.397*** (0.118) −0.712 (0.617) 0.562*** (0.134)

AR(1) 0.001 0.001

AR(2) 0.165 0.340

Hansen − Test 0.568 0.454

R2 0.907 0.998 0.912 0.998

Note: ***,**, and * mean significance at the level of 0.01, 0.05, and 0.1, respectively; Standard errors are in parentheses.
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occur, people take preventive measures, such as covering soil film,
hanging hail nets and other production activities, which all
contribute to agricultural carbon emissions. The maintenance
and reconstruction of agricultural infrastructure after natural
disasters also intensify agricultural carbon emissions. The
coefficient of agricultural economic development is significantly
negative, which designates that agricultural economic growth is
responsible for reducing agricultural carbon emissions, and this
conclusion is supported by Sun et al. (2022). As the level of the
agricultural economy rises, the constantly advancing agricultural
production technology and rich agricultural production experience
effectively promote low-carbon agricultural production. The
planting structure variable is negative but not significant. In the
results of columns (4) to (6), the coefficient of digital inclusive
finance is still significantly positive, further proving the correctness
and robustness of Hypothesis 1.

5.1.2 Heterogeneity analysis
Due to the obvious regional characteristics of China’s economic

development level and resource endowment, there are significant
differences in digitalization level among provinces. This regional
difference may lead to divergent effects of digitization on low-
carbon agricultural production. Therefore, this paper divides the
total sample into eastern, central and western regions to explore
whether there is regional heterogeneity in the impact of digitalization
on agricultural carbon emissions. The results are shown in Table 6.

In the results of column (1) and column (2) of Table 5, the
coefficient of digitalization is significantly negative, showing that
digitalization can effectively inhibit agricultural carbon emissions
and give impetus to low-carbon agricultural production in both
developed eastern regions and relatively backward central and

western regions. However, compared with the absolute value of the
digitalization coefficient, it is found that the absolute value of the
digitalization coefficient in the eastern region (0.400) is greater than
that in the central and western regions (0.126), the inhibitory effect of
digitalization on agricultural carbon emissions in the eastern region is
higher than that in the central and western regions. The finding is
similar to Zhang et al. (2022), and the possible reason is that the
overall level of digitalization in the central and western regions is low,
and the effect of carbon emission reduction by digitalization has not
yet emerged. While the level of digitalization in the eastern region is
high, the agricultural emission reduction effect is obvious.

5.2 Analysis of indirect effect

Theoretical analysis shows that digitalization gives impetus to
low-carbon agricultural production by reducing the misallocation of
agricultural resources. To verify Hypothesis 2, this paper takes
agricultural capital misallocation and agricultural labor
misallocation as mediating variables and makes regression analysis
step by step according to the above Eqs 1–3. The estimation results are
shown in Tables 7, 8.

5.2.1 The mediating effect of agricultural capital
misallocation

In Table 7, column (1) corresponds to Eq. 1. In column (1), the
estimation coefficient of digitalization is significantly negative,
implying that the total effect of digitalization on agricultural
carbon emissions is significant. Column (2) corresponds to
Equation 2. In column (2), the coefficient of digitalization
is −0.946 and significant at the 1% level, suggesting that

TABLE 6 The results of the heterogeneity test.

Variables Main Regression Robust Test

(1) (2) (3) (4)

East Central andWest East Central andWest

L.lnLCAit 0.706*** (0.205) 1.016*** (0.043) 0.900*** (0.059) 0.902*** (0.025)

lnDIGit −0.400* (0.210) −0.126*** (0.016)

lnDIGFit −0.340** (0.134) −0.193*** (0.048)

lnFASit 0.148 (0.290) −0.038 (0.029) 0.209 (0.193) 0.041* (0.022)

lnURBit −0.068 (0.611) −0.493* (0.235) −0.286 (0.338) −0.252 (0.393)

lnSTRit −0.340 (0.703) 0.047 (0.122) 0.962* (0.451) −0.003 (0.136)

lnDIAit 0.014 (0.008) 0.007 (0.004) 0.005 (0.010) 0.009* (0.004)

lnADLit 0.243* (0.110) 0.251*** (0.083) 0.390* (0.200) 0.238** (0.093)

Cons 1.715 (2.495) −0.368 (0.620) −4.592 (3.641) 0.279 (1.050)

AR(1) 0.072 0.010 0.037 0.010

AR(2) 0.805 0.113 0.640 0.667

Hansen − Test 0.982 0.636 0.998 0.597

Note: ***, **, and * mean significance at the level of 0.01, 0.05, and 0.1, respectively; Standard errors are in parentheses.
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digitalization can effectively relieve agricultural capital
misallocation. Column (3) corresponds to Eq. 3. Both
digitalization and agricultural capital misallocation pass the
significance test, suggesting that agricultural capital misallocation
plays an intermediary role between digitalization and agricultural
carbon emissions. Combined with the estimation results of column
(1), after adding the mediating variable, the absolute value of the

coefficient of digitalization has decreased, implying that agricultural
capital misallocation plays a partial mediating role. Digitalization
alleviates the information asymmetry in the farmers’ financing
process and enhances financial institutions’ motivation to supply
funds. Financial institutions provide farmers with agricultural
machinery loan subsidies, technical subsidies, and agricultural
insurance through innovative financial products, thereby

TABLE 7 The results of the mediating effect of agricultural capital misallocation.

Variables Main Robust

(1) (2) (3) (4) (5) (6)

L.lnLCAit 1.010*** (0.011) 0.159*** (0.008) 1.004*** (0.007) 1.007*** (0.004) 0.206*** (0.018) 1.015*** (0.007)

lnDIGit −0.089*** (0.010) −0.946*** (0.050) −0.041*** (0.011)

lnDIGFit −0.081*** (0.016) −0.371*** (0.125) −0.080*** (0.021)

lnCMIit 0.010** (0.004) 0.018*** (0.004)

lnFASit −0.091*** (0.010) −0.548*** (0.152) −0.039** (0.017) 0.047*** (0.009) 0.579*** (0.121) 0.034** (0.012)

lnURBit 0.105* (0.060) −0.049 (0.574) 0.060 (0.049) 0.097*** (0.021) 1.267* (0.621) 0.126** (0.060)

lnSTRit −0.006 (0.026) −0.665*** (0.170) −0.049* (0.026) −0.014 (0.012) −0.699*** (0.248) −0.035 (0.039)

lnDIAit 0.007*** (0.002) −0.036*** (0.007) 0.011*** (0.002) 0.001 (0.001) −0.136*** (0.025) 0.004* (0.002)

lnADLit −0.041* (0.020) 1.230*** (0.199) −0.050* (0.027) −0.049* (0.025) −0.247 (0.303) −0.055 (0.033)

Cons 0.294* (0.156) −3.982** (1.636) 0.506*** (0.148) 0.397*** (0.118) 2.394* (1.398) 0.365* (0.189)

AR(1) 0.001 0.028 0.001 0.001 0.004 0.001

AR(2) 0.165 0.172 0.319 0.340 0.165 0.434

Hansen − Test 0.568 0.751 0.462 0.454 0.779 0.432

Note: ***, **, and * mean significance at the level of 0.01, 0.05, and 0.1, respectively; Standard errors are in parentheses.

TABLE 8 The results of the mediating effect of agricultural labor misallocation.

Variables Main Robust

(1) (2) (3) (4) (5) (6)

L.lnLCAit 1.010*** (0.011) 0.148*** (0.022) 1.024*** (0.011) 1.007*** (0.004) 0.795*** (0.029) 0.954*** (0.014)

lnDIGit −0.089*** (0.010) −1.701*** (0.253) −0.058*** (0.010)

lnDIGFit −0.081*** (0.016) −0.535*** (0.154) −0.071** (0.027)

lnLMIit 0.012*** (0.004) 0.008* (0.004)

lnFASit −0.091*** (0.010) −1.715*** (0.252) −0.089*** (0.013) 0.047*** (0.009) 0.124 (0.126) 0.136*** (0.014)

lnURBit 0.105* (0.060) −0.649 (0.918) −0.002 (0.065) 0.097*** (0.021) −1.334*** (0.401) 0.042 (0.112)

lnSTRit −0.006 (0.026) −0.990** (0.419) −0.135** (0.053) −0.014 (0.012) 0.279 (0.235) 0.104* (0.054)

lnDIAit 0.007*** (0.002) 0.092*** (0.030) 0.015*** (0.003) 0.001 (0.001) −0.095*** (0.013) 0.006* (0.003)

lnADLit −0.041* (0.020) 2.843*** (0.511) 0.012 (0.027) −0.049* (0.025) 0.990*** (0.352) −0.045 (0.055)

Cons 0.294* (0.156) −11.807*** (4.235) 0.557** (0.217) 0.397*** (0.118) −1.681 (1.529) 0.086 (0.199)

AR(1) 0.001 0.006 0.001 0.001 0.006 0.002

AR(2) 0.165 0.708 0.316 0.340 0.563 0.634

Hansen − Test 0.568 0.577 0.481 0.454 0.913 0.533

Note: ***,**, and * mean significance at the level of 0.01, 0.05, and 0.1, respectively; Standard errors are in parentheses.
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mitigating the degree of agricultural capital misallocation,
decreasing agricultural carbon emissions, and ultimately driving
low-carbon agricultural production. In this paper, digital inclusive
finance is used as a proxy variable of digitalization for regression
estimation again, and the results remain unchanged.

5.2.2 The mediating effect of agricultural labor
misallocation

In Table 8, columns (1) to (3) correspond to Eqs 1–3. The results
and meanings of column (1) are the same as those reported in
column (1) of Table 7. Column (2) reports the impact of
digitalization on agricultural labor misallocation. The estimation
coefficient of digitalization is significantly negative at the 1% level,
illustrating that digitalization optimizes agricultural labor allocation
and significantly reduces the degree of misallocation, which is in line
with expectations. Column (3) reports the estimation results after
adding digitalization and agricultural labor misallocation. Among
them, the coefficient of digitalization is negative, and the coefficient
of agricultural labor misallocation is positive, but both pass the
significance test. This implies that digitalization can curb
agricultural carbon emissions by relieving the agricultural labor
force misallocation. By calculating the estimation coefficient, the
ratio of the mediating effect and the total effect of agricultural labor
misallocation is 0.229. In other words, 22.9% of the inhibitory effect
of digitalization on agricultural carbon emissions is achieved by
optimizing agricultural labor allocation. This manifests that
agricultural labor misallocation plays an important role in low-
carbon agricultural production. After re-estimating digital inclusive
finance as a proxy variable for digitalization, it is found that
agricultural labor misallocation still plays a partial mediating
effect between digitalization and agricultural carbon emissions.
This further proves the robustness of the estimation results.

6 Conclusion and implications

This paper contributes new evidence to discuss the relationship
between digitalization and low-carbon agricultural production, which
provides new ideas for agricultural production to jump out of the
dilemma of high input and high energy in China. The results indicate
that digitalization inhibits agricultural carbon emissions, and this
suppression effect is more obvious in eastern China. In addition, by
optimizing agricultural resource allocation, digitalization can reduce the
degree of agricultural capital and labor misallocation, thus positively
impacting low-carbon agricultural production. Based on the findings of
this paper, the following policy implications can be drawn.

First, the government may carry out top-level design and
planning for the digital transformation of traditional agriculture
to regulate the investment and construction of digital infrastructure
in agriculture and rural areas. It should take local conditions into full
consideration and carry out digital infrastructure in a gradual and
orderly manner to improve the efficiency of resource allocation.

Second, in addition to promoting the construction of digital
agricultural infrastructure, the government also focuses on
improving farmers’ agricultural production skills and digital
literacy. For example, the government may cooperate with
agricultural technology promotion departments, cooperatives and
leading enterprises to build a skills learning platform for farmers to

enhance their ability to apply digital agricultural machinery and
improve their understanding of sustainable production.

Third, the government may accelerate the allocation of public
resources to agriculture and rural areas, and get over the mechanism
and institutional shortcomings, so that the market can play a leading
role in allocating urban and rural factors and public resources.
Meanwhile, the government can refine relevant laws and regulations,
strengthen the flow mechanism of agricultural production factors,
reduce barriers to the entry of capital, labor, and other agricultural
production factors into agricultural operations, and give full play to the
optimal effect of digitalization on agricultural resource allocation.

This paper provides a preliminary discussion of the relationship
between digitalization, resource misallocation and low-carbon
agricultural production but much remains to be done. First, this
paper merely analyzes the impact of digitalization on low-carbon
agricultural production from a macro perspective. Future studies
may expand the perspective to the micro level on the condition that
farmers’ level data can be obtained. Second, this paper primarily
concentrates on the mediating effect of agricultural capital and labor
misallocation in the relationship between digitalization and low-carbon
agricultural production. However, agricultural production also involves
natural resources such as land and water. In the future, it is necessary to
calculate the level of land misallocation further and verify its
environmental effects. Third, this study only focuses on China and
the conclusions may not be suitable for other countries. Future studies
could be further extended to other countries or even to the global level.
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