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Rationale: COVID-19 pandemic has imposed tremendous stress and burden on 
the economy and society worldwide. There is an urgent demand to find a new 
model to estimate the deterioration of patients inflicted by Omicron variants.

Objective: This study aims to develop a model to predict the deterioration of 
elderly patients inflicted by Omicron Sub-variant BA.2.

Methods: COVID-19 patients were randomly divided into the training and the 
validation cohorts. Both Lasso and Logistic regression analyses were performed 
to identify prediction factors, which were then selected to build a deterioration 
model in the training cohort. This model was validated in the validation cohort.

Measurements and main results: The deterioration model of COVID-19 was 
constructed with five indices, including C-reactive protein, neutrophil count/
lymphocyte count (NLR), albumin/globulin ratio (A/G), international normalized 
ratio (INR), and blood urea nitrogen (BUN). The area under the ROC curve (AUC) 
showed that this model displayed a high accuracy in predicting deterioration, 
which was 0.85  in the training cohort and 0.85  in the validation cohort. The 
nomogram provided an easy way to calculate the possibility of deterioration, 
and the decision curve analysis (DCA) and clinical impact curve analysis (CICA)
showed good clinical net profit using this model.

Conclusion: The model we  constructed can identify and predict the risk of 
deterioration (requirement for ventilatory support or death) in elderly patients and 
it is clinically practical, which will facilitate medical decision making and allocating 
medical resources to those with critical conditions.
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Introduction

The COVID-19 pandemic has continued to overwhelm healthcare 
systems worldwide. The outbreak of Omicron sub-variant BA.2 in 
Shanghai in March 2022 has resulted in heavy medical burden to the 
healthcare system and economy recession (1). Due to the effective 
vaccination and variation of the virus, clinical characteristics of 
Omicron inflicted patients are totally different from those who were 
infected by COVID 19 when it broke out in Wuhan in 2020 (2). 
Effective triage of patients presenting to the hospital for risk of 
progressive deterioration is crucial to inform clinical decision making 
and to facilitate effective resource allocation, including hospital beds, 
critical care resources, and targeted drug therapies (3). Since the 
majority of Omicron sub-variant BA.2 patients show mild symptoms 
and a low mortality rate, early identification of subgroups of patients 
at a high risk of death or deterioration and requiring ventilation 
enables precise delivery of treatments.

Many multivariable clinical prognostic models for patients with 
COVID-19 have been developed to predict adverse outcomes, such as 
mortality or clinical deterioration (4–7). The deterioration model 
developed by the International Severe Acute Respiratory and emerging 
Infections Consortium Coronavirus Clinical Characterization 
Consortium (ISARIC4C) study (4) has combined 11 predictors to 
predict clinical deterioration and achieved a good clinical utility 
(c-statistic = 0.77), but the population included both confirmed and 
suspected COVID-19 patients and the missing data in the study led to 
the difficulty in integrating important variables into the model, such 
as D-dimer, which may cause the negligence of the clinical 
characteristics. Fang et al. (5) established a prognostic model based on 
10 variables, which achieved a good prognostic value (AUC = 0.89), 
but it did not include patients aged ≥89, and it had a decent percentage 
of missing data. COVID-GRAM (6) established a deterioration model 
which included 1,590 Chinese patients and combined 10 indicators to 
build an online free risk calculator, which had a good prognostic value 
(AUC = 0.88), but the mean age of the included population was 
48.9 years, and it was based on the COVID-19 outbreak in 2020 in 
Wuhan, China. The end-stage liver disease (MELD)(7) score model 
included 4,213 COVID-19 confirmed patients, but the model was also 
based on data collected during the outbreak of COVID-19 in 2020. 
Due to the difference in multiple respects between the two outbreaks 
(8), there is a surging demand to build a new model to estimate the 
risk of deterioration for patients inflicted by Omicron variants.

In the present study, a large cohort of COVID-19 patients with 
confirmed Omicron variant BA2.2 was utilized to develop a prognostic 
model for in-hospital clinical deterioration (requirement for 
ventilatory support or death) and its efficacy was validated in a 
separate cohort.

Methods

Study population

This research represented a single-center, retrospective study on 
COVID-19 patients admitted to Shanghai Fourth People’s Hospital 
affiliated to Tongji University between 22nd March and 17th June, 
2022. During this time, COVID-19 patients were transferred to our 
hospital which was utilized exclusively to admit patients who had a 
positive SARS-CoV-2 reverse transcriptase polymerase chain reaction 
(RT-PCR) of Omicron sub-variant BA.2. Patients of different severity 
were all admitted for treatment in order to reduce negative conversion 
time of the SARS-CoV-2 RNA. Diagnosis of SARS-CoV-2 infection 
was based on the Guidelines for Diagnosis and Treatment of Novel 
Coronavirus Pneumonia (9th version) (9). The inclusion criteria 
included: patients were over 65 years old, and were admitted to the 
hospital for positive COVID-19 for the first time, and all the regarding 
data were obtained within the first 24 h in the hospital, and they 
reached the final endpoints during the hospitalization (death, 
requirement of ventilatory support, or discharged).

Outcome

A composite primary outcome of in-hospital clinical deterioration, 
comprising initiation of ventilatory support (non-invasive ventilation, 
invasive mechanical ventilation) and death.

Predictors

Electronic medical records (EMRs) were used to collect patients’ 
characteristics, including clinical features, symptoms, comorbidities, 
laboratory findings, treatments (including antiviral or anti-
inflammatory drugs), and outcomes (discharged or death or 
requirement of ventilatory support), by following the standardized 
approach to each variable definition (10). All information was 
documented on a standardized record form.

Those variables were divided into routinely available and 
laboratory ones. Routinely available predictors included age, gender, 
comorbidities which were defined on the basis of the modified 
Charlson comorbidity index (11). Laboratory measurements included 
C-reactive protein (CRP), interleukin-6 (IL-6), procalcitonin (PCT), 
white blood cell count (WBC), neutrophil count, lymphocyte count, 
neutrophil/lymphocyte ratio (NLR), monocyte count, platelets (PLT), 
hemoglobin (HB), RDW-CV (red blood cell distribution width-
coefficient variation), Red blood cell count (RBC), Albumin (ALB), 
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Albumin/globulin (A/G), creatinine (Crea), blood urea nitrogen 
(BUN), aspartate aminotransferase (AST), alanine aminotransferase 
(ALT), total bilirubin (TBIL), γ-glutamyltransferase (GGT), 
glomerular filtration rate (GFR), prothrombin time (PT), thrombin 
time (TT), activated partial thromboplastin time (APTT), Fibrinogen 
(FIB), international normalized ratio (INR). Only the first results of 
measured predictors within 24 h of admission were included. These 
predictors were selected on the basis of literature describing their close 
association with COVID-19 prognosis (12). Predictors were excluded 
if they had incomplete information in order to minimize the deviation 
of the regression coefficient.

This study was conducted by complying with the principles of the 
Declaration of Helsinki. The associated Ethics Committee of Shanghai 
Fourth People’s Hospital approved the study and waived the need for 
informed consent. The methodology of the study followed the 
guidelines for transparent reporting of a multivariable prediction 
model for individual prediction or diagnosis (TRIPOD) (13).

Statistical analysis

Prediction model development
All patients were randomly assigned to a training cohort and a 

validation cohort (7:3). The predictive model and nomogram were 

constructed in the training cohort based on baseline characteristics as 
well as results of the first laboratory tests after admission, and they 
were then validated in the validation cohort.

Feature selection was performed using the least absolute shrinkage 
and selection operator (LASSO) regression method with the R 
package “glmnet” to identify the relative importance of each feature. 
Those important predictors were then entered into the logistic 
stepwise regression analysis to minimize the variable range. Finally, 
the coefficients of the logistic regression model were used to construct 
the prediction model using R “glm” function. After that, the R “rms” 
package was used to build the Nomograms (14).

A common problem should be taken into consideration when 
comparing laboratory data between institutions is that laboratory 
values are highly dependent on the methodologies used, and data 
normalization is needed. In general, results of laboratory tests have 
normal ranges that enclose 95% of values in a healthy population. 
When the laboratory values were beyond the testing ability of the 
lower or upper values of the normal range, we recommended to use 
the laboratory’s upper or lower limits as the value input.

Model performance assessment
Performance of nomograms was evaluated using discrimination 

[the area under the receiver operating characteristic curve 
(AUROCC)], calibration (calibration plots), and clinical applicability 

FIGURE 1

Flowchart of the study showing the recruitment process and data analysis as well as modeling.
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TABLE 1 Clinical characteristics of the training and the testing cohorts.

Total (N = 1,255)
Training cohort 

(N = 885)
Testing cohort 

(N = 370)
p value

Age,median(IQR),yr 82(73,89) 82(73,88) 82(73,89) 0.37

Sex, M, n(%) 514(40.9%) 365(41.2%) 149(40.3) 0.80

PCR confirmation to hospital admission median (IQR),d 2(1,5) 2(1,5) 3(1,5) 0.34

Comorbidity, n(%)

Hypertension 622(49.5%) 421(47.6%) 201(54.3%) 0.034

Diabetes mellitus 276(22.0%) 181(20.5%) 95(25.7%) 0.05

Atrial fibrillation 68(0.1%) 47(5.3%) 21(5.7%) 0.90

Myocardia infarcion 18(1.4%) 14(1.6%) 4(1.1%) 0.67

Parkinson disease 29(2.3%) 20(2.3%) 9(2.4%) 0.10

dementia 78(6.2%) 53(6.0%) 25(6.8%) 0.70

Ischemic stroke/TIA 260(20.7%) 173(19.5%) 87(23.5%) 0.13

Peripheral atrial disease 10(0.8%) 7(8.0%) 3(8.0%) 0.10

Severity-A, n(%)

No symptom 49(3.9%) 35(4.0%) 14(3.8%) 0.10

Mild 561(44.7%) 399(45.1%) 162(43.8%) 0.72

Median 511(40.7%) 353(39.9%) 158(42.7%) 0.39

Severe 102(8.13%) 75(8.5%) 27(7.3%) 0.56

Critical 28(2.23%) 19(2.1%) 9(2.4%) 0.92

Treatment, n(%)

Paxlovid 1,021(84.5%) 717(84.1%) 304(85.6%) 0.55

Anticoagulation 863(71.0%) 616(72.2%) 247(69.6%) 0.39

Antibacterial drugs 359(29.7%) 250(29.3%) 109(30.7%) 0.68

Traditional Chinese medicines 717(59.4%) 50(59.0%) 214(60.3%) 0.72

Steroid 147(12.2%) 100(11.7%) 47(13.2%) 0.52

Outcome, n (%)

Ventilation support /death 146(11.6%) 101(11.4%) 45(12.2%) 0.78

Continuous variables of skewed distribution were showed as median [interquartile range, IQR] and compared with Mann–Whitney test, categorical variables were presented as numbers 
(percentage) and compared by the chi-square test. Definition of abbreviations: IQR = interquartile range; Severity-A = severity on admission. TIA, transit ischemic stroke.

[decision curve analysis (DCA) and clinical impact curve analysis 
(CICA)] in R. During the internal validation of the nomogram, the 
total score of each patient in the testing cohort and their corresponding 
progression probability were calculated according to the established 
nomogram. Clinical utility was analyzed using the decision curve 
analysis and clinical impact curve analysis in the R “rmda” package 
(15). It was used to measure the net benefit using the prediction model 
in clinical practice which were compared between the treat-all and 
the  treat-none modes. The concept of net benefit can be  hard to 
understand, it could be interpreted as a hypothetical scenario where 
the prognostic index was used to decide whether a patient needed to 
be treated. All analyses were done in R (version 4.1.2).

Results

The selection process of the study population was illustrated in 
Figure 1. A total of 1,830 patients with COVID-19 were enrolled and 
575 excluded due to their age younger than 65. Baseline characteristics 

between the training cohort and the validation cohort were shown in 
Tables 1, 2. The average time from PCR confirmation to admission 
was 2 days. Nearly half of them had hypertension (49.5%). The 
majority of these elderly patients showed mild to moderate symptoms, 
with a small proportion of them having severe and critical symptoms. 
Most patients received the Paxlovid (84.5%) and anticoagulation 
(71.0%) treatments. The proportion of deterioration rate was 11.6%. 
No difference was observed in above variables between the 
training cohort and the validation cohort.

Model development and internal validation

A total of 44 features were collected from each patient in the 
training cohort which consisted of 855 patients and 29 continuous 
variables entered for LASSO regression analysis (Figures 2A,B). 
The remaining 8 important variables were then registered with 
the Logistic regression for deeper selection. Results of 855 
patients in the training cohort showed that CRP, A/G, NLR, INR, 
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BUN were predictive factors for clinical deterioration of 
COVID-19 (Table 3). Prediction models were then built using the 
coefficients form the above results.

The predictive nomogram that integrated 5 selected features for 
the prediction of in-hospital clinical deterioration in the training 
cohort was shown in Figure 2C. The AUC of the nomogram was 
0.85, which showed a good capability of discriminating individuals 
with clinical deterioration from stable COVID-19 patients 
(Figure 3C). Furthermore, the nomogram showed a superior overall 

net benefit within the wide and practical ranges of threshold 
probabilities evidenced by the DCA and CICA results 
(Figures 2D,E).

The internal testing cohort included 370 patients (see Table 1). 
The AUC was 0.85 in predicting the deterioration rate (Figure 3D), 
indicating a good performance in differentiating the risk of 
progression in confirmed COVID-19 patients. When ventilation 
support or death was separately analyszed, the AUC of them was 
0.8397 and 0.8355, respectively (Figures 4A,B).

TABLE 2 Laboratory findings at study entry.

Total (N = 1,255)
Training cohort 

(N = 855)
Testing cohort (N = 370) p value

Routin blood tests

Whiet cell count (3.5–9.5) 5.13(3.97,6.78) 5.15(4.01,6.75) 5.04(3.86,6.89) 0.57

Neutrophils (1.8–6.3) 3.20(3.97,6.78) 3.18(2.25,4.59) 3.35(2.22,4.64) 0.55

Lymphocytes (1.1–3.2) 1.19(0.85,1.61) 1.21(0.87,1.66) 1.14(0.80,1.53) 0.01

NLR 2.59(1.65,4.60) 2.52(1.61,4.47) 2.85(1.82,4.94) 0.03

Monocytes (0.1–0.6) 0.43(0.32,0.57) 0.43(0.32,0.56) 0.43(0.32,0.57) 0.71

Platelets (125–350)
167.0

(131.0,214.0)
169.0(133.0,215.0) 161.0(125.0,202.8) 0.04

hemoglobin (115–150) 124 (110,134) 125(110,134) 123(112,135) 0.89

RDW-CV (11-16) 13.40(13.90,14.20) 13.40(12.90,14.20) 13.50(12.90,14.20) 0.93

RBC (3.8–5.1) 4.13(3.69,4.51) 4.12(3.68,4.51) 4.15(3.71,4.51) 0.68

Inflammatory marker

CRP (0-6 mg/L) 10.49(3.66,31.87) 10.16(3.38,31.68) 11.04(4.50,32.00) 0.28

IL-6(<6.6) 34.66(17.21,132.30) 36.47(17.47，132.3) 33.03(16.38，127.83) 0.52

procaicltonin (<0.5) 0.02(0.02,0.08) 0.023(0.02,0.078) 0.022(0.02,0.087) 0.98

Coagulation test

D-dimmer (<0.5) 0.70(0.40,1.40) 0.70(0.40,1.43) 0.69(0.41,1.2) 0.97

PT (9.4–12.5) 11.30(10.70,12.10) 11.30(10.60,12.10) 11.20(10.70,12.00) 0.90

TT (13–21) 14.30(13.50,15.20) 14.3(13.55,15.25) 14.3(13.50,15.10) 0.30

APTT

(23.5–40.7)
29.60(27.70,31.80) 29.60(27.70,31.70) 29.65(27.70,32.00) 0.45

FIB (2–5) 4.12(3.70,4.57) 4.13(3.69,4.59) 4.11(3.75,4.55) 0.77

INR 1.03(0.97,1.10) 1.03(0.96,1.10) 1.02(0.97,1.09) 0.94

Renal and liver function

Albumin (40–55) 38.47(35.52,41.15) 38.45(35.46,41.12) 38.58(35.84,41.27) 0.61

A/G (1.2–2.4) 1.70(1.45,1.95) 1.71(1.45,1.97) 1.69(1.45,1.93) 0.71

TBIL (<23) 11.07(8.22,15.52) 11.13(8.19,15.47) 10.93(8.28,15.56) 0.77

GGT (10–60) 20.96(15.34,31.08) 20.81(15.28,32.03) 21.40(15.42,29.59) 0.80

ALT (9–50) 15.77(11.33,23.97) 15.83(11.33,24.21) 15.67(11.46,23.47) 0.65

AST (15–40) 24.43(19.35,32.57) 24.52(19.48,32.57) 24.32(19.06,32.53) 0.47

BUN (3.6–9.5) 6.02(4.69,8.07) 5.96(4.68,8.10) 6.165(4.75,8.045) 0.54

Cr (57–111) 62.50(50.90,80.30) 62.40(50.10,80.40) 62.55(52.70,80.10) 0.46

GFR (90–120) 96.00(74.00,120.00) 97.0(74.0,121.0) 93.50(73.0,118.75) 0.34

Continuous variables of skewed distribution were showed as median [interquartile range, IQR] and compared with Mann–Whitney test. CRP,C-reactive protein; IL-6,Interleukin-6; 
WBC,white blood cell count; NLR, neutrophil/lymphocyte ratio; RDW-CV, red blood cell distribution width-coefficient variation; RBC, Red blood cell count; A/G, Albumin/globulin; Crea, 
creatinine; BUN, blood urea nitrogen; AST, aspartate aminotransferase; ALT, alanine aminotransferase; TBIL,total bilirubin; GGT, γ-glutamyltransferase; GFR, golomeruar filtration rate; PT, 
prothrombin time; TT, thrombin time; APTT, activated partial thromboplastin time; FIB, Fibrinogen; INR,international normalized ratio Reference ranges for each blood measurement are 
included in parentheses. All cell counts are ×109/L.
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D E

FIGURE 2

Construction of prediction nomogram in patients with COVID-19. (A) LASSO coefficient profiles (y-axis) of the 45 features. The lower x-axis indicated 
the log lamda, the top x-axis has the average numbers of predictors. (B) Identification of the optimal penalization coefficient (λ) in the LASSO model 
was performed via 3-fold cross validation based on minimum criteria. (C) Nomogram predicting the deteriorated COVID-19 probability in patients with 
COVID-19 infection was plotted. (D) Decision curve compares the net clinical benefits of three scenarios in predicting the deteriorated COVID-19 
probability: treat- all (red line), treat- none (horizontal solid black line), and screen based on the nomogram (red line). (E) Clinical impact curve of the 
nomogram plot the number of COVID-19 patients classified as high risk (red line), and the number of cases classified high risk with deterioration at 
each high risk threshold (blue line). CRP, C-reactive protein; NLR, neutrophil/lymphocyte ratio; A/G: Albumin/globulin; BUN: blood urea nitrogen; INR: 
international normalized ratio; CI, confidence interval.

Calibration of the training cohort and 
testing cohort

The calibration plot for in-hospital clinical deterioration 
probability showed a good agreement between the prediction by 
nomograms and actual observation in the training cohort (Figure 3A) 
and validation cohort (Figure 3B), respectively.

Discussion

In the present study, a prediction model on the outbreak of 
Omicron sub-variant BA.2 in Shanghai was built using clinical data 
from our hospital. It was found that high levels of CRP, NLR, INR, 
BUN, and decreased A/G at admission were significantly correlated 
with the probability of clinical deterioration. Using these 5 factors, 

https://doi.org/10.3389/fmed.2023.1137136
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Wu et al. 10.3389/fmed.2023.1137136

Frontiers in Medicine 07 frontiersin.org

an effective prognostic nomogram was constructed, which had a 
significantly high sensitivity and specificity to identify individuals 
with a high risk of deterioration. DCA and CICA further 
demonstrated the superiority of our nomogram evidenced by the 
net clinical benefit, which is invaluable for individualized 
assessment of in-hospital deterioration. To our best knowledge, this 
study is the first to build such a prediction model targeting the 
Omicron sub-variant BA.2. Other available models are based on 
clinical information of alpha or delta variant breaking out in 2020 
or 2021.

From the baseline data, it can be seen that even the elderly in 
Shanghai showed mild to moderate symptoms although Omicron 
sub-variant BA.2 is so contagious. The deterioration rate is quite low, 

which is different from the outbreak of COVID-19 in Wuhan in 2020 
(16). This might be attributed to the free vaccination among the public 
and strict quarantine policies in China (17, 18).

In the present study, continuous variables were used to build the 
prediction model, rather than categorical variables which are not 
always reliable and highly dependent on self-awareness. In contrast, 
laboratory tests are relatively accurate and readily available. High 
levels of CRP, NLR, INR, BUN, and low level of A/G are positively 
correlated with the deterioration rate. Compared with previous 
prediction models where age is always considered a major factor that 
influences the progression (4, 19, 20), our model did not take age 
into account. This is due to the observed characteristics in our study 
and a previous one (21), all patients were the elderly aged 65 or 

TABLE 3 Final multivariable model in training dataset.

Variable β coefficients (95%CI) Odds ratio (95%CI) p value

CRP 0.0097(0.0053,0.01) 1.0098(1.0054,1.01) <0.001***

A/G −1.85(−2.62,1.08) 0.158(0.073,0.34) <0.001***

NLR 0.061(0.015, 0.11) 1.06(1.02, 1.11) 0.0102*

INR 1.54(0.58,2.51) 4.69(1.79,12.24) 0.0016**

BUN 0.072(0.033, 0.11) 1.07 (1.03, 1.12) 0.0003***

CRP, C-reactive protein; NLR, neutrophil/lymphocyte ratio; A/G: Albumin/globulin; BUN: blood urea nitrogen; INR: international normalized ratio; CI, confidence interval. *p < 0.05, 
**p < 0.01, ***p < 0.001.

A B

C D

FIGURE 3

Calibration curve (top) and Receiver operating characteristic curves (bottom) of the nomogram. The calibration curve shows the locally estimated 
(solid line) smoothed observed probability versus estimated probability of deterioration events. The diagonal line (dashed line) shows ideal calibration. 
(A) training cohort, (B) testing cohort. The Receiver operating characteristic curves (red line) shows the performance to distinguish individuals with 
deteriorated COVID-19 from stable COVID-19 in the training cohort (C) and testing cohort (D). AUC, area under the curve.
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A B

FIGURE 4

The Receiver operating characteristic curves (red line) shows the performance to distinguish individuals who needed ventilatory support (A) or those 
who died (B) using the five indicators.

older. Initially, 1,830 patients were admitted to our hospital, but 
nearly all of the endpoint events occurred in elderly patients 
(age ≥ 65 years), only 3 patients had clinical deterioration among 575 
patients younger than 65. In order to minimize the bias, we decided 
to focus on the elderly patients. Besides, age ≥ 65 is considered to 
be at highest risk for severe COVID-19 associated illness (22). In this 
elderly population, age is not an important factor that contributes to 
the endpoint events.

According to the previous research, the mechanism of COVID-19 
infection is associated with inflammatory cytokine storm, oxidative 
stress, disseminated intravascular coagulation and distribution of 
ACE2 along the vascular endothelium, which lead to the multisystem 
dysfunction (23). Correlations between high levels of CRP and NLR 
and disease progression have been proven in many trials (24, 25), 
which have shown that Omicron BA.2 induces an inflammatory 
process evidenced by the activation of neutrophils and lymphocytes 
as well as the release of IL-6, CRP, and other inflammatory factors. 
INR is an index that reflects the functional status of the coagulation 
system. Increased INR values were significantly associated with 
COVID-19 severity and mortality (26). BUN reflects the function of 
the kidney, which has been validated as a significant risk factor of the 
disease severity (27). The reduced albumin-globulin ratio has been 
found to be a risk factor of COVID-19 severity in patients with cancer 
(28), and of great diagnostic significance in predicting the progression 
to severe disease states (29), which is consistent with our results.

Strengths and limitations

Our study has a number of strengths: first, a large sample size and 
sufficient patients’ information guarantees the credibility of our 
conclusion. All of the included variables had no missing values and all 
the endpoints were collected during the study period. After the last 
confirmed COVID-19 patient was discharged, the hospital was closed 
for full disinfection. Second, our model is a practical quantitative 
prediction tool based on 5 features which are commonly used and 
easily obtained from routine blood tests. The performance of our 
nomogram is efficient for clinical practice. Third, the first-hand 

information of the Omicron outbreak in Shanghai in 2022 was of great 
practical use for medical practitioners in other countries where 
Omicron sub-variant BA.2 prevails.

The study also has a number of limitations. As a retrospective 
cohort study, we  did not collect all the predictors that had been 
reported to be related to the progression of the disease, such as BMI, 
pro-BNP. Different clinical approaches were adopted at the early and 
late stages of this outbreak, full conformity to the recommended 
treatments is not guaranteed at different stages. Second, this is a 
single-centre study, and validation was performed in the same setting 
as the training cohort, an external validation would be much better to 
prove the effectiveness of the model. Furthermore, the construction 
of the model was based on hospitalized patients, our conclusion can 
not be extrapolated to the general population, but needs to be adjusted 
based on the different population characteristics.

Conclusion

In summary, our data suggest that our nomogram can predict the 
risk of deterioration (requirement for ventilatory support or death) in 
elderly patients and it is clinically practical, which will facilitate 
medical decision making and allocating medical resources to those 
with critical conditions in order to reduce mortality.
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