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In recent years, the frequency of extreme weather has increased, and urban
waterlogging caused by sudden rainfall has occurred from time to time. With the
development of urbanization, a large amount of land has been developed and the
proportion of impervious area has increased, intensifying the risk of urban
waterlogging. How to use the available meteorological data for accurate
prediction and early warning of waterlogging hazards has become a key issue
in the field of disaster prevention and risk assessment. In this paper, based on
historical meteorological data, we combine domain knowledge and model
parameters to experimentally extract rainfall time series related features for
future waterlogging depth prediction. A novel waterlogging depth prediction
model that applies only rainfall data as input is proposed by machine learning
algorithms. By analyzing a large amount of historical flooding monitoring data, a
“rainfall-waterlogging amplification factor” based on the geographical features of
monitoring stations is constructed to quantify the mapping relationship between
rainfall and waterlogging depths at different locations. After the model is trained
and corrected by the measured data, the prediction error for short-time rainfall
basically reaches within 2 cm. This method improves prediction performance by a
factor of 2.5–3 over featureless time series methods. It effectively overcomes the
limitations of small coverage of monitoring stations and insufficient historical
waterlogging data, and can achieve more accurate short-term waterlogging
prediction. At the same time, it can provide reference suggestions for the
government to conduct waterlogging risk analysis and add new sensor stations
by counting the amplification factor of other locations.
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1 Introduction

Influenced by global climate change, the frequency and scale of extreme weather events
have been on the rise in recent years, and urban flooding disasters caused by extreme weather
events such as typhoons and short-lived heavy rainstorms have been increasing (Ferreira
et al., 2015; Zhang et al., 2017). The intensity of extreme precipitation in most regions of the
world shows a trend towards intensification and a concentration of rainfall events (Yin et al.,
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2022). Yin used simulations from a large climate–hydrology model
ensemble of 111 members, their results provide crucial insights
towards assessing and mitigating adverse effects of compound
hazards on ecosystems and human wellbeing (Yin et al., 2023).
Urbanization increases hardened area, reduces infiltration, increases
runoff and triggers higher and faster peak water flow (Nayeb Yazdi
et al., 2019; Sofia et al., 2019). It has reduced groundwater recharge
from natural infiltration and has contributed to the high runoff
(Nath et al., 2021). A large number of low-lying areas prone to
flooding are incorporated into urban development plans, and the
lack of drainage capacity further exacerbates the risk of flooding (Du
et al., 2012). With increasing impervious cover in urban areas
driving dramatic changes in rainfall infiltration and storage
capacity, which lead that urban flood appear sudden and
frequent (Mu et al., 2020).

Waterlogging events on a global scale may have a serious and
direct impact on the economy and humanitarianism, as well as
continue to adversely affect economic development (Arshad et al.,
2019). Globally, the occurrence of urban floods has been
unprecedented resulting in huge economic and social losses
(Sundaram et al., 2021). In July 2021, the rainstorm in
Zhengzhou, China caused 380 deaths and a direct economic loss
of 120.06 billion yuan. Urban flood disaster has become a crucial
problem restricting the healthy development of China’s economy
and society (Duan et al., 2022; Li et al., 2022). Urban floods can cause
huge economic losses and casualties, and countries all over the world
attach great importance to urban flood warning and mitigation.
Therefore, obtaining timely and highly accurate waterlogging depth
information with wide coverage is urgently needed for emergency
response and risk mitigation, especially using an affordable,
accurate, and widespread approach (Deo and Wen, 2016).
Nowadays, more and more researchers have started to pay
attention to urban waterlogging (Yin et al., 2015). Among them,
accurate prediction of inland flooding is a hot research problem in
the field. For accurate prediction and warning of the extent and
depth of internal flooding, there are mainly numerical simulation
methods, hydrological methods, and data-driven methods.

Numerical simulation method. Based on the principles of
hydrodynamics, the model uses the underlying surface and
elevation factors comprehensively in waterlogging process; it
performs the whole process of city waterlogging formation in
detail. Its simulation results are waterlogging distribution and
waterlogging depth maps of a certain time step (Xue et al., 2016).
Numerical simulation methods allow easy estimation of
waterlogging under each recurrence period rainfall. It is
interesting to note that under different urbanization and rainfall
scenarios, the urban waterlogging susceptibility has a considerable
variation (Explicit the urban waterlogging spatial variation and its
driving factors: The stepwise cluster analysis model and hierarchical
partitioning analysis approach). The hydrological and
hydrodynamic model couples the distributed hydrological model
and two-dimensional hydrodynamic model, which not only ensures
the accuracy of the model but also has good calculation efficiency. It
is a promising research direction for the flood model (Liu et al.,
2022a). On the other hand, it also shortens waterlogging simulation
time, and finally improves the applicability of waterlogging
simulation (Zounemat-Kermani et al., 2020). But the
disadvantage is that small number of data mining model

parameters, such as the obscure physical implications of model
parameters and the insufficient amount of simulation training, the
simulation is prone to the problem of different arguments (Tang
et al., 2021). Furthermore, the computational efficiency of numerical
models is too low to meet the requirements of urban emergency
management. Thus, many coupledmethods of numerical simulation
and other methods such as machine learning have emerged. A new
method was established by combining a long short-term memory
neural network model with a numerical model, which can quickly
predict the waterlogging depth. The principle is to train the long and
short-term memory neural network to predict and simulate the
internal flooding process by using the numerical simulation results
as training samples (Liu et al., 2022a). However, the disadvantage of
this method is that the accuracy of LSTM results is extremely
dependent on the results of previous numerical simulation. If the
error of numerical simulation results is large, the results are difficult
to guarantee.

In recent years, with the application of water sensor, many cities
have established urban waterlogging monitoring and early warning
system. But water level sensors are expensive and cannot be
deployed all over the city (Loftis et al., 2018). Moreover, the
simple monitoring data can only reflect the real-time depth of
water accumulation, which does not have robust forecasting
function (Liu et al., 2022b). As more and more water level
sensors acquire large amounts of historical waterlogging data,
some studies are beginning to train models based on historical
real waterlogging data, or to use coupled models to improve the
performance of prediction methods. The most representative of
these is the data-driven method based on time series. Ding et al.
proposed an explicable spatiotemporal attention long—short
memory model (STA-LSTM) based on LSTM and attention
mechanism, and established the model using dynamic attention
mechanism and LSTM method to make explicable analysis of flood
prediction (Ding et al., 2020). Yan et al. proposed a prediction model
of the maximum water depth in time and space employing a neural
network-numerical simulationmodel on the basis of coupling a two-
dimensional hydrological and hydrodynamic model and a statistical
analysis model. But due to data limitations, the actual rainfall and
waterlogging data were not added to the database for training.
Therefore, although the performance of the prediction model is
satisfactory, its accuracy can be improved further after collecting
enough data (Yan et al., 2021). Wu et al. established a real-time
prediction model of flood depth based on waterlogging point by
using GBDT algorithm based on multi-factor analysis and verified
the validity and applicability of the model for real-time prediction of
waterlogging process. However, the model that Wu used only be
predicted when rainfall occurs, and cannot predict the flood depth
after rainfall (Wu et al., 2020a).

However, some recent studies have shown that the prediction
performance of a single method or model is always limited.
Accounting for model structure, parameter and input forcing
uncertainty in flood inundation modeling using Bayesian model
averaging. The combination of multiple models can effectively
improve the prediction performance. Multi-model combination
methods to deal with model uncertainty and improve model
performance (Yan and Hamid, 2016). Zhou et al. proposed an
extreme flood information estimation method considering the
uncertainty of distribution and model structure using the BMA

Frontiers in Environmental Science frontiersin.org02

Zhang et al. 10.3389/fenvs.2023.1131954

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1131954


method. They construct a comprehensive prediction model by BMA
and three machine learning methods (support vector machines
(SVM), Back Propagation Neural Network (BPNN) and Adaptive
Boosting (AdaBoost)) use rainfall forecast data to drive BMA model
for fine early warning of urban flood. The analysis of early warning
in two different urban flood events indicates that BMA is more
suitable for the prediction of severe waterlogging and illustrates the
great potential and prospects of BMA in urban flood early warning
(Zhou et al., 2022). Naive Bayes (NB) and Random Forest (RF)
algorithm were used to forecast the waterlogging point and the
waterlogging process at the waterlogging point respectively to
achieve the goal of predicting the whole process of urban
waterlogging (Wang et al., 2021). Historical flooding events and
the value of flood contributing factors are used as inputs for the
model. These input data are converted to raster layers with help of
GIS tools. Our dependent variable would be a one-hot encoded
vector stating whether or not it was flooded with those conditions
(Khatri et al., 2022). The stochastic forest (RF), Logistic model tree
(LMT) and other bivariate models combined with data mining tools
can be used to simulate flood susceptibility. The study found that the
LMT has good predictive power, so the model can be used for future
flood mitigation in specific areas (Shahabi et al., 2020). Data
warehouse and deep learning algorithm were used to assess
urban flood risk. The GBDT model shows 88.48% accuracy in
the depth of water accumulation prediction (Wu et al., 2020b).

An application of data-driven models using artificial neural network
was presented, support vector regression and long-short term
memory approaches and distributed forcing data for runoff
predictions. The results showed that the long-short term memory
and support vector regression models outperforms artificial neural
network model for hourly runoff forecasting, and the predictive
performance of the models was greater during the wet seasons
compared to the dry seasons (Han and Morrison, 2021).
Puttinaovarat and Horkaew proposed a novel flood forecasting
system based on fusing meteorological, hydrological, geospatial,
and crowdsource big data in an adaptive machine learning
framework (Puttinaovarat and Horkaew, 2020).

Existing studies have not sufficiently analyzed rainfall time
series. Combined with waterlogging sensor data, more accurate
predictions of waterlogging depths can be obtained with an
accuracy of centimeters or even millimeters. The input condition
used in this paper is rainfall data, which is free from the limitation of
waterlogging sensors. The transfer of the model prediction capability
can be achieved at locations where the features are similar to the
sensor points.

2 Methodology

2.1 Framework

This study follows this framework (Figure 1) by selecting
features for training from the original rainfall time series using
domain knowledge, VIF verification and parameter correction. After
sliding window slicing and processing the data, the input-output
matrix is constructed and the waterlogging prediction is performed
by using machine learning regressors. Geographic features around
the station are extracted from the geographic information, their

FIGURE 1
The framework of the method.

TABLE 1 Seasonal factor of the month to which the event belongs.

Indicators MR MT MD

R_Mean R1 R2 R3

S lg10 lg6 lg2
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influence on the amplification factor is analyzed, and this is used to
regional waterlogging risk analysis.

2.2 Data processing

In this paper, the historical rainfall dataset and the
waterlogging depth dataset are used to predict the future
waterlogging depth. The amplification factor is established by
characterization of geographic feature data. Data processing is
divided into five main steps: 1) Data cleaning. Considering the
possible sensor failure or low sensor sensitivity, the initial
screening of valid stations is done according to the number of
valid data in the cumulative flooding dataset. 2) Construction of
uniform structured data. Uniform start and end time nodes, the
different total working hours of different sensors lead to
inconsistent start and end dates of collected data, here by
truncating and artificially adding 0 nodes, so that the data sets
of different stations can keep the same length. 3) Resampling.

Considering the different working mechanisms of different
sensors, their sampling intervals are not consistent, here the
resampling function of Python is used to unify the sampling
interval for subsequent model training. 4) Data interpolation.
Use data interpolation to fill in the missing values in the data
after resampling to make the time series continuous and in line
with reality. 5) Sliding window slicing and data integration.
According to the structural requirements of the training model
and the prediction strategy, the time series are segmented by
sliding windows, reconstructed with the extracted time series
features, and the data are integrated into the model.

2.3 Model feature construction

2.3.1 Time series feature extraction and
construction

In order to extract more valuable information for the model
from the time series, this paper uses statistical methods and domain

FIGURE 2
Schematic diagram of data slicing and integration.
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FIGURE 3
Study area of Shenzhen, China.

TABLE 2 Data description and sources.

Item Data description Data source Resolution

Historical waterlogging
sensor data

Waterlogging sensor monitoring data. (January 2019 to
December 2020)

Water Bureau of Shenzhen Municipality (WBSM) 0.01 m

Historical
meteorological station
data

Meteorological basic observation data of rainfall, wind speed,
visibility, temperature and humidity at all stations in the city.
(January 2019 to December 2020)

Shenzhen Meteorological Bureau (SMB) 5 min

Digital elevation
model (DEM)

Realize digital simulation of ground terrain through limited
terrain elevation data

BIGEMAP 5m*5m

Land cover type Current status of all land use in the city, including construction
land, broad-leaved forest land, coniferous forest land, water
bodies, wetlands, etc.

Global Fine Land cover product (GLC_FCS30-2019). Academy
of Aerospace Information Innovation, Chinese Academy of
Sciences

30*30 m

Drainage system Rainwater outlet vector file, including location, orifice size,
orifice shape

Water bureau of Shenzhen Municipality (WBSM) 0.001 m
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knowledge to extract and construct new feature vectors to improve
the model prediction performance.

2.3.1.1 Unit rainfall
The rainfall data in this paper are sliding rainfall, which can

reflect the total amount of rainfall in the previous period but lack
direct description of the rainfall in the current period, which will lose
the rainfall intensity information. The current rainfall intensity will
largely affect the subsequent waterlogging. Therefore, an iterative
algorithm is used here to calculate the unit rainfall (UR) from the
sliding rainfall Eq. 1.

Rt � R01Ht + R01Ht−τ + R01Ht−2τ + R01Ht−3τ+, . . . ,+R01Ht−pτ + . . .

UR � Rt1 − Rt2

(1)
where τ is 1 h, t is the current time, UR is the cumulated rainfall
during time period [t1, t2]

2.3.1.2 Seasonality coefficient.
In addition to the amount of rainfall, the ability of the ground

surface to form waterlogging is mainly influenced by the runoff
coefficient. The runoff coefficient is mainly related to the type of
land cover, slope, soil aridity and infiltration capacity. The process of
runoff generation is also influenced by multiple factors such as
latitude, climate zone, monsoon, and season (Tarasova et al., 2018).
Differences in air humidity, air pressure, and temperature brought
about by seasonal changes will directly affect the water content in the
air and soil. During the dry season, the water content in the soil is
low, rainfall is easily absorbed by the soil, and the intensity of rainfall
is relatively low during the dry season, resulting in less occurrence of
waterlogging (Burak et al., 2020). During the rainy season, the water
content in the soil is high and even nearly saturated in some areas
(e.g., seasonal wetlands). Rainfall is not easily absorbed by the soil,
and the rainfall intensity is relatively high and transient during the
rainy season, leading to relatively easy waterlogging (Zavala et al.,

2008). Therefore, the seasonality coefficient S is defined and the dry
months (MD), rainy months (MR) and transition months (MT) are
determined based on the multi-year monthly average rainfall
statistics (Table 1).

2.3.1.3 Correlation features related to rainfall interval.
The period between rainfall events affects the infiltration

capacity and runoff coefficient. When two rainfall events are
separated by a long interval, the water content in the soil or
surface is already at a low level due to sufficient infiltration and
evaporation. In contrast, when the water content between two
rainfall events is high, surface runoff is more likely to form and
thus converge to produce waterlogging when the rainfall occurs
again (Ran et al., 2012). In this paper, we define the rainfall interval
δ, which is the interval between the beginning of this rainfall period
and the end of the previous rainfall period (h). We define the wetting
coefficient Cw as Eq. 2 (Zhang et al., 2023), which is the ratio
between the mean value of rainfall of this rainfall event and the
rainfall interval δ, representing the wetting capacity of this rainfall
on the land. Horton infiltration curves are commonly used in the
field of hydrology to model the rate variation of fluid infiltration in
different surfaces. The Horton infiltration equation (Yang et al.,
2020) is f � fc + (f0 − fc)e−kt, where f is the infiltration rate, fc is
the stable infiltration rate, f0 is the initial infiltration rate, t is the
time, and k is an empirical constant related to soil properties.
Considering that the surface differences of monitoring stations
are not significant, the function e−t is introduced as the basis
function, and the integrated infiltration capacity Ci is fitted from
the rainfall curve time series curve as Eq. 3.

Cw � Rmean

δ
(2)

Ci � e −lg δ( )Rmax
ln∑ α| |

L
(3)

where Rmean is the mean rainfall (mm), δ is the rainfall interval (h);
Rmax is the maximum value of rainfall in this segment (mm); α is the
slope of each point of the rainfall event sequence curve; and L is the
length of rainfall events.

2.3.1.4 Statistical features
The rainfall time series itself contains many features in its

statistics. The mean value Rmean and the maximum value Rmax

reflect the scale of rainfall and are important indicators of the
amount of rainfall. The standard deviation Rstd reflects whether
the rainfall is evenly distributed in time and is useful for identifying
sudden and severe rainfall. The total rainfall is not large, but due to
the high instantaneous intensity, it is also easy to trigger
waterlogging (David et al., 2013). The kurtosis can determine

TABLE 3 Comparison of machine learning algorithms.

Station MSE of algorithm

Adaboost GBDT RF

A 0.006976 0.000409 0.000089

B 0.000071 0.000042 0.000022

C 0.000440 0.000302 0.000254

D 0.003706 0.000190 0.000238

The bold represents the result of the optimal algorithm for each station.

TABLE 4 Comparison of results of methods with and without features.

Station With feature Without feature Performance improvement (%)

A 0.000089 0.000617 697.2

B 0.000022 0.000053 238.5

C 0.000254 0.000754 297.0

D 0.000238 0.000728 306.3
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whether the rainfall curve is gentle or steep. Skewness can screen
whether the peak intensity of rainfall comes from the first half or the
second half of the rainfall curve. AUC is the area under the rainfall
curve and can represent the total amount of rainfall.

2.3.2 Feature filtering
The statistical features extracted from the rainfall time series and

the features constructed based on domain knowledge together form
the feature set. However, sometimes some features may not correlate
well with the model mechanism and do not have good predictive
ability and may even negatively affect the model. By filtering the
features through domain knowledge, model experiments and VIF
validation, we can remove the insignificant features and thus
improve the accuracy of the model. It can also reduce the
computational cost and improve the interpretability of the model
(Khalid et al., 2014).

2.4 Constructing model input and output
matrices

A uniform rainfall slice length l is selected, and the number of
slice bars within each rainfall event of irregular length (serial number
k, total length Lk) can be denoted as n, n is calculated by Eq. 4. The
rainfall events are iteratively sliced according to a fixed sliding
window length (Figure 2).

n � Lk − l + 1 (4)
The rainfall input vector ri within each event can be expressed as

Eq. 5

ri � ri1 ri2 ri3 ri4,/, ri l−1( ) ril[ ] (5)
The rainfall time series feature vectorfi within each event can be

expressed as Eq. 6, with each slice having a feature vector length of
m. Unlike ri, to characterize the cumulative effect of rainfall, each fi

is calculated from the data between the beginning of the rainfall
event in that segment and the end of the slice in this segment.

f i � f i1 f i2 f i3 f i4,/, f i m−1( ) f im[ ] (6)

The single input vector of the model can be expressed as Eq. 7.

xi � ri1 ri2 ri3 ri4,/, ril , f i1 f i2 f i3 f i4,/, f im[ ] (7)
The combined input matrix X can be expressed as Eq. 8, and the

output matrix as Eq. 9. The input-output relationship in regression
model can be expressed as Eq. 10.

X �
r1 f 1
r2 f 2
. . . . . .
ri f i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (8)

y �

y1
y2
..
.

..

.

yi−1
yi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

y � φ X( ) (10)

2.5 Model training and validation

After processing the data, the model is trained and tested in the
ratio of 70% and 30% of the training and test sets. The testing was
carried out by random sampling method. Samples were imported
into the regression model. The optimal parameters, including slice
length, number of features, feature combination method and
prediction strategy, are determined by testing. The performance
of several machine learning algorithms is compared to obtain the
optimal model configuration.

2.6 Geographical feature statistics and risk
analysis

Through multi-source data analysis of meteorology,
waterlogging, topography and municipality, the geographical
features including topography terrain, land cover type and
drainage network distribution within 500 m diameter of the
station are integrated. The amplification factor (AF) between
rainfall and waterlogging depth is calculated from historical data,
and the risk of waterlogging in the area is also analyzed according to
the amplification factor; the larger the AF, the higher the possibility
of generating deeper waterlogging.

TABLE 5 Prediction model evaluation for four stations.

Station MSE MAE R2 score

A 0.00007 0.01083 0.95341

B 0.00001 0.00049 0.88907

C 0.00011 0.00091 0.92823

D 0.00006 0.00042 0.97167

FIGURE 4
The weight value of 9 features in the model.
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3 Case study

3.1 Study area

Shenzhen is one of the core cities of the Guangdong-Hong Kong-
Macao Greater Bay Area. Over the past 40 years, Shenzhen’s GDP has
grown rapidly from 270 million yuan in 1980 to 2,767.02 billion yuan in
2021. The annual average rainfall is 1935.8 mm, and the time
distribution shows that the rainfall is mainly concentrated in April to
September, with a spatial trend of decreasing rainfall from the southeast
to the northwest. Typhoons and rainstorms are the most frequently

occurring hazards in Shenzhen (Gong et al., 2022). Shenzhen is prone to
frequent short-duration rainstorms, which often result in severe
waterlogging in the city and, sometimes, can even cause casualties
(Liu et al., 2020). Shenzhen City had an extreme rainstorm on
11 April 2019, resulting in an internal waterlogging event that killed
11 people in the city. Therefore, it is important to be able to predict and
warn the occurrence of waterlogging disasters in advance to protect the
safety of citizens as well as to improve the disaster prevention and
mitigation capacity of the city. Figure 3 shows the location of Shenzhen
and the area involved in the study, and Table 2 shows the data used for
the case.

FIGURE 5
Rainfall and waterlogging curves for events in four stations. (A) station A event: 143; (B) station A event: 220; (C) station B event: 105; (D) station B
event: 191; (E) station C event: 244; (F) station D event: 98.
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4 Results

The paper conducted experiments on four monitoring stations.
As shown in Table 3, in the comparison of the three algorithms,
Random Forest (RF) has the smallest MSE except at station D,
where RF has a slightly larger MSE than Gradient Boosting

Decision Tree (GBDT), indicating that RF is better adapted to
this prediction task.

Compared to direct prediction using the original time series, the
method of adding extracted features achieves a larger improvement at
all four stations (Table 4). It indicates that using features for training
can improve the prediction ability of the model to a greater extent.

FIGURE 6
Predicted depth of waterlogging at four stations. (A) station A event: 143; (B) station A event: 220; (C) station B event: 105; (D) station B event: 191; (E)
station C event: 244; (F) station D event: 98.
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As shown in Figure 4, the constructed and extracted features
possess different weights, and with the algorithmic feature
visualization function, we conclude. The Rmean, Cw and Rstd of
rainfall are the three most important features. In fact, these three
features correspond to the magnitude, variability and temporal
characteristics of rainfall, respectively.

After the configuration combination experiments, the configuration
with the best results was finally selected as follows: when selecting the
original rainfall data, it is better to use the 1-h sliding rainfall, which can
enhance the finewaterlogging prediction. Of the total number of features
constructed and extracted, 9 feature combinations were determined to
balance computational efficiency and prediction accuracy (rain dry, rain
month, rain min, rain AUC and rain cum were removed). Nine features
did not overfit on 4 stations, proving that our feature constructionmakes
sense. The experimental results of the three algorithms were compared,
and the RF algorithm had superior robustness.

In Figure 5, the blue curve is the rainfall and the orange curve is
the waterlogging depth, and it can be seen that there is a strong
correlation between the two. Figure 6 shows the predicted and true
values of the waterlogging depth, and it can be seen that the model
can predict the change trend well, with an average error within
2 cm. Prediction model evaluation for four stations can be seen in
Table 5.

5 Discussion

1) The method in this paper has a smaller MSE and more accurate
prediction results than the results obtained by directly using the
original rainfall event series. The model enhances the
performance and robustness by time series feature extraction.
Better prediction results are achieved by adjusting the feature
parameters when the model is not over-fitted.

2) Figure 7 shows the ratio of rainfall (m) to waterlogging depth (m)
for each of the four stations in each slice of the waterlogging
event, which we define here as the Amplification factor. Because
the number of waterlogging events at each station is different
from the length of time, the amount of data at station A is much
larger than that at stations C and D. The curves reflect the
vulnerability of each station to rainfall mitigation capacity in
terms of waterlogging events. The AF of station A is generally
larger, indicating that station A is more likely to form deeper
water under the same rainfall event. The AF of station D is
generally smaller, indicating its better ability to withstand
waterlogging hazards. As seen in Table 6. Statistical results of
geographical characteristics of the four stations., station A has
the least drainage outlet area in the area and the drainage volume
is at a lower level. As seen in Figure 8, the topography of station A

FIGURE 7
Results of amplification factors for the four stations.

TABLE 6 Statistical results of geographical characteristics of the four stations.

Station DEM
(m)

D_min
(m)

D_max
(m)

D_std Land
cover

Sum_flow Dra_A
(m2)

Dra_V
(m3)

Number of waterlogging
slices

A 33 21 43 3.91 IS 2151063 145.46 7,210.38 2,437

B 18 −3 90 13.71 IS 4,047.50 236.93 9,448.44 1419

C 5 −8 72 13.33 IS 1192.20 198.45 14,863.07 751

D 11 −15 41 8.28 IS 10,600.46 335.14 11,961.56 185

IS, Impermeable surface; Dra_A, Drainage area; Dra_V, Drainage volume.

*Bold represents larger values, italic represents smaller values.
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FIGURE 8
Topography within a 500 m radius of stations. (A) Station A; (B) station B; (C) station C; (D) station (D). Blue represents higher elevation values and red
represents lower elevation values. Themiddle circles represent the zones of 50, 100, 150 m from the station. (The terrain is stretched, with a stretch factor
of 3).

FIGURE 9
Cumulative value of flow in the area of station A.
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is the flattest among the four stations (Table 6, variance of DEM
is only 3.91), and the central terrain of the area is in a significant
depression, so its is more likely to form standing water. In terms
of the number of waterlogging events, station A also has the
most, reaching 13.7 times that of station D.

3) The results of flow cumulative values extracted from the
topographic data can reflect the runoff direction and flow
results. From Table 6, the combined regional flow cumulative
value of station A reaches 2,151,063, and it can be seen from
Figure 9 that the area of station A contains a flow vector with a
larger cumulative value. The combined factors mentioned in 1)
constitute the result of a larger AF at station A.

4) Station D has the best comprehensive drainage capacity among
the four stations. With other geographical features similar to B,
the total waterlogging time at station D is only 24.63% of that at
station B. This indicates that the better the regional drainage
facilities, the lower the risk of waterlogging.

5) It can be seen from Figure 8 that all four waterlogging
monitoring stations are set up in the more low-lying areas of
the region. It indicates that the setting of monitoring stations is
generally oriented to the occurrence of waterlogging hazards, and
the priority of construction is higher in places with high
frequency of occurrence. The results of this study on
geographic features can be used to find areas with similar
geographic features and thus provide reference for the
additional waterlogging monitoring stations.

6) The four selected waterlogging monitoring stations are all in
urban built-up areas, and the land cover type is impervious
surface. This type of land surface possesses a runoff coefficient of
about 0.95–1, so the infiltration capacity of rainfall is weak. If the
percentage of impervious surface on the surrounding ground is
high, it will further increase the risk of waterlogging formation.

7) The proportion of waterlogging events in the total events is low,
which can affect the prediction effect of the model. By selecting a
sample of waterlogging events in advance, the positive sample
weights are enhanced through stratified sampling and data
balancing, which can improve the model prediction ability
and reduce errors.

6 Conclusion

Short-term prediction of waterlogging has been a hot issue for
research, because earlier warning can reduce casualties and property
damage from disasters. Due to the Markovian character of itself,
future waterlogging can be predicted using the waterlogging of
previous periods. However, how to use rainfall data to predict
waterlogging where there are no sensors becomes an urgent
problem. In this study, a time-series machine learning model
using feature extraction for rainfall events significantly improves
the prediction with an average error of less than 2 cm. The nine
features extracted are validated and proved to be really beneficial and
reasonable for model capability improvement. Combined with
future rainfall forecast information, it is possible to calculate

whether waterlogging will form at a point in the short-term
future time period. Based on the prediction results, the
government can dispatch rescue forces or block the relevant
roads in advance. It provides a reliable basis for government
emergency decision-making and risk analysis.
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