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Introduction: The stereo matching technology of satellite imagery is an
important way to reconstruct real world. Most stereo matching technologies
for satellite imagery are based on depth learning. However, the existing depth
learning based methods have the problems of holes and matching errors in
stereo matching tasks.

Methods: In order to improve the effect of satellite image stereo matching
results, we propose a satellite image stereomatching network based on attention
mechanism (A-SATMVSNet). To solve the problem of insufficient extraction
of surface features, a new feature extraction module based on triple dilated
convolution with attention module is proposed, which solves the problem of
matching holes caused by insufficient extraction of surface features. At the same
time, comparedwith the traditional weighted averagemethod, we design a novel
cost-volume method that integrates attention mechanism to reduce the impact
of matching errors to improve the accuracy of matching.

Results and discussion: Experiments on public multi-view stereo matching
dataset based on satellite imagery demonstrate that the proposed method
significantly improves the accuracy and outperforms various previous methods.
Our source code is available at https://github.com/MVSer/A-SATMVSNet.

KEYWORDS

machine learning, satellite imagery, multi-view stereo matching, convolutional neural
network, attention module

1 Introduction

3D reconstruction is a key process to restore the geometry of real world. The 3D
reconstruction technology of real scenes has been developed extensively, and they all have
unique advantages and disadvantages in specific scenes. According to the way of obtaining
input data, 3D reconstruction technology can be divided into active reconstruction and
passive reconstruction. Active reconstruction technology uses hardwares to directly obtain
the geometric information of the shot scene, to obtain the depth information of the target
scene. Passive reconstruction technology uses cameras to obtain some images to reconstruct
the target scene. Compared with active 3D reconstruction, the camera equipment used
in passive reconstruction technology has the advantages of low energy consumption and
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no direct contact with the real scene. In addition, with the popularity
of digital cameras and smart phone lenses, the cost of camera
hardware has decreased significantly over the past decade. This
means that most people can have a camera and can contribute data
to visual databases around the world. Organizing and using these
rich and diverse photo data, and reconstructing high-precision, real
three-dimensional models, has a very wide range of application
scenarios. Thus, how to reconstruct the real world via multi-stereo
matching is a big challenge that has broughtmuch attention in recent
years.

There are many classic methods in multi-view stereo matching
based on handcrafted algorithms. These methods can be divided
into 4 categories according to the format of output 3D model:
voxel-based method, triangular mesh surface based method, point
cloud based method and depth map based method (Seitz et al.,
2006).

The voxel based algorithm divides the 3D space into discrete
voxel grids, and judges whether voxels belong to the target scene
surface by calculating the multi-view photometric consistency
metric, so as to realize the reconstruction of the 3D scene (Seitz
and Dyer, 1999; Kutulakos and Seitz, 2000). Collins (1996) divided
several equidistant planes parallel to the camera plane in the
camera space of the reference picture, and divided each plane
into a grid. This method back projects the feature points of
the multi-view camera into 3D space, and determines whether
the plane grid belongs to the scene surface by calculating the
number of back projection rays in the plane grid area. Although
the representation is slightly different from the voxel grid, this
method basically establishes the rudiment of voxel division, but is
limited by the computer hardware level of that year, it can only
divide the three-dimensional space by dividing the plane first,
and then dividing the plane into grids. However, since the voxel
partition itself is a kind of spatial discretization, the 3D model
reconstructed by voxel based multi-view stereo vision algorithm
inevitably has discrete errors. In addition, voxels often occupy a
higher storage space, and are stored in limited memory or video
memory.

Multi-view stereo vision algorithm based on triangular mesh
surface first initializes a shape close to the real object, which
is usually obtained by calculating the visible hull (Laurentini,
1994). Esteban and Schmitt (2004) proposed to optimize the mesh
shape by using texture photometric consistency constraints and
contour constraints. Hiep et al. (2009) first gridded the initial point
cloud, and then repaired the grid according to detail restoration,
adaptive resolution and photometric consistency. Zaharescu et al.
(2010) proposed a mesh evolution framework based on the
self intersection elimination algorithm, which can solve the
problem that surface intersection cannot be fused in the iterative
optimization process of triangular meshes. In this framework,
triangular meshes are optimized based on multi-view photometric
consistency constraints. Triangular meshes are easy to store and
render, and especially suitable for visual computing. However,
algorithms based on triangular meshes often require a better initial
shape.

Multi-view stereo vision algorithm based on point cloud directly
outputs point cloud 3D model. In order to densify the output point
cloud, these methods often use propagation strategies to propagate
good matching relationships or 3D points to the neighborhood

space. Furukawa and Ponce (2009) used Harris Corner (Harris and
Stephens, 1988) and Difference of Gaussian (Pitas, 2000) for feature
matching to obtain initial sparse point cloud, and constructed
and optimized block model on each point based on multi-view
photometric consistency. Because point clouds are reconstructed
directly in 3D space, and the distribution of point clouds is not
as regular as pixels and voxels, it is difficult for point cloud based
3D reconstruction algorithms to use GPU parallelism to accelerate,
which indirectly limits the performance and performance of such
methods.

Multi-view stereo vision algorithm based on depth map
estimates depth map or even normal vector map for each input
image according to multi-view information, and then converts it
into point cloud or triangular grid model through depth map
fusion strategy. In the multi-view stereo vision algorithm based
on depth map, the stereo matching process usually adopts the
idea of patch match. Block matching was first proposed by
Barnes et al. (2009). Its core idea is to first randomly initialize the
matching relationship between the pixels of two photos, and then
repeatedly spread the matching relationship with high matching
degree to the neighborhood for optimization. Bleyer et al. (2011)
first applied the idea of block matching to the field of binocular
stereo vision matching, which regards rectangular pixel blocks in
block matching as projections of square blocks in 3D space, and
can be deformed according to projection transformation rules, and
the matching search domain is the projection transformation under
polar geometry. Galliani et al. (2015) improved the neighborhood
propagation mode of block matching, enabling it to be parallelized
on the GPU, greatly increasing the operation efficiency of the
algorithm.

In recent years, deep convolutional neural networks (DCNNs)
have been applied to multi-view stereo matching. In comparison
with handcrafted algorithms, deep learning-based methods learn
features automatically and can obtain low error rates. Early learning
based multi-view stereo vision algorithms are all based on voxels.
The SurfaceNet proposed in Ji et al. (2017) learned the weighted
average probability of each voxel on the scene surface according
to multiple groups of photos. Voxels with a probability greater
than a certain threshold were identified as on the scene surface
to reconstruct the three-dimensional model of the target scene.
However, SurfaceNet is a voxel-based deep learning method, which
consumes a lot of memory, thus its reconstruction model can only
express limited scenes.

Similar to handcrafted based methods, deep learning based
multi-view stereo matching via depth map is the best and most
popular research direction in this field. DeepMVS (Huang et al.,
2018) is the first network to obtain the depth map based on deep
learning.DeepMVSdivides a number of front parallel planes in front
of the reference camera, and then transforms the projection ofmulti-
view photos onto these planes. The depth neural network is used
to extract and aggregate the multi-view information, and regularize
the cost volume to estimate the probability of the reference picture
pixels in each plane, so as to achieve depth map estimation. The
MVSNet (Yao et al., 2018) first uses the U-Net network to extract
the feature map of multi-view photos and project and transform
it to the front parallel planes of multiple reference cameras, and
then estimates the depth map by constructing a 3D cost volume on
the front parallel planes and using 3D convolution neural network
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to regularize it. To improve the effectiveness of MVSNet, the R-
MVSNet was proposed (Yao et al., 2019). R-MVSNet constructed
2D cost map and used sequential regularization instead of 3D
cost volume and 3D convolutional neural network regularization,
which improved the scalability of the network to a certain extent.
However, the quality of its network output depth map is slightly
worse than MVSNet, and the final reconstruction point cloud is
better than MVSNet only by using the variational depth map repair
algorithm to repair the depth map. The PVA-MVSNet (Yi et al.,
2020) fills the area of high resolution stereo matching errors by
building a pyramid structure to aggregate low resolution reliable
depth estimates, and improves the reconstruction quality through
adaptive perspective aggregation. The MVSNet-based multi-stereo
matching methods are the mainstream in current study. To
improve the accuracy and completion, a cascade network with
a multiple cost volume aggregation module is proposed Li et al.,
2022b. Zhang et al. (2023) explicitly infered and integrated the
pixel-wise occlusion information in the MVSNet via the matching
uncertainty estimation. Attention module and Transformer are the
hot spots in current study, thus a few algorithms based on attention
and transformer were proposed Liao et al. (2022); Weilharter and
Fraundorfer, 2022; Li et al., 2022a; Wan et al., 2022; Wang et al.,
2022; Jia et al., 2022; Ding et al., 2022.

However, the large-scale reconstructed scene via the current
attention based MVSNet is inaccurate and incomplete. To further
improve the effect on multi-view stereo matching, in this study,
we propose a novel attention-aware multi-view stereo network
based on satellite imagery, namely, A-SATMVSNet. To solve the
problem of insufficient extraction of surface features, a new feature
extractionmodule based on triple dilated convolutionwith attention
module is proposed, which solves the problem of matching holes
caused by insufficient extraction of surface features. At the same
time, compared with the traditional weighted average method,
we design a novel cost-volume method that integrates attention
mechanism to reduce the impact of matching errors to improve
the accuracy of matching. Experiments on public multi-view stereo
matching dataset based on satellite imagery demonstrate that the
proposed method significantly improves the highest accuracy and
outperforms various previous methods.

We explicitly state our original contributions as follows:

1. We propose a new feature extraction module based on triple
dilated convolution with attention model to solve the problem of
insufficient extraction of surface feature;

2. Compared with traditional weighted average method, we
propose a novel const-volume method that integrates attention
mechanism to reduce the impact of matching errors to improve
the accuracy in matching stage;

3. We achieve a new state-of-the-art on public multi-
view stereo matching dataset based on satellite
imagery.

The remainder of this paper is organized as follows. Section 2
presents the components of our proposedA-SATMVSNet. Section 3
reports the extensive experimental results and evaluates the
performance of the proposed method. Section 4 presents the
discussion. Finally, Section 5 provides the conclusions and hints at
plausible future research.

2 Materials and methods

2.1 Problem definition

In the satellite MVS task, our goal is to use an end-to-end
coarse-to-fine framework to predict the height mapH by leveraging
the matching relationship between N− 1 adjacent views and the
corresponding camera parameters. First of all, we extract the image
features {Fi}

N−1
i=0 from the reference images I0 and source images

{I0}
N−1
i=0 . Then the cost volume V is constructed by the differentiable

RPC warping based on hypothetical height planes D. Next, a
regularization process is executed on cost volume by a 3D Unet.
After regularization, the regularized cost volume Vre regresses a
probability volume P by the softmax operation. Lastly, the final
height map H is calculated by the hypothetical height planes D and
probability volume P. At the inference stage, the trained model on
the satellite MVS task must infer the depth maps of all views of all
scenes. Finally, a depth map fusion method is used to obtain point
clouds.

2.2 Overview of the proposed framework

Our proposed A-SATMVSNet is an trainable framework,
which consists of two import parts: feature extraction and cost
volume construction. As shown in Figure 1, the N input images
{Ii}

N−1
i=0 ∈ ℝ

H×W×3 are sent to multi-scale feature extraction module.
After feature extraction, the multi-scale feature maps {F}}N−1i=0
are fed into the cost volume C construction part in three
stages. The cost volume C is constructed by the differentiable
rpc warping (Section 2.5). Then, the obtain cost volume C are
regularized to generate probability volumes P by the softmax
operation. Finally, the height maps can be obtained through
regression.

2.3 Attention-aware multi-scale feature
extraction module

In this section, wemainly describe the proposed attention-aware
multi-scale feature extraction module. There are many popular
feature extraction modules such as UNet-based (Ronneberger et al.,
2015; Isensee et al., 2018; Li et al., 2018; Oktay et al., 2018;
Huang et al., 2020), feature pyramid network-based (Lin et al.,
2017; Kim et al., 2018; Seferbekov et al., 2018; Zhao et al., 2021),
resnet-based (He et al., 2016; Targ et al., 2016; Szegedy et al., 2017;
Bharati et al., 2021), etc. All the above feature extraction modules
perform well in multi-view stereo matching tasks. In our study, we
propose a new feature extraction module based on (Cheng et al.,
2020) where it is combined with an attention module. The basic
module consists of an encoder and a decoder with skip connection.
The module outputs a three-scale feature pyramid whose size is
{1/16,1/4,1} of the input satellite image size, and the number
of feature channels is 32, 16, and 8 respectively. In the encoder
part, an attention module is designed. The attention module and
feature extraction layer in encoder and decoder part are shown in
Figure 2.
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FIGURE 1
The framework of the proposed A-SATMVSNet.

Figure 2A shows the architecture of the detailed feature
extraction layer in encoder network with attention module. First, a
convolution layer with 3× 3 kernel size is used to extract features.
After that, the feature map is sent to three different dilated
convolution layers with dilation rate of 2, 3 and 4 respectively.Then,
all the three output feature maps are sent to a 3× 3 convolution layer
with an attention module. Finally, the three output feature maps are
concatenated to generate a new featuremap, as the final featuremap.
The formulation of our triple dilate convolution is defined as follow:

Fout = [Fin1 ⊗ (w1 ⊙ I) + (w1 ⊙ I) ,Fin2 ⊗ (w2 ⊙ I) + (w2 ⊙ I) ,

Fin3 ⊗ (w3 ⊙ I) + (w3 ⊙ I)]
(1)

where ⊗ represents the multiply operation, ⊙ denotes the element-
wise product, wi represents the ith weights of dilate convolution.

Figure 2B shows the architecture of the attention module. The
input feature map is defined as Fin. Two convolution layers with a
kernel of 3× 3 are employed to generate further features Fin_1. Then,
a sigmoid function is used to obtain attention weights defined as Fw.
The final output feature is defined as Fout , which is calculated as:

Fout = Fin + Fin_1 ⊗ Fw. (2)

Figure 2C is the architecture of the decoder network, which
consists of a deconvolution layer with a kernel size of 3× 3, stride
size of 2 and a convolution layer with a stride size of 1.

2.4 Rational polynomial camera model
(RPC)

The rational polynomial camera model (RPC) is extensively
used in satellite imagery processing, which connects the image

points and corresponding world coordinate points with cubic
rational polynomial coefficients (Gao et al., 2021). We define
the world coordinates as (latn, lonn,hein) which represents the
latitude, longitude and height.The corresponding normalized image
coordinates are defined as (sampn, linen).P

fwd andPinv are both cubic
polynomials. The transformation between world coordinates and
image coordinates are shown as bellow:

latn =
Pinv1 (sampn, linen,hein)

Pinv2 (sampn, linen,hein)
,

lonn =
Pinv3 (sampn, linen,hein)

Pinv4 (sampn, linen,hein)
,

sampn =
Pfwd1 (latn, lonn,hein)

Pfwd2 (latn, lonn,hein)
,

linen =
Pfwd3 (latn, lonn,hein)

Pfwd4 (latn, lonn,hein)
,

P (X,Y,Z) =
m1

∑
i=0

m2

∑
j=0

m3

∑
k=0

cijk ⋅Xi ⋅Yi ⋅Zi.

(3)

In multi-view stereo matching task via satellite imagery, the
RPC model is a widely used geometric model, which can provide
a high accuracy to the rigorous sensor model (RSM) (Tao and Hu,
2001).

2.5 Differentiable RPC warping

Currently, most state-of-the-art MVS methods warp the source
views to a reference view to obtain per-view matching feature
volumes by a homography matrix and a set of fronto-parallel
depth hypotheses planes D. The definition of the differentiable
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FIGURE 2
The architecture of the proposed feature extraction module. (A) Represents the architecture of the detailed feature extraction layer in encoder network
with attention module. (B) Represents the architecture of the attention module. (C) Is the decoder network.

homography based pin-hole camera model is as bellow:

H(d)i = dKiTiT
−1
refK
−1
ref , (4)

where T and K denote camera extrinsic and intrinsic respectively.
Compared with pin-hole camera model, the cubic rational
polynomial camera (RPC) model is widely used in satellite domain,
which has the advantage than all camera models, e.g., projective,
affine and the linear pushbroom. A matrix alone cannot formulate
the warping of the RPC model due to its complexity. In this regard,
SatMVS proposes a rigorous and efficient RPC warping module
that is fundamentally a high-order tensor transformation, which is
fundamental to the structure of SatMVS. Using a set of hypothetical
height planes in the world coordinate system, the RPC warping
module projects images from different views to the reference view,
instead of the fronto-parallel planes of a reference view, because
the RPC model does not include explicit physical parameters for
defining the front of a camera.

Firstly, SatMVS transforms the ternary cubic polynomial
by using cubic polynomials to a quaternion cubic
homogeneous polynomial f (x1,x2,x3,x4) = ∑(aiajak) ⋅ xixjxk,
where aiajak (i, j,k ∈ {1,2,3,4}). AndX is expressed as a tensor, which
consists of four variables x1,x2,x3,x4, i.e., 1:X = (x1,x2,x3,x4)

T.
Besides, T is also expressed as the polynomial coefffcients, whose
shape is 4× 4× 4. After the tensor contraction operation, the
definition of the numerator and denominator of the RPC model
can be defined as bellow:

f (X) = TijkXiXjXk. (5)

Extendedly, the formulation of the RPC model with a set of
points is defined as bellow:

f(bm) (X) = T(b)ijkX
(bm)
i X(bm)j X(bm)k , (6)

where X(bm) represents the mth point in the bth batch and T(b)

represents the coefficient tensor in the bth batch. Through element-
wise division, the RPC warping of all the points in a batch can be
calculated in one shot.

2.6 Feature volume adaptive aggregation

Previous methods usually aggregate the feature volumes to a
cost volume by leveraging the cost metric (Hiep et al., 2009). The
common practice is to use the variance-based cost metric (CM) to
average N− 1 feature volumes. CM considers that the confidence
values of the corresponding pixels between the corresponding
feature volumes of each view are equally important.The formulation
of variance-based cost metric is defined as bellow:

C = CM (V1,…,V2) =
∑N−1

i=0
(Vi − V̄)

2

N
, (7)

where V̄ represents the average volume among all feature volumes.
However, equal importance is obviously not reasonable, because the
satellite images taken by the Ziyuan-3 (ZY-3) satellite have varying
shooting camera angles may affect the confidences in the feature
volumes due to the matching errors caused by different conditions
such as occlusion and non-Lambertian surfaces. If we utilize Eq. 4
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FIGURE 3
Illustration of the proposed adaptive feature volume aggregation module.

TABLE 1 The detailed architecture of the 3D UNet. Each convolutional layer represents a block of convolution, batch normalization (BN) and ReLU;“sp”
means skip connection;“H”and“W”denote the height and width of the reference image, respectively.

Cost volume size: 32×D× H
32
× W

32

Name Layer Description Output Size

Downsample Layers

 conv0_1 3D-Conv 3× 3× 3,stride=1 8×D× H
32
× W

32

1× 1× 1,stride=1

 conv1_0/conv2_0/conv3_0 3D-Conv 3× 3× 3,stride=2 16×D× H
64
× W

64
/32×D× H

128
× W

128
/64×D× H

256
× W

256

1× 1× 1,stride=1

 conv1_1/conv2_1/conv3_1 3D-Conv 3× 3× 3,stride=1 16×D× H
64
× W

64
/32×D× H

128
× W

128
/64×D× H

256
× W

256

1× 1× 1,stride=1

Bottleneck

 bc0_1 3× 3× 3 3D CNN, stride=2 128×D× H
512
× W

512

 bc0_2 1× 1× 1 3D CNN, stride=1 128×D× H
512
× W

512

 bc0_3 3× 3× 3 transpose 3D CNN, stride=2 64×D× H
256
× W

256

Upsample Layers

 conv4_0/conv5_0/conv6_0 transpose 3D-Conv 3× 3× 3,stride=2 32×D× H
128
× W

128
/16×D× H

64
× W

64
/8×D× H

32
× W

32

1× 1× 1,stride=1

 sp conv2_1 feature add conv4_0 feature 32×D× H
128
× W

128
/16×D× H

64
× W

64
/8×D× H

32
× W

32

 conv7 3× 3× 3 3D-Conv, stride=1, no BN and ReLU 1×D× H
32
× W

32
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FIGURE 4
Samples of TLC SatMVS dataset. (A) Represents the sample of input images in the dataset. (B) Represents the Ground Truth depth maps corresponding
to the input images.

to calculate the cost volume, it will affect the final height map
estimation.

Therefore, as illustrated in Figure 3, we design an adaptive
feature volume aggregation module to calculate an aggregation
weighting volume for each feature volume to achieve unequally
confidence aggregation. The definition of our module is defined as
Eq. 5:

In this way, pixels that may cause the matching errors
are suppressed, i.e., the confidences corresponding to pixels are
allocated the lower weight, while those with critical feature
information are given higher weight.We also formulate our adaptive
feature volume aggregation module as follows:

C(d) = 1
N− 1

N−1

∑
i=1
[1+ω(c(d)i )] ⊙ c

(d)
i , (8)

where ⊙ denotes Hadamard multiplication and ω(…) is the pixel-
wise attention maps adaptively yielded according to per-view cost
volumes.

2.7 Cost volume regularization

Cost volume regularization (regression to obtain height
map) can be seen as a segmentation problem and is handled
using the UNet commonly used for semantic segmentation
tasks. Therefore, similar to the UNet-shape network used
by the previous methods for cost volume regularization, we
adopt a similar multi-stage 3D UNet to aggregate neighboring
information from a large receptive field, which is composed
of three stages (downsample, bottleneck, upsample). First, in
the downsampling stage, we leverage the ordinary convolution
to obtain the intermediate volume Ṽ ∈ R64×D× H

256
× W

256 by three
times downsampling. Then we use a bottleneck to learn the
high level depth features. We obtain the final regularized cost
volume by multiple deconvolutions and skip connections. And
the skip connections are used to transfer the corresponding scale
intermediate volume Ṽ. The details for the network are shown in
Table 1.
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FIGURE 5
Visualization results of the proposed methods on TLC SatMVS Dataset.

TABLE 2 Quantitative results of the different MVSmethods on the TLC SatMVS dataset. The proposed SatMVSwith RPC warping implements three different
learning-basedMVSmethods for height inference. Numbers in bold indicate the best results.

Methods MAE(m) ↓ RMSE(m) ↓ <2.5 m (%) ↑ <7.5 m (%) ↑ Comp (%) ↑ Runtime (min:s) ↓

adapted COLMAP 2.227 5.291 73.35 96.00 79.10 77 min2 s

RED-Net 2.171 4.514 74.13 95.91 81.82 9 min:15 s

CasMVSNet 2.031 4.351 77.39 96.53 82.33 4 min:02 s

UCS-Net 2.039 4.084 76.40 96.66 82.08 3 min:47 s

SatMVS(RED-Net) 1.945 4.070 77.93 96.59 82.29 13 min:52 s

SatMVS(CasMVSNet) 2.020 3.841 76.79 96.73 81.54 12 min:20 s

SatMVS(UCS-Net) 2.026 3.921 77.01 96.54 82.21 13 min:17 s

A-SATMVSNet 1.597 2.036 82.68 96.48 84.32 14 min:53 s

FIGURE 6
Visualization results of different compared methods. The differences are highlighted via red boxes in the results.

FIGURE 7
Visualization results of the graph representations of MAE, RMSE, <2.5 m, and <7.5 m.

Frontiers in Earth Science 08 frontiersin.org

https://doi.org/10.3389/feart.2023.1108403
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Lin et al. 10.3389/feart.2023.1108403

FIGURE 8
Visualization results of four different types of areas. (A) Darker areas. (B) Discontinuous areas. (C) Weakly textured areas. (D) Areas with strong hight
variations.

TABLE 3 Quantitative results of the SatMVS(RED-Net) and the RED-Net (with fitted pinhole model) on the TLC SatMVS dataset with different sizes. Numbers in
bold indicate the best results.

Methods MAE(m) ↓ RMSE(m) ↓ <2.5 m (%) ↑ <7.5 m (%) ↑ Comp (%) ↑ Runtime (min:s) ↓

RED-Net 2.517 4.873 66.42 95.53 81.44 4 min:17 s

SatMVS(RED-Net) 1.946 4.224 77.88 96.54 82.35 5 min:52 s

A-SATMVSNet 1.603 2.279 80.24 96.46 83.24 6 min:22 s

2.8 Implementation detail

2.8.1 Training
Our A-SATMVSNet is implemented using PyTorch, which is

trained on TLC SatMVS training dataset for evaluation on TLC
SatMVS testing dataset. The preprocessing strategies and selection
of input views follow common strategies in a representative previous
work (Gao et al., 2021). We train and validate our model on the
TLC SatMVS training set and evaluating set respectively. In the
training process, we set the input image resolution to 768× 384,
and the number of training views to N = 3. The hypothetical height
planes of our framework are set as {64,32,8}.We optimize ourmodel
for 16 epochs with Adam optimizer, meanwhile, the learning rate
is set as 0.001. Besides, we set the batch size as 4 and train our
model on 4 NVIDIA GTX 2080 GPU devices. We adopt the metrics
(MAE, RMSE, < 2.5m, < 7.5m, Comp and Runtime) provided by the
SatMVS to evaluate the quality of the height maps obtained by our
model.

2.8.2 Testing
We test on TLC SatMVS testing dataset with our best result.

And we set the adjacent image number N = 3, the image resolution
as 768× 384, and the hypothetical height places for testing as
{64,32,8}.

2.8.3 Evaluation metrics
We adopt four common metrics to eval the quantitative results

of the final height maps.

1. MAE: the mean absolute error, i.e., the mean of the L1 distance
over all pixels between the GT height map and predicted height
map.

2. RMSE: the root-mean-square-error, i.e., the standard deviation of
the residuals between the GT height and predicted height map.

3. <2.5 m, <7.5 m: percentage of all pixels with L1 distance errors
below the 2.5m and 7.5m thresholds.

4. Comp: percentage of all pixels with valid height values in the final
height map.

2.9 Experimental dataset

In this paper, we adopt the TLC SatMVS dataset proposed
by SatMVS. The TLC SatMVS dataset consists of the triple-view
images, and the height maps, which are generated by projecting
the GT DMS with the corresponding RPC parameters of TLC
cameras, which are mounted by Ziyuan-3 (ZY-3) satellite, as shown
in Figure 4. And the GT DSMs are obtained from high-accuracy
LiDAR observations and ground control point (GCP)-supported
photogrammetric software. The dataset consists of 5,011 image
patches with resolution 768× 384.

3 Results

3.1 Evaluation on the TLC SatMVS dataset

Figure 5 shows the visualization results of the proposed
method on TLC SatMVS Dataset. We restore the depth map from
three images. It can be seen that in mountainous areas with
large topographic relief, this method has certain effect on depth
estimation of multi-view remote sensing images, which verifies the
effectiveness of this method.
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TABLE 4 Ablation results. ‘FE’ represents feature extractionmodule; ‘VA’
represents adaptive volume aggregation. Numbers in bold indicate the best
results.

Methods MAE(m) RMSE(m) <2.5 m (%) <7.5 m (%)

FE 1.892 2.413 78.91 95.79

VA 1.684 2.253 80.28 96.02

Overall 1.603 2.279 80.24 96.46

Table 2 shows the quantitative results on TLC SatMVS Dataset.
We compare with traditional and deep learning basedMVSmethods
for satellite images to demonstrate the effectiveness of our model.
We have the following observations: 1) We can observe that
our method achieves the best among current state-of-the-arts
methods in the metrics (MAE:1.597, RMSE:2.036, < 2.5m:82.68,
Comp:84.32). 2) For traditional MVSmethod which adopts the pin-
hole camera model, e.g., adapted COLMAP, our model outperforms
it in all metrics (MAE, RMSE, <2.5m, <7.5m, Comp, Runtime).
3) Compared with RED-Net, CasMVSNet and UCS-Net, which
adopt the pin-hole camera model, although our model has lower
scores in <7.5m and Runtime, our model achieves SOTA results
in other metrics. 4) Furthermore, we also compare the proposed
method with the state-of-the-art models in satellite MVS domain,
e.g., SatMVS(REDNet), SatMVS(CasMVSNet), SatMVS(UCS-Net).
We can observe that our model achieves SOTA results in MAE,
RMSE,<2.5m, Comp. Besides, we are very close to the current SOTA
in terms of <7.5m, which exhibits that our method has comparable
performance. 5) We can observe that our A-SATMVSNet has a
competitive inference time in Table 2. Specifically, our method
increases only a slight time in inference Runtime, while extremely
outperforms other satellite domain methods in most of metrics, e.g.,
MAE, RMSE, < 2.5m and Comp.

Figure 6 shows the visualization results of different compared
methods onTLCSatMVSdataset. It can be seen that the details of the
SatMVS(CasMVSNet) method at the corners are seriously missing.
However, the results of the method in this paper are more realistic
at detail, which are closer to the truth value.

The graph representations of MAE, RMSE, <2.5 m, and <7.5 m
are visualized in Figure 7, and it is observed that all four metrics
exhibit convergence as the epoch increases. This indicates that the
model’s performance gradually improves with additional training
data. Overall, the visualization of thesemetrics serves as a useful tool
for monitoring and evaluating the performance of the model during
training.

Additionally, we also exhibit the visualisation results of our
proposed method for four different types of areas: a) darker areas,

b) discontinuous areas, c) weakly textured areas, and d) areas with
strong height variations, as shown in Figure 8. Our observations
are as follows: In a), despite the overall darkness of the scene, our
model effectively estimates the heightmap of the red-boxed area and
accurately describes the undulations of the terrain. In b), the red-
boxed area is clearly discontinuous with the surrounding area, but
our method still produces accurate height estimations without any
false noise heights. In c), even though the texture of terrain in the
red-boxed area is not very distinct, our method effectively estimates
the heightmap for each pothole. In d), the image contains significant
sharp height shifts and some colour noise, but this does not affect the
effectiveness of our model in estimating the height map.

3.2 Evaluation on the large-size satellite
images

We train and validate the large-size satellite images
(5,120× 5,120) with RED-Net, SatMVS(RED-Net) and our A-
SATMVSNet on a NVIDIA RTX 3090. The results are shown
in Table 3. We can observe that although using the large-size
satellite images as input data, which affects the performance of our
model, our method still maintain a relatively excellent performance
compared with other methods. This confirms the effectiveness and
advantage of our proposed model.

4 Discussion

In this section, we provide ablation experiments to quantitatively
and qualitatively evaluate the effectiveness of each of our proposed
modules. The following proposed ablation results are processed on
TLC SatMVS dataset using the similar parameters as Section 2.5.
We adopt the decreasing comparison to validate the effectiveness of
each of our proposed modules. The quantitative results are shown
in Table 4. Comparing Row1 with Row3 in Table 4 indicates that
our proposed Feature Extraction Network significantly improves
the performance, i.e., MAE from 1.892 to 1.603 (SOTA). And
we also observe that our Adaptive Volume Aggregation module
can effectively improve the performance, i.e., RMSE from 2.253
to 2.270. It is clear that each individual module can significantly
enhance model effects, and the two modules are complementary
in A-SATMVSNet to achieve the best performance. Furthermore,
we conducted sensitivity experiments on the depth Hypothesis
Numbers and resolution of images, as presented in Table 5.
Specifically, we compared the reconstruction quality of Dnum=[48,
16, 8], Dnum=[64, 16, 8], and Dnum=[64, 32, 8], while keeping

TABLE 5 Ablation study on number of depth hypothesis planes Dnum and resolutions of input imagesW and H onTLC SatMVS Dataset. Numbers in bold indicate
the best results.

N Dnum Resolution (H×W) MAE(m) RMSE(m) <2.5 m (%) <7.5 m (%) Comp (%)

3 [64,32,8] 192 × 384 1.732 2.983 74.23 87.11 75.34

3 [48,16,8] 384 × 768 1.640 2.503 78.92 92.76 79.68

3 [64,16,8] 384 × 768 1.610 2.174 80.19 95.33 82.89

3 [64,32,8] 384 × 768 1.597 2.036 82.68 96.48 84.32
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N fixed at 3 and image resolution at 384× 768. The results in
Tab.5 demonstrate that finer depth divisionDnum can enhance the
reconstruction quality across all metrics.

5 Conclusion

In this paper, we have proposed a satellite image stereo
matching network based on attentionmechanism (A-SATMVSNet).
We design a feature extraction module based on triple dilated
convolution with attention module to solve the problem of
matching holes caused by insufficient extraction of surface features.
Furthermore, compared with the traditional weighted average
method, we design a novel cost-volume method that integrates
attention mechanism to reduce the impact of matching errors to
improve the accuracy of matching. As a result, our method achieves
SOTA results on TLC SatMVS Dataset, showing better performance
than many existing learning-basedMVSmethods in satellite images
domain.
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