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The emergence of multi-drug resistance (MDR) in aquatic pathogens and the
presence of cationic dyes are the leading causes of water contamination on a
global scale. In this context, nanotechnology holds immense promise for
utilizing various nanomaterials with catalytic and antibacterial properties.
This study aimed to evaluate the catalytic and bactericidal potential of
undoped and Sr-doped Cr2O3 nanostructures (NSs) synthesized through the
co-precipitation method. In addition, the morphological, optical, and
structural properties of the resultant NSs were also examined. The optical
bandgap energy of Cr2O3 has been substantially reduced by Sr doping, as
confirmed through extracted values from absorption spectra recorded by UV-
Vis studies. The field-emission scanning electron microscopy (FE-SEM) and
transmission electron microscopy (TEM) micrographs illustrate that the
composition of Cr2O3 primarily consisted of agglomerated, irregularly
shaped NSs with a morphology resembling nanoflakes. Moreover, the
presence of Sr in the lattice of Cr2O3 increased the roughness of the
resulting NSs. The catalytic activity of synthesized NSs was analyzed by their
reduction ability of Rhodamine B (RhB) dye in the dark under different
pH conditions. Their antibacterial activity was evaluated against MDR
Escherichia coli (E. coli). Sr doping increased antibacterial efficiency against
MDR E. coli, as indicated by inhibition zone measurements of 10.15 and
11.75 mm at low and high doses, respectively. Furthermore, a molecular
docking analysis was conducted to determine the binding interaction
pattern between NSs and active sites in the target cell protein. The findings
corroborated antimicrobial test results indicating that Sr-Cr2O3 is the most
effective inhibitor of FabH and DHFR enzymes.
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1 Introduction

The development of multi-drug resistance (MDR) in pathogenic
bacteria has evolved significantly in recent years (Franci et al., 2015).
A team from the University of Alberta has discovered that a strain of
E. coli (Escherichia coli) bacterium can survive and flourish in
wastewater treatment plants. Although oxygenation, chlorine, and
other treatments in sewage facilities are effective in eradicating the
majority of E. coli, researchers have identified certain pathogenic
strains of E. coli that exhibit significant resistance to these treatments.
The efficacy of conventional antibiotics diminishes over time as
bacteria resist them (Wise and BSAC Working Party on The
Urgent Need: Regenerating Antibacterial Drug Discovery and
Development, 2011). This poses a significant threat to the health
and lives of millions of people each year. In addition, the progress of
industrialization and urbanization generates a significant volume of
waste in the form of dyes, heavy metals, and microorganisms
continuously discharged into rivers and soil (Chen et al., 2015;
Sallam et al., 2018). Every year, numerous types of dyes released
from different sectors worldwide are dumped into aquatic systems
(He et al., 2019). These are colored chemicals, and their pollution is
primarily attributed to their high stability, which stems from the
presence of numerous aromatic rings. Rhodamine B (RhB) is an
amino xanthene dye that finds widespread applications in the colored
glass industry, as well as in the fields of textiles, biology, and
fluorescent staining. RhB is commonly detected in dye effluent as
it is widely used in the textile industry (Qamar et al., 2020; Nguyen
et al., 2021). Textile dyes have been shown to increase toxicity, reduce
photosynthesis, impair plant growth, enter the food chain, and
promote carcinogenic effects in water (Magureanu et al., 2008;
Hameed and Ismail, 2019; He et al., 2019; Eltaweil et al., 2022).
Consequently, the simultaneous eradication of organic contaminants
prevalent in industrial wastewater, including chemicals, phenolic
compounds, colorful dyes, and microorganisms, could effectively
replace typical phased treatment methods.

Recently, metal and metal oxide nanoparticles (NPs) gained
significant medical and health applications due to their superior
stability at higher temperatures and pressures than conventional
organic antimicrobials (Liu et al., 2009; Di et al., 2017). Transition
metal NPs have been the subject of extensive research due to their
potent antibacterial properties. Consequently, nanostructured
chromium oxide (Cr2O3) with large surface areas attracted
researchers worldwide (El-Sheikh et al., 2009). In contrast to
traditional polycrystalline materials, they display advantageous
and unique features. Shafi et al. reported Cr2O3 NPs with
Brunauer–Emmett–Teller (BET) area of 219.9 m2g−1 and pore
width of 4.2 nm (Shafi et al., 2021). The majority of research
conducted on the antibacterial properties of Cr2O3 NPs has
focused on their effectiveness against Gram-negative bacteria,
using E. coli as a representative model (Ramesh et al., 2012;
Almontasser et al., 2021; Ghotekar et al., 2021). Chromium and
supported chromium oxides have been utilized in various catalytic
processes such as the dehydrogenation of toluene, the
decomposition of ammonia, and the oxidation of toluene.
Calcined chromia catalysts, both supported and unsupported,
exhibit excellent activity in redox processes (El-Sheikh et al.,
2009). Additionally, supported chromium oxide catalysts have
found applications in selective catalytic reduction of NOx with

ammonia, polymerization reactions, and oxidative
dehydrogenation of isobutene (Abu-Zied, 2000). Studies on
chromium oxide catalysts have shown that the type and
concentration of surface Cr-O species play a significant role in
controlling their adsorptive and catalytic characteristics (Fouad
et al., 1991; Gabr et al., 1994). Doping Cr2O3 with metals has
enhanced its catalytic and antibacterial properties. Rare Earth
metals can readily form strong bonds with functional groups
when used as dopants in metal oxides, owing to the availability
of 4f empty orbitals (Mehtab et al., 2022). Strontium (Sr) is a
chemically highly reactive alkaline Earth metal that exhibits
chemical similarity with calcium and can be utilized to enhance
the properties of Cr2O3. The utilization of Sr in various applications
has been extensively investigated, revealing its potential for
beneficial effects through doping with metal oxides (Akihide
et al., 2004; Li et al., 2007; Ramam and Chandramouli, 2009;
Suresh and Roy, 2012; Kiani et al., 2020).

Numerous methods, including solid thermal decomposition (Li
et al., 2008), hydrothermal (Pei et al., 2009), bio-method (Bai et al.,
2009), nano casting method (Xia and Mokaya, 2005), sol-gel (Pinna
et al., 2004), combustion (Lima et al., 2006), laser-induced
deposition (Zhong et al., 2001), precipitation-gelation (Kim et al.,
2004), mechanochemical reaction and subsequent heat treatment
(Tsuzuki and McCormick, 2000), chromium oxidation in oxygen
(Mougin et al., 2001), and sonochemical methods (Balachandran
et al., 1995) have been successfully developed to synthesize Cr2O3

nanomaterials. However, most of these complex techniques involve
specialized lab equipment, high temperatures and are
environmentally sensitive (Singh et al., 2019a). Among these
methods, co-precipitation is low-cost, convenient, time-saving,
and ecologically beneficial synthesis method (Yazid and Joon,
2019; Asha et al., 2021).

This study aims to synthesize pure and Sr (2, 4, and 6 wt%)
doped Cr2O3 nanostructures (NSs) using co-precipitation and
analyze their optical, morphological, and structural features, as
well as their ability to function as catalyst and antibacterial agent.
The catalytic activity of as-prepared NSs was tested against RhB dye
reduction, and the bactericidal potential of NSs was examined for
MDR E. coli (a G-ve bacteria).

2 Experimental part

2.1 Materials

Chromium acetate (Cr(CH3COO)3, 99.0%) was purchased from
Uni-Chem Chemical Reagents, and strontium chloride hexahydrate
(SrCl2.6H2O, puriss≥99%), sodium hydroxide (NaOH) were
purchased from Sigma-Aldrich and used without further
purification.

2.2 Synthesis of Sr-doped chromium oxide

The co-precipitation method was used to synthesize the Cr2O3

NSs, with 0.5 M of Cr(CH3COO)3 serving as the precursor material.
The pH of the solution was maintained at 12 by adding NaOH drop
by drop while constantly stirring at 80 °C. After centrifugation at
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7,500 rpm for 6 min to remove impurities, the resulting product was
dried at 200°C for 12 h, and a fine powder was obtained using a
mortar and pestle. To synthesize Sr-doped Cr2O3, the same
procedure was followed, adding various concentrations of Sr (2,
4, and 6%) in Cr2O3. The preparation method is illustrated
schematically in Figure 1.

2.3 Catalytic activity

To assess the catalytic performance of undoped and Sr-doped
Cr2O3 in the presence of the reducing agent sodium borohydride
(NaBH4), the synthesized NSs were utilized for the reduction of RhB
dye, which acts as an oxidizing agent. All the reagents, including RhB
and NaBH4, were used immediately after preparation to maintain
the experimental integrity. Initially, a freshly made 400 µL of 0.1 M
NaBH4 solution was combined with a 1.5 mL aqueous RhB solution.
Subsequently, 400 µL of synthetic nanocatalyst was added and
thoroughly mixed with the solution. RhB has a peak absorption
at 555 nm, which was chosen to measure the reduction in UV-vis
absorption. Adding NaBH4 led to a change in RhB to its leuco form,
indicating dye reduction. The % reduction was calculated as follows:

% reduction � C0 − Ct

C0
( ) × 100

where Co and Ct are the initial and specific time absorptions.

2.4 Isolation and identification of MDR
Escherichia coli

2.4.1 Isolation of Escherichia coli
To collect unpasteurized milk samples from lactating dairy cows

of different farmlands and veterinary clinics in Punjab, Pakistan,

prompt milking in a sterile glass container was used. The milk
specimen’s transportation proceeded at the temperature of 4°C. The
coliform pathogen found in unpasteurized milk was quantified using
MacConkey agar. Each plate endured 48 h of incubation at 37°C.

2.4.2 Identification and characterization of
bacterial isolates

The variety of Gram stain colonial morphology and biochemical
tests were used in conjunction with Bergey’s Manual of
Determinative Bacteriology (Holt et al., 1994) to make a
preliminary determination of the identity of E. coli.

The disc diffusion approach was employed on Mueller Hinton
agar (MHA) to investigate antibiotic susceptibility (Bauer, 1966).
The test was made to evaluate the antibiotic resistance of gram-ve
E. coli bacteria against the following antibiotics (classes); Ceftriaxone
(Cro) 30 µg (Cephalosporins), Gentamicin (Gm) 10 µg
(Aminoglycosides), Ciprofloxacin (Cip) 5 µg (Quinolones),
Tetracycline (Te) 30 µg (Tetracyclines), Imipenem (Imi) 10 µg
(Carbapenem), Amoxycillin (A) 30 μg (Penicillins), and
Azithromycin (Azm) 15 µg (Macrolides). The E. coli resistant to
5 μg of the antibiotic ciprofloxacin was conducted through various
experiments (Adzitey et al., 2022). Purified cultures of E. coli were
grown to a turbidity level of 0.5, as determined by the MacFarland
standard. Following this, the bacteria were spread out on MHA
(Oxoid Limited, Basingstoke, United Kingdom), and antibiotic discs
were placed at a distance on the inoculation plate surface. This
avoided disrupting inhibition zones. The plates were incubated at
37°C for 48 h while being cultivated, and the data were then
examined in accordance with the guidelines provided by the
Diagnostic, Therapeutic, and Laboratory Standard Institute
(Wayne, 2008). At least three drugs were shown to be ineffective
against MDR bacteria (Iwalokun et al., 2004).

2.5 Molecular docking analysis

To comprehend the mechanism behind bactericidal action,
molecular docking research was conducted on synthetic Cr2O3

and Sr-doped Cr2O3 NPs. This was accomplished by focusing on
proteins essential for bacterial survival and proliferation. The
molecular docking investigation selected several protein targets
from biosynthetic pathways, such as dihydrofolate reductase and
beta-ketoacyl-acyl carrier protein synthase III (FabH). The
dihydrofolate reductase plays a crucial part in synthesizing folic
acid, which is essential for the survival of bacteria. FabH enzymes
catalyze critical stages in bacterial cells’ fatty acid biosynthesis
pathway (Li et al., 2009; Altaf et al., 2020). E. coli target protein
crystal structures of the high resolution were acquired from the
Protein Data Bank. The protein DHFR identified by PDB ID 2ANQ;
Resolution: 2.6 (Summerfield et al., 2006) FaBHE. Coli with PDB ID
5BNR; Resolution: 1.9 (McKinney et al., 2016) was chosen to
comprehend molecular interactions between NPs and protein
active pocket residues.

Sybyl-X2.0 was used for molecular docking investigations
(Mehmood et al., 2022; Shahzadi et al., 2022). Water molecules
and co-crystallized ligands were eliminated to create a protein
structure. The protein structures were optimized for energy
reduction using default settings and a force field. Following this,

FIGURE 1
Schematic illustration for synthesis route of pristine and Sr-
doped Cr2O3.
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a protomol was generated to characterize the binding pocket, and
the 10 best-docked conformations were created to investigate the
interaction pattern between NPs and active site residues (Ikram
et al., 2023).

2.6 Characterizations

To analyze the crystal structure and phase information of the
NSs, a PANalytical XPert PRO X-ray diffraction (XRD) system was
utilized with Cu Kα radiation (λ ~ 0.0154 nm) within the 2θ range of
20°–70°. The optical properties within the 200–700 nm range were
examined using a UV-Vis spectrophotometer (Genesys 10S). The
morphology andmicrostructure of the samples were observed with a
JSM-6460LV FE-SEM system with an EDX spectrometer. The PL
spectra were collected using a JASCO FP-8300 system. Inter-planar
d-spacing of the NSs was measured using the HR-TEM equipment
JEOL JEM 2100F.

3 Results and discussion

The XRD analysis pattern for the phase purity, crystallographic
plane structure, and crystallite size of the synthesized products are
shown in Figure 2A. The spectra show well-defined peaks at 23.0°,
25.6°, 31.1°, 32.3°, 34.1°, 39.7°, 44.1, 46.9°, 57.1°, and 58.3°, which
correspond to the (112), (220), (1 1 3), (222), (210), (006), (202),
(131), (211), and (122) facets that are well matched with standard
spectrums (00-038-1479/00-036-1329/80-2473). These planes
belong to polycrystalline Cr2O3, Cr2O5, and Cr8O13, which have
been previously reported (Ivanov et al., 2001; Panda et al., 2018).
Norby et al. examined the crystal structure of Cr8O13 in detail
(Norby et al., 1991). Cr8O21 is composed of two CrO6 octahedra that
share a standard edge. Two chromate groups (CrO4, tetrahedra)
connected the double octahedra to form a sheet. Finally,
tetrachromate groups (Cr4O13) link these sheets to construct a

three-dimensional structure. Upon Sr doping, the slight shift of
peaks is caused by extensive dispersion of the dopant element
between the interlayers of the host sample. The size of the
crystallite affects the crystallinity-dependent properties of the
crystal. Moreover, larger crystallites produce sharper peaks in the
XRD pattern for a particular crystal plane. The shift in a peak that
occurs due to doping is attributed to the presence of Sr in the host of
the Cr2O3 matrix (see Figure 2B). Crystallite size is correlated with
the width of a peak. Using the following Debby-Scherrer formula
(Abdullah et al., 2014), the crystallite size (D) of pristine Cr2O3 and
(2, 4, and 6%) Sr-doped Cr2O3 was found to be 37.5 nm, 28.1 nm,
33.9 nm, and 56.6 nm respectively.

The absorption spectra of the synthesized Cr2O3 and Sr-doped
Cr2O3 nanomaterials from the UV-Vis spectrophotometer are
presented in Figure 3A. On the graph, two significant absorption
peaks were demonstrated at 260 nm and 360 nm wavelengths. The
peak showed a Cr2O3 NSs band gap transition at 360 nm (Singh
et al., 2019b). In optical characteristics, the estimate of band gap
energy is an essential factor. There are numerous ways to calculate
the optical band gap. Among them, the optical procedure is the most
precise and simple way to detect the band gap energy of materials
(Ashiri et al., 2009). The Tauc equation interprets the relationship
between the absorption coefficient (α) and the incident energy (hν),
which was used to obtain the optical band gap energy of the
materials. The optical band gap was determined using the Tauc
relation:

αhν( )2 � B hν − Eg( )
where hν is the photon energy, E.g., represents the optical band gap,
and B is constant and takes on different values depending on the
transitions. Therefore, the band gap can be determined by
extrapolating the linear portion of the curve intersecting the hν
axis. The Cr2O3 NSs prepared by co-precipitation contain a direct
band gap (Singh et al., 2019b). As it is obvious from Figure 3B,
doping substantially redshifted the band gap energy from 3.3 eV in
pristine Cr2O3 to around 3.0 eV in the case of (2,4% and 6%) Sr-

FIGURE 2
(A) XRD patterns of Cr2O3 and Sr-doped Cr2O3 (B) zoomed area of (220) plane.
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doped Cr2O3 attributed to quantum confinement effect. The
incorporation of dopants into Cr2O3 has modified the optical
band gap and crystallinity, indicating the interaction and
complexation of dopants with the Cr2O3.

The Cr2O3 NSs photoluminescence (PL) spectra are displayed
in Figure 3C. The PL spectra were used to analyze the charge
recombination of the NSs. The broad emission peaks could be
observed in all samples, attributed to higher crystallinity of the as-
synthesized NSs. It is shown that the Sr-doped Cr2O3 powders have
a greater PL signal than pure Cr2O3 (Figure 5), demonstrating
increased charge recombination. The most prevalent defect sites in
oxide materials are oxygen vacancies, that produce PL emission by
recombining with an electron. The Sr doping causes increased PL
intensities compared to Cr2O3 (Kamari et al., 2019). The transition
involving the 3d3 electrons of the Cr3+ ions causes the peak to
appear at ~ 425 nm. The oxygen interstitials, oxygen vacancies,
chromium interstitials, dangling surface bonds, and chromium
vacancies may all be responsible for the broad emission peaks in
the visible spectrum range that are centered at roughly 415 nm
(violet PL) and 435 nm (blue emission) (Almontasser and Parveen,
2020).

The morphology of as-grown material was assessed using the
FE-SEM and TEM techniques. Figure 4 illustrates the typical
morphology of Cr2O3 and Sr (2%, 4%, and 6%) doped Cr2O3.
The FE-SEM and TEM micrographs demonstrate that most of
Cr2O3 consist of strongly agglomerated NPs with a morphology
resembling nanoflakes, as depicted in Figure 4(A-A′). Nanoflakes
are preferable for various applications demanding higher redox-
active sites since they tend to give more surface area for interfacial
contact (Rashad et al., 2020). Sr doping caused NPs to agglomerate
further, as shown in Figure 4(B-B′, D-D′). Consequently, the
presence of Sr in the lattice of Cr2O3 increased the roughness of
resulting NSs. As reported earlier, the agglomeration of NPs is
caused by high surface area and high surface energy (Anbu et al.,
2022). This rise in NSs surface area, caused by Sr doping, promotes

the formation of reactive oxygen species (ROS), thereby improving
the antibacterial activity (Yarahmadi et al., 2021).

The number of layers can be microscopically estimated using a
high-resolution TEM (HR-TEM) study of edge regions. HR-TEM
pictures show many atomic planes exhibiting periodic atomic
configurations on a single grain, as illustrated in Figures 5A–D.
Moreover, planes are well arranged to form a single layer at
particular points, with an interplanar spacing of 0.16 nm. This
correlates with the XRD-determined (2 1 1) facet of the
rhombohedral Cr2O3 phase. The addition of dopants resulted in
samples with d-spacings of 0.19, 0.23, and 0.26 nm, as indicated by
XRD analysis.

Energy dispersive spectroscopy (EDS) was used to investigate
the elemental composition of as-prepared Cr2O3 NSs (Figure 6). The
spectrum demonstrates the corresponding peaks for chromium and
oxygen, along with minor Au peaks. Additional Na peaks were also
noticed, which could have resulted from using NaOH during the
synthesis process. Furthermore, no Sr peaks were observed in EDS
attributed to low concentration of dopants.

The catalytic activity of nanocatalysts against RhB dye was
investigated utilizing NaBH4 as a reducing agent. The visible
absorption spectra of RhB solution during the reduction process
are displayed in Figures 7A–C. The absorption peak at 555 nm is
reduced after the nanocatalyst is added, indicating that the dye
molecules have undergone reduction.

UV–vis absorption spectra of the RhB solution treated in the
three different pH (acidic, basic, and neutral) show that dye
reduction was significant at pH = 4, well matched with previous
observations (Cui et al., 2015). The pristine Cr2O3 and (2,4% and
6%) Sr-doped Cr2O3 NSs showed maximum % reduction of 68.19%,

FIGURE 3
(A) optical spectra, (B) band gap energy determination, and (C) PL
emission spectra of Cr2O3 and Sr-doped Cr2O3.

FIGURE 4
FE-SEM and TEM images of (A, A9) Cr2O3, (B, B9) 2% Sr/Cr2O3, (C,
C9) 4% Sr/Cr2O3, (D, D9) 6% Sr/Cr2O3.
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65.26%, 52.28%, and 62.88% in acidic medium (pH = 4), 60.72%
59.63%, 63.45%, 54.72% in basic medium (pH = 12) and 46.41%,
55.01%, 46.95% and 54.48% in neutral medium (pH = 7) respectively
as shown in Figures 8A–C. In the absence of a catalyst, the reduction
process occurred at a slow rate, resulting in only 25.22%, 21.81%,

and 17.02% reduction in acidic, basic, and neutral environments,
respectively. The effects of Sr as dopant reduced the effects of Cr2O3

as nanocatalyst in acidic and basic mediums. At pH = 8, 6% Sr-
doped Cr2O3 causes an increase in catalytic activity from 46.41% to
54.48%. The shape, size, and surface area of nanocatalysts

FIGURE 5
d-spacing calculated from HR-TEM images with Inverse Fast Fourier Transform (IFFT) and IFFT image profile of (A) Cr2O3 (B) 2% Sr/Cr2O3 (C) 4% Sr/
Cr2O3 (D) 6% Sr/Cr2O3.

FIGURE 6
EDS of (A) Cr2O3 (B) 2% Sr/Cr2O3 (C) 4% Sr/Cr2O3 (D) 6% Sr/Cr2O3.
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significantly impact performance reduction by generating
substantial active sites. The undoped catalyst showed a better
reduction rate than the Sr-doped nanomaterial. Due to their
various placements within the host lattice, dopants may not have
identical impacts on trapping electrons on the interface or during
interfacial charge transfer (Munusamy et al., 2013). Moreover,

dopants take up residence in the host material active sites,
reducing the adsorption process—consequently, the catalytic
efficiency change with the choice of dopant and morphology.
The decolorization mechanism of RhB by Cr2O3 depends on the
crystal structure of the oxides and the solution pH.

The electrochemical mechanism can explain the catalytic
process of the reduction reaction using NSs. The reduction
process begins with the migration of BH4− from NaBH4 and RhB
molecules via aquatic solution to the exterior of Sr-doped Cr2O3.
Afterward, the nanocatalysts on the top of the heterogeneous
catalyst act as an electron relay system to accelerate the flow of
electrons from the donor to the acceptor, i.e., from BH4− to RhB. The
next step entails a nanocatalyst’s catalytic decomposition of the
hydrogen source NaBH4 to deliver hydrogen atoms. The produced
reactive hydrogens subsequently react with dye molecules, causing
the breakdown of RhB molecules into its luco form (Alani et al.,
2021), as shown in Figure 9. The nanocatalysts enhanced the
reduction of RhB with NaBH4, resulting in significant reduction
efficiency.

In-vitro antibacterial activity of Cr2O3 and (2, 4, and 6%) Sr-
doped Cr2O3 was evaluated by assessing inhibitory zones against
Gram-negative bacteria MDR E. coli with agar-based diffusion
technique (see Table 1). Significant inhibitory zones were found
at lower and higher doses (8.65—10.15 mm) and (9.65—11.75 mm)
against MDR E. coli, respectively. Ciprofloxacin showed an
11.85 mm inhibition zone compared to DI water (0 mm). The
formation of ROS is enhanced by the Sr-doping, that increases
the specific surface area of Cr2O3 NPs, thereby improving the
antibacterial activity of the NSs. Additionally, the uptake of
positively charged metal ions Cr3+ following their release from

FIGURE 7
UV-Visible absorption spectra of RhB in the presence of
nanocatalysts. (A) Acidic Medium, (B) Basic Medium, (C) Neutral
Medium.

FIGURE 8
Catalytic activity of Cr2O3 and Sr-doped Cr2O3 in the presence of NaBH4. (A) Acidic Medium, (B) Basic Medium, (C) Neutral Medium.
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Cr2O3 at the cell boundary might lead to bacterial cell death by
increasing their localized concentration. The outcomes of the
current study are consistent with previous research that revealed
metal oxide NPs have superior action against Gram-negative
pathogens (Ahmad et al., 2014; Yarahmadi et al., 2021). This is
due to the fast passage of smaller-sized NPs through the cell wall of
E. coli (a Gram-negative bacterium), which has a single
peptidoglycan layer, in contrast to the cell wall of Gram-positive
bacteria, which has multiple peptidoglycan layers. Consequently, the
outer membrane of bacteria enables greater NPs penetration to the
bacterial cell wall.

Numerous mechanisms have been recognized as being
responsible for antibacterial action. In the vicinity of air and
metallic nanoclusters (as Cr2O3 in our case), reactive oxygen
species (ROS), including reactive nitrogen species and hydrogen
peroxide, are generated. Examples of ROS include free radicals
(•OH, 1O2), small molecules (such as H2O2), and superoxide
ions (such as −O2) (Rashad et al., 2020). It has also been
observed that physicochemical properties, such as crystal
structure, defects, surface charge, and composition, are directly
correlated with the improved antimicrobial effect of materials.

Specifically, it has been discovered that NPs of smaller size are
substantially more effective antibacterial agents. As a result of their
disintegration, harmful metal ions can infiltrate bacterial cells,
making them a more effective tool against bacteria. NPs with a
high metal oxide content, such as Sr-doped Cr2O3 NSs, may
accumulate on the surface of bacteria if they are encased in
nanoflakes. During contact, the rough surface of Sr-doped Cr2O3

encloses the bacterial surface.
The Sr-doped Cr2O3 NSs react oxygen molecules with electrons

to produce superoxide ions (.O2
−). The . HO2 can be produced by

reacting .O2
−with hydrogen ions. Hydrogen peroxide (H2O2) can be

produced by the interaction of . HO2 with hydrogen ions. Following
this, .HO2 and H2O2 can react to generate extremely reactive

FIGURE 9
Schematic illustration of catalytic activity.

TABLE 1 The bactericidal potential of Cr2O3 and Sr-doped Cr2O3.

Inhibition zone (mm)

Samples 0.5 mg/50 µL 1.0 mg/50 µL

Cr2O3 8.65 9.65

2% Sr/Cr2O3 9.05 10.45

4% Sr/Cr2O3 9.55 10.95

6% Sr/Cr2O3 10.15 11.75

Ciprofloxacin 11.85 11.85

DI water 0 0

FIGURE 10
Antibacterial action mechanism of synthesized NSs.
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FIGURE 11
3D graphical representation of binding interaction patterns of Cr2O3 and Sr-dopedCr2O3 nanocomposites inside active pockets of FabH from E. Coli
(FabHE. Coli).

FIGURE 12
3D graphical representation of binding interaction patterns of Cr2O3 and Sr-doped Cr2O3 nanocomposites inside active pockets of DHFR from E.
Coli (DHFRE. Coli).
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hydroxyl radicals (.OH). The presence of such particles leads to
protein dysfunction, DNA damage, cell membrane deterioration,
and an increase in death receptor gene expression. The interaction of
metal oxide NPs with the thiol groups present in essential enzymes
for bacterial survival results in the death of bacterial cells, as shown
in Figure 10. Antibacterial action also involves the inhibition of
membrane function. The electrostatic interaction of metal NPs with
the exterior of the microorganisms also triggers this process. This
results in the accumulation of NPs on the cell’s surface and a change
in the structure of the cell, both of which inhibit the growth of
bacterial cells (Alahmadi et al., 2017; Almontasser et al., 2021).

To understand the possible molecular and atomic-level
mechanisms responsible for the antibacterial activity of NPs, it is
essential to examine their binding interactions with potential protein
targets. The enzyme targets for this investigation relate to metabolic
pathways critical for bacterial survival and growth. Molecular
docking analysis was conducted to determine the binding
interaction pattern of Cr2O3 and Sr-doped Cr2O3 with different
E. coli enzyme targets. β-ketoacyl-acyl carrier protein synthetase III
(FabH)E. coli formed the best-docked complexes with Cr2O3 (see
Figure 1). The optimal Cr2O3-FabHE. Coli docking arrangement has a
docking score of 7.07. Cr2O3 established H-bonding interactions
with Arg36, Thr37, Asn247, and Asn274, as seen in Figure. In
addition, Sr-doped Cr2O3 NPs exhibit H-bonding interaction with
Asn247, Arg249, and Asn274, leading to a bind score of 8.62 when
docked into the active pocket of FabH, as shown in Figure 11.

In the case of DHFRE. Coli, Cr2O3 exhibited hydrogen-bonding
interactions with Asn18 and Met20, with a binding score of 8.78.
Similarly, Sr-doped Cr2O3 nanocomposites also showed comparable
binding interactions and scores with active site residues. In the case
of Sr-doped Cr2O3, residues interacting through H-bonds were
Met20, Thr46, Ser49, and Gly97, with active pockets having an
overall binding score of 9.88, as depicted in Figure 12.

4 Conclusion

The co-precipitation technique was used to prepare pristine
and Sr-doped Cr2O3 NSs for catalytic and antibacterial
applications. The properties of synthesized NSs were
investigated using various structural and optical characterization
techniques. The XRD analysis endorsed the polycrystalline planes
of pristine Cr2O3 and crystalline size increases from 37.5 nm to
56.6 nm in the case of 6% Sr-doped Cr2O3. FE-SEM and TEM
micrographs indicate that the presence of Sr in the lattice of Cr2O3

increased the roughness of resulting NSs attributed to high surface
area and high surface energy. Sr doping enhances the surface area
of NPs, leading to a more significant formation of reactive oxygen
species and, ultimately, a higher antibacterial effect. The interlayer
spacing (0.16–0.26 nm) in pure and Sr-doped materials was
consistent with HR-TEM. The optical spectra of the samples
indicate a redshift after doping, causing a reduction in, E.g.,
from 3.3 to 3.0 eV, as revealed by UV–vis spectroscopy.
Regarding the reduction efficiency against RhB, the synthesized
nanocatalysts demonstrated that the pristine Cr2O3 exhibited
superior catalytic activity compared to the Sr-doped

nanomaterials. In-vitro antibacterial activity of NSs using an
agar-based diffusion technique shows that significant inhibition
zone measurements were 8.65—10.15 mm and 9.65—11.75 mm for
lower and higher concentrations against MDR E. coli, respectively.
Cr2O3 and Sr-doped Cr2O3 were shown to have an impressive
binding score and interaction mechanism within the active region
of targeted proteins, indicating that they may be employed as a
possible inhibitor of FabH and DHFR enzymes and warranting
further exploration into their inhibitory properties. The superior
inhibitory activity observed against MDR bacteria classifies these
samples as viable candidates for wastewater treatment systems.
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